|
|
@ -6,11 +6,11 @@ |
|
|
|
#include "bezier_curves.h"
|
|
|
|
|
|
|
|
|
|
|
|
#define add_segment(segment) if(bezier_points[bezier_points.size()-1] != segment) bezier_points.push_back(segment);
|
|
|
|
#define add_segment(segment) if(s_bezier_Points_Buffer[s_bezier_Points_Buffer.size()-1] != segment) s_bezier_Points_Buffer.push_back(segment);
|
|
|
|
|
|
|
|
|
|
|
|
// Local variables:
|
|
|
|
static std::vector<wxPoint> bezier_points; |
|
|
|
static std::vector<wxPoint> s_bezier_Points_Buffer; |
|
|
|
|
|
|
|
static int bezier_recursion_limit = 12; |
|
|
|
static double bezier_approximation_scale = 0.5; // 1
|
|
|
@ -36,53 +36,70 @@ static void recursive_bezier( int x1, |
|
|
|
/***********************************************************************************/ |
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Function Bezier2Poly |
|
|
|
* convert a Bezier curve to a polyline |
|
|
|
* @return a std::vector<wxPoint> containing the points of the polyline |
|
|
|
* @param C1, c2, c3, c4 = wxPoints of the Bezier curve |
|
|
|
*/ |
|
|
|
std::vector<wxPoint> Bezier2Poly( wxPoint c1, wxPoint c2, wxPoint c3, wxPoint c4 ) |
|
|
|
{ |
|
|
|
return Bezier2Poly( c1.x, c1.y, c2.x, c2.y, c3.x, c3.y, c4.x, c4.y ); |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Function Bezier2Poly |
|
|
|
* convert a Bezier curve to a polyline |
|
|
|
* @return a std::vector<wxPoint> containing the points of the polyline |
|
|
|
* @param C1, c2, c3 = wxPoints of the Bezier curve |
|
|
|
*/ |
|
|
|
std::vector<wxPoint> Bezier2Poly( wxPoint c1, wxPoint c2, wxPoint c3 ) |
|
|
|
{ |
|
|
|
return Bezier2Poly( c1.x, c1.y, c2.x, c2.y, c3.x, c3.y ); |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
inline int calc_sq_distance( int x1, int y1, int x2, int y2 ) |
|
|
|
inline double calc_sq_distance( int x1, int y1, int x2, int y2 ) |
|
|
|
{ |
|
|
|
int dx = x2 - x1; |
|
|
|
int dy = y2 - y1; |
|
|
|
|
|
|
|
return dx * dx + dy * dy; |
|
|
|
return (double)dx * dx + (double)dy * dy; |
|
|
|
} |
|
|
|
|
|
|
|
inline double sqrt_len( int dx, int dy ) |
|
|
|
{ |
|
|
|
return ((double)dx * dx) + ((double)dy * dy); |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
std::vector<wxPoint> Bezier2Poly( int x1, int y1, int x2, int y2, int x3, int y3 ) |
|
|
|
{ |
|
|
|
bezier_points.clear(); |
|
|
|
s_bezier_Points_Buffer.clear(); |
|
|
|
|
|
|
|
bezier_distance_tolerance_square = 0.5 / bezier_approximation_scale; |
|
|
|
bezier_distance_tolerance_square *= bezier_distance_tolerance_square; |
|
|
|
bezier_points.push_back( wxPoint( x1, y1 ) ); |
|
|
|
s_bezier_Points_Buffer.push_back( wxPoint( x1, y1 ) ); |
|
|
|
recursive_bezier( x1, y1, x2, y2, x3, y3, 0 ); |
|
|
|
bezier_points.push_back( wxPoint( x3, y3 ) ); |
|
|
|
s_bezier_Points_Buffer.push_back( wxPoint( x3, y3 ) ); |
|
|
|
|
|
|
|
wxLogDebug( wxT( "Bezier Conversion - End (%d vertex)" ), bezier_points.size() ); |
|
|
|
return bezier_points; |
|
|
|
wxLogDebug( wxT( "Bezier Conversion - End (%d vertex)" ), s_bezier_Points_Buffer.size() ); |
|
|
|
return s_bezier_Points_Buffer; |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
std::vector<wxPoint> Bezier2Poly( int x1, int y1, int x2, int y2, int x3, int y3, int x4, int y4 ) |
