 Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago  Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago |
|
/*
* This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2012 Jean-Pierre Charras, jp.charras at wanadoo.fr * Copyright (C) 2012 SoftPLC Corporation, Dick Hollenbeck <dick@softplc.com> * Copyright (C) 2012 Wayne Stambaugh <stambaughw@gmail.com> * Copyright The KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */
#include "pcb_track.h"
#include <pcb_base_frame.h>
#include <core/mirror.h>
#include <connectivity/connectivity_data.h>
#include <board.h>
#include <board_design_settings.h>
#include <convert_basic_shapes_to_polygon.h>
#include <base_units.h>
#include <layer_range.h>
#include <length_delay_calculation/length_delay_calculation.h>
#include <lset.h>
#include <string_utils.h>
#include <view/view.h>
#include <settings/color_settings.h>
#include <settings/settings_manager.h>
#include <geometry/geometry_utils.h>
#include <geometry/seg.h>
#include <geometry/shape_segment.h>
#include <geometry/shape_circle.h>
#include <geometry/shape_arc.h>
#include <drc/drc_engine.h>
#include <pcb_painter.h>
#include <trigo.h>
#include <google/protobuf/any.pb.h>
#include <api/api_enums.h>
#include <api/api_utils.h>
#include <api/api_pcb_utils.h>
#include <api/board/board_types.pb.h>
using KIGFX::PCB_PAINTER; using KIGFX::PCB_RENDER_SETTINGS;
PCB_TRACK::PCB_TRACK( BOARD_ITEM* aParent, KICAD_T idtype ) : BOARD_CONNECTED_ITEM( aParent, idtype ) { m_width = pcbIUScale.mmToIU( 0.2 ); // Gives a reasonable default width
m_hasSolderMask = false; }
EDA_ITEM* PCB_TRACK::Clone() const { return new PCB_TRACK( *this ); }
void PCB_TRACK::CopyFrom( const BOARD_ITEM* aOther ) { wxCHECK( aOther && aOther->Type() == PCB_TRACE_T, /* void */ ); *this = *static_cast<const PCB_TRACK*>( aOther ); }
PCB_ARC::PCB_ARC( BOARD_ITEM* aParent, const SHAPE_ARC* aArc ) : PCB_TRACK( aParent, PCB_ARC_T ) { m_Start = aArc->GetP0(); m_End = aArc->GetP1(); m_Mid = aArc->GetArcMid(); }
EDA_ITEM* PCB_ARC::Clone() const { return new PCB_ARC( *this ); }
void PCB_ARC::CopyFrom( const BOARD_ITEM* aOther ) { wxCHECK( aOther && aOther->Type() == PCB_ARC_T, /* void */ ); *this = *static_cast<const PCB_ARC*>( aOther ); }
PCB_VIA::PCB_VIA( BOARD_ITEM* aParent ) : PCB_TRACK( aParent, PCB_VIA_T ), m_padStack( this ) { SetViaType( VIATYPE::THROUGH ); Padstack().Drill().start = F_Cu; Padstack().Drill().end = B_Cu; SetDrillDefault();
m_padStack.SetUnconnectedLayerMode( PADSTACK::UNCONNECTED_LAYER_MODE::KEEP_ALL );
// Padstack layerset is not used for vias right now
m_padStack.LayerSet().reset();
// For now, vias are always circles
m_padStack.SetShape( PAD_SHAPE::CIRCLE, PADSTACK::ALL_LAYERS );
for( PCB_LAYER_ID layer : LAYER_RANGE( F_Cu, B_Cu, BoardCopperLayerCount() ) ) m_zoneLayerOverrides[layer] = ZLO_NONE;
m_isFree = false; }
PCB_VIA::PCB_VIA( const PCB_VIA& aOther ) : PCB_TRACK( aOther.GetParent(), PCB_VIA_T ), m_padStack( this ) { PCB_VIA::operator=( aOther );
const_cast<KIID&>( m_Uuid ) = aOther.m_Uuid; m_zoneLayerOverrides = aOther.m_zoneLayerOverrides; }
PCB_VIA& PCB_VIA::operator=( const PCB_VIA &aOther ) { BOARD_CONNECTED_ITEM::operator=( aOther );
m_Start = aOther.m_Start; m_End = aOther.m_End;
m_viaType = aOther.m_viaType; m_padStack = aOther.m_padStack; m_isFree = aOther.m_isFree;
return *this; }
void PCB_VIA::CopyFrom( const BOARD_ITEM* aOther ) { wxCHECK( aOther && aOther->Type() == PCB_VIA_T, /* void */ ); *this = *static_cast<const PCB_VIA*>( aOther ); }
EDA_ITEM* PCB_VIA::Clone() const { return new PCB_VIA( *this ); }
wxString PCB_VIA::GetItemDescription( UNITS_PROVIDER* aUnitsProvider, bool aFull ) const { wxString formatStr;
switch( GetViaType() ) { case VIATYPE::BLIND_BURIED: formatStr = _( "Blind/Buried Via %s on %s" ); break; case VIATYPE::MICROVIA: formatStr = _( "Micro Via %s on %s" ); break; default: formatStr = _( "Via %s on %s" ); break; }
return wxString::Format( formatStr, GetNetnameMsg(), layerMaskDescribe() ); }
BITMAPS PCB_VIA::GetMenuImage() const { return BITMAPS::via; }
bool PCB_TRACK::operator==( const BOARD_ITEM& aBoardItem ) const { if( aBoardItem.Type() != Type() ) return false;
const PCB_TRACK& other = static_cast<const PCB_TRACK&>( aBoardItem );
return *this == other; }
bool PCB_TRACK::operator==( const PCB_TRACK& aOther ) const { return m_Start == aOther.m_Start && m_End == aOther.m_End && m_layer == aOther.m_layer && m_width == aOther.m_width && m_hasSolderMask == aOther.m_hasSolderMask && m_solderMaskMargin == aOther.m_solderMaskMargin; }
double PCB_TRACK::Similarity( const BOARD_ITEM& aOther ) const { if( aOther.Type() != Type() ) return 0.0;
const PCB_TRACK& other = static_cast<const PCB_TRACK&>( aOther );
double similarity = 1.0;
if( m_layer != other.m_layer ) similarity *= 0.9;
if( m_width != other.m_width ) similarity *= 0.9;
if( m_Start != other.m_Start ) similarity *= 0.9;
if( m_End != other.m_End ) similarity *= 0.9;
if( m_hasSolderMask != other.m_hasSolderMask ) similarity *= 0.9;
if( m_solderMaskMargin != other.m_solderMaskMargin ) similarity *= 0.9;
return similarity; }
bool PCB_ARC::operator==( const BOARD_ITEM& aBoardItem ) const { if( aBoardItem.Type() != Type() ) return false;
const PCB_ARC& other = static_cast<const PCB_ARC&>( aBoardItem );
return *this == other; }
bool PCB_ARC::operator==( const PCB_TRACK& aOther ) const { if( aOther.Type() != Type() ) return false;
const PCB_ARC& other = static_cast<const PCB_ARC&>( aOther );
return *this == other; }
bool PCB_ARC::operator==( const PCB_ARC& aOther ) const { return m_Start == aOther.m_Start && m_End == aOther.m_End && m_Mid == aOther.m_Mid && m_layer == aOther.m_layer && GetWidth() == aOther.GetWidth() && m_hasSolderMask == aOther.m_hasSolderMask && m_solderMaskMargin == aOther.m_solderMaskMargin; }
double PCB_ARC::Similarity( const BOARD_ITEM& aOther ) const { if( aOther.Type() != Type() ) return 0.0;
const PCB_ARC& other = static_cast<const PCB_ARC&>( aOther );
double similarity = 1.0;
if( m_layer != other.m_layer ) similarity *= 0.9;
if( GetWidth() != other.GetWidth() ) similarity *= 0.9;
if( m_Start != other.m_Start ) similarity *= 0.9;
if( m_End != other.m_End ) similarity *= 0.9;
if( m_Mid != other.m_Mid ) similarity *= 0.9;
if( m_hasSolderMask != other.m_hasSolderMask ) similarity *= 0.9;
if( m_solderMaskMargin != other.m_solderMaskMargin ) similarity *= 0.9;
return similarity; }
bool PCB_VIA::operator==( const BOARD_ITEM& aBoardItem ) const { if( aBoardItem.Type() != Type() ) return false;
const PCB_VIA& other = static_cast<const PCB_VIA&>( aBoardItem );
return *this == other; }
bool PCB_VIA::operator==( const PCB_TRACK& aOther ) const { if( aOther.Type() != Type() ) return false;
const PCB_VIA& other = static_cast<const PCB_VIA&>( aOther );
return *this == other; }
bool PCB_VIA::operator==( const PCB_VIA& aOther ) const { return m_Start == aOther.m_Start && m_End == aOther.m_End && m_layer == aOther.m_layer && m_padStack == aOther.m_padStack && m_viaType == aOther.m_viaType && m_zoneLayerOverrides == aOther.m_zoneLayerOverrides; }
double PCB_VIA::Similarity( const BOARD_ITEM& aOther ) const { if( aOther.Type() != Type() ) return 0.0;
const PCB_VIA& other = static_cast<const PCB_VIA&>( aOther );
