 Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago  Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago  Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago  Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago  Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago  Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago  Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago  Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago  Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago  Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago  Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago  Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago  Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago  Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago  Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago  Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago  Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago  Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago  Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago  Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago  Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago  Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago  Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago  Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago  Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago  Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago  Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago  Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago  Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago  Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago  Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago  Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago  Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago  Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago  Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago  Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago  Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago  Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago  Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago  Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago  Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago  Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago  Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago  Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago  Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago  Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago  Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago  Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago  Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago  Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago  Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago  Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago  Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago |
|
/*
* This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2013-2019 CERN * Copyright (C) 2021-2024 KiCad Developers, see AUTHORS.txt for contributors. * * @author Tomasz Wlostowski <tomasz.wlostowski@cern.ch> * @author Maciej Suminski <maciej.suminski@cern.ch> * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */
#include <board.h>
#include <board_design_settings.h>
#include <pcb_track.h>
#include <pcb_group.h>
#include <footprint.h>
#include <pad.h>
#include <pcb_shape.h>
#include <string_utils.h>
#include <zone.h>
#include <pcb_reference_image.h>
#include <pcb_text.h>
#include <pcb_textbox.h>
#include <pcb_table.h>
#include <pcb_tablecell.h>
#include <pcb_marker.h>
#include <pcb_dimension.h>
#include <pcb_target.h>
#include <layer_ids.h>
#include <pcb_painter.h>
#include <pcb_display_options.h>
#include <project/net_settings.h>
#include <settings/color_settings.h>
#include <settings/common_settings.h>
#include <settings/settings_manager.h>
#include <settings/cvpcb_settings.h>
#include <pcbnew_settings.h>
#include <footprint_editor_settings.h>
#include <convert_basic_shapes_to_polygon.h>
#include <gal/graphics_abstraction_layer.h>
#include <callback_gal.h>
#include <geometry/geometry_utils.h>
#include <geometry/shape_line_chain.h>
#include <geometry/shape_rect.h>
#include <geometry/shape_segment.h>
#include <geometry/shape_simple.h>
#include <geometry/shape_circle.h>
#include <bezier_curves.h>
#include <kiface_base.h>
#include <gr_text.h>
#include <pgm_base.h>
using namespace KIGFX;
PCBNEW_SETTINGS* pcbconfig() { return dynamic_cast<PCBNEW_SETTINGS*>( Kiface().KifaceSettings() ); }
// Helpers for display options existing in Cvpcb and Pcbnew
// Note, when running Cvpcb, pcbconfig() returns nullptr and viewer_settings()
// returns the viewer options existing to Cvpcb and Pcbnew
PCB_VIEWERS_SETTINGS_BASE* PCB_PAINTER::viewer_settings() { switch( m_frameType ) { case FRAME_PCB_EDITOR: case FRAME_PCB_DISPLAY3D: default: return Pgm().GetSettingsManager().GetAppSettings<PCBNEW_SETTINGS>();
case FRAME_FOOTPRINT_EDITOR: case FRAME_FOOTPRINT_WIZARD: return Pgm().GetSettingsManager().GetAppSettings<FOOTPRINT_EDITOR_SETTINGS>();
case FRAME_FOOTPRINT_VIEWER: case FRAME_FOOTPRINT_CHOOSER: case FRAME_FOOTPRINT_PREVIEW: case FRAME_CVPCB: case FRAME_CVPCB_DISPLAY: return Pgm().GetSettingsManager().GetAppSettings<CVPCB_SETTINGS>(); } }
PCB_RENDER_SETTINGS::PCB_RENDER_SETTINGS() { m_backgroundColor = COLOR4D( 0.0, 0.0, 0.0, 1.0 ); m_ZoneDisplayMode = ZONE_DISPLAY_MODE::SHOW_FILLED; m_netColorMode = NET_COLOR_MODE::RATSNEST; m_ContrastModeDisplay = HIGH_CONTRAST_MODE::NORMAL;
m_trackOpacity = 1.0; m_viaOpacity = 1.0; m_padOpacity = 1.0; m_zoneOpacity = 1.0; m_imageOpacity = 1.0;
m_ForcePadSketchModeOn = false;
m_PadEditModePad = nullptr;
SetDashLengthRatio( 12 ); // From ISO 128-2
SetGapLengthRatio( 3 ); // From ISO 128-2
m_ForceShowFieldsWhenFPSelected = true;
update(); }
void PCB_RENDER_SETTINGS::LoadColors( const COLOR_SETTINGS* aSettings ) { SetBackgroundColor( aSettings->GetColor( LAYER_PCB_BACKGROUND ) );
// Init board layers colors:
for( int i = 0; i < PCB_LAYER_ID_COUNT; i++ ) { m_layerColors[i] = aSettings->GetColor( i );
// Guard: if the alpha channel is too small, the layer is not visible.
if( m_layerColors[i].a < 0.2 ) m_layerColors[i].a = 0.2; }
// Init specific graphic layers colors:
for( int i = GAL_LAYER_ID_START; i < GAL_LAYER_ID_END; i++ ) m_layerColors[i] = aSettings->GetColor( i );
// Colors for layers that aren't theme-able
m_layerColors[LAYER_PAD_PLATEDHOLES] = aSettings->GetColor( LAYER_PCB_BACKGROUND ); m_layerColors[LAYER_VIA_NETNAMES] = COLOR4D( 0.2, 0.2, 0.2, 0.9 ); m_layerColors[LAYER_PAD_NETNAMES] = COLOR4D( 1.0, 1.0, 1.0, 0.9 ); m_layerColors[LAYER_PADS_SMD_FR] = aSettings->GetColor( F_Cu ); m_layerColors[LAYER_PADS_SMD_BK] = aSettings->GetColor( B_Cu ); m_layerColors[LAYER_PAD_FR_NETNAMES] = COLOR4D( 1.0, 1.0, 1.0, 0.9 ); m_layerColors[LAYER_PAD_BK_NETNAMES] = COLOR4D( 1.0, 1.0, 1.0, 0.9 );
// Netnames for copper layers
for( LSEQ cu = LSET::AllCuMask().CuStack(); cu; ++cu ) { const COLOR4D lightLabel( 1.0, 1.0, 1.0, 0.7 ); const COLOR4D darkLabel = lightLabel.Inverted(); PCB_LAYER_ID layer = *cu;
if( m_layerColors[layer].GetBrightness() > 0.5 ) m_layerColors[GetNetnameLayer( layer )] = darkLabel; else m_layerColors[GetNetnameLayer( layer )] = lightLabel; }
if( PgmOrNull() ) // can be null if used without project (i.e. from python script)
m_hiContrastFactor = 1.0f - Pgm().GetCommonSettings()->m_Appearance.hicontrast_dimming_factor; else m_hiContrastFactor = 1.0f - 0.8f; // default value
update(); }
void PCB_RENDER_SETTINGS::LoadDisplayOptions( const PCB_DISPLAY_OPTIONS& aOptions ) { m_hiContrastEnabled = aOptions.m_ContrastModeDisplay != HIGH_CONTRAST_MODE::NORMAL; m_ZoneDisplayMode = aOptions.m_ZoneDisplayMode; m_ContrastModeDisplay = aOptions.m_ContrastModeDisplay; m_netColorMode = aOptions.m_NetColorMode;
m_trackOpacity = aOptions.m_TrackOpacity; m_viaOpacity = aOptions.m_ViaOpacity; m_padOpacity = aOptions.m_PadOpacity; m_zoneOpacity = aOptions.m_ZoneOpacity; m_imageOpacity = aOptions.m_ImageOpacity; }
COLOR4D PCB_RENDER_SETTINGS::GetColor( const VIEW_ITEM* aItem, int aLayer ) const { const BOARD_ITEM* item = dynamic_cast<const BOARD_ITEM*>( aItem ); const BOARD_CONNECTED_ITEM* conItem = dynamic_cast<const BOARD_CONNECTED_ITEM*>( aItem ); int netCode = -1; int originalLayer = aLayer;
// Some graphic objects are BOARD_CONNECTED_ITEM, but they are seen here as
// actually board connected objects only if on a copper layer
if( conItem && !conItem->IsOnCopperLayer() ) conItem = nullptr;
// Marker shadows
if( aLayer == LAYER_MARKER_SHADOWS ) return m_backgroundColor.WithAlpha( 0.6 );
if( IsHoleLayer( aLayer ) && m_isPrinting ) { // Careful that we don't end up with the same colour for the annular ring and the hole
// when printing in B&W.
const PAD* pad = dynamic_cast<const PAD*>( item ); const PCB_VIA* via = dynamic_cast<const PCB_VIA*>( item ); int holeLayer = aLayer; int annularRingLayer = UNDEFINED_LAYER;
if( pad && pad->GetAttribute() == PAD_ATTRIB::PTH ) annularRingLayer = LAYER_PADS_TH; else if( via && via->GetViaType() == VIATYPE::MICROVIA ) annularRingLayer = LAYER_VIA_MICROVIA; else if( via && via->GetViaType() == VIATYPE::BLIND_BURIED ) annularRingLayer = LAYER_VIA_BBLIND; else if( via && via->GetViaType() == VIATYPE::THROUGH ) annularRingLayer = LAYER_VIA_THROUGH;
if( annularRingLayer != UNDEFINED_LAYER && m_layerColors[ holeLayer ] == m_layerColors[ annularRingLayer ] ) { aLayer = LAYER_PCB_BACKGROUND; } }