|
|
|
{ |
|
|
|
bezier_points.clear(); |
|
|
|
s_bezier_Points_Buffer.clear(); |
|
|
|
bezier_distance_tolerance_square = 0.5 / bezier_approximation_scale; |
|
|
|
bezier_distance_tolerance_square *= bezier_distance_tolerance_square; |
|
|
|
|
|
|
|
bezier_points.push_back( wxPoint( x1, y1 ) ); |
|
|
|
s_bezier_Points_Buffer.push_back( wxPoint( x1, y1 ) ); |
|
|
|
recursive_bezier( x1, y1, x2, y2, x3, y3, x4, y4, 0 ); |
|
|
|
bezier_points.push_back( wxPoint( x4, y4 ) ); |
|
|
|
wxLogDebug( wxT( "Bezier Conversion - End (%d vertex)" ), bezier_points.size() ); |
|
|
|
return bezier_points; |
|
|
|
s_bezier_Points_Buffer.push_back( wxPoint( x4, y4 ) ); |
|
|
|
wxLogDebug( wxT( "Bezier Conversion - End (%d vertex)" ), s_bezier_Points_Buffer.size() ); |
|
|
|
return s_bezier_Points_Buffer; |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
@ -104,7 +121,7 @@ void recursive_bezier( int x1, int y1, int x2, int y2, int x3, int y3, int level |
|
|
|
|
|
|
|
int dx = x3 - x1; |
|
|
|
int dy = y3 - y1; |
|
|
|
double d = fabs( (double) ( (x2 - x3) * dy - (y2 - y3) * dx ) ); |
|
|
|
double d = fabs( ((double) (x2 - x3) * dy) - ((double) (y2 - y3) * dx ) ); |
|
|
|
double da; |
|
|
|
|
|
|
|
if( d > bezier_curve_collinearity_epsilon ) |
|
|
@ -142,14 +159,14 @@ void recursive_bezier( int x1, int y1, int x2, int y2, int x3, int y3, int level |
|
|
|
{ |
|
|
|
// Collinear case
|
|
|
|
//------------------
|
|
|
|
da = dx * dx + dy * dy; |
|
|
|
da = sqrt_len(dx, dy); |
|
|
|
if( da == 0 ) |
|
|
|
{ |
|
|
|
d = calc_sq_distance( x1, y1, x2, y2 ); |
|
|
|
} |
|
|
|
else |
|
|
|
{ |
|
|
|
d = ( (x2 - x1) * dx + (y2 - y1) * dy ) / da; |
|
|
|
d = ( (double)(x2 - x1) * dx + (double)(y2 - y1) * dy ) / da; |
|
|
|
if( d > 0 && d < 1 ) |
|
|
|
{ |
|
|
|
// Simple collinear case, 1---2---3
|
|
|
@ -276,7 +293,7 @@ void recursive_bezier( int x1, int y1, int x2, int y2, int x3, int y3, int x4, i |
|
|
|
|
|
|
|
// p1,p2,p4 are collinear, p3 is significant
|
|
|
|
//----------------------
|
|
|
|
if( d3 * d3 <= bezier_distance_tolerance_square * (dx * dx + dy * dy) ) |
|
|
|
if( d3 * d3 <= bezier_distance_tolerance_square * sqrt_len(dx, dy) ) |
|
|
|
{ |
|
|
|
if( bezier_angle_tolerance < bezier_curve_angle_tolerance_epsilon ) |
|
|
|
{ |
|
|
@ -313,7 +330,7 @@ void recursive_bezier( int x1, int y1, int x2, int y2, int x3, int y3, int x4, i |
|
|
|
|
|
|
|
// p1,p3,p4 are collinear, p2 is significant
|
|
|
|
//----------------------
|
|
|
|
if( d2 * d2 <= bezier_distance_tolerance_square * (dx * dx + dy * dy) ) |
|
|
|
if( d2 * d2 <= bezier_distance_tolerance_square * sqrt_len(dx, dy) ) |
|
|
|
{ |
|
|
|
if( bezier_angle_tolerance < bezier_curve_angle_tolerance_epsilon ) |
|
|
|
{ |
|
|
@ -350,7 +367,7 @@ void recursive_bezier( int x1, int y1, int x2, int y2, int x3, int y3, int x4, i |
|
|
|
|
|
|
|
// Regular case
|
|
|
|
//-----------------
|
|
|
|
if( (d2 + d3) * (d2 + d3) <= bezier_distance_tolerance_square * (dx * dx + dy * dy) ) |
|
|
|
if( (d2 + d3) * (d2 + d3) <= bezier_distance_tolerance_square * sqrt_len(dx, dy) ) |
|
|
|
{ |
|
|
|
// If the curvature doesn't exceed the distance_tolerance value
|
|
|
|
// we tend to finish subdivisions.
|
|
|
|