 ++PCBNew
* Removed Pcb_Frame argument from BOARD() constructor, since it precludes
having a BOARD being edited by more than one editor, it was a bad design.
And this meant removing m_PcbFrame from BOARD.
* removed BOARD::SetWindowFrame(), and BOARD::m_PcbFrame
* Removed the global BOARD_DESIGN_SETTINGS which was in class_board.cpp
* added BOARD_DESIGN_SETTINGS to the BOARD class, a full instance
* a couple dialogs now only change BOARD_DESIGN_SETTINGS when OK is pressed,
such as dialog_mask_clearance, dialog_drc, etc.
* Removed common/pcbcommon.cpp's int g_CurrentVersionPCB = 1 and replaced it
with build_version.h's #define BOARD_FILE_VERSION, although there may be a
better place for this constant.
* Made the public functions in PARAM_CFG_ARRAY be type const.
void SaveParam(..) const and void ReadParam(..) const
* PARAM_CFG_BASE now has virtual destructor since we have various way of
destroying the derived class and boost::ptr_vector must be told about this.
* Pass const PARAM_CFG_ARRAY& instead of PARAM_CFG_ARRAY so that we can use
an automatic PARAM_CFG_ARRAY which is on the stack.\
* PCB_EDIT_FRAME::GetProjectFileParameters() may no longer cache the array,
since it has to access the current BOARD and the BOARD can change.
Remember BOARD_DESIGN_SETTINGS are now in the BOARD.
* Made the m_BoundingBox member private, this was a brutally hard task,
and indicative of the lack of commitment to accessors and object oriented
design on the part of KiCad developers. We must do better.
Added BOARD::GetBoundingBox, SetBoundingBox(), ComputeBoundingBox().
* Added PCB_BASE_FRAME::GetBoardBoundingBox() which calls BOARD::ComputeBoundingBox()
14 years ago  ++PCBNew
* Removed Pcb_Frame argument from BOARD() constructor, since it precludes
having a BOARD being edited by more than one editor, it was a bad design.
And this meant removing m_PcbFrame from BOARD.
* removed BOARD::SetWindowFrame(), and BOARD::m_PcbFrame
* Removed the global BOARD_DESIGN_SETTINGS which was in class_board.cpp
* added BOARD_DESIGN_SETTINGS to the BOARD class, a full instance
* a couple dialogs now only change BOARD_DESIGN_SETTINGS when OK is pressed,
such as dialog_mask_clearance, dialog_drc, etc.
* Removed common/pcbcommon.cpp's int g_CurrentVersionPCB = 1 and replaced it
with build_version.h's #define BOARD_FILE_VERSION, although there may be a
better place for this constant.
* Made the public functions in PARAM_CFG_ARRAY be type const.
void SaveParam(..) const and void ReadParam(..) const
* PARAM_CFG_BASE now has virtual destructor since we have various way of
destroying the derived class and boost::ptr_vector must be told about this.
* Pass const PARAM_CFG_ARRAY& instead of PARAM_CFG_ARRAY so that we can use
an automatic PARAM_CFG_ARRAY which is on the stack.\
* PCB_EDIT_FRAME::GetProjectFileParameters() may no longer cache the array,
since it has to access the current BOARD and the BOARD can change.
Remember BOARD_DESIGN_SETTINGS are now in the BOARD.
* Made the m_BoundingBox member private, this was a brutally hard task,
and indicative of the lack of commitment to accessors and object oriented
design on the part of KiCad developers. We must do better.
Added BOARD::GetBoundingBox, SetBoundingBox(), ComputeBoundingBox().
* Added PCB_BASE_FRAME::GetBoardBoundingBox() which calls BOARD::ComputeBoundingBox()
14 years ago  ++PCBNew
* Removed Pcb_Frame argument from BOARD() constructor, since it precludes
having a BOARD being edited by more than one editor, it was a bad design.
And this meant removing m_PcbFrame from BOARD.
* removed BOARD::SetWindowFrame(), and BOARD::m_PcbFrame
* Removed the global BOARD_DESIGN_SETTINGS which was in class_board.cpp
* added BOARD_DESIGN_SETTINGS to the BOARD class, a full instance
* a couple dialogs now only change BOARD_DESIGN_SETTINGS when OK is pressed,
such as dialog_mask_clearance, dialog_drc, etc.
* Removed common/pcbcommon.cpp's int g_CurrentVersionPCB = 1 and replaced it
with build_version.h's #define BOARD_FILE_VERSION, although there may be a
better place for this constant.
* Made the public functions in PARAM_CFG_ARRAY be type const.
void SaveParam(..) const and void ReadParam(..) const
* PARAM_CFG_BASE now has virtual destructor since we have various way of
destroying the derived class and boost::ptr_vector must be told about this.
* Pass const PARAM_CFG_ARRAY& instead of PARAM_CFG_ARRAY so that we can use
an automatic PARAM_CFG_ARRAY which is on the stack.\
* PCB_EDIT_FRAME::GetProjectFileParameters() may no longer cache the array,
since it has to access the current BOARD and the BOARD can change.
Remember BOARD_DESIGN_SETTINGS are now in the BOARD.
* Made the m_BoundingBox member private, this was a brutally hard task,
and indicative of the lack of commitment to accessors and object oriented
design on the part of KiCad developers. We must do better.
Added BOARD::GetBoundingBox, SetBoundingBox(), ComputeBoundingBox().
* Added PCB_BASE_FRAME::GetBoardBoundingBox() which calls BOARD::ComputeBoundingBox()
14 years ago |
|
/*
* This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2018 Jean-Pierre Charras, jp.charras at wanadoo.fr * Copyright (C) 2012 SoftPLC Corporation, Dick Hollenbeck <dick@softplc.com> * Copyright (C) 2011 Wayne Stambaugh <stambaughw@gmail.com> * * Copyright The KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */
#include <iterator>
#include <wx/log.h>
#include <drc/drc_rtree.h>
#include <board_design_settings.h>
#include <board_commit.h>
#include <board.h>
#include <core/arraydim.h>
#include <core/kicad_algo.h>
#include <connectivity/connectivity_data.h>
#include <convert_shape_list_to_polygon.h>
#include <footprint.h>
#include <font/outline_font.h>
#include <length_delay_calculation/length_delay_calculation.h>
#include <lset.h>
#include <pcb_base_frame.h>
#include <pcb_track.h>
#include <pcb_marker.h>
#include <pcb_group.h>
#include <pcb_generator.h>
#include <pcb_target.h>
#include <pcb_shape.h>
#include <pcb_text.h>
#include <pcb_textbox.h>
#include <pcb_table.h>
#include <pcb_dimension.h>
#include <pgm_base.h>
#include <pcbnew_settings.h>
#include <progress_reporter.h>
#include <project.h>
#include <project/component_class_settings.h>
#include <project/net_settings.h>
#include <project/project_file.h>
#include <project/project_local_settings.h>
#include <ratsnest/ratsnest_data.h>
#include <reporter.h>
#include <tool/tool_manager.h>
#include <tool/selection_conditions.h>
#include <string_utils.h>
#include <thread_pool.h>
#include <zone.h>
#include <mutex>
#include <pcb_board_outline.h>
// This is an odd place for this, but CvPcb won't link if it's in board_item.cpp like I first
// tried it.
VECTOR2I BOARD_ITEM::ZeroOffset( 0, 0 );
BOARD::BOARD() : BOARD_ITEM_CONTAINER( (BOARD_ITEM*) nullptr, PCB_T ), m_LegacyDesignSettingsLoaded( false ), m_LegacyCopperEdgeClearanceLoaded( false ), m_LegacyNetclassesLoaded( false ), m_boardUse( BOARD_USE::NORMAL ), m_timeStamp( 1 ), m_paper( PAGE_INFO::A4 ), m_project( nullptr ), m_userUnits( EDA_UNITS::MM ), m_designSettings( new BOARD_DESIGN_SETTINGS( nullptr, "board.design_settings" ) ), m_NetInfo( this ), m_embedFonts( false ), m_embeddedFilesDelegate( nullptr ), m_componentClassManager( std::make_unique<COMPONENT_CLASS_MANAGER>( this ) ), m_lengthDelayCalc( std::make_unique<LENGTH_DELAY_CALCULATION>( this ) ) { // A too small value do not allow connecting 2 shapes (i.e. segments) not exactly connected
// A too large value do not allow safely connecting 2 shapes like very short segments.
m_outlinesChainingEpsilon = pcbIUScale.mmToIU( DEFAULT_CHAINING_EPSILON_MM );
m_DRCMaxClearance = 0; m_DRCMaxPhysicalClearance = 0; m_boardOutline = new PCB_BOARD_OUTLINE( this );
// we have not loaded a board yet, assume latest until then.
m_fileFormatVersionAtLoad = LEGACY_BOARD_FILE_VERSION;
for( int layer = 0; layer < PCB_LAYER_ID_COUNT; ++layer ) { m_layers[layer].m_name = GetStandardLayerName( ToLAYER_ID( layer ) );
if( IsCopperLayer( layer ) ) m_layers[layer].m_type = LT_SIGNAL; else if( layer >= User_1 && layer & 1 ) m_layers[layer].m_type = LT_AUX; else m_layers[layer].m_type = LT_UNDEFINED; }
recalcOpposites();
// Creates a zone to show sloder mask bridges created by a min web value
// it it just to show them
m_SolderMaskBridges = new ZONE( this ); m_SolderMaskBridges->SetHatchStyle( ZONE_BORDER_DISPLAY_STYLE::INVISIBLE_BORDER ); m_SolderMaskBridges->SetLayerSet( LSET().set( F_Mask ).set( B_Mask ) ); int infinity = ( std::numeric_limits<int>::max() / 2 ) - pcbIUScale.mmToIU( 1 ); m_SolderMaskBridges->Outline()->NewOutline(); m_SolderMaskBridges->Outline()->Append( VECTOR2I( -infinity, -infinity ) ); m_SolderMaskBridges->Outline()->Append( VECTOR2I( -infinity, +infinity ) ); m_SolderMaskBridges->Outline()->Append( VECTOR2I( +infinity, +infinity ) ); m_SolderMaskBridges->Outline()->Append( VECTOR2I( +infinity, -infinity ) ); m_SolderMaskBridges->SetMinThickness( 0 );
BOARD_DESIGN_SETTINGS& bds = GetDesignSettings();
// Initialize default netclass.
bds.m_NetSettings->SetDefaultNetclass( std::make_shared<NETCLASS>( NETCLASS::Default ) ); bds.m_NetSettings->GetDefaultNetclass()->SetDescription( _( "This is the default net class." ) );
bds.UseCustomTrackViaSize( false );
// Initialize ratsnest
m_connectivity.reset( new CONNECTIVITY_DATA() );
// Set flag bits on these that will only be cleared if these are loaded from a legacy file
m_LegacyVisibleLayers.reset().set( Rescue ); m_LegacyVisibleItems.reset().set( GAL_LAYER_INDEX( GAL_LAYER_ID_BITMASK_END ) ); }
BOARD::~BOARD() { m_itemByIdCache.clear();
// Clean up the owned elements
DeleteMARKERs();
delete m_SolderMaskBridges;
BOARD_ITEM_SET ownedItems = GetItemSet();
m_zones.clear(); m_footprints.clear(); m_tracks.clear(); m_drawings.clear(); m_groups.clear();
// Generators not currently returned by GetItemSet
for( PCB_GENERATOR* g : m_generators ) ownedItems.insert( g );
delete m_boardOutline; m_generators.clear();
// Delete the owned items after clearing the containers, because some item dtors
// cause call chains that query the containers
for( BOARD_ITEM* item : ownedItems ) delete item;
// Remove any listeners
RemoveAllListeners(); }
bool BOARD::BuildConnectivity( PROGRESS_REPORTER* aReporter ) { if( !GetConnectivity()->Build( this, aReporter ) ) return false;
UpdateRatsnestExclusions(); return true; }
void BOARD::SetProject( PROJECT* aProject, bool aReferenceOnly ) { if( m_project ) ClearProject();
m_project = aProject;
if( aProject && !aReferenceOnly ) { PROJECT_FILE& project = aProject->GetProjectFile();
// Link the design settings object to the project file
project.m_BoardSettings = &GetDesignSettings();
// Set parent, which also will load the values from JSON stored in the project if we don't
// have legacy design settings loaded already
project.m_BoardSettings->SetParent( &project, !m_LegacyDesignSettingsLoaded );
// The DesignSettings' netclasses pointer will be pointing to its internal netclasses
// list at this point. If we loaded anything into it from a legacy board file then we
// want to transfer it over to the project netclasses list.
if( m_LegacyNetclassesLoaded ) { std::shared_ptr<NET_SETTINGS> legacySettings = GetDesignSettings().m_NetSettings; std::shared_ptr<NET_SETTINGS>& projectSettings = project.NetSettings();
projectSettings->SetDefaultNetclass( legacySettings->GetDefaultNetclass() ); projectSettings->SetNetclasses( legacySettings->GetNetclasses() ); projectSettings->SetNetclassPatternAssignments( std::move( legacySettings->GetNetclassPatternAssignments() ) ); }
// Now update the DesignSettings' netclass pointer to point into the project.