// Zones should pull from the copper layer
if( item && item->Type() == PCB_ZONE_T ) { if( IsZoneFillLayer( aLayer ) ) aLayer = aLayer - LAYER_ZONE_START; }
// Hole walls should pull from the copper layer
if( aLayer == LAYER_PAD_HOLEWALLS ) aLayer = LAYER_PADS_TH; else if( aLayer == LAYER_VIA_HOLEWALLS ) aLayer = LAYER_VIA_THROUGH;
// Show via mask layers if appropriate
if( aLayer == LAYER_VIA_THROUGH && !m_isPrinting ) { if( item && item->GetBoard() ) { LSET visibleLayers = item->GetBoard()->GetVisibleLayers() & item->GetBoard()->GetEnabledLayers() & item->GetLayerSet();
if( GetActiveLayer() == F_Mask && visibleLayers.test( F_Mask ) ) aLayer = F_Mask; else if( GetActiveLayer() == B_Mask && visibleLayers.test( B_Mask ) ) aLayer = B_Mask; else if( ( visibleLayers & LSET::AllCuMask() ).none() ) { if( visibleLayers.any() ) aLayer = visibleLayers.Seq().back(); } } }
// Normal path: get the layer base color
COLOR4D color = m_layerColors[aLayer];
if( !item ) return m_layerColors[aLayer];
// Selection disambiguation
if( item->IsBrightened() ) return color.Brightened( m_selectFactor ).WithAlpha( 0.8 );
// Normal selection
if( item->IsSelected() ) color = m_layerColorsSel[aLayer];
// Try to obtain the netcode for the item
if( conItem ) netCode = conItem->GetNetCode();
bool highlighted = m_highlightEnabled && m_highlightNetcodes.count( netCode ); bool selected = item->IsSelected();
// Apply net color overrides
if( conItem && m_netColorMode == NET_COLOR_MODE::ALL && IsNetCopperLayer( aLayer ) ) { COLOR4D netColor = COLOR4D::UNSPECIFIED;
auto ii = m_netColors.find( netCode );
if( ii != m_netColors.end() ) netColor = ii->second;
if( netColor == COLOR4D::UNSPECIFIED ) { auto jj = m_netclassColors.find( conItem->GetNetClassName() );
if( jj != m_netclassColors.end() ) netColor = jj->second; }
if( netColor == COLOR4D::UNSPECIFIED ) netColor = color;
if( selected ) { // Selection brightening overrides highlighting
netColor.Brighten( m_selectFactor ); } else if( m_highlightEnabled ) { // Highlight brightens objects on all layers and darkens everything else for contrast
if( highlighted ) netColor.Brighten( m_highlightFactor ); else netColor.Darken( 1.0 - m_highlightFactor ); }
color = netColor; } else if( !selected && m_highlightEnabled ) { // Single net highlight mode
color = m_highlightNetcodes.count( netCode ) ? m_layerColorsHi[aLayer] : m_layerColorsDark[aLayer]; }
// Apply high-contrast dimming
if( m_hiContrastEnabled && m_highContrastLayers.size() && !highlighted && !selected ) { PCB_LAYER_ID primary = GetPrimaryHighContrastLayer(); bool isActive = m_highContrastLayers.count( aLayer ); bool hide = false;
switch( originalLayer ) { case LAYER_PADS_SMD_FR: case LAYER_PADS_SMD_BK: case LAYER_PADS_TH: { const PAD* pad = static_cast<const PAD*>( item );
if( pad->IsOnLayer( primary ) && !pad->FlashLayer( primary ) ) { isActive = false;
if( IsCopperLayer( primary ) ) hide = true; }
if( m_PadEditModePad && pad != m_PadEditModePad ) isActive = false;
break; }
case LAYER_VIA_BBLIND: case LAYER_VIA_MICROVIA: { const PCB_VIA* via = static_cast<const PCB_VIA*>( item );
// Target graphic is active if the via crosses the primary layer
if( via->GetLayerSet().test( primary ) == 0 ) { isActive = false; hide = true; }
break; }
case LAYER_VIA_THROUGH: { const PCB_VIA* via = static_cast<const PCB_VIA*>( item );
if( !via->FlashLayer( primary ) ) { isActive = false;
if( IsCopperLayer( primary ) ) hide = true; }
break; }
case LAYER_PAD_PLATEDHOLES: case LAYER_PAD_HOLEWALLS: case LAYER_NON_PLATEDHOLES: // Pad holes are active is any physical layer is active
if( LSET::PhysicalLayersMask().test( primary ) == 0 ) isActive = false;
break;
case LAYER_VIA_HOLES: case LAYER_VIA_HOLEWALLS: { const PCB_VIA* via = static_cast<const PCB_VIA*>( item );
if( via->GetViaType() == VIATYPE::BLIND_BURIED || via->GetViaType() == VIATYPE::MICROVIA ) { // A blind or micro via's hole is active if it crosses the primary layer
if( via->GetLayerSet().test( primary ) == 0 ) isActive = false; } else { // A through via's hole is active if any physical layer is active
if( LSET::PhysicalLayersMask().test( primary ) == 0 ) isActive = false; }
break; }
case LAYER_DRC_ERROR: case LAYER_DRC_WARNING: case LAYER_DRC_EXCLUSION: isActive = true; break;
default: break; }
if( !isActive ) { if( m_ContrastModeDisplay == HIGH_CONTRAST_MODE::HIDDEN || IsNetnameLayer( aLayer ) || hide ) { color = COLOR4D::CLEAR; } else { color = color.Mix( m_layerColors[LAYER_PCB_BACKGROUND], m_hiContrastFactor );
// Reference images can't have their color mixed so just reduce the opacity a bit
// so they show through less
if( item->Type() == PCB_REFERENCE_IMAGE_T ) color.a *= m_hiContrastFactor; } } } else if( originalLayer == LAYER_VIA_BBLIND || originalLayer == LAYER_VIA_MICROVIA ) { const PCB_VIA* via = static_cast<const PCB_VIA*>( item ); const BOARD* board = via->GetBoard(); LSET visibleLayers = board->GetVisibleLayers() & board->GetEnabledLayers();
// Target graphic is visible if the via crosses a visible layer
if( ( via->GetLayerSet() & visibleLayers ).none() ) color = COLOR4D::CLEAR; }
// Apply per-type opacity overrides
if( item->Type() == PCB_TRACE_T || item->Type() == PCB_ARC_T ) color.a *= m_trackOpacity; else if( item->Type() == PCB_VIA_T ) color.a *= m_viaOpacity; else if( item->Type() == PCB_PAD_T ) color.a *= m_padOpacity; else if( item->Type() == PCB_ZONE_T && static_cast<const ZONE*>( item )->IsTeardropArea() ) color.a *= m_trackOpacity; else if( item->Type() == PCB_ZONE_T ) color.a *= m_zoneOpacity; else if( item->Type() == PCB_REFERENCE_IMAGE_T ) color.a *= m_imageOpacity; else if( item->Type() == PCB_SHAPE_T && item->IsOnCopperLayer() ) color.a *= m_trackOpacity;
if( item->GetForcedTransparency() > 0.0 ) color = color.WithAlpha( color.a * ( 1.0 - item->GetForcedTransparency() ) );
// No special modifiers enabled
return color; }
bool PCB_RENDER_SETTINGS::GetShowPageLimits() const { return pcbconfig() && pcbconfig()->m_ShowPageLimits; }
PCB_PAINTER::PCB_PAINTER( GAL* aGal, FRAME_T aFrameType ) : PAINTER( aGal ), m_frameType( aFrameType ), m_maxError( ARC_HIGH_DEF ), m_holePlatingThickness( 0 ), m_lockedShadowMargin( 0 ) { }
int PCB_PAINTER::getLineThickness( int aActualThickness ) const { // if items have 0 thickness, draw them with the outline
// width, otherwise respect the set value (which, no matter
// how small will produce something)
if( aActualThickness == 0 ) return m_pcbSettings.m_outlineWidth;
return aActualThickness; }
int PCB_PAINTER::getDrillShape( const PAD* aPad ) const { return aPad->GetDrillShape(); }
SHAPE_SEGMENT PCB_PAINTER::getPadHoleShape( const PAD* aPad ) const { SHAPE_SEGMENT segm = *aPad->GetEffectiveHoleShape().get(); return segm; }
int PCB_PAINTER::getViaDrillSize( const PCB_VIA* aVia ) const { return aVia->GetDrillValue(); }
bool PCB_PAINTER::Draw( const VIEW_ITEM* aItem, int aLayer ) { const BOARD_ITEM* item = dynamic_cast<const BOARD_ITEM*>( aItem );
if( !item ) return false;
if( const BOARD* board = item->GetBoard() ) { BOARD_DESIGN_SETTINGS& bds = board->GetDesignSettings(); m_maxError = bds.m_MaxError; m_holePlatingThickness = bds.GetHolePlatingThickness(); m_lockedShadowMargin = bds.GetLineThickness( F_SilkS ) * 4;
if( item->GetParentFootprint() && !board->IsFootprintHolder() ) { FOOTPRINT* parentFP = item->GetParentFootprint();
// Never draw footprint reference images on board
if( item->Type() == PCB_REFERENCE_IMAGE_T ) { return false; } else if( item->GetLayerSet().count() > 1 ) { // For multi-layer objects, exclude only those layers that are private
if( IsPcbLayer( aLayer ) && parentFP->GetPrivateLayers().test( aLayer ) ) return false; } else if( item->GetLayerSet().count() == 1 ) { // For single-layer objects, exclude all layers including ancillary layers
// such as holes, netnames, etc.
PCB_LAYER_ID singleLayer = item->GetLayerSet().Seq()[0];
if( parentFP->GetPrivateLayers().test( singleLayer ) ) return false; } } } else { m_maxError = ARC_HIGH_DEF; m_holePlatingThickness = 0; }
// the "cast" applied in here clarifies which overloaded draw() is called
switch( item->Type() ) { case PCB_TRACE_T: draw( static_cast<const PCB_TRACK*>( item ), aLayer ); break;
case PCB_ARC_T: draw( static_cast<const PCB_ARC*>( item ), aLayer ); break;
case PCB_VIA_T: draw( static_cast<const PCB_VIA*>( item ), aLayer ); break;
case PCB_PAD_T: draw( static_cast<const PAD*>( item ), aLayer ); break;
case PCB_SHAPE_T: draw( static_cast<const PCB_SHAPE*>( item ), aLayer ); break;
case PCB_REFERENCE_IMAGE_T: draw( static_cast<const PCB_REFERENCE_IMAGE*>( item ), aLayer ); break;
case PCB_FIELD_T: case PCB_TEXT_T: draw( static_cast<const PCB_TEXT*>( item ), aLayer ); break;
case PCB_TEXTBOX_T: draw( static_cast<const PCB_TEXTBOX*>( item ), aLayer ); break;
case PCB_TABLE_T: draw( static_cast<const PCB_TABLE*>( item ), aLayer ); break;
case PCB_FOOTPRINT_T: draw( static_cast<const FOOTPRINT*>( item ), aLayer ); break;
case PCB_GROUP_T: draw( static_cast<const PCB_GROUP*>( item ), aLayer ); break;
case PCB_ZONE_T: draw( static_cast<const ZONE*>( item ), aLayer ); break;
case PCB_DIM_ALIGNED_T: case PCB_DIM_CENTER_T: case PCB_DIM_RADIAL_T: case PCB_DIM_ORTHOGONAL_T: case PCB_DIM_LEADER_T: draw( static_cast<const PCB_DIMENSION_BASE*>( item ), aLayer ); break;
case PCB_TARGET_T: draw( static_cast<const PCB_TARGET*>( item ) ); break;
case PCB_MARKER_T: draw( static_cast<const PCB_MARKER*>( item ), aLayer ); break;
default: // Painter does not know how to draw the object
return false; }
// Draw bounding boxes after drawing objects so they can be seen.
if( m_pcbSettings.GetDrawBoundingBoxes() ) { // Show bounding boxes of painted objects for debugging.