double similarity = 1.0;
if( m_layer != other.m_layer ) similarity *= 0.9;
if( m_Start != other.m_Start ) similarity *= 0.9;
if( m_End != other.m_End ) similarity *= 0.9;
if( m_padStack != other.m_padStack ) similarity *= 0.9;
if( m_viaType != other.m_viaType ) similarity *= 0.9;
if( m_zoneLayerOverrides != other.m_zoneLayerOverrides ) similarity *= 0.9;
return similarity; }
void PCB_VIA::SetWidth( int aWidth ) { m_padStack.SetSize( { aWidth, aWidth }, PADSTACK::ALL_LAYERS ); }
int PCB_VIA::GetWidth() const { return m_padStack.Size( PADSTACK::ALL_LAYERS ).x; }
void PCB_VIA::SetWidth( PCB_LAYER_ID aLayer, int aWidth ) { m_padStack.SetSize( { aWidth, aWidth }, aLayer ); }
int PCB_VIA::GetWidth( PCB_LAYER_ID aLayer ) const { return m_padStack.Size( aLayer ).x; }
void PCB_TRACK::Serialize( google::protobuf::Any &aContainer ) const { kiapi::board::types::Track track;
track.mutable_id()->set_value( m_Uuid.AsStdString() ); track.mutable_start()->set_x_nm( GetStart().x ); track.mutable_start()->set_y_nm( GetStart().y ); track.mutable_end()->set_x_nm( GetEnd().x ); track.mutable_end()->set_y_nm( GetEnd().y ); track.mutable_width()->set_value_nm( GetWidth() ); track.set_layer( ToProtoEnum<PCB_LAYER_ID, kiapi::board::types::BoardLayer>( GetLayer() ) ); track.set_locked( IsLocked() ? kiapi::common::types::LockedState::LS_LOCKED : kiapi::common::types::LockedState::LS_UNLOCKED ); PackNet( track.mutable_net() ); // TODO m_hasSolderMask and m_solderMaskMargin
aContainer.PackFrom( track ); }
bool PCB_TRACK::Deserialize( const google::protobuf::Any &aContainer ) { kiapi::board::types::Track track;
if( !aContainer.UnpackTo( &track ) ) return false;
const_cast<KIID&>( m_Uuid ) = KIID( track.id().value() ); SetStart( VECTOR2I( track.start().x_nm(), track.start().y_nm() ) ); SetEnd( VECTOR2I( track.end().x_nm(), track.end().y_nm() ) ); SetWidth( track.width().value_nm() ); SetLayer( FromProtoEnum<PCB_LAYER_ID, kiapi::board::types::BoardLayer>( track.layer() ) ); UnpackNet( track.net() ); SetLocked( track.locked() == kiapi::common::types::LockedState::LS_LOCKED ); // TODO m_hasSolderMask and m_solderMaskMargin
return true; }
void PCB_ARC::Serialize( google::protobuf::Any &aContainer ) const { kiapi::board::types::Arc arc;
arc.mutable_id()->set_value( m_Uuid.AsStdString() ); arc.mutable_start()->set_x_nm( GetStart().x ); arc.mutable_start()->set_y_nm( GetStart().y ); arc.mutable_mid()->set_x_nm( GetMid().x ); arc.mutable_mid()->set_y_nm( GetMid().y ); arc.mutable_end()->set_x_nm( GetEnd().x ); arc.mutable_end()->set_y_nm( GetEnd().y ); arc.mutable_width()->set_value_nm( GetWidth() ); arc.set_layer( ToProtoEnum<PCB_LAYER_ID, kiapi::board::types::BoardLayer>( GetLayer() ) ); arc.set_locked( IsLocked() ? kiapi::common::types::LockedState::LS_LOCKED : kiapi::common::types::LockedState::LS_UNLOCKED ); PackNet( arc.mutable_net() ); // TODO m_hasSolderMask and m_solderMaskMargin
aContainer.PackFrom( arc ); }
bool PCB_ARC::Deserialize( const google::protobuf::Any &aContainer ) { kiapi::board::types::Arc arc;
if( !aContainer.UnpackTo( &arc ) ) return false;
const_cast<KIID&>( m_Uuid ) = KIID( arc.id().value() ); SetStart( VECTOR2I( arc.start().x_nm(), arc.start().y_nm() ) ); SetMid( VECTOR2I( arc.mid().x_nm(), arc.mid().y_nm() ) ); SetEnd( VECTOR2I( arc.end().x_nm(), arc.end().y_nm() ) ); SetWidth( arc.width().value_nm() ); SetLayer( FromProtoEnum<PCB_LAYER_ID, kiapi::board::types::BoardLayer>( arc.layer() ) ); UnpackNet( arc.net() ); SetLocked( arc.locked() == kiapi::common::types::LockedState::LS_LOCKED ); // TODO m_hasSolderMask and m_solderMaskMargin
return true; }
void PCB_VIA::Serialize( google::protobuf::Any &aContainer ) const { kiapi::board::types::Via via;
via.mutable_id()->set_value( m_Uuid.AsStdString() ); via.mutable_position()->set_x_nm( GetPosition().x ); via.mutable_position()->set_y_nm( GetPosition().y );
PADSTACK padstack = Padstack();
google::protobuf::Any padStackWrapper; padstack.Serialize( padStackWrapper ); padStackWrapper.UnpackTo( via.mutable_pad_stack() );
// PADSTACK::m_layerSet is not used by vias
via.mutable_pad_stack()->clear_layers(); kiapi::board::PackLayerSet( *via.mutable_pad_stack()->mutable_layers(), GetLayerSet() );
via.set_type( ToProtoEnum<VIATYPE, kiapi::board::types::ViaType>( GetViaType() ) ); via.set_locked( IsLocked() ? kiapi::common::types::LockedState::LS_LOCKED : kiapi::common::types::LockedState::LS_UNLOCKED ); PackNet( via.mutable_net() );
aContainer.PackFrom( via ); }
bool PCB_VIA::Deserialize( const google::protobuf::Any &aContainer ) { kiapi::board::types::Via via;
if( !aContainer.UnpackTo( &via ) ) return false;
const_cast<KIID&>( m_Uuid ) = KIID( via.id().value() ); SetStart( VECTOR2I( via.position().x_nm(), via.position().y_nm() ) ); SetEnd( GetStart() );
google::protobuf::Any padStackWrapper; padStackWrapper.PackFrom( via.pad_stack() );
if( !m_padStack.Deserialize( padStackWrapper ) ) return false;
// PADSTACK::m_layerSet is not used by vias
m_padStack.LayerSet().reset();
SetViaType( FromProtoEnum<VIATYPE>( via.type() ) ); UnpackNet( via.net() ); SetLocked( via.locked() == kiapi::common::types::LockedState::LS_LOCKED );
return true; }
bool PCB_TRACK::ApproxCollinear( const PCB_TRACK& aTrack ) { SEG a( m_Start, m_End ); SEG b( aTrack.GetStart(), aTrack.GetEnd() ); return a.ApproxCollinear( b ); }
MINOPTMAX<int> PCB_TRACK::GetWidthConstraint( wxString* aSource ) const { DRC_CONSTRAINT constraint;
if( GetBoard() && GetBoard()->GetDesignSettings().m_DRCEngine ) { BOARD_DESIGN_SETTINGS& bds = GetBoard()->GetDesignSettings();
constraint = bds.m_DRCEngine->EvalRules( TRACK_WIDTH_CONSTRAINT, this, nullptr, m_layer ); }
if( aSource ) *aSource = constraint.GetName();
return constraint.Value(); }
MINOPTMAX<int> PCB_VIA::GetWidthConstraint( wxString* aSource ) const { DRC_CONSTRAINT constraint;
if( GetBoard() && GetBoard()->GetDesignSettings().m_DRCEngine ) { BOARD_DESIGN_SETTINGS& bds = GetBoard()->GetDesignSettings();
constraint = bds.m_DRCEngine->EvalRules( VIA_DIAMETER_CONSTRAINT, this, nullptr, m_layer ); }
if( aSource ) *aSource = constraint.GetName();
return constraint.Value(); }
MINOPTMAX<int> PCB_VIA::GetDrillConstraint( wxString* aSource ) const { DRC_CONSTRAINT constraint;
if( GetBoard() && GetBoard()->GetDesignSettings().m_DRCEngine ) { BOARD_DESIGN_SETTINGS& bds = GetBoard()->GetDesignSettings();
constraint = bds.m_DRCEngine->EvalRules( HOLE_SIZE_CONSTRAINT, this, nullptr, m_layer ); }
if( aSource ) *aSource = constraint.GetName();
return constraint.Value(); }
int PCB_VIA::GetMinAnnulus( PCB_LAYER_ID aLayer, wxString* aSource ) const { if( !FlashLayer( aLayer ) ) { if( aSource ) *aSource = _( "removed annular ring" );
return 0; }
DRC_CONSTRAINT constraint;
if( GetBoard() && GetBoard()->GetDesignSettings().m_DRCEngine ) { BOARD_DESIGN_SETTINGS& bds = GetBoard()->GetDesignSettings();
constraint = bds.m_DRCEngine->EvalRules( ANNULAR_WIDTH_CONSTRAINT, this, nullptr, aLayer ); }
if( constraint.Value().HasMin() ) { if( aSource ) *aSource = constraint.GetName();
return constraint.Value().Min(); }
return 0; }
int PCB_VIA::GetDrillValue() const { if( m_padStack.Drill().size.x > 0 ) // Use the specific value.
