|
|
/*
* This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2017 Jean-Pierre Charras, jp.charras at wanadoo.fr * Copyright (C) 2012 SoftPLC Corporation, Dick Hollenbeck <dick@softplc.com> * Copyright (C) 1992-2017 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */
/**
* @file class_zone.cpp * @brief Implementation of class to handle copper zones. */
#include <fctsys.h>
#include <trigo.h>
#include <pcb_screen.h>
#include <class_drawpanel.h>
#include <kicad_string.h>
#include <richio.h>
#include <macros.h>
#include <pcb_base_frame.h>
#include <msgpanel.h>
#include <bitmaps.h>
#include <convert_to_biu.h>
#include <class_board.h>
#include <class_zone.h>
#include <pcbnew.h>
#include <zones.h>
#include <math_for_graphics.h>
#include <polygon_test_point_inside.h>
ZONE_CONTAINER::ZONE_CONTAINER( BOARD* aBoard ) : BOARD_CONNECTED_ITEM( aBoard, PCB_ZONE_AREA_T ) { m_CornerSelection = nullptr; // no corner is selected
m_IsFilled = false; // fill status : true when the zone is filled
m_FillMode = ZFM_POLYGONS; m_hatchStyle = DIAGONAL_EDGE; m_hatchPitch = GetDefaultHatchPitch(); m_hv45 = false; m_priority = 0; m_cornerSmoothingType = ZONE_SETTINGS::SMOOTHING_NONE; SetIsKeepout( false ); SetDoNotAllowCopperPour( false ); // has meaning only if m_isKeepout == true
SetDoNotAllowVias( true ); // has meaning only if m_isKeepout == true
SetDoNotAllowTracks( true ); // has meaning only if m_isKeepout == true
m_cornerRadius = 0; SetLocalFlags( 0 ); // flags tempoarry used in zone calculations
m_Poly = new SHAPE_POLY_SET(); // Outlines
aBoard->GetZoneSettings().ExportSetting( *this ); }
ZONE_CONTAINER::ZONE_CONTAINER( const ZONE_CONTAINER& aZone ) : BOARD_CONNECTED_ITEM( aZone ) { // Should the copy be on the same net?
SetNetCode( aZone.GetNetCode() ); m_Poly = new SHAPE_POLY_SET( *aZone.m_Poly );
// For corner moving, corner index to drag, or nullptr if no selection
m_CornerSelection = nullptr; m_IsFilled = aZone.m_IsFilled; m_ZoneClearance = aZone.m_ZoneClearance; // clearance value
m_ZoneMinThickness = aZone.m_ZoneMinThickness; m_FillMode = aZone.m_FillMode; // Filling mode (segments/polygons)
m_hv45 = aZone.m_hv45; m_priority = aZone.m_priority; m_ArcToSegmentsCount = aZone.m_ArcToSegmentsCount; m_PadConnection = aZone.m_PadConnection; m_ThermalReliefGap = aZone.m_ThermalReliefGap; m_ThermalReliefCopperBridge = aZone.m_ThermalReliefCopperBridge; m_FilledPolysList.Append( aZone.m_FilledPolysList ); m_FillSegmList = aZone.m_FillSegmList; // vector <> copy
m_isKeepout = aZone.m_isKeepout; m_doNotAllowCopperPour = aZone.m_doNotAllowCopperPour; m_doNotAllowVias = aZone.m_doNotAllowVias; m_doNotAllowTracks = aZone.m_doNotAllowTracks;
m_cornerSmoothingType = aZone.m_cornerSmoothingType; m_cornerRadius = aZone.m_cornerRadius;
m_hatchStyle = aZone.m_hatchStyle; m_hatchPitch = aZone.m_hatchPitch; m_HatchLines = aZone.m_HatchLines;
SetLayerSet( aZone.GetLayerSet() ); SetLocalFlags( aZone.GetLocalFlags() ); }
ZONE_CONTAINER& ZONE_CONTAINER::operator=( const ZONE_CONTAINER& aOther ) { BOARD_CONNECTED_ITEM::operator=( aOther );
// Replace the outlines for aOther outlines.