BOX2I box = item->GetBoundingBox();
m_gal->SetIsFill( false ); m_gal->SetIsStroke( true );
if( item->Type() == PCB_FOOTPRINT_T ) { m_gal->SetStrokeColor( item->IsSelected() ? COLOR4D( 1.0, 0.2, 0.2, 1 ) : COLOR4D( MAGENTA ) ); } else { m_gal->SetStrokeColor( item->IsSelected() ? COLOR4D( 1.0, 0.2, 0.2, 1 ) : COLOR4D( 0.4, 0.4, 0.4, 1 ) ); }
m_gal->SetLineWidth( 1 ); m_gal->DrawRectangle( box.GetOrigin(), box.GetEnd() );
if( item->Type() == PCB_FOOTPRINT_T ) { m_gal->SetStrokeColor( item->IsSelected() ? COLOR4D( 1.0, 0.2, 0.2, 1 ) : COLOR4D( CYAN ) );
const FOOTPRINT* fp = static_cast<const FOOTPRINT*>( item );
if( fp ) { const SHAPE_POLY_SET& convex = fp->GetBoundingHull();
m_gal->DrawPolyline( convex.COutline( 0 ) ); } } }
return true; }
void PCB_PAINTER::draw( const PCB_TRACK* aTrack, int aLayer ) { VECTOR2I start( aTrack->GetStart() ); VECTOR2I end( aTrack->GetEnd() ); int track_width = aTrack->GetWidth(); COLOR4D color = m_pcbSettings.GetColor( aTrack, aLayer );
if( IsNetnameLayer( aLayer ) ) { if( !pcbconfig() || pcbconfig()->m_Display.m_NetNames < 2 ) return;
if( aTrack->GetNetCode() <= NETINFO_LIST::UNCONNECTED ) return;
SHAPE_SEGMENT trackShape( { aTrack->GetStart(), aTrack->GetEnd() }, aTrack->GetWidth() ); renderNetNameForSegment( trackShape, color, aTrack->GetUnescapedShortNetname() ); return; } else if( IsCopperLayer( aLayer ) || aLayer == LAYER_LOCKED_ITEM_SHADOW ) { // Draw a regular track
bool outline_mode = pcbconfig() && !pcbconfig()->m_Display.m_DisplayPcbTrackFill && aLayer != LAYER_LOCKED_ITEM_SHADOW; m_gal->SetStrokeColor( color ); m_gal->SetFillColor( color ); m_gal->SetIsStroke( outline_mode ); m_gal->SetIsFill( not outline_mode ); m_gal->SetLineWidth( m_pcbSettings.m_outlineWidth );
if( aLayer == LAYER_LOCKED_ITEM_SHADOW ) track_width = track_width + m_lockedShadowMargin;
m_gal->DrawSegment( start, end, track_width ); }
// Clearance lines
if( pcbconfig() && pcbconfig()->m_Display.m_TrackClearance == SHOW_WITH_VIA_ALWAYS && !m_pcbSettings.m_isPrinting && aLayer != LAYER_LOCKED_ITEM_SHADOW ) { int clearance = aTrack->GetOwnClearance( m_pcbSettings.GetActiveLayer() );
m_gal->SetLineWidth( m_pcbSettings.m_outlineWidth ); m_gal->SetIsFill( false ); m_gal->SetIsStroke( true ); m_gal->SetStrokeColor( color ); m_gal->DrawSegment( start, end, track_width + clearance * 2 ); } }
void PCB_PAINTER::renderNetNameForSegment( const SHAPE_SEGMENT& aSeg, const COLOR4D& aColor, const wxString& aNetName ) const { // When drawing netnames, clip the track to the viewport
BOX2D viewport; VECTOR2D screenSize = m_gal->GetScreenPixelSize(); const MATRIX3x3D& matrix = m_gal->GetScreenWorldMatrix();
viewport.SetOrigin( VECTOR2D( matrix * VECTOR2D( 0, 0 ) ) ); viewport.SetEnd( VECTOR2D( matrix * screenSize ) ); viewport.Normalize();
BOX2I clipBox( viewport.GetOrigin(), viewport.GetSize() ); SEG visibleSeg( aSeg.GetSeg().A, aSeg.GetSeg().B );
ClipLine( &clipBox, visibleSeg.A.x, visibleSeg.A.y, visibleSeg.B.x, visibleSeg.B.y );
size_t num_char = aNetName.size();
// Check if the track is long enough to have a netname displayed
int seg_minlength = aSeg.GetWidth() * num_char;
if( visibleSeg.Length() < seg_minlength ) return;
double textSize = aSeg.GetWidth(); double penWidth = textSize / 12.0; EDA_ANGLE textOrientation; int num_names = 1;
VECTOR2I start = aSeg.GetSeg().A; VECTOR2I end = aSeg.GetSeg().B;
if( end.y == start.y ) // horizontal
{ textOrientation = ANGLE_HORIZONTAL; num_names = std::max( num_names, static_cast<int>( aSeg.GetSeg().Length() / viewport.GetWidth() ) ); } else if( end.x == start.x ) // vertical
{ textOrientation = ANGLE_VERTICAL; num_names = std::max( num_names, static_cast<int>( aSeg.GetSeg().Length() / viewport.GetHeight() ) ); } else { textOrientation = -EDA_ANGLE( visibleSeg.B - visibleSeg.A ); textOrientation.Normalize90();
double min_size = std::min( viewport.GetWidth(), viewport.GetHeight() ); num_names = std::max( num_names, static_cast<int>( aSeg.GetSeg().Length() / ( M_SQRT2 * min_size ) ) ); }
m_gal->SetIsStroke( true ); m_gal->SetIsFill( false ); m_gal->SetStrokeColor( aColor ); m_gal->SetLineWidth( penWidth ); m_gal->SetFontBold( false ); m_gal->SetFontItalic( false ); m_gal->SetFontUnderlined( false ); m_gal->SetTextMirrored( false ); m_gal->SetGlyphSize( VECTOR2D( textSize * 0.55, textSize * 0.55 ) ); m_gal->SetHorizontalJustify( GR_TEXT_H_ALIGN_CENTER ); m_gal->SetVerticalJustify( GR_TEXT_V_ALIGN_CENTER );
for( int ii = 0; ii < num_names; ++ii ) { VECTOR2I textPosition = VECTOR2D( start ) * static_cast<double>( num_names - ii ) / ( num_names + 1 ) + VECTOR2D( end ) * static_cast<double>( ii + 1 ) / ( num_names + 1 );
if( clipBox.Contains( textPosition ) ) m_gal->BitmapText( aNetName, textPosition, textOrientation ); } }
void PCB_PAINTER::draw( const PCB_ARC* aArc, int aLayer ) { VECTOR2D center( aArc->GetCenter() ); int width = aArc->GetWidth(); COLOR4D color = m_pcbSettings.GetColor( aArc, aLayer ); double radius = aArc->GetRadius(); EDA_ANGLE start_angle = aArc->GetArcAngleStart(); EDA_ANGLE angle = aArc->GetAngle();
if( IsNetnameLayer( aLayer ) ) { // Ummm, yeah. Anyone fancy implementing text on a path?
return; } else if( IsCopperLayer( aLayer ) || aLayer == LAYER_LOCKED_ITEM_SHADOW ) { // Draw a regular track
bool outline_mode = pcbconfig() && !pcbconfig()->m_Display.m_DisplayPcbTrackFill && aLayer != LAYER_LOCKED_ITEM_SHADOW; m_gal->SetStrokeColor( color ); m_gal->SetFillColor( color ); m_gal->SetIsStroke( outline_mode ); m_gal->SetIsFill( not outline_mode ); m_gal->SetLineWidth( m_pcbSettings.m_outlineWidth );
if( aLayer == LAYER_LOCKED_ITEM_SHADOW ) width = width + m_lockedShadowMargin;
m_gal->DrawArcSegment( center, radius, start_angle, angle, width, m_maxError ); }
// Clearance lines
if( pcbconfig() && pcbconfig()->m_Display.m_TrackClearance == SHOW_WITH_VIA_ALWAYS && !m_pcbSettings.m_isPrinting && aLayer != LAYER_LOCKED_ITEM_SHADOW ) { int clearance = aArc->GetOwnClearance( m_pcbSettings.GetActiveLayer() );
m_gal->SetLineWidth( m_pcbSettings.m_outlineWidth ); m_gal->SetIsFill( false ); m_gal->SetIsStroke( true ); m_gal->SetStrokeColor( color );
m_gal->DrawArcSegment( center, radius, start_angle, angle, width + clearance * 2, m_maxError ); }
// Debug only: enable this code only to test the TransformArcToPolygon function
// and display the polygon outline created by it.
// arcs on F_Cu are approximated with ERROR_INSIDE, others with ERROR_OUTSIDE
#if 0
SHAPE_POLY_SET cornerBuffer; ERROR_LOC errorloc = aLayer == F_Cu ? ERROR_LOC::ERROR_INSIDE : ERROR_LOC::ERROR_OUTSIDE; TransformArcToPolygon( cornerBuffer, aArc->GetStart(), aArc->GetMid(), aArc->GetEnd(), width, m_maxError, errorloc ); m_gal->SetLineWidth( m_pcbSettings.m_outlineWidth ); m_gal->SetIsFill( false ); m_gal->SetIsStroke( true ); m_gal->SetStrokeColor( COLOR4D( 0, 0, 1.0, 1.0 ) ); m_gal->DrawPolygon( cornerBuffer ); #endif
// Debug only: enable this code only to test the SHAPE_ARC::ConvertToPolyline function
// and display the polyline created by it.
#if 0
SHAPE_ARC arc( aArc->GetCenter(), aArc->GetStart(), aArc->GetAngle(), aArc->GetWidth() ); SHAPE_LINE_CHAIN arcSpine = arc.ConvertToPolyline( m_maxError ); m_gal->SetLineWidth( m_pcbSettings.m_outlineWidth ); m_gal->SetIsFill( false ); m_gal->SetIsStroke( true ); m_gal->SetStrokeColor( COLOR4D( 0.3, 0.2, 0.5, 1.0 ) );
for( int idx = 1; idx < arcSpine.PointCount(); idx++ ) m_gal->DrawSegment( arcSpine.CPoint( idx-1 ), arcSpine.CPoint( idx ), aArc->GetWidth() ); #endif
}
void PCB_PAINTER::draw( const PCB_VIA* aVia, int aLayer ) { const BOARD* board = aVia->GetBoard(); COLOR4D color = m_pcbSettings.GetColor( aVia, aLayer ); VECTOR2D center( aVia->GetStart() );
if( color == COLOR4D::CLEAR ) return;
// Draw description layer
if( IsNetnameLayer( aLayer ) ) { VECTOR2D position( center );
// Is anything that we can display enabled (netname and/or layers ids)?
bool showNets = pcbconfig() && pcbconfig()->m_Display.m_NetNames != 0 && !aVia->GetNetname().empty(); bool showLayers = aVia->GetViaType() != VIATYPE::THROUGH;
if( !showNets && !showLayers ) return;
double maxSize = PCB_RENDER_SETTINGS::MAX_FONT_SIZE; double size = aVia->GetWidth();
// Font size limits
if( size > maxSize ) size = maxSize;
m_gal->Save(); m_gal->Translate( position );
// Default font settings
m_gal->ResetTextAttributes(); m_gal->SetHorizontalJustify( GR_TEXT_H_ALIGN_CENTER ); m_gal->SetVerticalJustify( GR_TEXT_V_ALIGN_CENTER ); m_gal->SetFontBold( false ); m_gal->SetFontItalic( false ); m_gal->SetFontUnderlined( false ); m_gal->SetTextMirrored( false ); m_gal->SetStrokeColor( m_pcbSettings.GetColor( nullptr, aLayer ) ); m_gal->SetIsStroke( true ); m_gal->SetIsFill( false );
// Set the text position via position. if only one text, it is on the via position
// For 2 lines, the netname is slightly below the center, and the layer IDs above
// the netname
VECTOR2D textpos( 0.0, 0.0 );
wxString netname = aVia->GetUnescapedShortNetname();
int topLayer = aVia->TopLayer() + 1; int bottomLayer = std::min( aVia->BottomLayer() + 1, board->GetCopperLayerCount() );
wxString layerIds; layerIds.Printf( wxT( "%d-%d" ), topLayer, bottomLayer );
// a good size is set room for at least 6 chars, to be able to print 2 lines of text,
// or at least 3 chars for only the netname
// (The layerIds string has 5 chars max)
int minCharCnt = showLayers ? 6 : 3;
// approximate the size of netname and layerIds text:
double tsize = 1.5 * size / std::max( PrintableCharCount( netname ), minCharCnt ); tsize = std::min( tsize, size );
// Use a smaller text size to handle interline, pen size..