return m_padStack.Drill().size.x;
// Use the default value from the Netclass
NETCLASS* netclass = GetEffectiveNetClass();
if( GetViaType() == VIATYPE::MICROVIA ) return netclass->GetuViaDrill();
return netclass->GetViaDrill(); }
EDA_ITEM_FLAGS PCB_TRACK::IsPointOnEnds( const VECTOR2I& point, int min_dist ) const { EDA_ITEM_FLAGS result = 0;
if( min_dist < 0 ) min_dist = m_width / 2;
if( min_dist == 0 ) { if( m_Start == point ) result |= STARTPOINT;
if( m_End == point ) result |= ENDPOINT; } else { double dist = m_Start.Distance( point );
if( min_dist >= dist ) result |= STARTPOINT;
dist = m_End.Distance( point );
if( min_dist >= dist ) result |= ENDPOINT; }
return result; }
const BOX2I PCB_TRACK::GetBoundingBox() const { // end of track is round, this is its radius, rounded up
int radius = ( m_width + 1 ) / 2; int ymax, xmax, ymin, xmin;
if( Type() == PCB_VIA_T ) { ymax = m_Start.y; xmax = m_Start.x;
ymin = m_Start.y; xmin = m_Start.x; } else if( Type() == PCB_ARC_T ) { std::shared_ptr<SHAPE> arc = GetEffectiveShape(); BOX2I bbox = arc->BBox();
xmin = bbox.GetLeft(); xmax = bbox.GetRight(); ymin = bbox.GetTop(); ymax = bbox.GetBottom(); } else { ymax = std::max( m_Start.y, m_End.y ); xmax = std::max( m_Start.x, m_End.x );
ymin = std::min( m_Start.y, m_End.y ); xmin = std::min( m_Start.x, m_End.x ); }
ymax += radius; xmax += radius;
ymin -= radius; xmin -= radius;
// return a rectangle which is [pos,dim) in nature. therefore the +1
return BOX2ISafe( VECTOR2I( xmin, ymin ), VECTOR2L( (int64_t) xmax - xmin + 1, (int64_t) ymax - ymin + 1 ) ); }
const BOX2I PCB_VIA::GetBoundingBox() const { int radius = 0;
Padstack().ForEachUniqueLayer( [&]( PCB_LAYER_ID aLayer ) { radius = std::max( radius, GetWidth( aLayer ) ); } );
// via is round, this is its radius, rounded up
radius = ( radius + 1 ) / 2;
int ymax = m_Start.y + radius; int xmax = m_Start.x + radius;
int ymin = m_Start.y - radius; int xmin = m_Start.x - radius;
// return a rectangle which is [pos,dim) in nature. therefore the +1
return BOX2ISafe( VECTOR2I( xmin, ymin ), VECTOR2L( (int64_t) xmax - xmin + 1, (int64_t) ymax - ymin + 1 ) ); }
const BOX2I PCB_VIA::GetBoundingBox( PCB_LAYER_ID aLayer ) const { int radius = GetWidth( aLayer );
// via is round, this is its radius, rounded up
radius = ( radius + 1 ) / 2;
int ymax = m_Start.y + radius; int xmax = m_Start.x + radius;
int ymin = m_Start.y - radius; int xmin = m_Start.x - radius;
// return a rectangle which is [pos,dim) in nature. therefore the +1
return BOX2ISafe( VECTOR2I( xmin, ymin ), VECTOR2L( (int64_t) xmax - xmin + 1, (int64_t) ymax - ymin + 1 ) ); }
double PCB_TRACK::GetLength() const { return m_Start.Distance( m_End ); }
double PCB_TRACK::GetDelay() const { const BOARD* board = GetBoard();
if( !board ) return 0.0;
const LENGTH_DELAY_CALCULATION* calc = board->GetLengthCalculation(); std::vector<LENGTH_DELAY_CALCULATION_ITEM> items{ calc->GetLengthCalculationItem( this ) }; constexpr PATH_OPTIMISATIONS opts = { .OptimiseViaLayers = false, .MergeTracks = false, .OptimiseTracesInPads = false, .InferViaInPad = false };
return (double) calc->CalculateDelay( items, opts ); }
void PCB_TRACK::Rotate( const VECTOR2I& aRotCentre, const EDA_ANGLE& aAngle ) { RotatePoint( m_Start, aRotCentre, aAngle ); RotatePoint( m_End, aRotCentre, aAngle ); }
void PCB_ARC::Rotate( const VECTOR2I& aRotCentre, const EDA_ANGLE& aAngle ) { RotatePoint( m_Start, aRotCentre, aAngle ); RotatePoint( m_End, aRotCentre, aAngle ); RotatePoint( m_Mid, aRotCentre, aAngle ); }
void PCB_TRACK::Mirror( const VECTOR2I& aCentre, FLIP_DIRECTION aFlipDirection ) { MIRROR( m_Start, aCentre, aFlipDirection ); MIRROR( m_End, aCentre, aFlipDirection ); }
void PCB_ARC::Mirror( const VECTOR2I& aCentre, FLIP_DIRECTION aFlipDirection ) { MIRROR( m_Start, aCentre, aFlipDirection ); MIRROR( m_End, aCentre, aFlipDirection ); MIRROR( m_Mid, aCentre, aFlipDirection ); }
void PCB_TRACK::Flip( const VECTOR2I& aCentre, FLIP_DIRECTION aFlipDirection ) { if( aFlipDirection == FLIP_DIRECTION::LEFT_RIGHT ) { m_Start.x = aCentre.x - ( m_Start.x - aCentre.x ); m_End.x = aCentre.x - ( m_End.x - aCentre.x ); } else { m_Start.y = aCentre.y - ( m_Start.y - aCentre.y ); m_End.y = aCentre.y - ( m_End.y - aCentre.y ); }
SetLayer( GetBoard()->FlipLayer( GetLayer() ) ); }
void PCB_ARC::Flip( const VECTOR2I& aCentre, FLIP_DIRECTION aFlipDirection ) { if( aFlipDirection == FLIP_DIRECTION::LEFT_RIGHT ) { m_Start.x = aCentre.x - ( m_Start.x - aCentre.x ); m_End.x = aCentre.x - ( m_End.x - aCentre.x ); m_Mid.x = aCentre.x - ( m_Mid.x - aCentre.x ); } else { m_Start.y = aCentre.y - ( m_Start.y - aCentre.y ); m_End.y = aCentre.y - ( m_End.y - aCentre.y ); m_Mid.y = aCentre.y - ( m_Mid.y - aCentre.y ); }
SetLayer( GetBoard()->FlipLayer( GetLayer() ) ); }
bool PCB_ARC::IsCCW() const { VECTOR2L start = m_Start; VECTOR2L start_end = m_End - start; VECTOR2L start_mid = m_Mid - start;
return start_end.Cross( start_mid ) < 0; }
void PCB_VIA::Flip( const VECTOR2I& aCentre, FLIP_DIRECTION aFlipDirection ) { if( aFlipDirection == FLIP_DIRECTION::LEFT_RIGHT ) { m_Start.x = aCentre.x - ( m_Start.x - aCentre.x ); m_End.x = aCentre.x - ( m_End.x - aCentre.x ); } else { m_Start.y = aCentre.y - ( m_Start.y - aCentre.y ); m_End.y = aCentre.y - ( m_End.y - aCentre.y ); }
if( GetViaType() != VIATYPE::THROUGH ) { PCB_LAYER_ID top_layer; PCB_LAYER_ID bottom_layer; LayerPair( &top_layer, &bottom_layer ); top_layer = GetBoard()->FlipLayer( top_layer ); bottom_layer = GetBoard()->FlipLayer( bottom_layer ); SetLayerPair( top_layer, bottom_layer ); } }
INSPECT_RESULT PCB_TRACK::Visit( INSPECTOR inspector, void* testData, const std::vector<KICAD_T>& aScanTypes ) { for( KICAD_T scanType : aScanTypes ) { if( scanType == Type() ) { if( INSPECT_RESULT::QUIT == inspector( this, testData ) ) return INSPECT_RESULT::QUIT; } }
return INSPECT_RESULT::CONTINUE; }
std::shared_ptr<SHAPE_SEGMENT> PCB_VIA::GetEffectiveHoleShape() const { return std::make_shared<SHAPE_SEGMENT>( SEG( m_Start, m_Start ), Padstack().Drill().size.x ); }
// clang-format off: the suggestion is slightly less readable
void PCB_VIA::SetFrontTentingMode( TENTING_MODE aMode ) { switch( aMode ) { case TENTING_MODE::FROM_RULES: m_padStack.FrontOuterLayers().has_solder_mask.reset(); break; case TENTING_MODE::TENTED: m_padStack.FrontOuterLayers().has_solder_mask = true; break; case TENTING_MODE::NOT_TENTED: m_padStack.FrontOuterLayers().has_solder_mask = false; break; } }
TENTING_MODE PCB_VIA::GetFrontTentingMode() const { if( m_padStack.FrontOuterLayers().has_solder_mask.has_value() ) { return *m_padStack.FrontOuterLayers().has_solder_mask ? TENTING_MODE::TENTED : TENTING_MODE::NOT_TENTED; }
return TENTING_MODE::FROM_RULES; }
void PCB_VIA::SetBackTentingMode( TENTING_MODE aMode ) { switch( aMode ) { case TENTING_MODE::FROM_RULES: m_padStack.BackOuterLayers().has_solder_mask.reset(); break; case TENTING_MODE::TENTED: m_padStack.BackOuterLayers().has_solder_mask = true; break; case TENTING_MODE::NOT_TENTED: m_padStack.BackOuterLayers().has_solder_mask = false; break; } }
TENTING_MODE PCB_VIA::GetBackTentingMode() const { if( m_padStack.BackOuterLayers().has_solder_mask.has_value() ) { return *m_padStack.BackOuterLayers().has_solder_mask ? TENTING_MODE::TENTED : TENTING_MODE::NOT_TENTED; }