GetDesignSettings().m_NetSettings = project.NetSettings(); } }
void BOARD::ClearProject() { if( !m_project ) return;
PROJECT_FILE& project = m_project->GetProjectFile();
// Owned by the BOARD
if( project.m_BoardSettings ) { project.ReleaseNestedSettings( project.m_BoardSettings ); project.m_BoardSettings = nullptr; }
GetDesignSettings().m_NetSettings = nullptr; GetDesignSettings().SetParent( nullptr ); m_project = nullptr; }
void BOARD::IncrementTimeStamp() { std::unique_lock<std::shared_mutex> writeLock( m_CachesMutex );
m_timeStamp++;
if( !m_IntersectsAreaCache.empty() || !m_EnclosedByAreaCache.empty() || !m_IntersectsCourtyardCache.empty() || !m_IntersectsFCourtyardCache.empty() || !m_IntersectsBCourtyardCache.empty() || !m_LayerExpressionCache.empty() || !m_ZoneBBoxCache.empty() || m_CopperItemRTreeCache || m_maxClearanceValue.has_value() || !m_itemByIdCache.empty() ) { m_IntersectsAreaCache.clear(); m_EnclosedByAreaCache.clear(); m_IntersectsCourtyardCache.clear(); m_IntersectsFCourtyardCache.clear(); m_IntersectsBCourtyardCache.clear(); m_LayerExpressionCache.clear();
m_ZoneBBoxCache.clear();
m_CopperItemRTreeCache = nullptr;
// These are always regenerated before use, but still probably safer to clear them
// while we're here.
m_DRCMaxClearance = 0; m_DRCMaxPhysicalClearance = 0; m_DRCZones.clear(); m_DRCCopperZones.clear(); m_ZoneIsolatedIslandsMap.clear(); m_CopperZoneRTreeCache.clear();
m_maxClearanceValue.reset();
m_itemByIdCache.clear(); } }
void BOARD::UpdateRatsnestExclusions() { std::set<std::pair<KIID, KIID>> m_ratsnestExclusions;
for( PCB_MARKER* marker : GetBoard()->Markers() ) { if( marker->GetMarkerType() == MARKER_BASE::MARKER_RATSNEST && marker->IsExcluded() ) { const std::shared_ptr<RC_ITEM>& rcItem = marker->GetRCItem(); m_ratsnestExclusions.emplace( rcItem->GetMainItemID(), rcItem->GetAuxItemID() ); m_ratsnestExclusions.emplace( rcItem->GetAuxItemID(), rcItem->GetMainItemID() ); } }
GetConnectivity()->RunOnUnconnectedEdges( [&]( CN_EDGE& aEdge ) { if( aEdge.GetSourceNode() && aEdge.GetTargetNode() && !aEdge.GetSourceNode()->Dirty() && !aEdge.GetTargetNode()->Dirty() ) { std::pair<KIID, KIID> ids = { aEdge.GetSourceNode()->Parent()->m_Uuid, aEdge.GetTargetNode()->Parent()->m_Uuid };
aEdge.SetVisible( m_ratsnestExclusions.count( ids ) == 0 ); }
return true; } ); }
void BOARD::RecordDRCExclusions() { m_designSettings->m_DrcExclusions.clear(); m_designSettings->m_DrcExclusionComments.clear();
for( PCB_MARKER* marker : m_markers ) { if( marker->IsExcluded() ) { wxString serialized = marker->SerializeToString(); m_designSettings->m_DrcExclusions.insert( serialized ); m_designSettings->m_DrcExclusionComments[ serialized ] = marker->GetComment(); } }
if( m_project ) { if( PROJECT_FILE* projectFile = &m_project->GetProjectFile() ) { if( BOARD_DESIGN_SETTINGS* prjSettings = projectFile->m_BoardSettings ) { prjSettings->m_DrcExclusions = m_designSettings->m_DrcExclusions; prjSettings->m_DrcExclusionComments = m_designSettings->m_DrcExclusionComments; } } } }
std::set<wxString>::iterator FindByFirstNFields( std::set<wxString>& strSet, const wxString& searchStr, char delimiter, int n ) { wxString searchPrefix = searchStr;
// Extract first n fields from the search string
int delimiterCount = 0; size_t pos = 0;
while( pos < searchPrefix.length() && delimiterCount < n ) { if( searchPrefix[pos] == delimiter ) delimiterCount++;
pos++; }
if( delimiterCount == n ) searchPrefix = searchPrefix.Left( pos - 1 ); // Exclude the nth delimiter
for( auto it = strSet.begin(); it != strSet.end(); ++it ) { if( it->StartsWith( searchPrefix + delimiter ) || *it == searchPrefix ) return it; }
return strSet.end(); }
std::vector<PCB_MARKER*> BOARD::ResolveDRCExclusions( bool aCreateMarkers ) { std::set<wxString> exclusions = m_designSettings->m_DrcExclusions; std::map<wxString, wxString> comments = m_designSettings->m_DrcExclusionComments;
m_designSettings->m_DrcExclusions.clear(); m_designSettings->m_DrcExclusionComments.clear();
for( PCB_MARKER* marker : GetBoard()->Markers() ) { std::set<wxString>::iterator it; wxString serialized = marker->SerializeToString(); wxString matchedExclusion;
if( !serialized.Contains( "unconnected_items" ) ) { it = exclusions.find( serialized );
if( it != exclusions.end() ) matchedExclusion = *it; } else { const int numberOfFieldsExcludingIds = 3; const char delimiter = '|'; it = FindByFirstNFields( exclusions, serialized, delimiter, numberOfFieldsExcludingIds );
if( it != exclusions.end() ) matchedExclusion = *it; }
if( it != exclusions.end() ) { marker->SetExcluded( true, comments[matchedExclusion] );
// Exclusion still valid; store back to BOARD_DESIGN_SETTINGS
m_designSettings->m_DrcExclusions.insert( matchedExclusion ); m_designSettings->m_DrcExclusionComments[matchedExclusion] = comments[matchedExclusion];
exclusions.erase( it ); } }
std::vector<PCB_MARKER*> newMarkers;
if( aCreateMarkers ) { for( const wxString& serialized : exclusions ) { PCB_MARKER* marker = PCB_MARKER::DeserializeFromString( serialized );
if( !marker ) continue;
std::vector<KIID> ids = marker->GetRCItem()->GetIDs();
int uuidCount = 0;
for( const KIID& uuid : ids ) { if( uuidCount < 1 || uuid != niluuid ) { if( !ResolveItem( uuid, true ) ) { delete marker; marker = nullptr; break; } } uuidCount++; }
if( marker ) { marker->SetExcluded( true, comments[ serialized ] ); newMarkers.push_back( marker );
// Exclusion still valid; store back to BOARD_DESIGN_SETTINGS
m_designSettings->m_DrcExclusions.insert( serialized ); m_designSettings->m_DrcExclusionComments[ serialized ] = comments[ serialized ]; } } }
return newMarkers; }
void BOARD::GetContextualTextVars( wxArrayString* aVars ) const { auto add = [&]( const wxString& aVar ) { if( !alg::contains( *aVars, aVar ) ) aVars->push_back( aVar ); };
add( wxT( "LAYER" ) ); add( wxT( "FILENAME" ) ); add( wxT( "FILEPATH" ) ); add( wxT( "PROJECTNAME" ) ); add( wxT( "DRC_ERROR <message_text>" ) ); add( wxT( "DRC_WARNING <message_text>" ) );
GetTitleBlock().GetContextualTextVars( aVars );
if( GetProject() ) { for( std::pair<wxString, wxString> entry : GetProject()->GetTextVars() ) add( entry.first ); } }
bool BOARD::ResolveTextVar( wxString* token, int aDepth ) const { if( token->Contains( ':' ) ) { wxString remainder; wxString ref = token->BeforeFirst( ':', &remainder ); BOARD_ITEM* refItem = ResolveItem( KIID( ref ), true );
if( refItem && refItem->Type() == PCB_FOOTPRINT_T ) { FOOTPRINT* refFP = static_cast<FOOTPRINT*>( refItem );
if( refFP->ResolveTextVar( &remainder, aDepth + 1 ) ) { *token = std::move( remainder ); return true; } } }
if( token->IsSameAs( wxT( "FILENAME" ) ) ) { wxFileName fn( GetFileName() ); *token = fn.GetFullName(); return true; } else if( token->IsSameAs( wxT( "FILEPATH" ) ) ) { wxFileName fn( GetFileName() ); *token = fn.GetFullPath(); return true; } else if( token->IsSameAs( wxT( "PROJECTNAME" ) ) && GetProject() ) { *token = GetProject()->GetProjectName(); return true; }
wxString var = *token;
if( m_properties.count( var ) ) { *token = m_properties.at( var ); return true; } else if( GetTitleBlock().TextVarResolver( token, m_project ) ) { return true; }
if( GetProject() && GetProject()->TextVarResolver( token ) ) return true;
return false; }
VECTOR2I BOARD::GetPosition() const { return ZeroOffset; }
void BOARD::SetPosition( const VECTOR2I& aPos ) { wxLogWarning( wxT( "This should not be called on the BOARD object") ); }
void BOARD::Move( const VECTOR2I& aMoveVector ) // overload
{ INSPECTOR_FUNC inspector = [&] ( EDA_ITEM* item, void* testData ) { if( item->IsBOARD_ITEM() ) { BOARD_ITEM* board_item = static_cast<BOARD_ITEM*>( item );
// aMoveVector was snapshotted, don't need "data".
// Only move the top level group
if( !board_item->GetParentGroup() && !board_item->GetParentFootprint() ) board_item->Move( aMoveVector ); }
return INSPECT_RESULT::CONTINUE; };
Visit( inspector, nullptr, GENERAL_COLLECTOR::BoardLevelItems ); }
void BOARD::RunOnChildren( const std::function<void( BOARD_ITEM* )>& aFunction, RECURSE_MODE aMode ) const { try { for( PCB_TRACK* track : m_tracks ) aFunction( track );
for( ZONE* zone : m_zones ) aFunction( zone );
for( PCB_MARKER* marker : m_markers ) aFunction( marker );
for( PCB_GROUP* group : m_groups ) aFunction( group );
for( FOOTPRINT* footprint : m_footprints ) { aFunction( footprint );
if( aMode == RECURSE_MODE::RECURSE ) footprint->RunOnChildren( aFunction, RECURSE_MODE::RECURSE ); }
for( BOARD_ITEM* drawing : m_drawings ) { aFunction( drawing );
if( aMode == RECURSE_MODE::RECURSE ) drawing->RunOnChildren( aFunction, RECURSE_MODE::RECURSE ); } } catch( std::bad_function_call& ) { wxFAIL_MSG( wxT( "Error running BOARD::RunOnChildren" ) ); } }
TRACKS BOARD::TracksInNet( int aNetCode ) { TRACKS ret;
INSPECTOR_FUNC inspector = [aNetCode, &ret]( EDA_ITEM* item, void* testData ) { PCB_TRACK* t = static_cast<PCB_TRACK*>( item );
if( t->GetNetCode() == aNetCode ) ret.push_back( t );
return INSPECT_RESULT::CONTINUE; };
// visit this BOARD's PCB_TRACKs and PCB_VIAs with above TRACK INSPECTOR which
// appends all in aNetCode to ret.
