|
|
/************************************//* routines to handle bezier curves *//************************************/
#include <fctsys.h>
#include <bezier_curves.h>
#define add_segment(segment) if(s_bezier_Points_Buffer[s_bezier_Points_Buffer.size()-1] != segment) s_bezier_Points_Buffer.push_back(segment);
// Local variables:
static std::vector<wxPoint> s_bezier_Points_Buffer;
static int bezier_recursion_limit = 12;static double bezier_approximation_scale = 0.5; // 1
static double bezier_curve_collinearity_epsilon = 1e-30;static double bezier_curve_angle_tolerance_epsilon = 0.0001;static double bezier_distance_tolerance_square; // derived by approximation_scale
static double bezier_angle_tolerance = 0.0;static double bezier_cusp_limit = 0.0;
// Local functions:
static void recursive_bezier( int x1, int y1, int x2, int y2, int x3, int y3, int level );static void recursive_bezier( int x1, int y1, int x2, int y2, int x3, int y3, int x4, int y4, int level );
/***********************************************************************************/
std::vector<wxPoint> Bezier2Poly( wxPoint c1, wxPoint c2, wxPoint c3, wxPoint c4 ){ return Bezier2Poly( c1.x, c1.y, c2.x, c2.y, c3.x, c3.y, c4.x, c4.y );}
std::vector<wxPoint> Bezier2Poly( wxPoint c1, wxPoint c2, wxPoint c3 ){ return Bezier2Poly( c1.x, c1.y, c2.x, c2.y, c3.x, c3.y );}
inline double calc_sq_distance( int x1, int y1, int x2, int y2 ){ int dx = x2 - x1; int dy = y2 - y1;
return (double)dx * dx + (double)dy * dy;}
inline double sqrt_len( int dx, int dy ){ return ((double)dx * dx) + ((double)dy * dy);}
std::vector<wxPoint> Bezier2Poly( int x1, int y1, int x2, int y2, int x3, int y3 ){ s_bezier_Points_Buffer.clear();
bezier_distance_tolerance_square = 0.5 / bezier_approximation_scale; bezier_distance_tolerance_square *= bezier_distance_tolerance_square; s_bezier_Points_Buffer.push_back( wxPoint( x1, y1 ) ); recursive_bezier( x1, y1, x2, y2, x3, y3, 0 ); s_bezier_Points_Buffer.push_back( wxPoint( x3, y3 ) );
wxLogDebug( wxT( "Bezier Conversion - End (%d vertex)" ), s_bezier_Points_Buffer.size() ); return s_bezier_Points_Buffer;}
std::vector<wxPoint> Bezier2Poly( int x1, int y1, int x2, int y2, int x3, int y3, int x4, int y4 ){ s_bezier_Points_Buffer.clear(); bezier_distance_tolerance_square = 0.5 / bezier_approximation_scale; bezier_distance_tolerance_square *= bezier_distance_tolerance_square;
s_bezier_Points_Buffer.push_back( wxPoint( x1, y1 ) ); recursive_bezier( x1, y1, x2, y2, x3, y3, x4, y4, 0 ); s_bezier_Points_Buffer.push_back( wxPoint( x4, y4 ) ); wxLogDebug( wxT( "Bezier Conversion - End (%d vertex)" ), s_bezier_Points_Buffer.size() ); return s_bezier_Points_Buffer;}
void recursive_bezier( int x1, int y1, int x2, int y2, int x3, int y3, int level ){ if( abs( level ) > bezier_recursion_limit ) { return; }
// Calculate all the mid-points of the line segments
//----------------------
int x12 = (x1 + x2) / 2; int y12 = (y1 + y2) / 2; int x23 = (x2 + x3) / 2; int y23 = (y2 + y3) / 2; int x123 = (x12 + x23) / 2; int y123 = (y12 + y23) / 2;
int dx = x3 - x1; int dy = y3 - y1; double d = fabs( ((double) (x2 - x3) * dy) - ((double) (y2 - y3) * dx ) ); double da;
if( d > bezier_curve_collinearity_epsilon ) { // Regular case
//-----------------
if( d * d <= bezier_distance_tolerance_square * (dx * dx + dy * dy) ) { // If the curvature doesn't exceed the distance_tolerance value
// we tend to finish subdivisions.