return TENTING_MODE::FROM_RULES; }
void PCB_VIA::SetFrontCoveringMode( COVERING_MODE aMode ) { switch( aMode ) { case COVERING_MODE::FROM_RULES: m_padStack.FrontOuterLayers().has_covering.reset(); break; case COVERING_MODE::COVERED: m_padStack.FrontOuterLayers().has_covering = true; break; case COVERING_MODE::NOT_COVERED: m_padStack.FrontOuterLayers().has_covering = false; break; } }
COVERING_MODE PCB_VIA::GetFrontCoveringMode() const { if( m_padStack.FrontOuterLayers().has_covering.has_value() ) { return *m_padStack.FrontOuterLayers().has_covering ? COVERING_MODE::COVERED : COVERING_MODE::NOT_COVERED; }
return COVERING_MODE::FROM_RULES; }
void PCB_VIA::SetBackCoveringMode( COVERING_MODE aMode ) { switch( aMode ) { case COVERING_MODE::FROM_RULES: m_padStack.BackOuterLayers().has_covering.reset(); break; case COVERING_MODE::COVERED: m_padStack.BackOuterLayers().has_covering = true; break; case COVERING_MODE::NOT_COVERED: m_padStack.BackOuterLayers().has_covering = false; break; } }
COVERING_MODE PCB_VIA::GetBackCoveringMode() const { if( m_padStack.BackOuterLayers().has_covering.has_value() ) { return *m_padStack.BackOuterLayers().has_covering ? COVERING_MODE::COVERED : COVERING_MODE::NOT_COVERED; }
return COVERING_MODE::FROM_RULES; }
void PCB_VIA::SetFrontPluggingMode( PLUGGING_MODE aMode ) { switch( aMode ) { case PLUGGING_MODE::FROM_RULES: m_padStack.FrontOuterLayers().has_plugging.reset(); break; case PLUGGING_MODE::PLUGGED: m_padStack.FrontOuterLayers().has_plugging = true; break; case PLUGGING_MODE::NOT_PLUGGED: m_padStack.FrontOuterLayers().has_plugging = false; break; } }
PLUGGING_MODE PCB_VIA::GetFrontPluggingMode() const { if( m_padStack.FrontOuterLayers().has_plugging.has_value() ) { return *m_padStack.FrontOuterLayers().has_plugging ? PLUGGING_MODE::PLUGGED : PLUGGING_MODE::NOT_PLUGGED; }
return PLUGGING_MODE::FROM_RULES; }
void PCB_VIA::SetBackPluggingMode( PLUGGING_MODE aMode ) { switch( aMode ) { case PLUGGING_MODE::FROM_RULES: m_padStack.BackOuterLayers().has_plugging.reset(); break; case PLUGGING_MODE::PLUGGED: m_padStack.BackOuterLayers().has_plugging = true; break; case PLUGGING_MODE::NOT_PLUGGED: m_padStack.BackOuterLayers().has_plugging = false; break; } }
PLUGGING_MODE PCB_VIA::GetBackPluggingMode() const { if( m_padStack.BackOuterLayers().has_plugging.has_value() ) { return *m_padStack.BackOuterLayers().has_plugging ? PLUGGING_MODE::PLUGGED : PLUGGING_MODE::NOT_PLUGGED; }
return PLUGGING_MODE::FROM_RULES; }
void PCB_VIA::SetCappingMode( CAPPING_MODE aMode ) { switch( aMode ) { case CAPPING_MODE::FROM_RULES: m_padStack.Drill().is_capped.reset(); break; case CAPPING_MODE::CAPPED: m_padStack.Drill().is_capped = true; break; case CAPPING_MODE::NOT_CAPPED: m_padStack.Drill().is_capped = false; break; } }
CAPPING_MODE PCB_VIA::GetCappingMode() const { if( m_padStack.Drill().is_capped.has_value() ) { return *m_padStack.Drill().is_capped ? CAPPING_MODE::CAPPED : CAPPING_MODE::NOT_CAPPED; }
return CAPPING_MODE::FROM_RULES; }
void PCB_VIA::SetFillingMode( FILLING_MODE aMode ) { switch( aMode ) { case FILLING_MODE::FROM_RULES: m_padStack.Drill().is_filled.reset(); break; case FILLING_MODE::FILLED: m_padStack.Drill().is_filled = true; break; case FILLING_MODE::NOT_FILLED: m_padStack.Drill().is_filled = false; break; } }
FILLING_MODE PCB_VIA::GetFillingMode() const { if( m_padStack.Drill().is_filled.has_value() ) { return *m_padStack.Drill().is_filled ? FILLING_MODE::FILLED : FILLING_MODE::NOT_FILLED; }
return FILLING_MODE::FROM_RULES; } // clang-format on: the suggestion is slightly less readable
bool PCB_VIA::IsTented( PCB_LAYER_ID aLayer ) const { wxCHECK_MSG( IsFrontLayer( aLayer ) || IsBackLayer( aLayer ), true, "Invalid layer passed to IsTented" );
bool front = IsFrontLayer( aLayer );
if( front && m_padStack.FrontOuterLayers().has_solder_mask.has_value() ) return *m_padStack.FrontOuterLayers().has_solder_mask;
if( !front && m_padStack.BackOuterLayers().has_solder_mask.has_value() ) return *m_padStack.BackOuterLayers().has_solder_mask;
if( const BOARD* board = GetBoard() ) { return front ? board->GetDesignSettings().m_TentViasFront : board->GetDesignSettings().m_TentViasBack; }
return true; }
int PCB_VIA::GetSolderMaskExpansion() const { if( const BOARD* board = GetBoard() ) return board->GetDesignSettings().m_SolderMaskExpansion; else return 0; }
int PCB_TRACK::GetSolderMaskExpansion() const { int margin = 0;
if( const BOARD* board = GetBoard() ) { DRC_CONSTRAINT constraint; std::shared_ptr<DRC_ENGINE> drcEngine = board->GetDesignSettings().m_DRCEngine;
constraint = drcEngine->EvalRules( SOLDER_MASK_EXPANSION_CONSTRAINT, this, nullptr, m_layer );
if( constraint.m_Value.HasOpt() ) margin = constraint.m_Value.Opt(); } else if( m_solderMaskMargin.has_value() ) { margin = m_solderMaskMargin.value(); }
// Ensure the resulting mask opening has a non-negative size
if( margin < 0 ) margin = std::max( margin, -m_width / 2 );
return margin; }
bool PCB_TRACK::IsOnLayer( PCB_LAYER_ID aLayer ) const { if( aLayer == m_layer ) { return true; }
if( m_hasSolderMask && ( ( aLayer == F_Mask && m_layer == F_Cu ) || ( aLayer == B_Mask && m_layer == B_Cu ) ) ) { return true; }
return false; }
bool PCB_VIA::IsOnLayer( PCB_LAYER_ID aLayer ) const { #if 0
// Nice and simple, but raises its ugly head in performance profiles....
return GetLayerSet().test( aLayer ); #endif
if( IsCopperLayer( aLayer ) && LAYER_RANGE::Contains( Padstack().Drill().start, Padstack().Drill().end, aLayer ) ) { return true; }
// Test for via on mask layers: a via on on a mask layer if not tented and if
// it is on the corresponding external copper layer
if( aLayer == F_Mask ) return Padstack().Drill().start == F_Cu && !IsTented( F_Mask ); else if( aLayer == B_Mask ) return Padstack().Drill().end == B_Cu && !IsTented( B_Mask );
return false; }
bool PCB_VIA::HasValidLayerPair( int aCopperLayerCount ) { // return true if top and bottom layers are valid, depending on the copper layer count
// aCopperLayerCount is expected >= 2
int layer_id = aCopperLayerCount*2;
if( Padstack().Drill().start > B_Cu ) { if( Padstack().Drill().start > layer_id ) return false; } if( Padstack().Drill().end > B_Cu ) { if( Padstack().Drill().end > layer_id ) return false; }
return true; }
PCB_LAYER_ID PCB_VIA::GetLayer() const { return Padstack().Drill().start; }
void PCB_VIA::SetLayer( PCB_LAYER_ID aLayer ) { Padstack().Drill().start = aLayer; }
void PCB_TRACK::SetLayerSet( const LSET& aLayerSet ) { aLayerSet.RunOnLayers( [&]( PCB_LAYER_ID layer ) { if( IsCopperLayer( layer ) ) SetLayer( layer ); else if( IsSolderMaskLayer( layer ) ) SetHasSolderMask( true ); } ); }
LSET PCB_TRACK::GetLayerSet() const { LSET layermask( { m_layer } );
if( m_hasSolderMask ) { if( layermask.test( F_Cu ) ) layermask.set( F_Mask ); else if( layermask.test( B_Cu ) ) layermask.set( B_Mask ); }
return layermask; }
LSET PCB_VIA::GetLayerSet() const { LSET layermask;
if( Padstack().Drill().start < PCBNEW_LAYER_ID_START ) return layermask;
if( GetViaType() == VIATYPE::THROUGH ) { layermask = LSET::AllCuMask( BoardCopperLayerCount() ); } else { LAYER_RANGE range( Padstack().Drill().start, Padstack().Drill().end, BoardCopperLayerCount() );
int cnt = BoardCopperLayerCount(); // PCB_LAYER_IDs are numbered from front to back, this is top to bottom.