tsize *= 0.75; VECTOR2D namesize( tsize, tsize );
// For 2 lines, adjust the text pos (move it a small amount to the bottom)
if( showLayers ) textpos.y += tsize/5;
m_gal->SetGlyphSize( namesize ); m_gal->SetLineWidth( namesize.x / 10.0 );
if( showNets ) m_gal->BitmapText( netname, textpos, ANGLE_HORIZONTAL );
if( showLayers ) { if( showNets ) textpos.y -= tsize * 1.3;
m_gal->BitmapText( layerIds, textpos, ANGLE_HORIZONTAL ); }
m_gal->Restore();
return; }
bool outline_mode = pcbconfig() && !pcbconfig()->m_Display.m_DisplayViaFill;
m_gal->SetStrokeColor( color ); m_gal->SetFillColor( color ); m_gal->SetIsStroke( true ); m_gal->SetIsFill( false );
if( outline_mode ) m_gal->SetLineWidth( m_pcbSettings.m_outlineWidth );
if( aLayer == LAYER_VIA_HOLEWALLS ) { double radius = ( getViaDrillSize( aVia ) / 2.0 ) + m_holePlatingThickness;
if( !outline_mode ) { m_gal->SetLineWidth( m_holePlatingThickness ); radius -= m_holePlatingThickness / 2.0; }
m_gal->DrawCircle( center, radius ); } else if( aLayer == LAYER_VIA_HOLES ) { m_gal->SetIsStroke( false ); m_gal->SetIsFill( true ); m_gal->DrawCircle( center, getViaDrillSize( aVia ) / 2.0 ); } else if( ( aLayer == F_Mask && aVia->IsOnLayer( F_Mask ) ) || ( aLayer == B_Mask && aVia->IsOnLayer( B_Mask ) ) ) { int margin = board->GetDesignSettings().m_SolderMaskExpansion;
m_gal->SetIsFill( true ); m_gal->SetIsStroke( false );
m_gal->SetLineWidth( margin ); m_gal->DrawCircle( center, aVia->GetWidth() / 2.0 + margin ); } else if( aLayer == LAYER_VIA_THROUGH || m_pcbSettings.IsPrinting() ) { int annular_width = ( aVia->GetWidth() - getViaDrillSize( aVia ) ) / 2.0; double radius = aVia->GetWidth() / 2.0; bool draw = false;
if( m_pcbSettings.IsPrinting() ) { draw = aVia->FlashLayer( m_pcbSettings.GetPrintLayers() ); } else if( aVia->FlashLayer( board->GetVisibleLayers() & board->GetEnabledLayers() ) ) { draw = true; } else if( aVia->IsSelected() ) { draw = true; outline_mode = true; m_gal->SetLineWidth( m_pcbSettings.m_outlineWidth ); }
if( !outline_mode ) { m_gal->SetLineWidth( annular_width ); radius -= annular_width / 2.0; }
if( draw ) m_gal->DrawCircle( center, radius ); } else if( aLayer == LAYER_VIA_BBLIND || aLayer == LAYER_VIA_MICROVIA ) { int annular_width = ( aVia->GetWidth() - getViaDrillSize( aVia ) ) / 2.0; double radius = aVia->GetWidth() / 2.0;
// Outer circles of blind/buried and micro-vias are drawn in a special way to indicate the
// top and bottom layers
PCB_LAYER_ID layerTop, layerBottom; aVia->LayerPair( &layerTop, &layerBottom );
if( !outline_mode ) { m_gal->SetIsStroke( false ); m_gal->SetIsFill( true ); }
m_gal->SetStrokeColor( m_pcbSettings.GetColor( aVia, layerTop ) ); m_gal->SetFillColor( m_pcbSettings.GetColor( aVia, layerTop ) ); m_gal->DrawArc( center, radius, EDA_ANGLE( 240, DEGREES_T ), EDA_ANGLE( 60, DEGREES_T ) );
m_gal->SetStrokeColor( m_pcbSettings.GetColor( aVia, layerBottom ) ); m_gal->SetFillColor( m_pcbSettings.GetColor( aVia, layerBottom ) ); m_gal->DrawArc( center, radius, EDA_ANGLE( 60, DEGREES_T ), EDA_ANGLE( 60, DEGREES_T ) );
m_gal->SetStrokeColor( color ); m_gal->SetFillColor( color ); m_gal->SetIsStroke( true ); m_gal->SetIsFill( false );
if( !outline_mode ) { m_gal->SetLineWidth( annular_width ); radius -= annular_width / 2.0; }
m_gal->DrawCircle( center, radius ); } else if( aLayer == LAYER_LOCKED_ITEM_SHADOW ) // draw a ring around the via
{ m_gal->SetLineWidth( m_lockedShadowMargin );
m_gal->DrawCircle( center, ( aVia->GetWidth() + m_lockedShadowMargin ) / 2.0 ); }
// Clearance lines
if( pcbconfig() && pcbconfig()->m_Display.m_TrackClearance == SHOW_WITH_VIA_ALWAYS && aLayer != LAYER_VIA_HOLES && !m_pcbSettings.m_isPrinting ) { PCB_LAYER_ID activeLayer = m_pcbSettings.GetActiveLayer(); double radius;
if( aVia->FlashLayer( activeLayer ) ) radius = aVia->GetWidth() / 2.0; else radius = getViaDrillSize( aVia ) / 2.0 + m_holePlatingThickness;
m_gal->SetLineWidth( m_pcbSettings.m_outlineWidth ); m_gal->SetIsFill( false ); m_gal->SetIsStroke( true ); m_gal->SetStrokeColor( color ); m_gal->DrawCircle( center, radius + aVia->GetOwnClearance( activeLayer ) ); } }
void PCB_PAINTER::draw( const PAD* aPad, int aLayer ) { const BOARD* board = aPad->GetBoard(); COLOR4D color = m_pcbSettings.GetColor( aPad, aLayer );
if( IsNetnameLayer( aLayer ) ) { PCBNEW_SETTINGS::DISPLAY_OPTIONS* displayOpts = pcbconfig() ? &pcbconfig()->m_Display : nullptr; wxString netname; wxString padNumber;
if( viewer_settings()->m_ViewersDisplay.m_DisplayPadNumbers ) { padNumber = UnescapeString( aPad->GetNumber() );
if( dynamic_cast<CVPCB_SETTINGS*>( viewer_settings() ) ) netname = aPad->GetPinFunction(); }
if( displayOpts && !dynamic_cast<CVPCB_SETTINGS*>( viewer_settings() ) ) { if( displayOpts->m_NetNames == 1 || displayOpts->m_NetNames == 3 ) netname = aPad->GetUnescapedShortNetname();
if( aPad->IsNoConnectPad() ) netname = wxT( "x" ); else if( aPad->IsFreePad() ) netname = wxT( "*" ); }
if( netname.IsEmpty() && padNumber.IsEmpty() ) return;
BOX2I padBBox = aPad->GetBoundingBox(); VECTOR2D position = padBBox.Centre(); VECTOR2D padsize = VECTOR2D( padBBox.GetSize() );
if( aPad->IsEntered() ) { FOOTPRINT* fp = aPad->GetParentFootprint();
// Find the number box
for( const BOARD_ITEM* aItem : fp->GraphicalItems() ) { if( aItem->Type() == PCB_SHAPE_T ) { const PCB_SHAPE* shape = static_cast<const PCB_SHAPE*>( aItem );
if( shape->IsProxyItem() && shape->GetShape() == SHAPE_T::RECTANGLE ) { position = shape->GetCenter(); padsize = shape->GetBotRight() - shape->GetTopLeft();
// We normally draw a bit outside the pad, but this will be somewhat
// unexpected when the user has drawn a box.
padsize *= 0.9;
break; } } } } else if( aPad->GetShape() == PAD_SHAPE::CUSTOM ) { // See if we have a number box
for( const std::shared_ptr<PCB_SHAPE>& primitive : aPad->GetPrimitives() ) { if( primitive->IsProxyItem() && primitive->GetShape() == SHAPE_T::RECTANGLE ) { position = primitive->GetCenter(); RotatePoint( position, aPad->GetOrientation() ); position += aPad->ShapePos();
padsize.x = abs( primitive->GetBotRight().x - primitive->GetTopLeft().x ); padsize.y = abs( primitive->GetBotRight().y - primitive->GetTopLeft().y );
// We normally draw a bit outside the pad, but this will be somewhat
// unexpected when the user has drawn a box.
padsize *= 0.9;
break; } } }
if( aPad->GetShape() != PAD_SHAPE::CUSTOM ) { // Don't allow a 45° rotation to bloat a pad's bounding box unnecessarily
double limit = std::min( aPad->GetSize().x, aPad->GetSize().y ) * 1.1;
if( padsize.x > limit && padsize.y > limit ) { padsize.x = limit; padsize.y = limit; } }
double maxSize = PCB_RENDER_SETTINGS::MAX_FONT_SIZE; double size = padsize.y;
m_gal->Save(); m_gal->Translate( position );
// Keep the size ratio for the font, but make it smaller
if( padsize.x < ( padsize.y * 0.95 ) ) { m_gal->Rotate( -ANGLE_90.AsRadians() ); size = padsize.x; std::swap( padsize.x, padsize.y ); }
// Font size limits
if( size > maxSize ) size = maxSize;
// Default font settings
m_gal->ResetTextAttributes(); m_gal->SetHorizontalJustify( GR_TEXT_H_ALIGN_CENTER ); m_gal->SetVerticalJustify( GR_TEXT_V_ALIGN_CENTER ); m_gal->SetFontBold( false ); m_gal->SetFontItalic( false ); m_gal->SetFontUnderlined( false ); m_gal->SetTextMirrored( false ); m_gal->SetStrokeColor( m_pcbSettings.GetColor( aPad, aLayer ) ); m_gal->SetIsStroke( true ); m_gal->SetIsFill( false );
// We have already translated the GAL to be centered at the center of the pad's
// bounding box
VECTOR2I textpos( 0, 0 );
// Divide the space, to display both pad numbers and netnames and set the Y text
// offset position to display 2 lines
int Y_offset_numpad = 0; int Y_offset_netname = 0;
if( !netname.IsEmpty() && !padNumber.IsEmpty() ) { // The magic numbers are defined experimentally for a better look.
size = size / 2.5; Y_offset_netname = size / 1.4; // netname size is usually smaller than num pad
// so the offset can be smaller
Y_offset_numpad = size / 1.7; }
// We are using different fonts to display names, depending on the graphic
// engine (OpenGL or Cairo).
// Xscale_for_stroked_font adjust the text X size for cairo (stroke fonts) engine
const double Xscale_for_stroked_font = 0.9;
if( !netname.IsEmpty() ) { // approximate the size of net name text:
// We use a size for at least 5 chars, to give a good look even for short names
// (like VCC, GND...)
double tsize = 1.5 * padsize.x / std::max( PrintableCharCount( netname )+1, 5 ); tsize = std::min( tsize, size );
// Use a smaller text size to handle interline, pen size...
tsize *= 0.85;
// Round and oval pads have less room to display the net name than other
// (i.e RECT) shapes, so reduce the text size for these shapes
if( aPad->GetShape() == PAD_SHAPE::CIRCLE || aPad->GetShape() == PAD_SHAPE::OVAL ) tsize *= 0.9;
VECTOR2D namesize( tsize*Xscale_for_stroked_font, tsize ); textpos.y = std::min( tsize * 1.4, double( Y_offset_netname ) );
m_gal->SetGlyphSize( namesize ); m_gal->SetLineWidth( namesize.x / 6.0 ); m_gal->SetFontBold( true ); m_gal->BitmapText( netname, textpos, ANGLE_HORIZONTAL ); }
if( !padNumber.IsEmpty() ) { // approximate the size of the pad number text:
// We use a size for at least 3 chars, to give a good look even for short numbers
double tsize = 1.5 * padsize.x / std::max( PrintableCharCount( padNumber ), 3 ); tsize = std::min( tsize, size );
// Use a smaller text size to handle interline, pen size...
tsize *= 0.85; tsize = std::min( tsize, size ); VECTOR2D numsize( tsize*Xscale_for_stroked_font, tsize ); textpos.y = -Y_offset_numpad;
m_gal->SetGlyphSize( numsize ); m_gal->SetLineWidth( numsize.x / 6.0 ); m_gal->SetFontBold( true ); m_gal->BitmapText( padNumber, textpos, ANGLE_HORIZONTAL ); }
m_gal->Restore();
return; } else if( aLayer == LAYER_PAD_HOLEWALLS ) { m_gal->SetIsFill( false ); m_gal->SetIsStroke( true ); m_gal->SetLineWidth( m_holePlatingThickness ); m_gal->SetStrokeColor( color );
std::shared_ptr<SHAPE_SEGMENT> slot = aPad->GetEffectiveHoleShape(); int holeSize = slot->GetWidth() + m_holePlatingThickness;
if( slot->GetSeg().A == slot->GetSeg().B ) // Circular hole
m_gal->DrawCircle( slot->GetSeg().A, KiROUND( holeSize / 2.0 ) ); else m_gal->DrawSegment( slot->GetSeg().A, slot->GetSeg().B, holeSize );
return; }
bool outline_mode = !viewer_settings()->m_ViewersDisplay.m_DisplayPadFill;
if( m_pcbSettings.m_ForcePadSketchModeOn ) outline_mode = true;
if( outline_mode ) { // Outline mode
m_gal->SetIsFill( false ); m_gal->SetIsStroke( true ); m_gal->SetLineWidth( m_pcbSettings.m_outlineWidth ); m_gal->SetStrokeColor( color ); } else { // Filled mode
m_gal->SetIsFill( true ); m_gal->SetIsStroke( false ); m_gal->SetFillColor( color ); }
bool drawShape = false;
if( aLayer == LAYER_PAD_PLATEDHOLES || aLayer == LAYER_NON_PLATEDHOLES ) { SHAPE_SEGMENT slot = getPadHoleShape( aPad );
if( slot.GetSeg().A == slot.GetSeg().B ) // Circular hole
m_gal->DrawCircle( slot.GetSeg().A, slot.GetWidth() / 2.0 ); else m_gal->DrawSegment( slot.GetSeg().A, slot.GetSeg().B, slot.GetWidth() ); } else if( m_pcbSettings.IsPrinting() ) { drawShape = aPad->FlashLayer( m_pcbSettings.GetPrintLayers() ); } else if( aPad->FlashLayer( board->GetVisibleLayers() & board->GetEnabledLayers() ) ) { drawShape = true; } else if( aPad->IsSelected() ) { drawShape = true; outline_mode = true; }
if( outline_mode ) { // Outline mode
m_gal->SetIsFill( false ); m_gal->SetIsStroke( true ); m_gal->SetLineWidth( m_pcbSettings.m_outlineWidth ); m_gal->SetStrokeColor( color ); }
if( drawShape ) { VECTOR2I pad_size = aPad->GetSize(); VECTOR2I margin;
switch( aLayer ) { case F_Mask: case B_Mask: margin.x = margin.y = aPad->GetSolderMaskExpansion(); break;
case F_Paste: case B_Paste: margin = aPad->GetSolderPasteMargin(); break;
default: margin.x = margin.y = 0; break; }
std::unique_ptr<PAD> dummyPad; std::shared_ptr<SHAPE_COMPOUND> shapes;
// Drawing components of compound shapes in outline mode produces a mess.
bool simpleShapes = !outline_mode;
if( simpleShapes ) { if( ( margin.x != margin.y && aPad->GetShape() != PAD_SHAPE::CUSTOM ) || ( aPad->GetShape() == PAD_SHAPE::ROUNDRECT && ( margin.x < 0 || margin.y < 0 ) ) ) { // Our algorithms below (polygon inflation in particular) can't handle differential
// inflation along separate axes. So for those cases we build a dummy pad instead,
// and inflate it.