//----------------------
if( bezier_angle_tolerance < bezier_curve_angle_tolerance_epsilon ) { add_segment( wxPoint( x123, y123 ) ); return; }
// Angle & Cusp Condition
//----------------------
da = fabs( atan2( (double) ( y3 - y2 ), (double) ( x3 - x2 ) ) - atan2( (double) ( y2 - y1 ), (double) ( x2 - x1 ) ) ); if( da >=M_PI ) da = 2 * M_PI - da;
if( da < bezier_angle_tolerance ) { // Finally we can stop the recursion
//----------------------
add_segment( wxPoint( x123, y123 ) ); return; } } } else { // Collinear case
//------------------
da = sqrt_len(dx, dy); if( da == 0 ) { d = calc_sq_distance( x1, y1, x2, y2 ); } else { d = ( (double)(x2 - x1) * dx + (double)(y2 - y1) * dy ) / da; if( d > 0 && d < 1 ) { // Simple collinear case, 1---2---3
// We can leave just two endpoints
return; } if( d <= 0 ) d = calc_sq_distance( x2, y2, x1, y1 ); else if( d >= 1 ) d = calc_sq_distance( x2, y2, x3, y3 ); else d = calc_sq_distance( x2, y2, x1 + (int) d * dx, y1 + (int) d * dy ); } if( d < bezier_distance_tolerance_square ) { add_segment( wxPoint( x2, y2 ) ); return; } }
// Continue subdivision
//----------------------
recursive_bezier( x1, y1, x12, y12, x123, y123, level + 1 ); recursive_bezier( x123, y123, x23, y23, x3, y3, -(level + 1) );}
void recursive_bezier( int x1, int y1, int x2, int y2, int x3, int y3, int x4, int y4, int level ){ if( abs( level ) > bezier_recursion_limit ) { return; }
// Calculate all the mid-points of the line segments
//----------------------
int x12 = (x1 + x2) / 2; int y12 = (y1 + y2) / 2; int x23 = (x2 + x3) / 2; int y23 = (y2 + y3) / 2; int x34 = (x3 + x4) / 2; int y34 = (y3 + y4) / 2; int x123 = (x12 + x23) / 2; int y123 = (y12 + y23) / 2; int x234 = (x23 + x34) / 2; int y234 = (y23 + y34) / 2; int x1234 = (x123 + x234) / 2; int y1234 = (y123 + y234) / 2;
// Try to approximate the full cubic curve by a single straight line
//------------------
int dx = x4 - x1; int dy = y4 - y1;
double d2 = fabs( (double) ( (x2 - x4) * dy - (y2 - y4) * dx ) ); double d3 = fabs( (double) ( (x3 - x4) * dy - (y3 - y4) * dx ) ); double da1, da2, k;
switch( (int(d2 > bezier_curve_collinearity_epsilon) << 1) + int(d3 > bezier_curve_collinearity_epsilon) ) { case 0:
// All collinear OR p1==p4
//----------------------
k = dx * dx + dy * dy; if( k == 0 ) { d2 = calc_sq_distance( x1, y1, x2, y2 ); d3 = calc_sq_distance( x4, y4, x3, y3 ); } else { k = 1 / k; da1 = x2 - x1; da2 = y2 - y1; d2 = k * (da1 * dx + da2 * dy); da1 = x3 - x1; da2 = y3 - y1; d3 = k * (da1 * dx + da2 * dy); if( d2 > 0 && d2 < 1 && d3 > 0 && d3 < 1 ) { // Simple collinear case, 1---2---3---4
// We can leave just two endpoints
return; } if( d2 <= 0 ) d2 = calc_sq_distance( x2, y2, x1, y1 ); else if( d2 >= 1 ) d2 = calc_sq_distance( x2, y2, x4, y4 ); else d2 = calc_sq_distance( x2, y2, x1 + (int) d2 * dx, y1 + (int) d2 * dy );