for( PCB_LAYER_ID id : range ) { layermask.set( id );
if( --cnt <= 0 ) break; } }
if( !IsTented( F_Mask ) && layermask.test( F_Cu ) ) layermask.set( F_Mask );
if( !IsTented( B_Mask ) && layermask.test( B_Cu ) ) layermask.set( B_Mask );
return layermask; }
void PCB_VIA::SetLayerSet( const LSET& aLayerSet ) { // Vias do not use a LSET, just a top and bottom layer pair
// So we need to set these 2 layers according to the allowed layers in aLayerSet
// For via through, only F_Cu and B_Cu are allowed. aLayerSet is ignored
if( GetViaType() == VIATYPE::THROUGH ) { Padstack().Drill().start = F_Cu; Padstack().Drill().end = B_Cu; return; }
// For blind buried vias, find the top and bottom layers
bool top_found = false; bool bottom_found = false;
aLayerSet.RunOnLayers( [&]( PCB_LAYER_ID layer ) { // tpo layer and bottom Layer are copper layers, so consider only copper layers
if( IsCopperLayer( layer ) ) { // The top layer is the first layer found in list and
// cannot the B_Cu
if( !top_found && layer != B_Cu ) { Padstack().Drill().start = layer; top_found = true; }
// The bottom layer is the last layer found in list or B_Cu
if( !bottom_found ) Padstack().Drill().end = layer;
if( layer == B_Cu ) bottom_found = true; } } ); }
void PCB_VIA::SetLayerPair( PCB_LAYER_ID aTopLayer, PCB_LAYER_ID aBottomLayer ) { Padstack().Drill().start = aTopLayer; Padstack().Drill().end = aBottomLayer; SanitizeLayers(); }
void PCB_VIA::SetTopLayer( PCB_LAYER_ID aLayer ) { // refuse invalid via
if( aLayer == Padstack().Drill().end ) return;
Padstack().Drill().start = aLayer; SanitizeLayers(); }
void PCB_VIA::SetBottomLayer( PCB_LAYER_ID aLayer ) { // refuse invalid via
if( aLayer == Padstack().Drill().start ) return;
Padstack().Drill().end = aLayer; SanitizeLayers(); }
void PCB_VIA::LayerPair( PCB_LAYER_ID* top_layer, PCB_LAYER_ID* bottom_layer ) const { PCB_LAYER_ID t_layer = F_Cu; PCB_LAYER_ID b_layer = B_Cu;
if( GetViaType() != VIATYPE::THROUGH ) { b_layer = Padstack().Drill().end; t_layer = Padstack().Drill().start;
if( !IsCopperLayerLowerThan( b_layer, t_layer ) ) std::swap( b_layer, t_layer ); }
if( top_layer ) *top_layer = t_layer;
if( bottom_layer ) *bottom_layer = b_layer; }
PCB_LAYER_ID PCB_VIA::TopLayer() const { return Padstack().Drill().start; }
PCB_LAYER_ID PCB_VIA::BottomLayer() const { return Padstack().Drill().end; }
void PCB_VIA::SanitizeLayers() { if( GetViaType() == VIATYPE::THROUGH ) { Padstack().Drill().start = F_Cu; Padstack().Drill().end = B_Cu; }
if( !IsCopperLayerLowerThan( Padstack().Drill().end, Padstack().Drill().start) ) std::swap( Padstack().Drill().end, Padstack().Drill().start ); }
bool PCB_VIA::FlashLayer( const LSET& aLayers ) const { for( PCB_LAYER_ID layer : aLayers ) { if( FlashLayer( layer ) ) return true; }
return false; }
bool PCB_VIA::FlashLayer( int aLayer ) const { // Return the "normal" shape if the caller doesn't specify a particular layer
if( aLayer == UNDEFINED_LAYER ) return true;
const BOARD* board = GetBoard(); PCB_LAYER_ID layer = static_cast<PCB_LAYER_ID>( aLayer );
if( !board ) return true;
if( !IsOnLayer( layer ) ) return false;
if( !IsCopperLayer( layer ) ) return true;
switch( Padstack().UnconnectedLayerMode() ) { case PADSTACK::UNCONNECTED_LAYER_MODE::KEEP_ALL: return true;
case PADSTACK::UNCONNECTED_LAYER_MODE::REMOVE_EXCEPT_START_AND_END: { if( layer == Padstack().Drill().start || layer == Padstack().Drill().end ) return true;
// Check for removal below
break; }
case PADSTACK::UNCONNECTED_LAYER_MODE::REMOVE_ALL: // Check for removal below
break; }
if( GetZoneLayerOverride( layer ) == ZLO_FORCE_FLASHED ) { return true; } else { // Must be static to keep from raising its ugly head in performance profiles
static std::initializer_list<KICAD_T> nonZoneTypes = { PCB_TRACE_T, PCB_ARC_T, PCB_VIA_T, PCB_PAD_T };
return board->GetConnectivity()->IsConnectedOnLayer( this, layer, nonZoneTypes ); } }
void PCB_VIA::ClearZoneLayerOverrides() { std::unique_lock<std::mutex> cacheLock( m_zoneLayerOverridesMutex );
for( PCB_LAYER_ID layer : LAYER_RANGE( F_Cu, B_Cu, BoardCopperLayerCount() ) ) m_zoneLayerOverrides[layer] = ZLO_NONE; }
const ZONE_LAYER_OVERRIDE& PCB_VIA::GetZoneLayerOverride( PCB_LAYER_ID aLayer ) const { static const ZONE_LAYER_OVERRIDE defaultOverride = ZLO_NONE; auto it = m_zoneLayerOverrides.find( aLayer ); return it != m_zoneLayerOverrides.end() ? it->second : defaultOverride; }
void PCB_VIA::SetZoneLayerOverride( PCB_LAYER_ID aLayer, ZONE_LAYER_OVERRIDE aOverride ) { std::unique_lock<std::mutex> cacheLock( m_zoneLayerOverridesMutex ); m_zoneLayerOverrides[aLayer] = aOverride; }
void PCB_VIA::GetOutermostConnectedLayers( PCB_LAYER_ID* aTopmost, PCB_LAYER_ID* aBottommost ) const { *aTopmost = UNDEFINED_LAYER; *aBottommost = UNDEFINED_LAYER;
static std::initializer_list<KICAD_T> nonZoneTypes = { PCB_TRACE_T, PCB_ARC_T, PCB_VIA_T, PCB_PAD_T };
for( int layer = TopLayer(); layer <= BottomLayer(); ++layer ) { bool connected = false;
if( GetZoneLayerOverride( static_cast<PCB_LAYER_ID>( layer ) ) == ZLO_FORCE_FLASHED ) { connected = true; } else if( GetBoard()->GetConnectivity()->IsConnectedOnLayer( this, layer, nonZoneTypes ) ) { connected = true; }
if( connected ) { if( *aTopmost == UNDEFINED_LAYER ) *aTopmost = ToLAYER_ID( layer );
*aBottommost = ToLAYER_ID( layer ); } }
}
std::vector<int> PCB_TRACK::ViewGetLayers() const { // Show the track and its netname on different layers
const PCB_LAYER_ID layer = GetLayer(); std::vector<int> layers{ layer, GetNetnameLayer( layer ), LAYER_CLEARANCE_START + layer, };
layers.reserve( 6 );
if( m_hasSolderMask ) { if( m_layer == F_Cu ) layers.push_back( F_Mask ); else if( m_layer == B_Cu ) layers.push_back( B_Mask ); }
if( IsLocked() ) layers.push_back( LAYER_LOCKED_ITEM_SHADOW );
return layers; }
double PCB_TRACK::ViewGetLOD( int aLayer, const KIGFX::VIEW* aView ) const { PCB_PAINTER* painter = static_cast<PCB_PAINTER*>( aView->GetPainter() ); PCB_RENDER_SETTINGS* renderSettings = painter->GetSettings();
if( !aView->IsLayerVisible( LAYER_TRACKS ) ) return LOD_HIDE;
if( IsNetnameLayer( aLayer ) ) { if( GetNetCode() <= NETINFO_LIST::UNCONNECTED ) return LOD_HIDE;
// Hide netnames on dimmed tracks
if( renderSettings->GetHighContrast() ) { if( m_layer != renderSettings->GetPrimaryHighContrastLayer() ) return LOD_HIDE; }
VECTOR2I start( GetStart() ); VECTOR2I end( GetEnd() );
// Calc the approximate size of the netname (assume square chars)
SEG::ecoord nameSize = GetDisplayNetname().size() * GetWidth();
if( VECTOR2I( end - start ).SquaredEuclideanNorm() < nameSize * nameSize ) return LOD_HIDE;
BOX2I clipBox = BOX2ISafe( aView->GetViewport() );
ClipLine( &clipBox, start.x, start.y, end.x, end.y );
if( VECTOR2I( end - start ).SquaredEuclideanNorm() == 0 ) return LOD_HIDE;
// Netnames will be shown only if zoom is appropriate
return lodScaleForThreshold( aView, m_width, pcbIUScale.mmToIU( 4.0 ) ); }
if( aLayer == LAYER_LOCKED_ITEM_SHADOW ) { // Hide shadow if the main layer is not shown
if( !aView->IsLayerVisible( m_layer ) ) return LOD_HIDE;
// Hide shadow on dimmed tracks
if( renderSettings->GetHighContrast() ) { if( m_layer != renderSettings->GetPrimaryHighContrastLayer() ) return LOD_HIDE; } }
// Other layers are shown without any conditions
return LOD_SHOW; }
const BOX2I PCB_TRACK::ViewBBox() const { BOX2I bbox = GetBoundingBox();
if( const BOARD* board = GetBoard() ) bbox.Inflate( 2 * board->GetDesignSettings().GetBiggestClearanceValue() ); else bbox.Inflate( GetWidth() ); // Add a bit extra for safety
return bbox; }