Visit( inspector, nullptr, GENERAL_COLLECTOR::Tracks );
return ret; }
bool BOARD::SetLayerDescr( PCB_LAYER_ID aIndex, const LAYER& aLayer ) { m_layers[ aIndex ] = aLayer; recalcOpposites(); return true; }
PCB_LAYER_ID BOARD::GetLayerID( const wxString& aLayerName ) const { // Check the BOARD physical layer names.
for( auto& [ layer_id, layer ] : m_layers ) { if( layer.m_name == aLayerName || layer.m_userName == aLayerName ) return ToLAYER_ID( layer_id ); }
// Otherwise fall back to the system standard layer names for virtual layers.
for( int layer = 0; layer < PCB_LAYER_ID_COUNT; ++layer ) { if( GetStandardLayerName( ToLAYER_ID( layer ) ) == aLayerName ) return ToLAYER_ID( layer ); }
return UNDEFINED_LAYER; }
const wxString BOARD::GetLayerName( PCB_LAYER_ID aLayer ) const { // All layer names are stored in the BOARD.
if( IsLayerEnabled( aLayer ) ) { auto it = m_layers.find( aLayer );
// Standard names were set in BOARD::BOARD() but they may be over-ridden by
// BOARD::SetLayerName(). For copper layers, return the user defined layer name,
// if it was set. Otherwise return the Standard English layer name.
if( it != m_layers.end() && !it->second.m_userName.IsEmpty() ) return it->second.m_userName; }
return GetStandardLayerName( aLayer ); }
bool BOARD::SetLayerName( PCB_LAYER_ID aLayer, const wxString& aLayerName ) { if( !aLayerName.IsEmpty() ) { // no quote chars in the name allowed
if( aLayerName.Find( wxChar( '"' ) ) != wxNOT_FOUND ) return false;
if( IsLayerEnabled( aLayer ) ) { m_layers[aLayer].m_userName = aLayerName; recalcOpposites(); return true; } }
return false; }
bool BOARD::IsFrontLayer( PCB_LAYER_ID aLayer ) const { return ::IsFrontLayer( aLayer ) || GetLayerType( aLayer ) == LT_FRONT; }
bool BOARD::IsBackLayer( PCB_LAYER_ID aLayer ) const { return ::IsBackLayer( aLayer ) || GetLayerType( aLayer ) == LT_BACK; }
LAYER_T BOARD::GetLayerType( PCB_LAYER_ID aLayer ) const { if( IsLayerEnabled( aLayer ) ) { auto it = m_layers.find( aLayer );
if( it != m_layers.end() ) return it->second.m_type; }
if( aLayer >= User_1 && !IsCopperLayer( aLayer ) ) return LT_AUX; else if( IsCopperLayer( aLayer ) ) return LT_SIGNAL; else return LT_UNDEFINED; }
bool BOARD::SetLayerType( PCB_LAYER_ID aLayer, LAYER_T aLayerType ) { if( IsLayerEnabled( aLayer ) ) { m_layers[aLayer].m_type = aLayerType; recalcOpposites(); return true; }
return false; }
const char* LAYER::ShowType( LAYER_T aType ) { switch( aType ) { default: case LT_SIGNAL: return "signal"; case LT_POWER: return "power"; case LT_MIXED: return "mixed"; case LT_JUMPER: return "jumper"; case LT_AUX: return "auxiliary"; case LT_FRONT: return "front"; case LT_BACK: return "back"; } }
LAYER_T LAYER::ParseType( const char* aType ) { if( strcmp( aType, "signal" ) == 0 ) return LT_SIGNAL; else if( strcmp( aType, "power" ) == 0 ) return LT_POWER; else if( strcmp( aType, "mixed" ) == 0 ) return LT_MIXED; else if( strcmp( aType, "jumper" ) == 0 ) return LT_JUMPER; else if( strcmp( aType, "auxiliary" ) == 0 ) return LT_AUX; else if( strcmp( aType, "front" ) == 0 ) return LT_FRONT; else if( strcmp( aType, "back" ) == 0 ) return LT_BACK; else return LT_UNDEFINED; }
void BOARD::recalcOpposites() { for( int layer = F_Cu; layer < PCB_LAYER_ID_COUNT; ++layer ) m_layers[layer].m_opposite = ::FlipLayer( ToLAYER_ID( layer ), GetCopperLayerCount() );
// Match up similary-named front/back user layers
for( int layer = User_1; layer <= PCB_LAYER_ID_COUNT; layer += 2 ) { if( m_layers[layer].m_opposite != layer ) // already paired
continue;
if( m_layers[layer].m_type != LT_FRONT && m_layers[layer].m_type != LT_BACK ) continue;
wxString principalName = m_layers[layer].m_userName.AfterFirst( '.' );
for( int ii = layer + 2; ii <= PCB_LAYER_ID_COUNT; ii += 2 ) { if( m_layers[ii].m_opposite != ii ) // already paired
continue;
if( m_layers[ii].m_type != LT_FRONT && m_layers[ii].m_type != LT_BACK ) continue;
if( m_layers[layer].m_type == m_layers[ii].m_type ) continue;
wxString candidate = m_layers[ii].m_userName.AfterFirst( '.' );
if( !candidate.IsEmpty() && candidate == principalName ) { m_layers[layer].m_opposite = ii; m_layers[ii].m_opposite = layer; break; } } }
// Match up non-custom-named consecutive front/back user layer pairs
for( int layer = User_1; layer < PCB_LAYER_ID_COUNT - 2; layer += 2 ) { int next = layer + 2;
// ignore already-matched layers
if( m_layers[layer].m_opposite != layer || m_layers[next].m_opposite != next ) continue;
// ignore layer pairs that aren't consecutive front/back
if( m_layers[layer].m_type != LT_FRONT || m_layers[next].m_type != LT_BACK ) continue;
if( m_layers[layer].m_userName != m_layers[layer].m_name && m_layers[next].m_userName != m_layers[next].m_name ) { m_layers[layer].m_opposite = next; m_layers[next].m_opposite = layer; } } }
PCB_LAYER_ID BOARD::FlipLayer( PCB_LAYER_ID aLayer ) const { auto it = m_layers.find( aLayer ); return it == m_layers.end() ? aLayer : ToLAYER_ID( it->second.m_opposite ); }
int BOARD::GetCopperLayerCount() const { return GetDesignSettings().GetCopperLayerCount(); }
void BOARD::SetCopperLayerCount( int aCount ) { GetDesignSettings().SetCopperLayerCount( aCount ); }
int BOARD::GetUserDefinedLayerCount() const { return GetDesignSettings().GetUserDefinedLayerCount(); }
void BOARD::SetUserDefinedLayerCount( int aCount ) { return GetDesignSettings().SetUserDefinedLayerCount( aCount ); }
PCB_LAYER_ID BOARD::GetCopperLayerStackMaxId() const { int imax = GetCopperLayerCount();
// layers IDs are F_Cu, B_Cu, and even IDs values (imax values)
if( imax <= 2 ) // at least 2 layers are expected
return B_Cu;
// For a 4 layer, last ID is In2_Cu = 6 (IDs are 0, 2, 4, 6)
return static_cast<PCB_LAYER_ID>( (imax-1) * 2 ); }
int BOARD::LayerDepth( PCB_LAYER_ID aStartLayer, PCB_LAYER_ID aEndLayer ) const { if( aStartLayer > aEndLayer ) std::swap( aStartLayer, aEndLayer );
if( aEndLayer == B_Cu ) aEndLayer = ToLAYER_ID( F_Cu + GetCopperLayerCount() - 1 );
return aEndLayer - aStartLayer; }
const LSET& BOARD::GetEnabledLayers() const { return GetDesignSettings().GetEnabledLayers(); }
bool BOARD::IsLayerVisible( PCB_LAYER_ID aLayer ) const { // If there is no project, assume layer is visible always
return GetDesignSettings().IsLayerEnabled( aLayer ) && ( !m_project || m_project->GetLocalSettings().m_VisibleLayers[aLayer] ); }
const LSET& BOARD::GetVisibleLayers() const { return m_project ? m_project->GetLocalSettings().m_VisibleLayers : LSET::AllLayersMask(); }
void BOARD::SetEnabledLayers( const LSET& aLayerSet ) { GetDesignSettings().SetEnabledLayers( aLayerSet ); }
bool BOARD::IsLayerEnabled( PCB_LAYER_ID aLayer ) const { return GetDesignSettings().IsLayerEnabled( aLayer ); }
void BOARD::SetVisibleLayers( const LSET& aLayerSet ) { if( m_project ) m_project->GetLocalSettings().m_VisibleLayers = aLayerSet; }
void BOARD::SetVisibleElements( const GAL_SET& aSet ) { // Call SetElementVisibility for each item
// to ensure specific calculations that can be needed by some items,
// just changing the visibility flags could be not sufficient.