if( d3 <= 0 ) d3 = calc_sq_distance( x3, y3, x1, y1 ); else if( d3 >= 1 ) d3 = calc_sq_distance( x3, y3, x4, y4 ); else d3 = calc_sq_distance( x3, y3, x1 + (int) d3 * dx, y1 + (int) d3 * dy ); } if( d2 > d3 ) { if( d2 < bezier_distance_tolerance_square ) { add_segment( wxPoint( x2, y2 ) ); return; } } else { if( d3 < bezier_distance_tolerance_square ) { add_segment( wxPoint( x3, y3 ) ); return; } } break;
case 1:
// p1,p2,p4 are collinear, p3 is significant
//----------------------
if( d3 * d3 <= bezier_distance_tolerance_square * sqrt_len(dx, dy) ) { if( bezier_angle_tolerance < bezier_curve_angle_tolerance_epsilon ) { add_segment( wxPoint( x23, y23 ) ); return; }
// Angle Condition
//----------------------
da1 = fabs( atan2( (double) ( y4 - y3 ), (double) ( x4 - x3 ) ) - atan2( (double) ( y3 - y2 ), (double) ( x3 - x2 ) ) ); if( da1 >= M_PI ) da1 = 2 * M_PI - da1;
if( da1 < bezier_angle_tolerance ) { add_segment( wxPoint( x2, y2 ) ); add_segment( wxPoint( x3, y3 ) ); return; }
if( bezier_cusp_limit != 0.0 ) { if( da1 > bezier_cusp_limit ) { add_segment( wxPoint( x3, y3 ) ); return; } } } break;
case 2:
// p1,p3,p4 are collinear, p2 is significant
//----------------------
if( d2 * d2 <= bezier_distance_tolerance_square * sqrt_len(dx, dy) ) { if( bezier_angle_tolerance < bezier_curve_angle_tolerance_epsilon ) { add_segment( wxPoint( x23, y23 ) ); return; }
// Angle Condition
//----------------------
da1 = fabs( atan2( (double) ( y3 - y2 ), (double) ( x3 - x2 ) ) - atan2( (double) ( y2 - y1 ), (double) ( x2 - x1 ) ) ); if( da1 >= M_PI ) da1 = 2 * M_PI - da1;
if( da1 < bezier_angle_tolerance ) { add_segment( wxPoint( x2, y2 ) ); add_segment( wxPoint( x3, y3 ) ); return; }
if( bezier_cusp_limit != 0.0 ) { if( da1 > bezier_cusp_limit ) { add_segment( wxPoint( x2, y2 ) ); return; } } } break;
case 3:
// Regular case
//-----------------
if( (d2 + d3) * (d2 + d3) <= bezier_distance_tolerance_square * sqrt_len(dx, dy) ) { // If the curvature doesn't exceed the distance_tolerance value
// we tend to finish subdivisions.
//----------------------
if( bezier_angle_tolerance < bezier_curve_angle_tolerance_epsilon ) { add_segment( wxPoint( x23, y23 ) ); return; }
// Angle & Cusp Condition
//----------------------
k = atan2( (double) ( y3 - y2 ), (double) ( x3 - x2 ) ); da1 = fabs( k - atan2( (double) ( y2 - y1 ), (double) ( x2 - x1 ) ) ); da2 = fabs( atan2( (double) ( y4 - y3 ), (double) ( x4 - x3 ) ) - k ); if( da1 >= M_PI ) da1 = 2 * M_PI - da1; if( da2 >= M_PI ) da2 = 2 * M_PI - da2;
if( da1 + da2 < bezier_angle_tolerance ) { // Finally we can stop the recursion
//----------------------
add_segment( wxPoint( x23, y23 ) ); return; }
if( bezier_cusp_limit != 0.0 ) { if( da1 > bezier_cusp_limit ) { add_segment( wxPoint( x2, y2 ) ); return; }
if( da2 > bezier_cusp_limit ) { add_segment( wxPoint( x3, y3 ) ); return; } } } break; }
// Continue subdivision
//----------------------
recursive_bezier( x1, y1, x12, y12, x123, y123, x1234, y1234, level + 1 ); recursive_bezier( x1234, y1234, x234, y234, x34, y34, x4, y4, level + 1 );}
|