std::vector<int> PCB_VIA::ViewGetLayers() const { LAYER_RANGE layers( Padstack().Drill().start, Padstack().Drill().end, MAX_CU_LAYERS ); std::vector<int> ret_layers{ LAYER_VIA_HOLES, LAYER_VIA_HOLEWALLS, LAYER_VIA_NETNAMES }; ret_layers.reserve( MAX_CU_LAYERS + 6 );
// TODO(JE) Rendering order issue
#if 0
// Blind/buried vias (and microvias) use a different net name layer
PCB_LAYER_ID layerTop, layerBottom; LayerPair( &layerTop, &layerBottom );
bool isBlindBuried = m_viaType == VIATYPE::BLIND_BURIED || ( m_viaType == VIATYPE::MICROVIA && ( layerTop != F_Cu || layerBottom != B_Cu ) ); #endif
LSET cuMask = LSET::AllCuMask();
if( const BOARD* board = GetBoard() ) cuMask &= board->GetEnabledLayers();
for( PCB_LAYER_ID layer : layers ) { if( !cuMask.Contains( layer ) ) continue;
ret_layers.push_back( LAYER_VIA_COPPER_START + layer ); ret_layers.push_back( LAYER_CLEARANCE_START + layer ); }
if( IsLocked() ) ret_layers.push_back( LAYER_LOCKED_ITEM_SHADOW );
// Vias can also be on a solder mask layer. They are on these layers or not,
// depending on the plot and solder mask options
if( IsOnLayer( F_Mask ) ) ret_layers.push_back( F_Mask );
if( IsOnLayer( B_Mask ) ) ret_layers.push_back( B_Mask );
return ret_layers; }
double PCB_VIA::ViewGetLOD( int aLayer, const KIGFX::VIEW* aView ) const { PCB_PAINTER* painter = static_cast<PCB_PAINTER*>( aView->GetPainter() ); PCB_RENDER_SETTINGS* renderSettings = painter->GetSettings(); const BOARD* board = GetBoard();
// Meta control for hiding all vias
if( !aView->IsLayerVisible( LAYER_VIAS ) ) return LOD_HIDE;
// In high contrast mode don't show vias that don't cross the high-contrast layer
if( renderSettings->GetHighContrast() ) { PCB_LAYER_ID highContrastLayer = renderSettings->GetPrimaryHighContrastLayer();
if( LSET::FrontTechMask().Contains( highContrastLayer ) ) highContrastLayer = F_Cu; else if( LSET::BackTechMask().Contains( highContrastLayer ) ) highContrastLayer = B_Cu;
if( IsCopperLayer( highContrastLayer ) && GetViaType() != VIATYPE::THROUGH ) { if( IsCopperLayerLowerThan( Padstack().Drill().start, highContrastLayer ) || IsCopperLayerLowerThan( highContrastLayer, Padstack().Drill().end ) ) { return LOD_HIDE; } } }
if( IsHoleLayer( aLayer ) ) { LSET visible;
if( board ) { visible = board->GetVisibleLayers(); visible &= board->GetEnabledLayers(); } else { visible = LSET::AllLayersMask(); }
if( m_viaType == VIATYPE::THROUGH ) { // Show a through via's hole if any physical layer is shown
visible &= LSET::PhysicalLayersMask();
if( !visible.any() ) return LOD_HIDE; } else { // Show a blind or micro via's hole if it crosses a visible layer
visible &= GetLayerSet();
if( !visible.any() ) return LOD_HIDE; }
// The hole won't be visible anyway at this scale
return lodScaleForThreshold( aView, GetDrillValue(), pcbIUScale.mmToIU( 0.25 ) ); } else if( IsNetnameLayer( aLayer ) ) { if( renderSettings->GetHighContrast() ) { // Hide netnames unless via is flashed to a high-contrast layer
if( !FlashLayer( renderSettings->GetPrimaryHighContrastLayer() ) ) return LOD_HIDE; } else { LSET visible;
if( board ) { visible = board->GetVisibleLayers(); visible &= board->GetEnabledLayers(); } else { visible = LSET::AllLayersMask(); }
// Hide netnames unless pad is flashed to a visible layer
if( !FlashLayer( visible ) ) return LOD_HIDE; }
int width = GetWidth( ToLAYER_ID( aLayer ) );
// Netnames will be shown only if zoom is appropriate
return lodScaleForThreshold( aView, width, pcbIUScale.mmToIU( 10 ) ); }
if( !IsCopperLayer( aLayer ) ) { int width = GetWidth( ToLAYER_ID( aLayer ) );
return lodScaleForThreshold( aView, width, pcbIUScale.mmToIU( 0.6 ) ); }
return LOD_SHOW; }
wxString PCB_TRACK::GetFriendlyName() const { switch( Type() ) { case PCB_ARC_T: return _( "Track (arc)" ); case PCB_VIA_T: return _( "Via" ); case PCB_TRACE_T: default: return _( "Track" ); } }
void PCB_TRACK::GetMsgPanelInfo( EDA_DRAW_FRAME* aFrame, std::vector<MSG_PANEL_ITEM>& aList ) { wxString msg; BOARD* board = GetBoard();
aList.emplace_back( _( "Type" ), GetFriendlyName() );
GetMsgPanelInfoBase_Common( aFrame, aList );
aList.emplace_back( _( "Layer" ), layerMaskDescribe() );
aList.emplace_back( _( "Width" ), aFrame->MessageTextFromValue( m_width ) );
if( Type() == PCB_ARC_T ) { double radius = static_cast<PCB_ARC*>( this )->GetRadius(); aList.emplace_back( _( "Radius" ), aFrame->MessageTextFromValue( radius ) ); }
double segmentLength = GetLength(); double segmentDelay = GetDelay();
if( segmentDelay == 0.0 ) { aList.emplace_back( _( "Segment Length" ), aFrame->MessageTextFromValue( segmentLength ) ); } else { aList.emplace_back( _( "Segment Delay" ), aFrame->MessageTextFromValue( segmentDelay, true, EDA_DATA_TYPE::TIME ) ); }
// Display full track length (in Pcbnew)
if( board && GetNetCode() > 0 ) { int count = 0; double trackLen = 0.0; double lenPadToDie = 0.0; double trackDelay = 0.0; double delayPadToDie = 0.0;
std::tie( count, trackLen, lenPadToDie, trackDelay, delayPadToDie ) = board->GetTrackLength( *this );
if( trackDelay == 0.0 ) { aList.emplace_back( _( "Routed Length" ), aFrame->MessageTextFromValue( trackLen ) );
if( lenPadToDie != 0 ) { msg = aFrame->MessageTextFromValue( lenPadToDie ); aList.emplace_back( _( "Pad To Die Length" ), msg );
msg = aFrame->MessageTextFromValue( trackLen + lenPadToDie ); aList.emplace_back( _( "Full Length" ), msg ); } } else { aList.emplace_back( _( "Routed Delay" ), aFrame->MessageTextFromValue( trackDelay, true, EDA_DATA_TYPE::TIME ) );
if( delayPadToDie != 0.0 ) { msg = aFrame->MessageTextFromValue( delayPadToDie, true, EDA_DATA_TYPE::TIME ); aList.emplace_back( _( "Pad To Die Delay" ), msg );
msg = aFrame->MessageTextFromValue( trackDelay + delayPadToDie, true, EDA_DATA_TYPE::TIME ); aList.emplace_back( _( "Full Delay" ), msg ); } } }
SHAPE_POLY_SET copper; TransformShapeToPolySet( copper, GetLayer(), 0, ARC_LOW_DEF, ERROR_INSIDE ); aList.emplace_back( _( "Copper Area" ), aFrame->MessageTextFromValue( copper.Area(), true, EDA_DATA_TYPE::AREA ) );
wxString source; int clearance = GetOwnClearance( GetLayer(), &source );
aList.emplace_back( wxString::Format( _( "Min Clearance: %s" ), aFrame->MessageTextFromValue( clearance ) ), wxString::Format( _( "(from %s)" ), source ) );
MINOPTMAX<int> constraintValue = GetWidthConstraint( &source ); msg = aFrame->MessageTextFromMinOptMax( constraintValue );
if( !msg.IsEmpty() ) { aList.emplace_back( wxString::Format( _( "Width Constraints: %s" ), msg ), wxString::Format( _( "(from %s)" ), source ) ); } }
void PCB_VIA::GetMsgPanelInfo( EDA_DRAW_FRAME* aFrame, std::vector<MSG_PANEL_ITEM>& aList ) { wxString msg;
switch( GetViaType() ) { case VIATYPE::MICROVIA: msg = _( "Micro Via" ); break; case VIATYPE::BLIND_BURIED: msg = _( "Blind/Buried Via" ); break; case VIATYPE::THROUGH: msg = _( "Through Via" ); break; default: msg = _( "Via" ); break; }
aList.emplace_back( _( "Type" ), msg );
GetMsgPanelInfoBase_Common( aFrame, aList );
aList.emplace_back( _( "Layer" ), layerMaskDescribe() ); // TODO(JE) padstacks
aList.emplace_back( _( "Diameter" ), aFrame->MessageTextFromValue( GetWidth( PADSTACK::ALL_LAYERS ) ) ); aList.emplace_back( _( "Hole" ), aFrame->MessageTextFromValue( GetDrillValue() ) );
wxString source; int clearance = GetOwnClearance( GetLayer(), &source );
aList.emplace_back( wxString::Format( _( "Min Clearance: %s" ), aFrame->MessageTextFromValue( clearance ) ), wxString::Format( _( "(from %s)" ), source ) );
int minAnnulus = GetMinAnnulus( GetLayer(), &source );
aList.emplace_back( wxString::Format( _( "Min Annular Width: %s" ), aFrame->MessageTextFromValue( minAnnulus ) ), wxString::Format( _( "(from %s)" ), source ) ); }