for( size_t i = 0; i < aSet.size(); i++ ) SetElementVisibility( GAL_LAYER_ID_START + static_cast<int>( i ), aSet[i] ); }
void BOARD::SetVisibleAlls() { SetVisibleLayers( LSET().set() );
// Call SetElementVisibility for each item,
// to ensure specific calculations that can be needed by some items
for( GAL_LAYER_ID ii = GAL_LAYER_ID_START; ii < GAL_LAYER_ID_BITMASK_END; ++ii ) SetElementVisibility( ii, true ); }
GAL_SET BOARD::GetVisibleElements() const { return m_project ? m_project->GetLocalSettings().m_VisibleItems : GAL_SET::DefaultVisible(); }
bool BOARD::IsElementVisible( GAL_LAYER_ID aLayer ) const { return !m_project || m_project->GetLocalSettings().m_VisibleItems[aLayer - GAL_LAYER_ID_START]; }
void BOARD::SetElementVisibility( GAL_LAYER_ID aLayer, bool isEnabled ) { if( m_project ) m_project->GetLocalSettings().m_VisibleItems.set( aLayer - GAL_LAYER_ID_START, isEnabled );
switch( aLayer ) { case LAYER_RATSNEST: { // because we have a tool to show/hide ratsnest relative to a pad or a footprint
// so the hide/show option is a per item selection
for( PCB_TRACK* track : Tracks() ) track->SetLocalRatsnestVisible( isEnabled );
for( FOOTPRINT* footprint : Footprints() ) { for( PAD* pad : footprint->Pads() ) pad->SetLocalRatsnestVisible( isEnabled ); }
for( ZONE* zone : Zones() ) zone->SetLocalRatsnestVisible( isEnabled );
break; }
default: ; } }
bool BOARD::IsFootprintLayerVisible( PCB_LAYER_ID aLayer ) const { switch( aLayer ) { case F_Cu: return IsElementVisible( LAYER_FOOTPRINTS_FR ); case B_Cu: return IsElementVisible( LAYER_FOOTPRINTS_BK ); default: wxFAIL_MSG( wxT( "BOARD::IsModuleLayerVisible(): bad layer" ) ); return true; } }
BOARD_DESIGN_SETTINGS& BOARD::GetDesignSettings() const { return *m_designSettings; }
void BOARD::SetDesignSettings( const BOARD_DESIGN_SETTINGS& aSettings ) { *m_designSettings = aSettings; }
int BOARD::GetMaxClearanceValue() const { if( !m_maxClearanceValue.has_value() ) { std::unique_lock<std::shared_mutex> writeLock( m_CachesMutex );
int worstClearance = m_designSettings->GetBiggestClearanceValue();
for( ZONE* zone : m_zones ) worstClearance = std::max( worstClearance, zone->GetLocalClearance().value() );
for( FOOTPRINT* footprint : m_footprints ) { for( PAD* pad : footprint->Pads() ) { std::optional<int> override = pad->GetClearanceOverrides( nullptr );
if( override.has_value() ) worstClearance = std::max( worstClearance, override.value() ); }
for( ZONE* zone : footprint->Zones() ) worstClearance = std::max( worstClearance, zone->GetLocalClearance().value() ); }
m_maxClearanceValue = worstClearance; }
return m_maxClearanceValue.value_or( 0 ); };
void BOARD::CacheTriangulation( PROGRESS_REPORTER* aReporter, const std::vector<ZONE*>& aZones ) { std::vector<ZONE*> zones = aZones;
if( zones.empty() ) zones = m_zones;
if( zones.empty() ) return;
if( aReporter ) aReporter->Report( _( "Tessellating copper zones..." ) );
thread_pool& tp = GetKiCadThreadPool(); std::vector<std::future<size_t>> returns;
returns.reserve( zones.size() );
auto cache_zones = [aReporter]( ZONE* aZone ) -> size_t { if( aReporter && aReporter->IsCancelled() ) return 0;
aZone->CacheTriangulation();
if( aReporter ) aReporter->AdvanceProgress();
return 1; };
for( ZONE* zone : zones ) returns.emplace_back( tp.submit( cache_zones, zone ) );
// Finalize the triangulation threads
for( const std::future<size_t>& ret : returns ) { std::future_status status = ret.wait_for( std::chrono::milliseconds( 250 ) );
while( status != std::future_status::ready ) { if( aReporter ) aReporter->KeepRefreshing();
status = ret.wait_for( std::chrono::milliseconds( 250 ) ); } } }
void BOARD::FixupEmbeddedData() { for( FOOTPRINT* footprint : m_footprints ) { for( auto& [filename, embeddedFile] : footprint->EmbeddedFileMap() ) { EMBEDDED_FILES::EMBEDDED_FILE* file = GetEmbeddedFile( filename );
if( file ) { embeddedFile->compressedEncodedData = file->compressedEncodedData; embeddedFile->decompressedData = file->decompressedData; embeddedFile->data_hash = file->data_hash; embeddedFile->is_valid = file->is_valid; } } } }
void BOARD::Add( BOARD_ITEM* aBoardItem, ADD_MODE aMode, bool aSkipConnectivity ) { if( aBoardItem == nullptr ) { wxFAIL_MSG( wxT( "BOARD::Add() param error: aBoardItem nullptr" ) ); return; }
m_itemByIdCache.insert( { aBoardItem->m_Uuid, aBoardItem } );
switch( aBoardItem->Type() ) { case PCB_NETINFO_T: m_NetInfo.AppendNet( (NETINFO_ITEM*) aBoardItem ); break;
// this one uses a vector
case PCB_MARKER_T: m_markers.push_back( (PCB_MARKER*) aBoardItem ); break;
// this one uses a vector
case PCB_GROUP_T: m_groups.push_back( (PCB_GROUP*) aBoardItem ); break;
// this one uses a vector
case PCB_GENERATOR_T: m_generators.push_back( (PCB_GENERATOR*) aBoardItem ); break;
// this one uses a vector
case PCB_ZONE_T: m_zones.push_back( (ZONE*) aBoardItem ); break;
case PCB_VIA_T: if( aMode == ADD_MODE::APPEND || aMode == ADD_MODE::BULK_APPEND ) m_tracks.push_back( static_cast<PCB_VIA*>( aBoardItem ) ); else m_tracks.push_front( static_cast<PCB_VIA*>( aBoardItem ) );
break;
case PCB_TRACE_T: case PCB_ARC_T: if( !IsCopperLayer( aBoardItem->GetLayer() ) ) { // The only current known source of these is SWIG (KICAD-BY7, et al).
// N.B. This inserts a small memory leak as we lose the track/via/arc.
wxFAIL_MSG( wxString::Format( "BOARD::Add() Cannot place Track on non-copper layer: %d = %s", static_cast<int>( aBoardItem->GetLayer() ), GetLayerName( aBoardItem->GetLayer() ) ) ); return; }
if( aMode == ADD_MODE::APPEND || aMode == ADD_MODE::BULK_APPEND ) m_tracks.push_back( static_cast<PCB_TRACK*>( aBoardItem ) ); else m_tracks.push_front( static_cast<PCB_TRACK*>( aBoardItem ) );
break;
case PCB_FOOTPRINT_T: { FOOTPRINT* footprint = static_cast<FOOTPRINT*>( aBoardItem );
if( aMode == ADD_MODE::APPEND || aMode == ADD_MODE::BULK_APPEND ) m_footprints.push_back( footprint ); else m_footprints.push_front( footprint );
footprint->RunOnChildren( [&]( BOARD_ITEM* aChild ) { m_itemByIdCache.insert( { aChild->m_Uuid, aChild } ); }, RECURSE_MODE::NO_RECURSE ); break; }
case PCB_DIM_ALIGNED_T: case PCB_DIM_CENTER_T: case PCB_DIM_RADIAL_T: case PCB_DIM_ORTHOGONAL_T: case PCB_DIM_LEADER_T: case PCB_SHAPE_T: case PCB_REFERENCE_IMAGE_T: case PCB_FIELD_T: case PCB_TEXT_T: case PCB_TEXTBOX_T: case PCB_TABLE_T: case PCB_TARGET_T: { if( aMode == ADD_MODE::APPEND || aMode == ADD_MODE::BULK_APPEND ) m_drawings.push_back( aBoardItem ); else m_drawings.push_front( aBoardItem );
if( aBoardItem->Type() == PCB_TABLE_T ) { PCB_TABLE* table = static_cast<PCB_TABLE*>( aBoardItem );
table->RunOnChildren( [&]( BOARD_ITEM* aChild ) { m_itemByIdCache.insert( { aChild->m_Uuid, aChild } ); }, RECURSE_MODE::NO_RECURSE ); }
break; }
case PCB_TABLECELL_T: // Handled by parent table
break;
default: wxFAIL_MSG( wxString::Format( wxT( "BOARD::Add() item type %s not handled" ), aBoardItem->GetClass() ) ); return; }
aBoardItem->SetParent( this ); aBoardItem->ClearEditFlags();
if( !aSkipConnectivity ) m_connectivity->Add( aBoardItem );
if( aMode != ADD_MODE::BULK_INSERT && aMode != ADD_MODE::BULK_APPEND ) InvokeListeners( &BOARD_LISTENER::OnBoardItemAdded, *this, aBoardItem ); }
void BOARD::FinalizeBulkAdd( std::vector<BOARD_ITEM*>& aNewItems ) { InvokeListeners( &BOARD_LISTENER::OnBoardItemsAdded, *this, aNewItems ); }
void BOARD::FinalizeBulkRemove( std::vector<BOARD_ITEM*>& aRemovedItems ) { InvokeListeners( &BOARD_LISTENER::OnBoardItemsRemoved, *this, aRemovedItems ); }
void BOARD::BulkRemoveStaleTeardrops( BOARD_COMMIT& aCommit ) { for( int ii = (int) m_zones.size() - 1; ii >= 0; --ii ) { ZONE* zone = m_zones[ii];
if( zone->IsTeardropArea() && zone->HasFlag( STRUCT_DELETED ) ) { m_itemByIdCache.erase( zone->m_Uuid ); m_zones.erase( m_zones.begin() + ii ); m_connectivity->Remove( zone ); aCommit.Removed( zone ); } } }
void BOARD::Remove( BOARD_ITEM* aBoardItem, REMOVE_MODE aRemoveMode ) { // find these calls and fix them! Don't send me no stinking' nullptr.
wxASSERT( aBoardItem );
m_itemByIdCache.erase( aBoardItem->m_Uuid );
switch( aBoardItem->Type() ) { case PCB_NETINFO_T: { NETINFO_ITEM* netItem = static_cast<NETINFO_ITEM*>( aBoardItem ); NETINFO_ITEM* unconnected = m_NetInfo.GetNetItem( NETINFO_LIST::UNCONNECTED );
for( BOARD_CONNECTED_ITEM* boardItem : AllConnectedItems() ) { if( boardItem->GetNet() == netItem ) boardItem->SetNet( unconnected ); }
m_NetInfo.RemoveNet( netItem ); break; }
case PCB_MARKER_T: alg::delete_matching( m_markers, aBoardItem ); break;
case PCB_GROUP_T: alg::delete_matching( m_groups, aBoardItem ); break;
case PCB_ZONE_T: alg::delete_matching( m_zones, aBoardItem ); break;
case PCB_GENERATOR_T: alg::delete_matching( m_generators, aBoardItem ); break;
case PCB_FOOTPRINT_T: { alg::delete_matching( m_footprints, aBoardItem ); FOOTPRINT* footprint = static_cast<FOOTPRINT*>( aBoardItem );
footprint->RunOnChildren( [&]( BOARD_ITEM* aChild ) { m_itemByIdCache.erase( aChild->m_Uuid ); }, RECURSE_MODE::NO_RECURSE );
break; }
case PCB_TRACE_T: case PCB_ARC_T: case PCB_VIA_T: alg::delete_matching( m_tracks, aBoardItem ); break;
case PCB_DIM_ALIGNED_T: case PCB_DIM_CENTER_T: case PCB_DIM_RADIAL_T: case PCB_DIM_ORTHOGONAL_T: case PCB_DIM_LEADER_T: case PCB_SHAPE_T: case PCB_REFERENCE_IMAGE_T: case PCB_FIELD_T: case PCB_TEXT_T: case PCB_TEXTBOX_T: case PCB_TABLE_T: case PCB_TARGET_T: { alg::delete_matching( m_drawings, aBoardItem );
if( aBoardItem->Type() == PCB_TABLE_T ) { PCB_TABLE* table = static_cast<PCB_TABLE*>( aBoardItem );
table->RunOnChildren( [&]( BOARD_ITEM* aChild ) { m_itemByIdCache.erase( aChild->m_Uuid ); }, RECURSE_MODE::NO_RECURSE ); }
break; }
case PCB_TABLECELL_T: // Handled by parent table
break;
// other types may use linked list
default: wxFAIL_MSG( wxString::Format( wxT( "BOARD::Remove() item type %s not handled" ), aBoardItem->GetClass() ) ); }
aBoardItem->SetFlags( STRUCT_DELETED );
m_connectivity->Remove( aBoardItem );
if( aRemoveMode != REMOVE_MODE::BULK ) InvokeListeners( &BOARD_LISTENER::OnBoardItemRemoved, *this, aBoardItem ); }
void BOARD::RemoveAll( std::initializer_list<KICAD_T> aTypes ) { std::vector<BOARD_ITEM*> removed;
for( const KICAD_T& type : aTypes ) { switch( type ) { case PCB_NETINFO_T: for( NETINFO_ITEM* item : m_NetInfo ) removed.emplace_back( item );
m_NetInfo.clear(); break;
case PCB_MARKER_T: std::copy( m_markers.begin(), m_markers.end(), std::back_inserter( removed ) ); m_markers.clear(); break;
case PCB_GROUP_T: std::copy( m_groups.begin(), m_groups.end(), std::back_inserter( removed ) ); m_groups.clear(); break;
case PCB_ZONE_T: std::copy( m_zones.begin(), m_zones.end(), std::back_inserter( removed ) ); m_zones.clear(); break;
case PCB_GENERATOR_T: std::copy( m_generators.begin(), m_generators.end(), std::back_inserter( removed ) ); m_generators.clear(); break;
case PCB_FOOTPRINT_T: std::copy( m_footprints.begin(), m_footprints.end(), std::back_inserter( removed ) ); m_footprints.clear(); break;
case PCB_TRACE_T: std::copy( m_tracks.begin(), m_tracks.end(), std::back_inserter( removed ) ); m_tracks.clear(); break;
case PCB_ARC_T: case PCB_VIA_T: wxFAIL_MSG( wxT( "Use PCB_TRACE_T to remove all tracks, arcs, and vias" ) ); break;
case PCB_SHAPE_T: std::copy( m_drawings.begin(), m_drawings.end(), std::back_inserter( removed ) ); m_drawings.clear(); break;
case PCB_DIM_ALIGNED_T: case PCB_DIM_CENTER_T: case PCB_DIM_RADIAL_T: case PCB_DIM_ORTHOGONAL_T: case PCB_DIM_LEADER_T: case PCB_REFERENCE_IMAGE_T: case PCB_FIELD_T: case PCB_TEXT_T: case PCB_TEXTBOX_T: case PCB_TABLE_T: case PCB_TARGET_T: wxFAIL_MSG( wxT( "Use PCB_SHAPE_T to remove all graphics and text" ) ); break;
default: wxFAIL_MSG( wxT( "BOARD::RemoveAll() needs more ::Type() support" ) ); } }
IncrementTimeStamp();
FinalizeBulkRemove( removed ); }
wxString BOARD::GetItemDescription( UNITS_PROVIDER* aUnitsProvider, bool aFull ) const { return wxString::Format( _( "PCB" ) ); }
void BOARD::UpdateUserUnits( BOARD_ITEM* aItem, KIGFX::VIEW* aView ) { INSPECTOR_FUNC inspector = [&]( EDA_ITEM* descendant, void* aTestData ) { PCB_DIMENSION_BASE* dimension = static_cast<PCB_DIMENSION_BASE*>( descendant );
if( dimension->GetUnitsMode() == DIM_UNITS_MODE::AUTOMATIC ) { dimension->UpdateUnits();
if( aView ) aView->Update( dimension ); }
return INSPECT_RESULT::CONTINUE; };
aItem->Visit( inspector, nullptr, { PCB_DIM_ALIGNED_T, PCB_DIM_LEADER_T, PCB_DIM_ORTHOGONAL_T, PCB_DIM_CENTER_T, PCB_DIM_RADIAL_T } ); }
void BOARD::DeleteMARKERs() { for( PCB_MARKER* marker : m_markers ) delete marker;
m_markers.clear(); IncrementTimeStamp(); }
void BOARD::DeleteMARKERs( bool aWarningsAndErrors, bool aExclusions ) { // Deleting lots of items from a vector can be very slow. Copy remaining items instead.