// Margin is added to both sides. If the total margin is larger than the pad
// then don't display this layer
if( pad_size.x + 2 * margin.x <= 0 || pad_size.y + 2 * margin.y <= 0 ) return;
dummyPad.reset( static_cast<PAD*>( aPad->Duplicate() ) );
if( dummyPad->GetParentGroup() ) dummyPad->GetParentGroup()->RemoveItem( dummyPad.get() );
int initial_radius = dummyPad->GetRoundRectCornerRadius();
dummyPad->SetSize( pad_size + margin + margin );
if( dummyPad->GetShape() == PAD_SHAPE::ROUNDRECT ) { // To keep the right margin around the corners, we need to modify the corner radius.
// We must have only one radius correction, so use the smallest absolute margin.
int radius_margin = std::max( margin.x, margin.y ); // radius_margin is < 0
dummyPad->SetRoundRectCornerRadius( std::max( initial_radius + radius_margin, 0 ) ); }
shapes = std::dynamic_pointer_cast<SHAPE_COMPOUND>( dummyPad->GetEffectiveShape() ); margin.x = margin.y = 0; } else { shapes = std::dynamic_pointer_cast<SHAPE_COMPOUND>( aPad->GetEffectiveShape() ); }
if( aPad->GetShape() == PAD_SHAPE::CUSTOM && ( margin.x || margin.y ) ) { // We can't draw as shapes because we don't know which edges are internal and which
// are external (so we don't know when to apply the margin and when not to).
simpleShapes = false; }
for( const SHAPE* shape : shapes->Shapes() ) { if( !simpleShapes ) break;
switch( shape->Type() ) { case SH_SEGMENT: case SH_CIRCLE: case SH_RECT: case SH_SIMPLE: // OK so far
break;
default: // Not OK
simpleShapes = false; break; } } }
if( simpleShapes ) { for( const SHAPE* shape : shapes->Shapes() ) { switch( shape->Type() ) { case SH_SEGMENT: { const SHAPE_SEGMENT* seg = (const SHAPE_SEGMENT*) shape; int effectiveWidth = seg->GetWidth() + 2 * margin.x;
if( effectiveWidth > 0 ) m_gal->DrawSegment( seg->GetSeg().A, seg->GetSeg().B, effectiveWidth );
break; }
case SH_CIRCLE: { const SHAPE_CIRCLE* circle = (const SHAPE_CIRCLE*) shape; int effectiveRadius = circle->GetRadius() + margin.x;
if( effectiveRadius > 0 ) m_gal->DrawCircle( circle->GetCenter(), effectiveRadius );
break; }
case SH_RECT: { const SHAPE_RECT* r = (const SHAPE_RECT*) shape; VECTOR2I pos = r->GetPosition(); VECTOR2I effectiveMargin = margin;
if( effectiveMargin.x < 0 ) { // A negative margin just produces a smaller rect.
VECTOR2I effectiveSize = r->GetSize() + effectiveMargin;
if( effectiveSize.x > 0 && effectiveSize.y > 0 ) m_gal->DrawRectangle( pos - effectiveMargin, pos + effectiveSize ); } else if( effectiveMargin.x > 0 ) { // A positive margin produces a larger rect, but with rounded corners
m_gal->DrawRectangle( r->GetPosition(), r->GetPosition() + r->GetSize() );
// Use segments to produce the margin with rounded corners
m_gal->DrawSegment( pos, pos + VECTOR2I( r->GetWidth(), 0 ), effectiveMargin.x * 2 ); m_gal->DrawSegment( pos + VECTOR2I( r->GetWidth(), 0 ), pos + r->GetSize(), effectiveMargin.x * 2 ); m_gal->DrawSegment( pos + r->GetSize(), pos + VECTOR2I( 0, r->GetHeight() ), effectiveMargin.x * 2 ); m_gal->DrawSegment( pos + VECTOR2I( 0, r->GetHeight() ), pos, effectiveMargin.x * 2 ); } else { m_gal->DrawRectangle( r->GetPosition(), r->GetPosition() + r->GetSize() ); }
break; }
case SH_SIMPLE: { const SHAPE_SIMPLE* poly = static_cast<const SHAPE_SIMPLE*>( shape );
if( poly->PointCount() < 2 ) // Careful of empty pads
break;
if( margin.x < 0 ) // The poly shape must be deflated
{ SHAPE_POLY_SET outline; outline.NewOutline();
for( int ii = 0; ii < poly->PointCount(); ++ii ) outline.Append( poly->CPoint( ii ) );
outline.Deflate( -margin.x, CORNER_STRATEGY::CHAMFER_ALL_CORNERS, m_maxError );
m_gal->DrawPolygon( outline ); } else { m_gal->DrawPolygon( poly->Vertices() ); }
// Now add on a rounded margin (using segments) if the margin > 0
if( margin.x > 0 ) { for( size_t ii = 0; ii < poly->GetSegmentCount(); ++ii ) { SEG seg = poly->GetSegment( ii ); m_gal->DrawSegment( seg.A, seg.B, margin.x * 2 ); } }
break; }
default: // Better not get here; we already pre-flighted the shapes...
break; } } } else { // This is expensive. Avoid if possible.
SHAPE_POLY_SET polySet; aPad->TransformShapeToPolygon( polySet, ToLAYER_ID( aLayer ), margin.x, m_maxError, ERROR_INSIDE ); m_gal->DrawPolygon( polySet ); } }
if( pcbconfig() && pcbconfig()->m_Display.m_PadClearance && ( aLayer == LAYER_PADS_SMD_FR || aLayer == LAYER_PADS_SMD_BK || aLayer == LAYER_PADS_TH ) && !m_pcbSettings.m_isPrinting ) { /* Showing the clearance area is not obvious.
* - A pad can be removed from some copper layers. * - For non copper layers, what is the clearance area? * So for copper layers, the clearance area is the shape if the pad is flashed on this * layer and the hole clearance area for other copper layers. * For other layers, use the pad shape, although one can use an other criteria, * depending on the non copper layer. */ int activeLayer = m_pcbSettings.GetActiveLayer(); bool flashActiveLayer = true;
if( IsCopperLayer( activeLayer ) ) flashActiveLayer = aPad->FlashLayer( activeLayer );
if( !board->GetVisibleLayers().test( activeLayer ) ) flashActiveLayer = false;
if( flashActiveLayer || aPad->GetDrillSize().x ) { if( aPad->GetAttribute() == PAD_ATTRIB::NPTH ) color = m_pcbSettings.GetLayerColor( LAYER_NON_PLATEDHOLES );
m_gal->SetLineWidth( m_pcbSettings.m_outlineWidth ); m_gal->SetIsStroke( true ); m_gal->SetIsFill( false ); m_gal->SetStrokeColor( color );
int clearance = aPad->GetOwnClearance( m_pcbSettings.GetActiveLayer() );
if( flashActiveLayer && clearance > 0 ) { auto shape = std::dynamic_pointer_cast<SHAPE_COMPOUND>( aPad->GetEffectiveShape() );
if( shape && shape->Size() == 1 && shape->Shapes()[0]->Type() == SH_SEGMENT ) { const SHAPE_SEGMENT* seg = (SHAPE_SEGMENT*) shape->Shapes()[0]; m_gal->DrawSegment( seg->GetSeg().A, seg->GetSeg().B, seg->GetWidth() + 2 * clearance ); } else if( shape && shape->Size() == 1 && shape->Shapes()[0]->Type() == SH_CIRCLE ) { const SHAPE_CIRCLE* circle = (SHAPE_CIRCLE*) shape->Shapes()[0]; m_gal->DrawCircle( circle->GetCenter(), circle->GetRadius() + clearance ); } else { SHAPE_POLY_SET polySet;
// Use ERROR_INSIDE because it avoids Clipper and is therefore much faster.
aPad->TransformShapeToPolygon( polySet, ToLAYER_ID( aLayer ), clearance, m_maxError, ERROR_INSIDE );
if( polySet.Outline( 0 ).PointCount() > 2 ) // Careful of empty pads
m_gal->DrawPolygon( polySet ); } } else if( aPad->GetEffectiveHoleShape() && clearance > 0 ) { std::shared_ptr<SHAPE_SEGMENT> slot = aPad->GetEffectiveHoleShape(); m_gal->DrawSegment( slot->GetSeg().A, slot->GetSeg().B, slot->GetWidth() + 2 * clearance ); } } } }
void PCB_PAINTER::draw( const PCB_SHAPE* aShape, int aLayer ) { COLOR4D color = m_pcbSettings.GetColor( aShape, aLayer ); bool outline_mode = !viewer_settings()->m_ViewersDisplay.m_DisplayGraphicsFill; int thickness = getLineThickness( aShape->GetWidth() ); LINE_STYLE lineStyle = aShape->GetStroke().GetLineStyle();
if( IsNetnameLayer( aLayer ) ) { // Net names are shown only in board editor:
if( m_frameType != FRAME_T::FRAME_PCB_EDITOR ) return;
if( !pcbconfig() || pcbconfig()->m_Display.m_NetNames < 2 ) return;
if( aShape->GetNetCode() <= NETINFO_LIST::UNCONNECTED ) return;
wxString netname = aShape->GetUnescapedShortNetname();
if( netname.IsEmpty() ) return;
if( aShape->GetShape() == SHAPE_T::SEGMENT ) { SHAPE_SEGMENT seg( { aShape->GetStart(), aShape->GetEnd() }, aShape->GetWidth() ); renderNetNameForSegment( seg, color, netname ); return; }
// TODO: Maybe use some of the pad code?