void PCB_TRACK::GetMsgPanelInfoBase_Common( EDA_DRAW_FRAME* aFrame, std::vector<MSG_PANEL_ITEM>& aList ) const { aList.emplace_back( _( "Net" ), UnescapeString( GetNetname() ) );
aList.emplace_back( _( "Resolved Netclass" ), UnescapeString( GetEffectiveNetClass()->GetHumanReadableName() ) );
#if 0 // Enable for debugging
if( GetBoard() ) aList.emplace_back( _( "NetCode" ), fmt::format( "{}", GetNetCode() ) );
aList.emplace_back( wxT( "Flags" ), fmt::format( "#08X", m_flags ) );
aList.emplace_back( wxT( "Start pos" ), fmt::format( "{} {}", m_Start.x, m_Start.y ) ); aList.emplace_back( wxT( "End pos" ), fmt::format( "{} {}", m_End.x, m_End.y ) ); #endif
if( aFrame->GetName() == PCB_EDIT_FRAME_NAME && IsLocked() ) aList.emplace_back( _( "Status" ), _( "Locked" ) ); }
wxString PCB_VIA::layerMaskDescribe() const { const BOARD* board = GetBoard(); PCB_LAYER_ID top_layer; PCB_LAYER_ID bottom_layer;
LayerPair( &top_layer, &bottom_layer );
return board->GetLayerName( top_layer ) + wxT( " - " ) + board->GetLayerName( bottom_layer ); }
bool PCB_TRACK::HitTest( const VECTOR2I& aPosition, int aAccuracy ) const { return TestSegmentHit( aPosition, m_Start, m_End, aAccuracy + ( m_width / 2 ) ); }
bool PCB_ARC::HitTest( const VECTOR2I& aPosition, int aAccuracy ) const { double max_dist = aAccuracy + ( GetWidth() / 2.0 );
// Short-circuit common cases where the arc is connected to a track or via at an endpoint
if( GetStart().Distance( aPosition ) <= max_dist || GetEnd().Distance( aPosition ) <= max_dist ) { return true; }
VECTOR2L center = GetPosition(); VECTOR2L relpos = aPosition - center; int64_t dist = relpos.EuclideanNorm(); double radius = GetRadius();
if( std::abs( dist - radius ) > max_dist ) return false;
EDA_ANGLE arc_angle = GetAngle(); EDA_ANGLE arc_angle_start = GetArcAngleStart(); // Always 0.0 ... 360 deg
EDA_ANGLE arc_hittest( relpos );
// Calculate relative angle between the starting point of the arc, and the test point
arc_hittest -= arc_angle_start;
// Normalise arc_hittest between 0 ... 360 deg
arc_hittest.Normalize();
if( arc_angle < ANGLE_0 ) return arc_hittest >= ANGLE_360 + arc_angle;
return arc_hittest <= arc_angle; }
bool PCB_VIA::HitTest( const VECTOR2I& aPosition, int aAccuracy ) const { bool hit = false;
Padstack().ForEachUniqueLayer( [&]( PCB_LAYER_ID aLayer ) { if( hit ) return;
int max_dist = aAccuracy + ( GetWidth( aLayer ) / 2 );
// rel_pos is aPosition relative to m_Start (or the center of the via)
VECTOR2D rel_pos = aPosition - m_Start; double dist = rel_pos.x * rel_pos.x + rel_pos.y * rel_pos.y;
if( dist <= static_cast<double>( max_dist ) * max_dist ) hit = true; } );
return hit; }
bool PCB_TRACK::HitTest( const BOX2I& aRect, bool aContained, int aAccuracy ) const { BOX2I arect = aRect; arect.Inflate( aAccuracy );
if( aContained ) return arect.Contains( GetStart() ) && arect.Contains( GetEnd() ); else return arect.Intersects( GetStart(), GetEnd() ); }
bool PCB_ARC::HitTest( const BOX2I& aRect, bool aContained, int aAccuracy ) const { BOX2I arect = aRect; arect.Inflate( aAccuracy );
BOX2I box( GetStart() ); box.Merge( GetMid() ); box.Merge( GetEnd() );
box.Inflate( GetWidth() / 2 );
if( aContained ) return arect.Contains( box ); else return arect.Intersects( box ); }
bool PCB_VIA::HitTest( const BOX2I& aRect, bool aContained, int aAccuracy ) const { BOX2I arect = aRect; arect.Inflate( aAccuracy );
bool hit = false;
Padstack().ForEachUniqueLayer( [&]( PCB_LAYER_ID aLayer ) { if( hit ) return;
BOX2I box( GetStart() ); box.Inflate( GetWidth( aLayer ) / 2 );
if( aContained ) hit = arect.Contains( box ); else hit = arect.IntersectsCircle( GetStart(), GetWidth( aLayer ) / 2 ); } );
return hit; }
bool PCB_TRACK::HitTest( const SHAPE_LINE_CHAIN& aPoly, bool aContained ) const { return KIGEOM::ShapeHitTest( aPoly, *GetEffectiveShape(), aContained ); }
wxString PCB_TRACK::GetItemDescription( UNITS_PROVIDER* aUnitsProvider, bool aFull ) const { return wxString::Format( Type() == PCB_ARC_T ? _("Track (arc) %s on %s, length %s" ) : _("Track %s on %s, length %s" ), GetNetnameMsg(), GetLayerName(), aUnitsProvider->MessageTextFromValue( GetLength() ) ); }
BITMAPS PCB_TRACK::GetMenuImage() const { return BITMAPS::add_tracks; }
void PCB_TRACK::swapData( BOARD_ITEM* aImage ) { assert( aImage->Type() == PCB_TRACE_T );
std::swap( *((PCB_TRACK*) this), *((PCB_TRACK*) aImage) ); }
void PCB_ARC::swapData( BOARD_ITEM* aImage ) { assert( aImage->Type() == PCB_ARC_T );
std::swap( *this, *static_cast<PCB_ARC*>( aImage ) ); }
void PCB_VIA::swapData( BOARD_ITEM* aImage ) { assert( aImage->Type() == PCB_VIA_T );
std::swap( *((PCB_VIA*) this), *((PCB_VIA*) aImage) ); }
VECTOR2I PCB_ARC::GetPosition() const { VECTOR2I center = CalcArcCenter( m_Start, m_Mid, m_End ); return center; }
double PCB_ARC::GetRadius() const { auto center = CalcArcCenter( m_Start, m_Mid , m_End ); return std::min( center.Distance( m_Start ), (double) INT_MAX / 2.0 ); }
EDA_ANGLE PCB_ARC::GetAngle() const { VECTOR2D center = GetPosition(); EDA_ANGLE angle1 = EDA_ANGLE( m_Mid - center ) - EDA_ANGLE( m_Start - center ); EDA_ANGLE angle2 = EDA_ANGLE( m_End - center ) - EDA_ANGLE( m_Mid - center );
return angle1.Normalize180() + angle2.Normalize180(); }
EDA_ANGLE PCB_ARC::GetArcAngleStart() const { VECTOR2D pos( GetPosition() ); EDA_ANGLE angleStart( m_Start - pos );
return angleStart.Normalize(); }
// Note: used in python tests. Ignore CLion's claim that it's unused....
EDA_ANGLE PCB_ARC::GetArcAngleEnd() const { VECTOR2D pos( GetPosition() ); EDA_ANGLE angleEnd( m_End - pos );
return angleEnd.Normalize(); }
bool PCB_ARC::IsDegenerated( int aThreshold ) const { // We have lots of code that will blow up if the radius overflows an int.
if( GetRadius() >= (double)INT_MAX/2.0 ) return true;
// Too small arcs cannot be really handled: arc center (and arc radius)
// cannot be safely computed if the distance between mid and end points
// is too small (a few internal units)
// len of both segments must be < aThreshold to be a very small degenerated arc
return ( GetMid() - GetStart() ).EuclideanNorm() < aThreshold && ( GetMid() - GetEnd() ).EuclideanNorm() < aThreshold; }
bool PCB_TRACK::cmp_tracks::operator() ( const PCB_TRACK* a, const PCB_TRACK* b ) const { if( a->GetNetCode() != b->GetNetCode() ) return a->GetNetCode() < b->GetNetCode();
if( a->GetLayer() != b->GetLayer() ) return a->GetLayer() < b->GetLayer();
if( a->Type() != b->Type() ) return a->Type() < b->Type();
if( a->m_Uuid != b->m_Uuid ) return a->m_Uuid < b->m_Uuid;
return a < b; }
std::shared_ptr<SHAPE> PCB_TRACK::GetEffectiveShape( PCB_LAYER_ID aLayer, FLASHING aFlash ) const { int width = m_width;
if( IsSolderMaskLayer( aLayer ) ) width += 2 * GetSolderMaskExpansion();
return std::make_shared<SHAPE_SEGMENT>( m_Start, m_End, width ); }
std::shared_ptr<SHAPE> PCB_VIA::GetEffectiveShape( PCB_LAYER_ID aLayer, FLASHING aFlash ) const { if( aFlash == FLASHING::ALWAYS_FLASHED || ( aFlash == FLASHING::DEFAULT && FlashLayer( aLayer ) ) ) { int width = 0;
if( aLayer == UNDEFINED_LAYER ) { Padstack().ForEachUniqueLayer( [&]( PCB_LAYER_ID layer ) { width = std::max( width, GetWidth( layer ) ); } );
width /= 2; } else { PCB_LAYER_ID cuLayer = m_padStack.EffectiveLayerFor( aLayer ); width = GetWidth( cuLayer ) / 2; }
return std::make_shared<SHAPE_CIRCLE>( m_Start, width ); } else { return std::make_shared<SHAPE_CIRCLE>( m_Start, GetDrillValue() / 2 ); } }
std::shared_ptr<SHAPE> PCB_ARC::GetEffectiveShape( PCB_LAYER_ID aLayer, FLASHING aFlash ) const { int width = GetWidth();
if( IsSolderMaskLayer( aLayer ) ) width += 2 * GetSolderMaskExpansion();