std::vector<PCB_MARKER*> remaining;
for( PCB_MARKER* marker : m_markers ) { if( ( marker->GetSeverity() == RPT_SEVERITY_EXCLUSION && aExclusions ) || ( marker->GetSeverity() != RPT_SEVERITY_EXCLUSION && aWarningsAndErrors ) ) { delete marker; } else { remaining.push_back( marker ); } }
m_markers = std::move( remaining ); IncrementTimeStamp(); }
void BOARD::DeleteAllFootprints() { for( FOOTPRINT* footprint : m_footprints ) delete footprint;
m_footprints.clear(); IncrementTimeStamp(); }
void BOARD::DetachAllFootprints() { for( FOOTPRINT* footprint : m_footprints ) footprint->SetParent( nullptr );
m_footprints.clear(); IncrementTimeStamp(); }
BOARD_ITEM* BOARD::ResolveItem( const KIID& aID, bool aAllowNullptrReturn ) const { if( aID == niluuid ) return nullptr;
if( m_itemByIdCache.count( aID ) ) return m_itemByIdCache.at( aID );
// Main clients include highlighting, group undo/redo and DRC items. Since
// everything but group undo/redo will be spread over all object types, we
// might as well prioritize group undo/redo and search them first.
for( PCB_GROUP* group : m_groups ) { if( group->m_Uuid == aID ) return group; }
for( PCB_GENERATOR* generator : m_generators ) { if( generator->m_Uuid == aID ) return generator; }
for( PCB_TRACK* track : Tracks() ) { if( track->m_Uuid == aID ) return track; }
for( FOOTPRINT* footprint : Footprints() ) { if( footprint->m_Uuid == aID ) return footprint;
for( PAD* pad : footprint->Pads() ) { if( pad->m_Uuid == aID ) return pad; }
for( PCB_FIELD* field : footprint->GetFields() ) { if( field && field->m_Uuid == aID ) return field; }
for( BOARD_ITEM* drawing : footprint->GraphicalItems() ) { if( drawing->m_Uuid == aID ) return drawing; }
for( BOARD_ITEM* zone : footprint->Zones() ) { if( zone->m_Uuid == aID ) return zone; }
for( PCB_GROUP* group : footprint->Groups() ) { if( group->m_Uuid == aID ) return group; } }
for( ZONE* zone : Zones() ) { if( zone->m_Uuid == aID ) return zone; }
for( BOARD_ITEM* drawing : Drawings() ) { if( drawing->Type() == PCB_TABLE_T ) { for( PCB_TABLECELL* cell : static_cast<PCB_TABLE*>( drawing )->GetCells() ) { if( cell->m_Uuid == aID ) return drawing; } }
if( drawing->m_Uuid == aID ) return drawing; }
for( PCB_MARKER* marker : m_markers ) { if( marker->m_Uuid == aID ) return marker; }
for( NETINFO_ITEM* netInfo : m_NetInfo ) { if( netInfo->m_Uuid == aID ) return netInfo; }
if( m_Uuid == aID ) return const_cast<BOARD*>( this );
// Not found; weak reference has been deleted.
if( aAllowNullptrReturn ) return nullptr;
return DELETED_BOARD_ITEM::GetInstance(); }
void BOARD::FillItemMap( std::map<KIID, EDA_ITEM*>& aMap ) { // the board itself
aMap[ m_Uuid ] = this;
for( PCB_TRACK* track : Tracks() ) aMap[ track->m_Uuid ] = track;
for( FOOTPRINT* footprint : Footprints() ) { aMap[ footprint->m_Uuid ] = footprint;
for( PAD* pad : footprint->Pads() ) aMap[ pad->m_Uuid ] = pad;
aMap[ footprint->Reference().m_Uuid ] = &footprint->Reference(); aMap[ footprint->Value().m_Uuid ] = &footprint->Value();
for( BOARD_ITEM* drawing : footprint->GraphicalItems() ) aMap[ drawing->m_Uuid ] = drawing; }
for( ZONE* zone : Zones() ) aMap[ zone->m_Uuid ] = zone;
for( BOARD_ITEM* drawing : Drawings() ) aMap[ drawing->m_Uuid ] = drawing;
for( PCB_MARKER* marker : m_markers ) aMap[ marker->m_Uuid ] = marker;
for( PCB_GROUP* group : m_groups ) aMap[ group->m_Uuid ] = group;
for( PCB_GENERATOR* generator : m_generators ) aMap[ generator->m_Uuid ] = generator; }
wxString BOARD::ConvertCrossReferencesToKIIDs( const wxString& aSource ) const { wxString newbuf; size_t sourceLen = aSource.length();
for( size_t i = 0; i < sourceLen; ++i ) { if( aSource[i] == '$' && i + 1 < sourceLen && aSource[i+1] == '{' ) { wxString token; bool isCrossRef = false;
for( i = i + 2; i < sourceLen; ++i ) { if( aSource[i] == '}' ) break;
if( aSource[i] == ':' ) isCrossRef = true;
token.append( aSource[i] ); }
if( isCrossRef ) { wxString remainder; wxString ref = token.BeforeFirst( ':', &remainder );
for( const FOOTPRINT* footprint : Footprints() ) { if( footprint->GetReference().CmpNoCase( ref ) == 0 ) { wxString test( remainder );
if( footprint->ResolveTextVar( &test ) ) token = footprint->m_Uuid.AsString() + wxT( ":" ) + remainder;
break; } } }
newbuf.append( wxT( "${" ) + token + wxT( "}" ) ); } else { newbuf.append( aSource[i] ); } }
return newbuf; }
wxString BOARD::ConvertKIIDsToCrossReferences( const wxString& aSource ) const { wxString newbuf; size_t sourceLen = aSource.length();
for( size_t i = 0; i < sourceLen; ++i ) { if( aSource[i] == '$' && i + 1 < sourceLen && aSource[i+1] == '{' ) { wxString token; bool isCrossRef = false;
for( i = i + 2; i < sourceLen; ++i ) { if( aSource[i] == '}' ) break;
if( aSource[i] == ':' ) isCrossRef = true;
token.append( aSource[i] ); }
if( isCrossRef ) { wxString remainder; wxString ref = token.BeforeFirst( ':', &remainder ); BOARD_ITEM* refItem = ResolveItem( KIID( ref ), true );
if( refItem && refItem->Type() == PCB_FOOTPRINT_T ) { token = static_cast<FOOTPRINT*>( refItem )->GetReference() + wxT( ":" ) + remainder; } }
newbuf.append( wxT( "${" ) + token + wxT( "}" ) ); } else { newbuf.append( aSource[i] ); } }
return newbuf; }
unsigned BOARD::GetNodesCount( int aNet ) const { unsigned retval = 0;
for( FOOTPRINT* footprint : Footprints() ) { for( PAD* pad : footprint->Pads() ) { if( ( aNet == -1 && pad->GetNetCode() > 0 ) || aNet == pad->GetNetCode() ) retval++; } }
return retval; }
BOX2I BOARD::ComputeBoundingBox( bool aBoardEdgesOnly ) const { BOX2I bbox; LSET visible = GetVisibleLayers();
// If the board is just showing a footprint, we want all footprint layers included in the
// bounding box
if( IsFootprintHolder() ) visible.set();
if( aBoardEdgesOnly ) visible.set( Edge_Cuts );
// Check shapes, dimensions, texts, and fiducials
for( BOARD_ITEM* item : m_drawings ) { if( aBoardEdgesOnly && ( item->GetLayer() != Edge_Cuts || item->Type() != PCB_SHAPE_T ) ) continue;
if( ( item->GetLayerSet() & visible ).any() ) bbox.Merge( item->GetBoundingBox() ); }
// Check footprints
for( FOOTPRINT* footprint : m_footprints ) { if( aBoardEdgesOnly ) { for( const BOARD_ITEM* edge : footprint->GraphicalItems() ) { if( edge->GetLayer() == Edge_Cuts && edge->Type() == PCB_SHAPE_T ) bbox.Merge( edge->GetBoundingBox() ); } } else if( ( footprint->GetLayerSet() & visible ).any() ) { bbox.Merge( footprint->GetBoundingBox( true ) ); } }
if( !aBoardEdgesOnly ) { // Check tracks
for( PCB_TRACK* track : m_tracks ) { if( ( track->GetLayerSet() & visible ).any() ) bbox.Merge( track->GetBoundingBox() ); }
// Check zones
for( ZONE* aZone : m_zones ) { if( ( aZone->GetLayerSet() & visible ).any() ) bbox.Merge( aZone->GetBoundingBox() ); } }
return bbox; }
void BOARD::GetMsgPanelInfo( EDA_DRAW_FRAME* aFrame, std::vector<MSG_PANEL_ITEM>& aList ) { int padCount = 0; int viaCount = 0; int trackSegmentCount = 0; std::set<int> netCodes; int unconnected = GetConnectivity()->GetUnconnectedCount( true );
for( PCB_TRACK* item : m_tracks ) { if( item->Type() == PCB_VIA_T ) viaCount++; else trackSegmentCount++;
if( item->GetNetCode() > 0 ) netCodes.insert( item->GetNetCode() ); }
for( FOOTPRINT* footprint : Footprints() ) { for( PAD* pad : footprint->Pads() ) { padCount++;
if( pad->GetNetCode() > 0 ) netCodes.insert( pad->GetNetCode() ); } }
aList.emplace_back( _( "Pads" ), wxString::Format( wxT( "%d" ), padCount ) ); aList.emplace_back( _( "Vias" ), wxString::Format( wxT( "%d" ), viaCount ) ); aList.emplace_back( _( "Track Segments" ), wxString::Format( wxT( "%d" ), trackSegmentCount ) ); aList.emplace_back( _( "Nets" ), wxString::Format( wxT( "%d" ), (int) netCodes.size() ) ); aList.emplace_back( _( "Unrouted" ), wxString::Format( wxT( "%d" ), unconnected ) ); }
INSPECT_RESULT BOARD::Visit( INSPECTOR inspector, void* testData, const std::vector<KICAD_T>& scanTypes ) { #if 0 && defined(DEBUG)