return; }
if( aLayer == LAYER_LOCKED_ITEM_SHADOW ) { color = m_pcbSettings.GetColor( aShape, aLayer ); thickness = thickness + m_lockedShadowMargin; }
if( outline_mode ) { m_gal->SetIsFill( false ); m_gal->SetIsStroke( true ); m_gal->SetLineWidth( m_pcbSettings.m_outlineWidth ); }
m_gal->SetFillColor( color ); m_gal->SetStrokeColor( color );
// Note: on LAYER_LOCKED_ITEM_SHADOW always draw shadow shapes as continuous lines
// otherwise the look is very strange and ugly
if( lineStyle <= LINE_STYLE::FIRST_TYPE || aLayer == LAYER_LOCKED_ITEM_SHADOW ) { switch( aShape->GetShape() ) { case SHAPE_T::SEGMENT: if( aShape->IsProxyItem() ) { std::vector<VECTOR2I> pts; VECTOR2I offset = ( aShape->GetEnd() - aShape->GetStart() ).Perpendicular(); offset = offset.Resize( thickness / 2 );
pts.push_back( aShape->GetStart() + offset ); pts.push_back( aShape->GetStart() - offset ); pts.push_back( aShape->GetEnd() - offset ); pts.push_back( aShape->GetEnd() + offset );
m_gal->SetLineWidth( m_pcbSettings.m_outlineWidth ); m_gal->DrawLine( pts[0], pts[1] ); m_gal->DrawLine( pts[1], pts[2] ); m_gal->DrawLine( pts[2], pts[3] ); m_gal->DrawLine( pts[3], pts[0] ); m_gal->DrawLine( ( pts[0] + pts[1] ) / 2, ( pts[1] + pts[2] ) / 2 ); m_gal->DrawLine( ( pts[1] + pts[2] ) / 2, ( pts[2] + pts[3] ) / 2 ); m_gal->DrawLine( ( pts[2] + pts[3] ) / 2, ( pts[3] + pts[0] ) / 2 ); m_gal->DrawLine( ( pts[3] + pts[0] ) / 2, ( pts[0] + pts[1] ) / 2 ); } else if( outline_mode ) { m_gal->DrawSegment( aShape->GetStart(), aShape->GetEnd(), thickness ); } else { m_gal->SetIsFill( true ); m_gal->SetIsStroke( false );
m_gal->DrawSegment( aShape->GetStart(), aShape->GetEnd(), thickness ); }
break;
case SHAPE_T::RECTANGLE: { std::vector<VECTOR2I> pts = aShape->GetRectCorners();
if( aShape->IsProxyItem() ) { m_gal->SetLineWidth( m_pcbSettings.m_outlineWidth ); m_gal->DrawLine( pts[0], pts[1] ); m_gal->DrawLine( pts[1], pts[2] ); m_gal->DrawLine( pts[2], pts[3] ); m_gal->DrawLine( pts[3], pts[0] ); m_gal->DrawLine( pts[0], pts[2] ); m_gal->DrawLine( pts[1], pts[3] ); } else if( outline_mode ) { m_gal->DrawSegment( pts[0], pts[1], thickness ); m_gal->DrawSegment( pts[1], pts[2], thickness ); m_gal->DrawSegment( pts[2], pts[3], thickness ); m_gal->DrawSegment( pts[3], pts[0], thickness ); } else { m_gal->SetIsFill( true ); m_gal->SetIsStroke( false );
if( thickness > 0 ) { m_gal->DrawSegment( pts[0], pts[1], thickness ); m_gal->DrawSegment( pts[1], pts[2], thickness ); m_gal->DrawSegment( pts[2], pts[3], thickness ); m_gal->DrawSegment( pts[3], pts[0], thickness ); }
if( aShape->IsFilled() ) { SHAPE_POLY_SET poly; poly.NewOutline();
for( const VECTOR2I& pt : pts ) poly.Append( pt );
m_gal->DrawPolygon( poly ); } }
break; }
case SHAPE_T::ARC: { EDA_ANGLE startAngle; EDA_ANGLE endAngle; aShape->CalcArcAngles( startAngle, endAngle );
if( outline_mode ) { m_gal->DrawArcSegment( aShape->GetCenter(), aShape->GetRadius(), startAngle, endAngle - startAngle, thickness, m_maxError ); } else { m_gal->SetIsFill( true ); m_gal->SetIsStroke( false );
m_gal->DrawArcSegment( aShape->GetCenter(), aShape->GetRadius(), startAngle, endAngle - startAngle, thickness, m_maxError ); } break; }
case SHAPE_T::CIRCLE: if( outline_mode ) { m_gal->DrawCircle( aShape->GetStart(), aShape->GetRadius() - thickness / 2 ); m_gal->DrawCircle( aShape->GetStart(), aShape->GetRadius() + thickness / 2 ); } else { m_gal->SetIsFill( aShape->IsFilled() ); m_gal->SetIsStroke( thickness > 0 ); m_gal->SetLineWidth( thickness );
m_gal->DrawCircle( aShape->GetStart(), aShape->GetRadius() ); } break;
case SHAPE_T::POLY: { SHAPE_POLY_SET& shape = const_cast<PCB_SHAPE*>( aShape )->GetPolyShape();
if( shape.OutlineCount() == 0 ) break;
if( outline_mode ) { for( int ii = 0; ii < shape.OutlineCount(); ++ii ) m_gal->DrawSegmentChain( shape.Outline( ii ), thickness ); } else { m_gal->SetIsFill( true ); m_gal->SetIsStroke( false );
if( thickness > 0 ) { for( int ii = 0; ii < shape.OutlineCount(); ++ii ) m_gal->DrawSegmentChain( shape.Outline( ii ), thickness ); }
if( aShape->IsFilled() ) { // On Opengl, a not convex filled polygon is usually drawn by using triangles
// as primitives. CacheTriangulation() can create basic triangle primitives to
// draw the polygon solid shape on Opengl. GLU tessellation is much slower,
// so currently we are using our tessellation.
if( m_gal->IsOpenGlEngine() && !shape.IsTriangulationUpToDate() ) shape.CacheTriangulation( true, true );
m_gal->DrawPolygon( shape ); } }
break; }
case SHAPE_T::BEZIER: if( outline_mode ) { std::vector<VECTOR2D> output; std::vector<VECTOR2D> pointCtrl;
pointCtrl.push_back( aShape->GetStart() ); pointCtrl.push_back( aShape->GetBezierC1() ); pointCtrl.push_back( aShape->GetBezierC2() ); pointCtrl.push_back( aShape->GetEnd() );
BEZIER_POLY converter( pointCtrl ); converter.GetPoly( output, thickness );
m_gal->DrawSegmentChain( output, thickness ); } else { m_gal->SetIsFill( aShape->IsFilled() ); m_gal->SetIsStroke( thickness > 0 ); m_gal->SetLineWidth( thickness );
// Use thickness as filter value to convert the curve to polyline when the curve
// is not supported
m_gal->DrawCurve( VECTOR2D( aShape->GetStart() ), VECTOR2D( aShape->GetBezierC1() ), VECTOR2D( aShape->GetBezierC2() ), VECTOR2D( aShape->GetEnd() ), thickness ); }
break;
case SHAPE_T::UNDEFINED: break; } } else { if( !outline_mode ) { m_gal->SetIsFill( true ); m_gal->SetIsStroke( false ); }
std::vector<SHAPE*> shapes = aShape->MakeEffectiveShapes( true );
for( SHAPE* shape : shapes ) { STROKE_PARAMS::Stroke( shape, lineStyle, thickness, &m_pcbSettings, [&]( const VECTOR2I& a, const VECTOR2I& b ) { m_gal->DrawSegment( a, b, thickness ); } ); }
for( SHAPE* shape : shapes ) delete shape; } }
void PCB_PAINTER::strokeText( const wxString& aText, const VECTOR2I& aPosition, const TEXT_ATTRIBUTES& aAttrs, const KIFONT::METRICS& aFontMetrics ) { KIFONT::FONT* font = aAttrs.m_Font;
if( !font ) font = KIFONT::FONT::GetFont( wxEmptyString, aAttrs.m_Bold, aAttrs.m_Italic );
m_gal->SetIsFill( font->IsOutline() ); m_gal->SetIsStroke( font->IsStroke() );
VECTOR2I pos( aPosition ); VECTOR2I fudge( KiROUND( 0.16 * aAttrs.m_StrokeWidth ), 0 );
RotatePoint( fudge, aAttrs.m_Angle );
if( ( aAttrs.m_Halign == GR_TEXT_H_ALIGN_LEFT && !aAttrs.m_Mirrored ) || ( aAttrs.m_Halign == GR_TEXT_H_ALIGN_RIGHT && aAttrs.m_Mirrored ) ) { pos -= fudge; } else if( ( aAttrs.m_Halign == GR_TEXT_H_ALIGN_RIGHT && !aAttrs.m_Mirrored ) || ( aAttrs.m_Halign == GR_TEXT_H_ALIGN_LEFT && aAttrs.m_Mirrored ) ) { pos += fudge; }
font->Draw( m_gal, aText, pos, aAttrs, aFontMetrics ); }
void PCB_PAINTER::draw( const PCB_REFERENCE_IMAGE* aBitmap, int aLayer ) { m_gal->Save(); m_gal->Translate( aBitmap->GetPosition() );
// When the image scale factor is not 1.0, we need to modify the actual as the image scale
// factor is similar to a local zoom
double img_scale = aBitmap->GetImageScale();
if( img_scale != 1.0 ) m_gal->Scale( VECTOR2D( img_scale, img_scale ) );
if( aBitmap->IsSelected() || aBitmap->IsBrightened() ) { COLOR4D color = m_pcbSettings.GetColor( aBitmap, LAYER_ANCHOR ); m_gal->SetIsStroke( true ); m_gal->SetStrokeColor( color ); m_gal->SetLineWidth( m_pcbSettings.m_outlineWidth * 2.0f ); m_gal->SetIsFill( false );
// Draws a bounding box.
VECTOR2D bm_size( aBitmap->GetSize() ); // bm_size is the actual image size in UI.
// but m_gal scale was previously set to img_scale
// so recalculate size relative to this image size.
bm_size.x /= img_scale; bm_size.y /= img_scale; VECTOR2D origin( -bm_size.x / 2.0, -bm_size.y / 2.0 ); VECTOR2D end = origin + bm_size;
m_gal->DrawRectangle( origin, end );
// Hard code reference images as opaque when selected. Otherwise cached layers will
// not be rendered under the selected image because cached layers are rendered after
// non-cached layers (e.g. bitmaps), which will have a closer Z order.
m_gal->DrawBitmap( *aBitmap->GetImage(), 1.0 ); } else m_gal->DrawBitmap( *aBitmap->GetImage(), m_pcbSettings.GetColor( aBitmap, aBitmap->GetLayer() ).a );
m_gal->Restore(); }
void PCB_PAINTER::draw( const PCB_TEXT* aText, int aLayer ) { wxString resolvedText( aText->GetShownText( true ) );
if( resolvedText.Length() == 0 || !( aText->GetAttributes().m_Visible || aLayer == LAYER_HIDDEN_TEXT ) ) return;
if( aLayer == LAYER_LOCKED_ITEM_SHADOW ) // happens only if locked
{ const COLOR4D color = m_pcbSettings.GetColor( aText, aLayer );
m_gal->SetIsFill( true ); m_gal->SetIsStroke( true ); m_gal->SetFillColor( color ); m_gal->SetStrokeColor( color ); m_gal->SetLineWidth( m_lockedShadowMargin );
SHAPE_POLY_SET poly; aText->TransformShapeToPolygon( poly, aText->GetLayer(), 0, m_maxError, ERROR_OUTSIDE ); m_gal->DrawPolygon( poly );
return; }
TEXT_ATTRIBUTES attrs = aText->GetAttributes(); const COLOR4D& color = m_pcbSettings.GetColor( aText, aLayer ); bool outline_mode = !viewer_settings()->m_ViewersDisplay.m_DisplayTextFill;
KIFONT::FONT* font = aText->GetFont();
if( !font ) { font = KIFONT::FONT::GetFont( m_pcbSettings.GetDefaultFont(), aText->IsBold(), aText->IsItalic() ); }
m_gal->SetStrokeColor( color ); m_gal->SetFillColor( color ); attrs.m_Angle = aText->GetDrawRotation();
if( aText->IsKnockout() ) { SHAPE_POLY_SET finalPoly; aText->TransformTextToPolySet( finalPoly, 0, m_maxError, ERROR_INSIDE ); finalPoly.Fracture( SHAPE_POLY_SET::PM_FAST );
m_gal->SetIsStroke( false ); m_gal->SetIsFill( true ); m_gal->DrawPolygon( finalPoly ); } else { if( outline_mode ) attrs.m_StrokeWidth = m_pcbSettings.m_outlineWidth; else attrs.m_StrokeWidth = getLineThickness( aText->GetEffectiveTextPenWidth() );
if( m_gal->IsFlippedX() && !( aText->GetLayerSet() & LSET::SideSpecificMask() ).any() ) { attrs.m_Mirrored = !attrs.m_Mirrored; attrs.m_Halign = static_cast<GR_TEXT_H_ALIGN_T>( -attrs.m_Halign ); }
std::vector<std::unique_ptr<KIFONT::GLYPH>>* cache = nullptr;
if( font->IsOutline() ) cache = aText->GetRenderCache( font, resolvedText );
if( cache ) { m_gal->SetLineWidth( attrs.m_StrokeWidth ); m_gal->DrawGlyphs( *cache ); } else { strokeText( resolvedText, aText->GetTextPos(), attrs, aText->GetFontMetrics() ); } }
// Draw the umbilical line for texts in footprints
FOOTPRINT* fp_parent = aText->GetParentFootprint();
if( fp_parent && aText->IsSelected() ) { m_gal->SetLineWidth( m_pcbSettings.m_outlineWidth ); m_gal->SetStrokeColor( m_pcbSettings.GetColor( nullptr, LAYER_ANCHOR ) ); m_gal->DrawLine( aText->GetTextPos(), fp_parent->GetPosition() ); } }
void PCB_PAINTER::draw( const PCB_TEXTBOX* aTextBox, int aLayer ) { if( aTextBox->Type() == PCB_TABLECELL_T ) { const PCB_TABLECELL* cell = static_cast<const PCB_TABLECELL*>( aTextBox );
if( cell->GetColSpan() == 0 || cell->GetRowSpan() == 0 ) return; }
COLOR4D color = m_pcbSettings.GetColor( aTextBox, aLayer ); int thickness = getLineThickness( aTextBox->GetWidth() ); LINE_STYLE lineStyle = aTextBox->GetStroke().GetLineStyle(); wxString resolvedText( aTextBox->GetShownText( true ) );
KIFONT::FONT* font = aTextBox->GetFont();
if( !font ) { font = KIFONT::FONT::GetFont( m_pcbSettings.GetDefaultFont(), aTextBox->IsBold(), aTextBox->IsItalic() ); }
if( aLayer == LAYER_LOCKED_ITEM_SHADOW ) // happens only if locked
{ const COLOR4D sh_color = m_pcbSettings.GetColor( aTextBox, aLayer );
m_gal->SetIsFill( true ); m_gal->SetIsStroke( false ); m_gal->SetFillColor( sh_color ); m_gal->SetStrokeColor( sh_color );
// Draw the box with a larger thickness than box thickness to show
// the shadow mask
std::vector<VECTOR2I> pts = aTextBox->GetCorners(); int line_thickness = std::max( thickness*3, pcbIUScale.mmToIU( 0.2 ) );
std::deque<VECTOR2D> dpts;
for( size_t ii = 0; ii < pts.size(); ++ii ) dpts.push_back( VECTOR2D( pts[ii] ) );
dpts.push_back( VECTOR2D( pts[0] ) );
m_gal->SetIsStroke( true ); m_gal->SetLineWidth( line_thickness ); m_gal->DrawPolygon( dpts ); }
if( aTextBox->Type() == PCB_TABLECELL_T ) { // Selection for tables is done with a background wash, so pass in nullptr to GetColor()
// so we just get the "normal" (un-selected/un-brightened) color for the borders.