SHAPE_ARC arc( GetStart(), GetMid(), GetEnd(), width );
if( arc.IsEffectiveLine() ) return std::make_shared<SHAPE_SEGMENT>( GetStart(), GetEnd(), width );
return std::make_shared<SHAPE_ARC>( arc ); }
void PCB_TRACK::TransformShapeToPolygon( SHAPE_POLY_SET& aBuffer, PCB_LAYER_ID aLayer, int aClearance, int aError, ERROR_LOC aErrorLoc, bool ignoreLineWidth ) const { wxASSERT_MSG( !ignoreLineWidth, wxT( "IgnoreLineWidth has no meaning for tracks." ) );
switch( Type() ) { case PCB_VIA_T: { int radius = ( static_cast<const PCB_VIA*>( this )->GetWidth( aLayer ) / 2 ) + aClearance; TransformCircleToPolygon( aBuffer, m_Start, radius, aError, aErrorLoc ); break; }
case PCB_ARC_T: { const PCB_ARC* arc = static_cast<const PCB_ARC*>( this ); int width = m_width + ( 2 * aClearance );
if( IsSolderMaskLayer( aLayer ) ) width += 2 * GetSolderMaskExpansion();
TransformArcToPolygon( aBuffer, arc->GetStart(), arc->GetMid(), arc->GetEnd(), width, aError, aErrorLoc ); break; }
default: { int width = m_width + ( 2 * aClearance );
if( IsSolderMaskLayer( aLayer ) ) width += 2 * GetSolderMaskExpansion();
TransformOvalToPolygon( aBuffer, m_Start, m_End, width, aError, aErrorLoc );
break; } } }
static struct TRACK_VIA_DESC { TRACK_VIA_DESC() { // clang-format off: the suggestion is less readable
ENUM_MAP<VIATYPE>::Instance() .Undefined( VIATYPE::NOT_DEFINED ) .Map( VIATYPE::THROUGH, _HKI( "Through" ) ) .Map( VIATYPE::BLIND_BURIED, _HKI( "Blind/buried" ) ) .Map( VIATYPE::MICROVIA, _HKI( "Micro" ) );
ENUM_MAP<TENTING_MODE>::Instance() .Undefined( TENTING_MODE::FROM_RULES ) .Map( TENTING_MODE::FROM_RULES, _HKI( "From design rules" ) ) .Map( TENTING_MODE::TENTED, _HKI( "Tented" ) ) .Map( TENTING_MODE::NOT_TENTED, _HKI( "Not tented" ) );
ENUM_MAP<COVERING_MODE>::Instance() .Undefined( COVERING_MODE::FROM_RULES ) .Map( COVERING_MODE::FROM_RULES, _HKI( "From design rules" ) ) .Map( COVERING_MODE::COVERED, _HKI( "Covered" ) ) .Map( COVERING_MODE::NOT_COVERED, _HKI( "Not covered" ) );
ENUM_MAP<PLUGGING_MODE>::Instance() .Undefined( PLUGGING_MODE::FROM_RULES ) .Map( PLUGGING_MODE::FROM_RULES, _HKI( "From design rules" ) ) .Map( PLUGGING_MODE::PLUGGED, _HKI( "Plugged" ) ) .Map( PLUGGING_MODE::NOT_PLUGGED, _HKI( "Not plugged" ) );
ENUM_MAP<CAPPING_MODE>::Instance() .Undefined( CAPPING_MODE::FROM_RULES ) .Map( CAPPING_MODE::FROM_RULES, _HKI( "From design rules" ) ) .Map( CAPPING_MODE::CAPPED, _HKI( "Capped" ) ) .Map( CAPPING_MODE::NOT_CAPPED, _HKI( "Not capped" ) );
ENUM_MAP<FILLING_MODE>::Instance() .Undefined( FILLING_MODE::FROM_RULES ) .Map( FILLING_MODE::FROM_RULES, _HKI( "From design rules" ) ) .Map( FILLING_MODE::FILLED, _HKI( "Filled" ) ) .Map( FILLING_MODE::NOT_FILLED, _HKI( "Not filled" ) ); // clang-format on: the suggestion is less readable
ENUM_MAP<PCB_LAYER_ID>& layerEnum = ENUM_MAP<PCB_LAYER_ID>::Instance();
if( layerEnum.Choices().GetCount() == 0 ) { layerEnum.Undefined( UNDEFINED_LAYER );
for( PCB_LAYER_ID layer : LSET::AllLayersMask() ) layerEnum.Map( layer, LSET::Name( layer ) ); }
PROPERTY_MANAGER& propMgr = PROPERTY_MANAGER::Instance();
// Track
REGISTER_TYPE( PCB_TRACK ); propMgr.InheritsAfter( TYPE_HASH( PCB_TRACK ), TYPE_HASH( BOARD_CONNECTED_ITEM ) );
propMgr.AddProperty( new PROPERTY<PCB_TRACK, int>( _HKI( "Width" ), &PCB_TRACK::SetWidth, &PCB_TRACK::GetWidth, PROPERTY_DISPLAY::PT_SIZE ) ); propMgr.ReplaceProperty( TYPE_HASH( BOARD_ITEM ), _HKI( "Position X" ), new PROPERTY<PCB_TRACK, int>( _HKI( "Start X" ), &PCB_TRACK::SetStartX, &PCB_TRACK::GetStartX, PROPERTY_DISPLAY::PT_COORD, ORIGIN_TRANSFORMS::ABS_X_COORD) ); propMgr.ReplaceProperty( TYPE_HASH( BOARD_ITEM ), _HKI( "Position Y" ), new PROPERTY<PCB_TRACK, int>( _HKI( "Start Y" ), &PCB_TRACK::SetStartY, &PCB_TRACK::GetStartY, PROPERTY_DISPLAY::PT_COORD, ORIGIN_TRANSFORMS::ABS_Y_COORD ) ); propMgr.AddProperty( new PROPERTY<PCB_TRACK, int>( _HKI( "End X" ), &PCB_TRACK::SetEndX, &PCB_TRACK::GetEndX, PROPERTY_DISPLAY::PT_COORD, ORIGIN_TRANSFORMS::ABS_X_COORD) ); propMgr.AddProperty( new PROPERTY<PCB_TRACK, int>( _HKI( "End Y" ), &PCB_TRACK::SetEndY, &PCB_TRACK::GetEndY, PROPERTY_DISPLAY::PT_COORD, ORIGIN_TRANSFORMS::ABS_Y_COORD) );
const wxString groupTechLayers = _HKI( "Technical Layers" );
auto isExternalLayerTrack = []( INSPECTABLE* aItem ) { if( PCB_TRACK* track = dynamic_cast<PCB_TRACK*>( aItem ) ) return IsExternalCopperLayer( track->GetLayer() );
return false; };
propMgr.AddProperty( new PROPERTY<PCB_TRACK, bool>( _HKI( "Soldermask" ), &PCB_TRACK::SetHasSolderMask, &PCB_TRACK::HasSolderMask ), groupTechLayers ) .SetAvailableFunc( isExternalLayerTrack ); propMgr.AddProperty( new PROPERTY<PCB_TRACK, std::optional<int>>( _HKI( "Soldermask Margin Override" ), &PCB_TRACK::SetLocalSolderMaskMargin, &PCB_TRACK::GetLocalSolderMaskMargin, PROPERTY_DISPLAY::PT_SIZE ), groupTechLayers ) .SetAvailableFunc( isExternalLayerTrack );
// Arc
REGISTER_TYPE( PCB_ARC ); propMgr.InheritsAfter( TYPE_HASH( PCB_ARC ), TYPE_HASH( PCB_TRACK ) );
// Via
REGISTER_TYPE( PCB_VIA ); propMgr.InheritsAfter( TYPE_HASH( PCB_VIA ), TYPE_HASH( BOARD_CONNECTED_ITEM ) );
// TODO test drill, use getdrillvalue?
const wxString groupVia = _HKI( "Via Properties" );
propMgr.Mask( TYPE_HASH( PCB_VIA ), TYPE_HASH( BOARD_CONNECTED_ITEM ), _HKI( "Layer" ) );
// clang-format off: the suggestion is less readable
propMgr.AddProperty( new PROPERTY<PCB_VIA, int>( _HKI( "Diameter" ), &PCB_VIA::SetFrontWidth, &PCB_VIA::GetFrontWidth, PROPERTY_DISPLAY::PT_SIZE ), groupVia ); propMgr.AddProperty( new PROPERTY<PCB_VIA, int>( _HKI( "Hole" ), &PCB_VIA::SetDrill, &PCB_VIA::GetDrillValue, PROPERTY_DISPLAY::PT_SIZE ), groupVia ); propMgr.AddProperty( new PROPERTY_ENUM<PCB_VIA, PCB_LAYER_ID>( _HKI( "Layer Top" ), &PCB_VIA::SetTopLayer, &PCB_VIA::GetLayer ), groupVia ); propMgr.AddProperty( new PROPERTY_ENUM<PCB_VIA, PCB_LAYER_ID>( _HKI( "Layer Bottom" ), &PCB_VIA::SetBottomLayer, &PCB_VIA::BottomLayer ), groupVia ); propMgr.AddProperty( new PROPERTY_ENUM<PCB_VIA, VIATYPE>( _HKI( "Via Type" ), &PCB_VIA::SetViaType, &PCB_VIA::GetViaType ), groupVia ); propMgr.AddProperty( new PROPERTY_ENUM<PCB_VIA, TENTING_MODE>( _HKI( "Front tenting" ), &PCB_VIA::SetFrontTentingMode, &PCB_VIA::GetFrontTentingMode ), groupVia ); propMgr.AddProperty( new PROPERTY_ENUM<PCB_VIA, TENTING_MODE>( _HKI( "Back tenting" ), &PCB_VIA::SetBackTentingMode, &PCB_VIA::GetBackTentingMode ), groupVia ); propMgr.AddProperty( new PROPERTY_ENUM<PCB_VIA, COVERING_MODE>( _HKI( "Front covering" ), &PCB_VIA::SetFrontCoveringMode, &PCB_VIA::GetFrontCoveringMode ), groupVia ); propMgr.AddProperty( new PROPERTY_ENUM<PCB_VIA, COVERING_MODE>( _HKI( "Back covering" ), &PCB_VIA::SetBackCoveringMode, &PCB_VIA::GetBackCoveringMode ), groupVia ); propMgr.AddProperty( new PROPERTY_ENUM<PCB_VIA, PLUGGING_MODE>( _HKI( "Front plugging" ), &PCB_VIA::SetFrontPluggingMode, &PCB_VIA::GetFrontPluggingMode ), groupVia ); propMgr.AddProperty( new PROPERTY_ENUM<PCB_VIA, PLUGGING_MODE>( _HKI( "Back plugging" ), &PCB_VIA::SetBackPluggingMode, &PCB_VIA::GetBackPluggingMode ), groupVia ); propMgr.AddProperty( new PROPERTY_ENUM<PCB_VIA, CAPPING_MODE>( _HKI( "Capping" ), &PCB_VIA::SetCappingMode, &PCB_VIA::GetCappingMode ), groupVia ); propMgr.AddProperty( new PROPERTY_ENUM<PCB_VIA, FILLING_MODE>( _HKI( "Filling" ), &PCB_VIA::SetFillingMode, &PCB_VIA::GetFillingMode ), groupVia ); // clang-format on: the suggestion is less readable
} } _TRACK_VIA_DESC;
ENUM_TO_WXANY( VIATYPE ); ENUM_TO_WXANY( TENTING_MODE ); ENUM_TO_WXANY( COVERING_MODE ); ENUM_TO_WXANY( PLUGGING_MODE ); ENUM_TO_WXANY( CAPPING_MODE ); ENUM_TO_WXANY( FILLING_MODE );
|