std::cout << GetClass().mb_str() << ' '; #endif
bool footprintsScanned = false; bool drawingsScanned = false; bool tracksScanned = false;
for( KICAD_T scanType : scanTypes ) { switch( scanType ) { case PCB_T: if( inspector( this, testData ) == INSPECT_RESULT::QUIT ) return INSPECT_RESULT::QUIT;
break;
/*
* Instances of the requested KICAD_T live in a list, either one that I manage, or one * that my footprints manage. If it's a type managed by class FOOTPRINT, then simply * pass it on to each footprint's Visit() function via IterateForward( m_footprints, ... ). */
case PCB_FOOTPRINT_T: case PCB_PAD_T: case PCB_SHAPE_T: case PCB_REFERENCE_IMAGE_T: case PCB_FIELD_T: case PCB_TEXT_T: case PCB_TEXTBOX_T: case PCB_TABLE_T: case PCB_TABLECELL_T: case PCB_DIM_ALIGNED_T: case PCB_DIM_CENTER_T: case PCB_DIM_RADIAL_T: case PCB_DIM_ORTHOGONAL_T: case PCB_DIM_LEADER_T: case PCB_TARGET_T: if( !footprintsScanned ) { if( IterateForward<FOOTPRINT*>( m_footprints, inspector, testData, scanTypes ) == INSPECT_RESULT::QUIT ) { return INSPECT_RESULT::QUIT; }
footprintsScanned = true; }
if( !drawingsScanned ) { if( IterateForward<BOARD_ITEM*>( m_drawings, inspector, testData, scanTypes ) == INSPECT_RESULT::QUIT ) { return INSPECT_RESULT::QUIT; }
drawingsScanned = true; }
break;
case PCB_VIA_T: case PCB_TRACE_T: case PCB_ARC_T: if( !tracksScanned ) { if( IterateForward<PCB_TRACK*>( m_tracks, inspector, testData, scanTypes ) == INSPECT_RESULT::QUIT ) { return INSPECT_RESULT::QUIT; }
tracksScanned = true; }
break;
case PCB_MARKER_T: for( PCB_MARKER* marker : m_markers ) { if( marker->Visit( inspector, testData, { scanType } ) == INSPECT_RESULT::QUIT ) return INSPECT_RESULT::QUIT; }
break;
case PCB_ZONE_T: if( !footprintsScanned ) { if( IterateForward<FOOTPRINT*>( m_footprints, inspector, testData, scanTypes ) == INSPECT_RESULT::QUIT ) { return INSPECT_RESULT::QUIT; }
footprintsScanned = true; }
for( ZONE* zone : m_zones) { if( zone->Visit( inspector, testData, { scanType } ) == INSPECT_RESULT::QUIT ) return INSPECT_RESULT::QUIT; }
break;
case PCB_GENERATOR_T: if( !footprintsScanned ) { if( IterateForward<FOOTPRINT*>( m_footprints, inspector, testData, scanTypes ) == INSPECT_RESULT::QUIT ) { return INSPECT_RESULT::QUIT; }
footprintsScanned = true; }
if( IterateForward<PCB_GENERATOR*>( m_generators, inspector, testData, { scanType } ) == INSPECT_RESULT::QUIT ) { return INSPECT_RESULT::QUIT; }
break;
case PCB_GROUP_T: if( IterateForward<PCB_GROUP*>( m_groups, inspector, testData, { scanType } ) == INSPECT_RESULT::QUIT ) { return INSPECT_RESULT::QUIT; }
break;
default: break; } }
return INSPECT_RESULT::CONTINUE; }
NETINFO_ITEM* BOARD::FindNet( int aNetcode ) const { // the first valid netcode is 1 and the last is m_NetInfo.GetCount()-1.
// zero is reserved for "no connection" and is not actually a net.
// nullptr is returned for non valid netcodes
if( aNetcode == NETINFO_LIST::UNCONNECTED && m_NetInfo.GetNetCount() == 0 ) return NETINFO_LIST::OrphanedItem(); else return m_NetInfo.GetNetItem( aNetcode ); }
NETINFO_ITEM* BOARD::FindNet( const wxString& aNetname ) const { return m_NetInfo.GetNetItem( aNetname ); }
int BOARD::MatchDpSuffix( const wxString& aNetName, wxString& aComplementNet ) { int rv = 0; int count = 0;
for( auto it = aNetName.rbegin(); it != aNetName.rend() && rv == 0; ++it, ++count ) { int ch = *it;
if( ( ch >= '0' && ch <= '9' ) || ch == '_' ) { continue; } else if( ch == '+' ) { aComplementNet = wxT( "-" ); rv = 1; } else if( ch == '-' ) { aComplementNet = wxT( "+" ); rv = -1; } else if( ch == 'N' ) { aComplementNet = wxT( "P" ); rv = -1; } else if ( ch == 'P' ) { aComplementNet = wxT( "N" ); rv = 1; } else { break; } }
if( rv != 0 && count >= 1 ) { aComplementNet = aNetName.Left( aNetName.length() - count ) + aComplementNet + aNetName.Right( count - 1 ); }
return rv; }
NETINFO_ITEM* BOARD::DpCoupledNet( const NETINFO_ITEM* aNet ) { if( aNet ) { wxString refName = aNet->GetNetname(); wxString coupledNetName;
if( MatchDpSuffix( refName, coupledNetName ) ) return FindNet( coupledNetName ); }
return nullptr; }
FOOTPRINT* BOARD::FindFootprintByReference( const wxString& aReference ) const { for( FOOTPRINT* footprint : m_footprints ) { if( aReference == footprint->GetReference() ) return footprint; }
return nullptr; }
FOOTPRINT* BOARD::FindFootprintByPath( const KIID_PATH& aPath ) const { for( FOOTPRINT* footprint : m_footprints ) { if( footprint->GetPath() == aPath ) return footprint; }
return nullptr; }
std::set<wxString> BOARD::GetNetClassAssignmentCandidates() const { std::set<wxString> names;
for( const NETINFO_ITEM* net : m_NetInfo ) { if( !net->GetNetname().IsEmpty() ) names.insert( net->GetNetname() ); }
return names; }
void BOARD::SynchronizeProperties() { if( m_project && !m_project->IsNullProject() ) SetProperties( m_project->GetTextVars() ); }
void BOARD::SynchronizeTimeDomainProperties() { m_lengthDelayCalc->SynchronizeTimeDomainProperties(); }
void BOARD::SynchronizeNetsAndNetClasses( bool aResetTrackAndViaSizes ) { if( !m_project ) return;
BOARD_DESIGN_SETTINGS& bds = GetDesignSettings(); const std::shared_ptr<NETCLASS>& defaultNetClass = bds.m_NetSettings->GetDefaultNetclass();
bds.m_NetSettings->ClearAllCaches();
for( NETINFO_ITEM* net : m_NetInfo ) net->SetNetClass( bds.m_NetSettings->GetEffectiveNetClass( net->GetNetname() ) );
if( aResetTrackAndViaSizes ) { // Set initial values for custom track width & via size to match the default
// netclass settings
bds.UseCustomTrackViaSize( false ); bds.SetCustomTrackWidth( defaultNetClass->GetTrackWidth() ); bds.SetCustomViaSize( defaultNetClass->GetViaDiameter() ); bds.SetCustomViaDrill( defaultNetClass->GetViaDrill() ); bds.SetCustomDiffPairWidth( defaultNetClass->GetDiffPairWidth() ); bds.SetCustomDiffPairGap( defaultNetClass->GetDiffPairGap() ); bds.SetCustomDiffPairViaGap( defaultNetClass->GetDiffPairViaGap() ); }
InvokeListeners( &BOARD_LISTENER::OnBoardNetSettingsChanged, *this ); }
bool BOARD::SynchronizeComponentClasses( const std::unordered_set<wxString>& aNewSheetPaths ) const { std::shared_ptr<COMPONENT_CLASS_SETTINGS> settings = GetProject()->GetProjectFile().ComponentClassSettings();
return m_componentClassManager->SyncDynamicComponentClassAssignments( settings->GetComponentClassAssignments(), settings->GetEnableSheetComponentClasses(), aNewSheetPaths ); }
int BOARD::SetAreasNetCodesFromNetNames() { int error_count = 0;
for( ZONE* zone : Zones() ) { if( !zone->IsOnCopperLayer() ) { zone->SetNetCode( NETINFO_LIST::UNCONNECTED ); continue; }
if( zone->GetNetCode() != 0 ) // i.e. if this zone is connected to a net
{ const NETINFO_ITEM* net = zone->GetNet();
if( net ) { zone->SetNetCode( net->GetNetCode() ); } else { error_count++;
// keep Net Name and set m_NetCode to -1 : error flag.
zone->SetNetCode( -1 ); } } }
return error_count; }
PAD* BOARD::GetPad( const VECTOR2I& aPosition, const LSET& aLayerSet ) const { for( FOOTPRINT* footprint : m_footprints ) { PAD* pad = nullptr;
if( footprint->HitTest( aPosition ) ) pad = footprint->GetPad( aPosition, aLayerSet.any() ? aLayerSet : LSET::AllCuMask() );
if( pad ) return pad; }
return nullptr; }
PAD* BOARD::GetPad( const PCB_TRACK* aTrace, ENDPOINT_T aEndPoint ) const { const VECTOR2I& aPosition = aTrace->GetEndPoint( aEndPoint );
LSET lset( { aTrace->GetLayer() } );
return GetPad( aPosition, lset ); }
PAD* BOARD::GetPad( std::vector<PAD*>& aPadList, const VECTOR2I& aPosition, const LSET& aLayerSet ) const { // Search aPadList for aPosition
// aPadList is sorted by X then Y values, and a fast binary search is used
int idxmax = aPadList.size() - 1;
int delta = aPadList.size();
int idx = 0; // Starting index is the beginning of list
while( delta ) { // Calculate half size of remaining interval to test.