color = m_pcbSettings.GetColor( nullptr, aLayer ); }
m_gal->SetFillColor( color ); m_gal->SetStrokeColor( color ); m_gal->SetIsFill( true ); m_gal->SetIsStroke( false );
if( aTextBox->Type() != PCB_TABLECELL_T && aTextBox->IsBorderEnabled() ) { if( lineStyle <= LINE_STYLE::FIRST_TYPE ) { if( thickness > 0 ) { std::vector<VECTOR2I> pts = aTextBox->GetCorners();
for( size_t ii = 0; ii < pts.size(); ++ii ) m_gal->DrawSegment( pts[ii], pts[( ii + 1 ) % pts.size()], thickness ); } } else { std::vector<SHAPE*> shapes = aTextBox->MakeEffectiveShapes( true );
for( SHAPE* shape : shapes ) { STROKE_PARAMS::Stroke( shape, lineStyle, thickness, &m_pcbSettings, [&]( const VECTOR2I& a, const VECTOR2I& b ) { m_gal->DrawSegment( a, b, thickness ); } ); }
for( SHAPE* shape : shapes ) delete shape; } }
if( resolvedText.Length() == 0 ) return;
TEXT_ATTRIBUTES attrs = aTextBox->GetAttributes(); attrs.m_StrokeWidth = getLineThickness( aTextBox->GetEffectiveTextPenWidth() );
if( m_gal->IsFlippedX() && !( aTextBox->GetLayerSet() & LSET::SideSpecificMask() ).any() ) { attrs.m_Mirrored = !attrs.m_Mirrored; attrs.m_Halign = static_cast<GR_TEXT_H_ALIGN_T>( -attrs.m_Halign ); }
if( aLayer == LAYER_LOCKED_ITEM_SHADOW ) { // For now, the textbox is a filled shape.
// so the text drawn on LAYER_LOCKED_ITEM_SHADOW with a thick width is disabled
// If enabled, the thick text position must be offsetted to be exactly on the
// initial text, which is not easy, depending on its rotation and justification.
#if 0
const COLOR4D sh_color = m_pcbSettings.GetColor( aTextBox, aLayer ); m_gal->SetFillColor( sh_color ); m_gal->SetStrokeColor( sh_color ); attrs.m_StrokeWidth += m_lockedShadowMargin; #else
return; #endif
}
std::vector<std::unique_ptr<KIFONT::GLYPH>>* cache = nullptr;
if( font->IsOutline() ) cache = aTextBox->GetRenderCache( font, resolvedText );
if( cache ) { m_gal->SetLineWidth( attrs.m_StrokeWidth ); m_gal->DrawGlyphs( *cache ); } else { strokeText( resolvedText, aTextBox->GetDrawPos(), attrs, aTextBox->GetFontMetrics() ); } }
void PCB_PAINTER::draw( const PCB_TABLE* aTable, int aLayer ) { for( PCB_TABLECELL* cell : aTable->GetCells() ) draw( static_cast<PCB_TEXTBOX*>( cell ), aLayer );
VECTOR2I pos = aTable->GetPosition(); VECTOR2I end = aTable->GetEnd();
// Selection for tables is done with a background wash, so pass in nullptr to GetColor()
// so we just get the "normal" (un-selected/un-brightened) color for the borders.
COLOR4D color = m_pcbSettings.GetColor( nullptr, aLayer ); int lineWidth; LINE_STYLE lineStyle;
auto setupStroke = [&]( const STROKE_PARAMS& stroke ) { lineWidth = getLineThickness( stroke.GetWidth() ); lineStyle = stroke.GetLineStyle();
m_gal->SetIsFill( false ); m_gal->SetIsStroke( true ); m_gal->SetStrokeColor( color ); m_gal->SetLineWidth( lineWidth ); };
auto strokeShape = [&]( const SHAPE& shape ) { STROKE_PARAMS::Stroke( &shape, lineStyle, lineWidth, &m_pcbSettings, [&]( const VECTOR2I& a, const VECTOR2I& b ) { // DrawLine has problem with 0 length lines so enforce minimum
if( a == b ) m_gal->DrawLine( a+1, b ); else m_gal->DrawLine( a, b ); } ); };
auto strokeLine = [&]( const VECTOR2I& ptA, const VECTOR2I& ptB ) { if( lineStyle <= LINE_STYLE::FIRST_TYPE ) { m_gal->DrawLine( ptA, ptB ); } else { SHAPE_SEGMENT seg( ptA, ptB ); strokeShape( seg ); } };
auto strokeRect = [&]( const VECTOR2I& ptA, const VECTOR2I& ptB ) { if( lineStyle <= LINE_STYLE::FIRST_TYPE ) { m_gal->DrawRectangle( ptA, ptB ); } else { SHAPE_RECT rect( BOX2I( ptA, ptB - ptA ) ); strokeShape( rect ); } };
if( aTable->GetSeparatorsStroke().GetWidth() >= 0 ) { setupStroke( aTable->GetSeparatorsStroke() );
if( aTable->StrokeColumns() ) { for( int col = 0; col < aTable->GetColCount() - 1; ++col ) { for( int row = 0; row < aTable->GetRowCount(); ++row ) { PCB_TABLECELL* cell = aTable->GetCell( row, col ); VECTOR2I topRight( cell->GetEndX(), cell->GetStartY() );
if( cell->GetColSpan() > 0 && cell->GetRowSpan() > 0 ) strokeLine( topRight, cell->GetEnd() ); } } }
if( aTable->StrokeRows() ) { for( int row = 0; row < aTable->GetRowCount() - 1; ++row ) { for( int col = 0; col < aTable->GetColCount(); ++col ) { PCB_TABLECELL* cell = aTable->GetCell( row, col ); VECTOR2I botLeft( cell->GetStartX(), cell->GetEndY() );
if( cell->GetColSpan() > 0 && cell->GetRowSpan() > 0 ) strokeLine( botLeft, cell->GetEnd() ); } } } }
if( aTable->GetBorderStroke().GetWidth() >= 0 ) { setupStroke( aTable->GetBorderStroke() );
if( aTable->StrokeHeader() ) { PCB_TABLECELL* cell = aTable->GetCell( 0, 0 ); strokeLine( VECTOR2I( pos.x, cell->GetEndY() ), VECTOR2I( end.x, cell->GetEndY() ) ); }
if( aTable->StrokeExternal() ) strokeRect( pos, end ); }
// Highlight selected tablecells with a background wash.
for( PCB_TABLECELL* cell : aTable->GetCells() ) { if( aTable->IsSelected() || cell->IsSelected() ) { std::vector<VECTOR2I> corners = cell->GetCorners(); std::deque<VECTOR2D> pts;
pts.insert( pts.end(), corners.begin(), corners.end() );
m_gal->SetFillColor( color.WithAlpha( 0.5 ) ); m_gal->SetIsFill( true ); m_gal->SetIsStroke( false ); m_gal->DrawPolygon( pts ); } } }
void PCB_PAINTER::draw( const FOOTPRINT* aFootprint, int aLayer ) { if( aLayer == LAYER_ANCHOR ) { const COLOR4D color = m_pcbSettings.GetColor( aFootprint, aLayer );
// Keep the size and width constant, not related to the scale because the anchor
// is just a marker on screen
double anchorSize = 5.0 / m_gal->GetWorldScale(); // 5 pixels size
double anchorThickness = 1.0 / m_gal->GetWorldScale(); // 1 pixels width
// Draw anchor
m_gal->SetIsFill( false ); m_gal->SetIsStroke( true ); m_gal->SetStrokeColor( color ); m_gal->SetLineWidth( anchorThickness );
VECTOR2D center = aFootprint->GetPosition(); m_gal->DrawLine( center - VECTOR2D( anchorSize, 0 ), center + VECTOR2D( anchorSize, 0 ) ); m_gal->DrawLine( center - VECTOR2D( 0, anchorSize ), center + VECTOR2D( 0, anchorSize ) ); }
if( aLayer == LAYER_LOCKED_ITEM_SHADOW && m_frameType == FRAME_PCB_EDITOR ) // happens only if locked
{ const COLOR4D color = m_pcbSettings.GetColor( aFootprint, aLayer );
m_gal->SetIsFill( true ); m_gal->SetIsStroke( false ); m_gal->SetFillColor( color );
#if 0 // GetBoundingHull() can be very slow, especially for logos imported from graphics
const SHAPE_POLY_SET& poly = aFootprint->GetBoundingHull(); m_gal->DrawPolygon( poly ); #else
BOX2I bbox = aFootprint->GetBoundingBox( false, false ); VECTOR2I topLeft = bbox.GetPosition(); VECTOR2I botRight = bbox.GetPosition() + bbox.GetSize();
m_gal->DrawRectangle( topLeft, botRight );
// Use segments to produce a margin with rounded corners
m_gal->DrawSegment( topLeft, VECTOR2I( botRight.x, topLeft.y ), m_lockedShadowMargin ); m_gal->DrawSegment( VECTOR2I( botRight.x, topLeft.y ), botRight, m_lockedShadowMargin ); m_gal->DrawSegment( botRight, VECTOR2I( topLeft.x, botRight.y ), m_lockedShadowMargin ); m_gal->DrawSegment( VECTOR2I( topLeft.x, botRight.y ), topLeft, m_lockedShadowMargin ); #endif
}
if( aLayer == LAYER_CONFLICTS_SHADOW ) { const SHAPE_POLY_SET& frontpoly = aFootprint->GetCourtyard( F_CrtYd ); const SHAPE_POLY_SET& backpoly = aFootprint->GetCourtyard( B_CrtYd );
const COLOR4D color = m_pcbSettings.GetColor( aFootprint, aLayer );
m_gal->SetIsFill( true ); m_gal->SetIsStroke( false ); m_gal->SetFillColor( color );
if( frontpoly.OutlineCount() > 0 ) m_gal->DrawPolygon( frontpoly );
if( backpoly.OutlineCount() > 0 ) m_gal->DrawPolygon( backpoly ); } }
void PCB_PAINTER::draw( const PCB_GROUP* aGroup, int aLayer ) { if( aLayer == LAYER_ANCHOR ) { if( aGroup->IsSelected() && !( aGroup->GetParent() && aGroup->GetParent()->IsSelected() ) ) { // Selected on our own; draw enclosing box
} else if( aGroup->IsEntered() ) { // Entered group; draw enclosing box
} else { // Neither selected nor entered; draw nothing at the group level (ie: only draw
// its members)
return; }
const COLOR4D color = m_pcbSettings.GetColor( aGroup, LAYER_ANCHOR );
m_gal->SetStrokeColor( color ); m_gal->SetLineWidth( m_pcbSettings.m_outlineWidth * 2.0f );
BOX2I bbox = aGroup->GetBoundingBox(); VECTOR2I topLeft = bbox.GetPosition(); VECTOR2I width = VECTOR2I( bbox.GetWidth(), 0 ); VECTOR2I height = VECTOR2I( 0, bbox.GetHeight() );
m_gal->DrawLine( topLeft, topLeft + width ); m_gal->DrawLine( topLeft + width, topLeft + width + height ); m_gal->DrawLine( topLeft + width + height, topLeft + height ); m_gal->DrawLine( topLeft + height, topLeft );
wxString name = aGroup->GetName();
if( name.IsEmpty() ) return;
int ptSize = 12; int scaledSize = abs( KiROUND( m_gal->GetScreenWorldMatrix().GetScale().x * ptSize ) ); int unscaledSize = pcbIUScale.MilsToIU( ptSize );
// Scale by zoom a bit, but not too much
int textSize = ( scaledSize + ( unscaledSize * 2 ) ) / 3; VECTOR2I textOffset = VECTOR2I( width.x / 2, -KiROUND( textSize * 0.5 ) ); VECTOR2I titleHeight = VECTOR2I( 0, KiROUND( textSize * 2.0 ) );
if( PrintableCharCount( name ) * textSize < bbox.GetWidth() ) { m_gal->DrawLine( topLeft, topLeft - titleHeight ); m_gal->DrawLine( topLeft - titleHeight, topLeft + width - titleHeight ); m_gal->DrawLine( topLeft + width - titleHeight, topLeft + width );
TEXT_ATTRIBUTES attrs; attrs.m_Italic = true; attrs.m_Halign = GR_TEXT_H_ALIGN_CENTER; attrs.m_Valign = GR_TEXT_V_ALIGN_BOTTOM; attrs.m_Size = VECTOR2I( textSize, textSize ); attrs.m_StrokeWidth = GetPenSizeForNormal( textSize );
KIFONT::FONT::GetFont()->Draw( m_gal, aGroup->GetName(), topLeft + textOffset, attrs, aGroup->GetFontMetrics() ); } } }
void PCB_PAINTER::draw( const ZONE* aZone, int aLayer ) { if( aLayer == LAYER_CONFLICTS_SHADOW ) { COLOR4D color = m_pcbSettings.GetColor( aZone, aLayer );
m_gal->SetIsFill( true ); m_gal->SetIsStroke( false ); m_gal->SetFillColor( color );
m_gal->DrawPolygon( aZone->Outline()->Outline( 0 ) ); return; }
/*
* aLayer will be the virtual zone layer (LAYER_ZONE_START, ... in GAL_LAYER_ID) * This is used for draw ordering in the GAL. * The color for the zone comes from the associated copper layer ( aLayer - LAYER_ZONE_START ) * and the visibility comes from the combination of that copper layer and LAYER_ZONES */ PCB_LAYER_ID layer;
if( IsZoneFillLayer( aLayer ) ) layer = ToLAYER_ID( aLayer - LAYER_ZONE_START ); else layer = ToLAYER_ID( aLayer );
if( !aZone->IsOnLayer( layer ) ) return;
COLOR4D color = m_pcbSettings.GetColor( aZone, layer ); std::deque<VECTOR2D> corners; ZONE_DISPLAY_MODE displayMode = m_pcbSettings.m_ZoneDisplayMode;
// Draw the outline
if( !IsZoneFillLayer( aLayer ) ) { const SHAPE_POLY_SET* outline = aZone->Outline(); bool allowDrawOutline = aZone->GetHatchStyle() != ZONE_BORDER_DISPLAY_STYLE::INVISIBLE_BORDER;
if( allowDrawOutline && !m_pcbSettings.m_isPrinting && outline && outline->OutlineCount() > 0 ) { m_gal->SetStrokeColor( color.a > 0.0 ? color.WithAlpha( 1.0 ) : color ); m_gal->SetIsFill( false ); m_gal->SetIsStroke( true ); m_gal->SetLineWidth( m_pcbSettings.m_outlineWidth );
// Draw each contour (main contour and holes)
/*
* m_gal->DrawPolygon( *outline ); * should be enough, but currently does not work to draw holes contours in a complex * polygon so each contour is draw as a simple polygon */
// Draw the main contour(s?)
for( int ii = 0; ii < outline->OutlineCount(); ++ii ) { m_gal->DrawPolyline( outline->COutline( ii ) );
// Draw holes
int holes_count = outline->HoleCount( ii );
for( int jj = 0; jj < holes_count; ++jj ) m_gal->DrawPolyline( outline->CHole( ii, jj ) ); }
// Draw hatch lines
for( const SEG& hatchLine : aZone->GetHatchLines() ) m_gal->DrawLine( hatchLine.A, hatchLine.B ); } }
// Draw the filling
if( IsZoneFillLayer( aLayer ) && ( displayMode == ZONE_DISPLAY_MODE::SHOW_FILLED || displayMode == ZONE_DISPLAY_MODE::SHOW_FRACTURE_BORDERS || displayMode == ZONE_DISPLAY_MODE::SHOW_TRIANGULATION ) ) { const std::shared_ptr<SHAPE_POLY_SET>& polySet = aZone->GetFilledPolysList( layer );
if( polySet->OutlineCount() == 0 ) // Nothing to draw
return;
m_gal->SetStrokeColor( color ); m_gal->SetFillColor( color ); m_gal->SetLineWidth( 0 );
if( displayMode == ZONE_DISPLAY_MODE::SHOW_FILLED ) { m_gal->SetIsFill( true ); m_gal->SetIsStroke( false ); } else { m_gal->SetIsFill( false ); m_gal->SetIsStroke( true ); }
// On Opengl, a not convex filled polygon is usually drawn by using triangles
// as primitives. CacheTriangulation() can create basic triangle primitives to
// draw the polygon solid shape on Opengl. GLU tessellation is much slower,
// so currently we are using our tessellation.
if( m_gal->IsOpenGlEngine() && !polySet->IsTriangulationUpToDate() ) polySet->CacheTriangulation( true, true );
m_gal->DrawPolygon( *polySet, displayMode == ZONE_DISPLAY_MODE::SHOW_TRIANGULATION ); } }
void PCB_PAINTER::draw( const PCB_DIMENSION_BASE* aDimension, int aLayer ) { const COLOR4D& color = m_pcbSettings.GetColor( aDimension, aLayer );
m_gal->SetStrokeColor( color ); m_gal->SetFillColor( color ); m_gal->SetIsFill( false ); m_gal->SetIsStroke( true );
bool outline_mode = !viewer_settings()->m_ViewersDisplay.m_DisplayGraphicsFill;
if( outline_mode ) m_gal->SetLineWidth( m_pcbSettings.m_outlineWidth ); else m_gal->SetLineWidth( getLineThickness( aDimension->GetLineThickness() ) );
// Draw dimension shapes
// TODO(JE) lift this out
for( const std::shared_ptr<SHAPE>& shape : aDimension->GetShapes() ) { switch( shape->Type() ) { case SH_SEGMENT: { const SEG& seg = static_cast<const SHAPE_SEGMENT*>( shape.get() )->GetSeg(); m_gal->DrawLine( seg.A, seg.B ); break; }
case SH_CIRCLE: { int radius = static_cast<const SHAPE_CIRCLE*>( shape.get() )->GetRadius(); m_gal->DrawCircle( shape->Centre(), radius ); break; }
default: break; } }
// Draw text
wxString resolvedText = aDimension->GetShownText( true ); TEXT_ATTRIBUTES attrs = aDimension->GetAttributes();
if( m_gal->IsFlippedX() && !( aDimension->GetLayerSet() & LSET::SideSpecificMask() ).any() ) attrs.m_Mirrored = !attrs.m_Mirrored;
if( outline_mode ) attrs.m_StrokeWidth = m_pcbSettings.m_outlineWidth; else attrs.m_StrokeWidth = getLineThickness( aDimension->GetEffectiveTextPenWidth() );
std::vector<std::unique_ptr<KIFONT::GLYPH>>* cache = nullptr;
if( aDimension->GetFont() && aDimension->GetFont()->IsOutline() ) cache = aDimension->GetRenderCache( aDimension->GetFont(), resolvedText );
if( cache ) { for( const std::unique_ptr<KIFONT::GLYPH>& glyph : *cache ) m_gal->DrawGlyph( *glyph.get() ); } else { strokeText( resolvedText, aDimension->GetTextPos(), attrs, aDimension->GetFontMetrics() ); } }
void PCB_PAINTER::draw( const PCB_TARGET* aTarget ) { const COLOR4D& strokeColor = m_pcbSettings.GetColor( aTarget, aTarget->GetLayer() ); VECTOR2D position( aTarget->GetPosition() ); double size, radius;
m_gal->SetLineWidth( getLineThickness( aTarget->GetWidth() ) ); m_gal->SetStrokeColor( strokeColor ); m_gal->SetIsFill( false ); m_gal->SetIsStroke( true );
m_gal->Save(); m_gal->Translate( position );
if( aTarget->GetShape() ) { // shape x
m_gal->Rotate( M_PI / 4.0 ); size = 2.0 * aTarget->GetSize() / 3.0; radius = aTarget->GetSize() / 2.0; } else { // shape +
size = aTarget->GetSize() / 2.0; radius = aTarget->GetSize() / 3.0; }
m_gal->DrawLine( VECTOR2D( -size, 0.0 ), VECTOR2D( size, 0.0 ) ); m_gal->DrawLine( VECTOR2D( 0.0, -size ), VECTOR2D( 0.0, size ) ); m_gal->DrawCircle( VECTOR2D( 0.0, 0.0 ), radius );
m_gal->Restore(); }
void PCB_PAINTER::draw( const PCB_MARKER* aMarker, int aLayer ) { bool isShadow = aLayer == LAYER_MARKER_SHADOWS;
// Don't paint invisible markers.
// It would be nice to do this through layer dependencies but we can't do an "or" there today
if( aMarker->GetBoard() && !aMarker->GetBoard()->IsElementVisible( aMarker->GetColorLayer() ) ) return;
const_cast<PCB_MARKER*>( aMarker )->SetZoom( 1.0 / sqrt( m_gal->GetZoomFactor() ) );
SHAPE_LINE_CHAIN polygon; aMarker->ShapeToPolygon( polygon );
COLOR4D color = m_pcbSettings.GetColor( aMarker, isShadow ? LAYER_MARKER_SHADOWS : aMarker->GetColorLayer() );
m_gal->Save(); m_gal->Translate( aMarker->GetPosition() );
if( isShadow ) { m_gal->SetStrokeColor( color ); m_gal->SetIsStroke( true ); m_gal->SetLineWidth( aMarker->MarkerScale() ); } else { m_gal->SetFillColor( color ); m_gal->SetIsFill( true ); }
m_gal->DrawPolygon( polygon ); m_gal->Restore(); }
const double PCB_RENDER_SETTINGS::MAX_FONT_SIZE = pcbIUScale.mmToIU( 10.0 );
|