// Ensure the computed value is not truncated (too small)
if( (delta & 1) && ( delta > 1 ) ) delta++;
delta /= 2;
PAD* pad = aPadList[idx];
if( pad->GetPosition() == aPosition ) // candidate found
{ // The pad must match the layer mask:
if( ( aLayerSet & pad->GetLayerSet() ).any() ) return pad;
// More than one pad can be at aPosition
// search for a pad at aPosition that matched this mask
// search next
for( int ii = idx+1; ii <= idxmax; ii++ ) { pad = aPadList[ii];
if( pad->GetPosition() != aPosition ) break;
if( ( aLayerSet & pad->GetLayerSet() ).any() ) return pad; } // search previous
for( int ii = idx - 1 ;ii >=0; ii-- ) { pad = aPadList[ii];
if( pad->GetPosition() != aPosition ) break;
if( ( aLayerSet & pad->GetLayerSet() ).any() ) return pad; }
// Not found:
return nullptr; }
if( pad->GetPosition().x == aPosition.x ) // Must search considering Y coordinate
{ if( pad->GetPosition().y < aPosition.y ) // Must search after this item
{ idx += delta;
if( idx > idxmax ) idx = idxmax; } else // Must search before this item
{ idx -= delta;
if( idx < 0 ) idx = 0; } } else if( pad->GetPosition().x < aPosition.x ) // Must search after this item
{ idx += delta;
if( idx > idxmax ) idx = idxmax; } else // Must search before this item
{ idx -= delta;
if( idx < 0 ) idx = 0; } }
return nullptr; }
/**
* Used by #GetSortedPadListByXCoord to sort a pad list by X coordinate value. * * This function is used to build ordered pads lists */ bool sortPadsByXthenYCoord( PAD* const & aLH, PAD* const & aRH ) { if( aLH->GetPosition().x == aRH->GetPosition().x ) return aLH->GetPosition().y < aRH->GetPosition().y;
return aLH->GetPosition().x < aRH->GetPosition().x; }
void BOARD::GetSortedPadListByXthenYCoord( std::vector<PAD*>& aVector, int aNetCode ) const { for( FOOTPRINT* footprint : Footprints() ) { for( PAD* pad : footprint->Pads( ) ) { if( aNetCode < 0 || pad->GetNetCode() == aNetCode ) aVector.push_back( pad ); } }
std::sort( aVector.begin(), aVector.end(), sortPadsByXthenYCoord ); }
BOARD_STACKUP BOARD::GetStackupOrDefault() const { if( GetDesignSettings().m_HasStackup ) return GetDesignSettings().GetStackupDescriptor();
BOARD_STACKUP stackup; stackup.BuildDefaultStackupList( &GetDesignSettings(), GetCopperLayerCount() ); return stackup; }
std::tuple<int, double, double, double, double> BOARD::GetTrackLength( const PCB_TRACK& aTrack ) const { std::shared_ptr<CONNECTIVITY_DATA> connectivity = GetBoard()->GetConnectivity(); std::vector<LENGTH_DELAY_CALCULATION_ITEM> items;
for( BOARD_CONNECTED_ITEM* boardItem : connectivity->GetConnectedItems( &aTrack, EXCLUDE_ZONES ) ) { LENGTH_DELAY_CALCULATION_ITEM item = GetLengthCalculation()->GetLengthCalculationItem( boardItem );
if( item.Type() != LENGTH_DELAY_CALCULATION_ITEM::TYPE::UNKNOWN ) items.push_back( std::move( item ) ); }
constexpr PATH_OPTIMISATIONS opts = { .OptimiseViaLayers = true, .MergeTracks = true, .OptimiseTracesInPads = true, .InferViaInPad = false }; LENGTH_DELAY_STATS details = GetLengthCalculation()->CalculateLengthDetails( items, opts, nullptr, nullptr, LENGTH_DELAY_LAYER_OPT::NO_LAYER_DETAIL, LENGTH_DELAY_DOMAIN_OPT::WITH_DELAY_DETAIL );
return std::make_tuple( items.size(), details.TrackLength + details.ViaLength, details.PadToDieLength, details.TrackDelay + details.ViaDelay, details.PadToDieDelay ); }
FOOTPRINT* BOARD::GetFootprint( const VECTOR2I& aPosition, PCB_LAYER_ID aActiveLayer, bool aVisibleOnly, bool aIgnoreLocked ) const { FOOTPRINT* footprint = nullptr; FOOTPRINT* alt_footprint = nullptr; int min_dim = 0x7FFFFFFF; int alt_min_dim = 0x7FFFFFFF; bool current_layer_back = IsBackLayer( aActiveLayer );
for( FOOTPRINT* candidate : m_footprints ) { // is the ref point within the footprint's bounds?
if( !candidate->HitTest( aPosition ) ) continue;
// if caller wants to ignore locked footprints, and this one is locked, skip it.
if( aIgnoreLocked && candidate->IsLocked() ) continue;
PCB_LAYER_ID layer = candidate->GetLayer();
// Filter non visible footprints if requested
if( !aVisibleOnly || IsFootprintLayerVisible( layer ) ) { BOX2I bb = candidate->GetBoundingBox( false );
int offx = bb.GetX() + bb.GetWidth() / 2; int offy = bb.GetY() + bb.GetHeight() / 2;
// off x & offy point to the middle of the box.
int dist = ( aPosition.x - offx ) * ( aPosition.x - offx ) + ( aPosition.y - offy ) * ( aPosition.y - offy );
if( current_layer_back == IsBackLayer( layer ) ) { if( dist <= min_dim ) { // better footprint shown on the active side
footprint = candidate; min_dim = dist; } } else if( aVisibleOnly && IsFootprintLayerVisible( layer ) ) { if( dist <= alt_min_dim ) { // better footprint shown on the other side
alt_footprint = candidate; alt_min_dim = dist; } } } }
if( footprint ) return footprint;
if( alt_footprint) return alt_footprint;
return nullptr; }
std::list<ZONE*> BOARD::GetZoneList( bool aIncludeZonesInFootprints ) const { std::list<ZONE*> zones;
for( ZONE* zone : Zones() ) zones.push_back( zone );
if( aIncludeZonesInFootprints ) { for( FOOTPRINT* footprint : m_footprints ) { for( ZONE* zone : footprint->Zones() ) zones.push_back( zone ); } }
return zones; }
ZONE* BOARD::AddArea( PICKED_ITEMS_LIST* aNewZonesList, int aNetcode, PCB_LAYER_ID aLayer, VECTOR2I aStartPointPosition, ZONE_BORDER_DISPLAY_STYLE aHatch ) { ZONE* new_area = new ZONE( this );
new_area->SetNetCode( aNetcode ); new_area->SetLayer( aLayer );
m_zones.push_back( new_area );
new_area->SetHatchStyle( (ZONE_BORDER_DISPLAY_STYLE) aHatch );
// Add the first corner to the new zone
new_area->AppendCorner( aStartPointPosition, -1 );
if( aNewZonesList ) { ITEM_PICKER picker( nullptr, new_area, UNDO_REDO::NEWITEM ); aNewZonesList->PushItem( picker ); }
return new_area; }
bool BOARD::GetBoardPolygonOutlines( SHAPE_POLY_SET& aOutlines, OUTLINE_ERROR_HANDLER* aErrorHandler, bool aAllowUseArcsInPolygons, bool aIncludeNPTHAsOutlines ) { // max dist from one endPt to next startPt: use the current value
int chainingEpsilon = GetOutlinesChainingEpsilon();
bool success = BuildBoardPolygonOutlines( this, aOutlines, GetDesignSettings().m_MaxError, chainingEpsilon, aErrorHandler, aAllowUseArcsInPolygons );
// Now add NPTH oval holes as holes in outlines if required
if( aIncludeNPTHAsOutlines ) { for( FOOTPRINT* fp : Footprints() ) { for( PAD* pad : fp->Pads() ) { if( pad->GetAttribute () != PAD_ATTRIB::NPTH ) continue;
SHAPE_POLY_SET hole; pad->TransformHoleToPolygon( hole, 0, pad->GetMaxError(), ERROR_INSIDE );
if( hole.OutlineCount() > 0 ) // can be not the case for malformed NPTH holes
{ // Add this pad hole to the main outline
// But we can have more than one main outline (i.e. more than one board), so
// search the right main outline i.e. the outline that contains the pad hole
SHAPE_LINE_CHAIN& pad_hole = hole.Outline( 0 ); const VECTOR2I holePt = pad_hole.CPoint( 0 );
for( int jj = 0; jj < aOutlines.OutlineCount(); ++jj ) { if( aOutlines.Outline( jj ).PointInside( holePt ) ) { aOutlines.AddHole( pad_hole, jj ); break; } } } } } }
// Make polygon strictly simple to avoid issues (especially in 3D viewer)
aOutlines.Simplify();
return success; }
EMBEDDED_FILES* BOARD::GetEmbeddedFiles() { if( m_embeddedFilesDelegate ) return static_cast<EMBEDDED_FILES*>( m_embeddedFilesDelegate );
return static_cast<EMBEDDED_FILES*>( this ); }
const EMBEDDED_FILES* BOARD::GetEmbeddedFiles() const { if( m_embeddedFilesDelegate ) return static_cast<const EMBEDDED_FILES*>( m_embeddedFilesDelegate );
return static_cast<const EMBEDDED_FILES*>( this ); }
std::set<KIFONT::OUTLINE_FONT*> BOARD::GetFonts() const { using PERMISSION = KIFONT::OUTLINE_FONT::EMBEDDING_PERMISSION;
std::set<KIFONT::OUTLINE_FONT*> fonts;
for( BOARD_ITEM* item : Drawings() ) { if( EDA_TEXT* text = dynamic_cast<EDA_TEXT*>( item ) ) { KIFONT::FONT* font = text->GetFont();
if( font && font->IsOutline() ) { KIFONT::OUTLINE_FONT* outlineFont = static_cast<KIFONT::OUTLINE_FONT*>( font ); PERMISSION permission = outlineFont->GetEmbeddingPermission();
if( permission == PERMISSION::EDITABLE || permission == PERMISSION::INSTALLABLE ) fonts.insert( outlineFont ); } } }
return fonts; }
void BOARD::EmbedFonts() { for( KIFONT::OUTLINE_FONT* font : GetFonts() ) { EMBEDDED_FILES::EMBEDDED_FILE* file = GetEmbeddedFiles()->AddFile( font->GetFileName(), false ); file->type = EMBEDDED_FILES::EMBEDDED_FILE::FILE_TYPE::FONT; } }
const std::vector<PAD*> BOARD::GetPads() const { std::vector<PAD*> allPads;
for( FOOTPRINT* footprint : Footprints() ) { for( PAD* pad : footprint->Pads() ) allPads.push_back( pad ); }
return allPads; }
const std::vector<BOARD_CONNECTED_ITEM*> BOARD::AllConnectedItems() { std::vector<BOARD_CONNECTED_ITEM*> items;
for( PCB_TRACK* track : Tracks() ) items.push_back( track );
for( FOOTPRINT* footprint : Footprints() ) { for( PAD* pad : footprint->Pads() ) items.push_back( pad ); }
for( ZONE* zone : Zones() ) items.push_back( zone );
for( BOARD_ITEM* item : Drawings() ) { if( BOARD_CONNECTED_ITEM* bci = dynamic_cast<BOARD_CONNECTED_ITEM*>( item ) ) items.push_back( bci ); }
return items; }
void BOARD::MapNets( BOARD* aDestBoard ) { for( BOARD_CONNECTED_ITEM* item : AllConnectedItems() ) { NETINFO_ITEM* netInfo = aDestBoard->FindNet( item->GetNetname() );
if( netInfo ) item->SetNet( netInfo ); else { NETINFO_ITEM* newNet = new NETINFO_ITEM( aDestBoard, item->GetNetname() ); aDestBoard->Add( newNet ); item->SetNet( newNet );
} } }
void BOARD::SanitizeNetcodes() { for ( BOARD_CONNECTED_ITEM* item : AllConnectedItems() ) { if( FindNet( item->GetNetCode() ) == nullptr ) item->SetNetCode( NETINFO_LIST::ORPHANED ); } }
void BOARD::AddListener( BOARD_LISTENER* aListener ) { if( !alg::contains( m_listeners, aListener ) ) m_listeners.push_back( aListener ); }
void BOARD::RemoveListener( BOARD_LISTENER* aListener ) { auto i = std::find( m_listeners.begin(), m_listeners.end(), aListener );
if( i != m_listeners.end() ) { std::iter_swap( i, m_listeners.end() - 1 ); m_listeners.pop_back(); } }
void BOARD::RemoveAllListeners() { m_listeners.clear(); }
void BOARD::OnItemChanged( BOARD_ITEM* aItem ) { InvokeListeners( &BOARD_LISTENER::OnBoardItemChanged, *this, aItem ); }
void BOARD::OnItemsChanged( std::vector<BOARD_ITEM*>& aItems ) { InvokeListeners( &BOARD_LISTENER::OnBoardItemsChanged, *this, aItems ); }
void BOARD::OnItemsCompositeUpdate( std::vector<BOARD_ITEM*>& aAddedItems, std::vector<BOARD_ITEM*>& aRemovedItems, std::vector<BOARD_ITEM*>& aChangedItems ) { InvokeListeners( &BOARD_LISTENER::OnBoardCompositeUpdate, *this, aAddedItems, aRemovedItems, aChangedItems ); }
void BOARD::OnRatsnestChanged() { InvokeListeners( &BOARD_LISTENER::OnBoardRatsnestChanged, *this ); }
void BOARD::ResetNetHighLight() { m_highLight.Clear(); m_highLightPrevious.Clear();
InvokeListeners( &BOARD_LISTENER::OnBoardHighlightNetChanged, *this ); }
void BOARD::SetHighLightNet( int aNetCode, bool aMulti ) { if( !m_highLight.m_netCodes.count( aNetCode ) ) { if( !aMulti ) m_highLight.m_netCodes.clear();
m_highLight.m_netCodes.insert( aNetCode ); InvokeListeners( &BOARD_LISTENER::OnBoardHighlightNetChanged, *this ); } }
void BOARD::HighLightON( bool aValue ) { if( m_highLight.m_highLightOn != aValue ) { m_highLight.m_highLightOn = aValue; InvokeListeners( &BOARD_LISTENER::OnBoardHighlightNetChanged, *this ); } }
wxString BOARD::GroupsSanityCheck( bool repair ) { if( repair ) { while( GroupsSanityCheckInternal( repair ) != wxEmptyString ) {};
return wxEmptyString; } return GroupsSanityCheckInternal( repair ); }
wxString BOARD::GroupsSanityCheckInternal( bool repair ) { // Cycle detection
//
// Each group has at most one parent group.
// So we start at group 0 and traverse the parent chain, marking groups seen along the way.
// If we ever see a group that we've already marked, that's a cycle.
// If we reach the end of the chain, we know all groups in that chain are not part of any cycle.
//
// Algorithm below is linear in the # of groups because each group is visited only once.
// There may be extra time taken due to the container access calls and iterators.
//
// Groups we know are cycle free
std::unordered_set<EDA_GROUP*> knownCycleFreeGroups; // Groups in the current chain we're exploring.
std::unordered_set<EDA_GROUP*> currentChainGroups; // Groups we haven't checked yet.
std::unordered_set<EDA_GROUP*> toCheckGroups;
// Initialize set of groups and generators to check that could participate in a cycle.
for( PCB_GROUP* group : Groups() ) toCheckGroups.insert( group );
for( PCB_GENERATOR* gen : Generators() ) toCheckGroups.insert( gen );
while( !toCheckGroups.empty() ) { currentChainGroups.clear(); EDA_GROUP* group = *toCheckGroups.begin();
while( true ) { if( currentChainGroups.find( group ) != currentChainGroups.end() ) { if( repair ) Remove( static_cast<BOARD_ITEM*>( group->AsEdaItem() ) );
return "Cycle detected in group membership"; } else if( knownCycleFreeGroups.find( group ) != knownCycleFreeGroups.end() ) { // Parent is a group we know does not lead to a cycle
break; }
currentChainGroups.insert( group ); // We haven't visited currIdx yet, so it must be in toCheckGroups
toCheckGroups.erase( group );
group = group->AsEdaItem()->GetParentGroup();
if( !group ) { // end of chain and no cycles found in this chain
break; } }
// No cycles found in chain, so add it to set of groups we know don't participate
// in a cycle.
knownCycleFreeGroups.insert( currentChainGroups.begin(), currentChainGroups.end() ); }
// Success
return ""; }
bool BOARD::cmp_items::operator() ( const BOARD_ITEM* a, const BOARD_ITEM* b ) const { if( a->Type() != b->Type() ) return a->Type() < b->Type();
if( a->GetLayer() != b->GetLayer() ) return a->GetLayer() < b->GetLayer();
if( a->GetPosition().x != b->GetPosition().x ) return a->GetPosition().x < b->GetPosition().x;
if( a->GetPosition().y != b->GetPosition().y ) return a->GetPosition().y < b->GetPosition().y;
if( a->m_Uuid != b->m_Uuid ) // shopuld be always the case foer valid boards
return a->m_Uuid < b->m_Uuid;
return a < b; }
bool BOARD::cmp_drawings::operator()( const BOARD_ITEM* aFirst, const BOARD_ITEM* aSecond ) const { if( aFirst->Type() != aSecond->Type() ) return aFirst->Type() < aSecond->Type();
if( aFirst->GetLayer() != aSecond->GetLayer() ) return aFirst->GetLayer() < aSecond->GetLayer();
if( aFirst->Type() == PCB_SHAPE_T ) { const PCB_SHAPE* shape = static_cast<const PCB_SHAPE*>( aFirst ); const PCB_SHAPE* other = static_cast<const PCB_SHAPE*>( aSecond ); return shape->Compare( other ); } else if( aFirst->Type() == PCB_TEXT_T || aFirst->Type() == PCB_FIELD_T ) { const PCB_TEXT* text = static_cast<const PCB_TEXT*>( aFirst ); const PCB_TEXT* other = static_cast<const PCB_TEXT*>( aSecond ); return text->Compare( other ); } else if( aFirst->Type() == PCB_TEXTBOX_T ) { const PCB_TEXTBOX* textbox = static_cast<const PCB_TEXTBOX*>( aFirst ); const PCB_TEXTBOX* other = static_cast<const PCB_TEXTBOX*>( aSecond );
return textbox->PCB_SHAPE::Compare( other ) && textbox->EDA_TEXT::Compare( other ); } else if( aFirst->Type() == PCB_TABLE_T ) { const PCB_TABLE* table = static_cast<const PCB_TABLE*>( aFirst ); const PCB_TABLE* other = static_cast<const PCB_TABLE*>( aSecond );
return PCB_TABLE::Compare( table, other ); }
return aFirst->m_Uuid < aSecond->m_Uuid; }
void BOARD::ConvertBrdLayerToPolygonalContours( PCB_LAYER_ID aLayer, SHAPE_POLY_SET& aOutlines ) const { int maxError = GetDesignSettings().m_MaxError;
// convert tracks and vias:
for( const PCB_TRACK* track : m_tracks ) { if( !track->IsOnLayer( aLayer ) ) continue;
track->TransformShapeToPolygon( aOutlines, aLayer, 0, maxError, ERROR_INSIDE ); }
// convert pads and other copper items in footprints
for( const FOOTPRINT* footprint : m_footprints ) { footprint->TransformPadsToPolySet( aOutlines, aLayer, 0, maxError, ERROR_INSIDE );
footprint->TransformFPShapesToPolySet( aOutlines, aLayer, 0, maxError, ERROR_INSIDE, true, /* include text */ true, /* include shapes */ false /* include private items */ );
for( const ZONE* zone : footprint->Zones() ) { if( zone->GetLayerSet().test( aLayer ) ) zone->TransformSolidAreasShapesToPolygon( aLayer, aOutlines ); } }
// convert copper zones
for( const ZONE* zone : Zones() ) { if( zone->GetLayerSet().test( aLayer ) ) zone->TransformSolidAreasShapesToPolygon( aLayer, aOutlines ); }
// convert graphic items on copper layers (texts)
for( const BOARD_ITEM* item : m_drawings ) { if( !item->IsOnLayer( aLayer ) ) continue;
switch( item->Type() ) { case PCB_SHAPE_T: { const PCB_SHAPE* shape = static_cast<const PCB_SHAPE*>( item ); shape->TransformShapeToPolygon( aOutlines, aLayer, 0, maxError, ERROR_INSIDE ); break; }
case PCB_FIELD_T: case PCB_TEXT_T: { const PCB_TEXT* text = static_cast<const PCB_TEXT*>( item ); text->TransformTextToPolySet( aOutlines, 0, maxError, ERROR_INSIDE ); break; }
case PCB_TEXTBOX_T: { const PCB_TEXTBOX* textbox = static_cast<const PCB_TEXTBOX*>( item );
// border
textbox->PCB_SHAPE::TransformShapeToPolygon( aOutlines, aLayer, 0, maxError, ERROR_INSIDE ); // text
textbox->TransformTextToPolySet( aOutlines, 0, maxError, ERROR_INSIDE ); break; }
case PCB_TABLE_T: { const PCB_TABLE* table = static_cast<const PCB_TABLE*>( item );
table->TransformShapeToPolygon( aOutlines, aLayer, 0, maxError, ERROR_INSIDE ); break; }
case PCB_DIM_ALIGNED_T: case PCB_DIM_CENTER_T: case PCB_DIM_RADIAL_T: case PCB_DIM_ORTHOGONAL_T: case PCB_DIM_LEADER_T: { const PCB_DIMENSION_BASE* dim = static_cast<const PCB_DIMENSION_BASE*>( item );
dim->TransformShapeToPolygon( aOutlines, aLayer, 0, maxError, ERROR_INSIDE ); dim->TransformTextToPolySet( aOutlines, 0, maxError, ERROR_INSIDE ); break; }
default: break; } } }
const BOARD_ITEM_SET BOARD::GetItemSet() { BOARD_ITEM_SET items;
std::copy( m_tracks.begin(), m_tracks.end(), std::inserter( items, items.end() ) ); std::copy( m_zones.begin(), m_zones.end(), std::inserter( items, items.end() ) ); std::copy( m_footprints.begin(), m_footprints.end(), std::inserter( items, items.end() ) ); std::copy( m_drawings.begin(), m_drawings.end(), std::inserter( items, items.end() ) ); std::copy( m_markers.begin(), m_markers.end(), std::inserter( items, items.end() ) ); std::copy( m_groups.begin(), m_groups.end(), std::inserter( items, items.end() ) );
return items; }
bool BOARD::operator==( const BOARD_ITEM& aItem ) const { if( aItem.Type() != Type() ) return false;
const BOARD& other = static_cast<const BOARD&>( aItem );
if( *m_designSettings != *other.m_designSettings ) return false;
if( m_NetInfo.GetNetCount() != other.m_NetInfo.GetNetCount() ) return false;
const NETNAMES_MAP& thisNetNames = m_NetInfo.NetsByName(); const NETNAMES_MAP& otherNetNames = other.m_NetInfo.NetsByName();
for( auto it1 = thisNetNames.begin(), it2 = otherNetNames.begin(); it1 != thisNetNames.end() && it2 != otherNetNames.end(); ++it1, ++it2 ) { // We only compare the names in order here, not the index values
// as the index values are auto-generated and the names are not.
if( it1->first != it2->first ) return false; }
if( m_properties.size() != other.m_properties.size() ) return false;
for( auto it1 = m_properties.begin(), it2 = other.m_properties.begin(); it1 != m_properties.end() && it2 != other.m_properties.end(); ++it1, ++it2 ) { if( *it1 != *it2 ) return false; }
if( m_paper.GetCustomHeightMils() != other.m_paper.GetCustomHeightMils() ) return false;
if( m_paper.GetCustomWidthMils() != other.m_paper.GetCustomWidthMils() ) return false;
if( m_paper.GetSizeMils() != other.m_paper.GetSizeMils() ) return false;
if( m_paper.GetPaperId() != other.m_paper.GetPaperId() ) return false;
if( m_paper.GetWxOrientation() != other.m_paper.GetWxOrientation() ) return false;
for( int ii = 0; !m_titles.GetComment( ii ).empty(); ++ii ) { if( m_titles.GetComment( ii ) != other.m_titles.GetComment( ii ) ) return false; }
wxArrayString ourVars; m_titles.GetContextualTextVars( &ourVars );
wxArrayString otherVars; other.m_titles.GetContextualTextVars( &otherVars );
if( ourVars != otherVars ) return false;
return true; }
void BOARD::UpdateBoardOutline() { m_boardOutline->GetOutline().RemoveAllContours();
bool has_outline = GetBoardPolygonOutlines( m_boardOutline->GetOutline() );
if( has_outline ) m_boardOutline->GetOutline().Fracture(); }
|