delete m_Poly; m_Poly = new SHAPE_POLY_SET( *aOther.m_Poly );
m_CornerSelection = nullptr; // for corner moving, corner index to (null if no selection)
m_ZoneClearance = aOther.m_ZoneClearance; // clearance value
m_ZoneMinThickness = aOther.m_ZoneMinThickness; m_FillMode = aOther.m_FillMode; // filling mode (segments/polygons)
m_ArcToSegmentsCount = aOther.m_ArcToSegmentsCount; m_PadConnection = aOther.m_PadConnection; m_ThermalReliefGap = aOther.m_ThermalReliefGap; m_ThermalReliefCopperBridge = aOther.m_ThermalReliefCopperBridge; SetHatchStyle( aOther.GetHatchStyle() ); SetHatchPitch( aOther.GetHatchPitch() ); m_HatchLines = aOther.m_HatchLines; // copy vector <SEG>
m_FilledPolysList.RemoveAllContours(); m_FilledPolysList.Append( aOther.m_FilledPolysList ); m_FillSegmList.clear(); m_FillSegmList = aOther.m_FillSegmList;
SetLayerSet( aOther.GetLayerSet() );
return *this; }
ZONE_CONTAINER::~ZONE_CONTAINER() { delete m_Poly; delete m_CornerSelection; }
EDA_ITEM* ZONE_CONTAINER::Clone() const { return new ZONE_CONTAINER( *this ); }
bool ZONE_CONTAINER::UnFill() { bool change = ( !m_FilledPolysList.IsEmpty() ) || ( m_FillSegmList.size() > 0 );
m_FilledPolysList.RemoveAllContours(); m_FillSegmList.clear(); m_IsFilled = false;
return change; }
const wxPoint ZONE_CONTAINER::GetPosition() const { return (wxPoint) GetCornerPosition( 0 ); }
PCB_LAYER_ID ZONE_CONTAINER::GetLayer() const { return BOARD_ITEM::GetLayer(); }
bool ZONE_CONTAINER::IsOnCopperLayer() const { if( GetIsKeepout() ) { return ( m_layerSet & LSET::AllCuMask() ).count() > 0; } else { return IsCopperLayer( GetLayer() ); } }
bool ZONE_CONTAINER::CommonLayerExists( const LSET aLayerSet ) const { LSET common = GetLayerSet() & aLayerSet;
return common.count() > 0; }
void ZONE_CONTAINER::SetLayer( PCB_LAYER_ID aLayer ) { SetLayerSet( LSET( aLayer ) );
m_Layer = aLayer; }
void ZONE_CONTAINER::SetLayerSet( LSET aLayerSet ) { if( GetIsKeepout() ) { // Keepouts can only exist on copper layers
aLayerSet &= LSET::AllCuMask(); }
if( aLayerSet.count() == 0 ) { return; }
m_layerSet = aLayerSet;
// Set the single layer to the first selected layer
m_Layer = aLayerSet.Seq()[0]; }
LSET ZONE_CONTAINER::GetLayerSet() const { // TODO - Enable multi-layer zones for all zone types
// not just keepout zones
if( GetIsKeepout() ) { return m_layerSet; } else { return LSET( m_Layer ); } }
void ZONE_CONTAINER::ViewGetLayers( int aLayers[], int& aCount ) const { if( GetIsKeepout() ) { LSEQ layers = m_layerSet.Seq();
for( unsigned int idx = 0; idx < layers.size(); idx++ ) { aLayers[idx] = layers[idx]; }
aCount = layers.size(); } else { aLayers[0] = m_Layer; aCount = 1; } }
bool ZONE_CONTAINER::IsOnLayer( PCB_LAYER_ID aLayer ) const { if( GetIsKeepout() ) { return m_layerSet.test( aLayer ); }
return BOARD_ITEM::IsOnLayer( aLayer ); }
void ZONE_CONTAINER::Draw( EDA_DRAW_PANEL* panel, wxDC* DC, GR_DRAWMODE aDrawMode, const wxPoint& offset ) { if( !DC ) return;
wxPoint seg_start, seg_end; PCB_LAYER_ID curr_layer = ( (PCB_SCREEN*) panel->GetScreen() )->m_Active_Layer; BOARD* brd = GetBoard();
auto frame = static_cast<PCB_BASE_FRAME*> ( panel->GetParent() );
PCB_LAYER_ID draw_layer = UNDEFINED_LAYER;
LSET layers = GetLayerSet() & brd->GetVisibleLayers();
// If there are no visible layers and the zone is not highlighted, return
if( layers.count() == 0 && !( aDrawMode & GR_HIGHLIGHT ) ) { return; }
/* Keepout zones can exist on multiple layers
* Thus, determining which color to use to render them is a bit tricky. * In descending order of priority: * * 1. If in GR_HIGHLIGHT mode: * a. If zone is on selected layer, use layer color! * b. Else, use grey * 1. Not in GR_HIGHLIGHT mode * a. If zone is on selected layer, use layer color * b. Else, use color of top-most (visible) layer * */ if( GetIsKeepout() ) { // At least one layer must be provided!
assert( GetLayerSet().count() > 0 );
// Not on any visible layer?
if( layers.count() == 0 && !( aDrawMode & GR_HIGHLIGHT ) ) { return; }
// Is keepout zone present on the selected layer?
if( layers.test( curr_layer ) ) { draw_layer = curr_layer; } else { // Select the first (top) visible layer
if( layers.count() > 0 ) { draw_layer = layers.Seq()[0]; } else { draw_layer = GetLayerSet().Seq()[0]; } }
} /* Non-keepout zones are easier to deal with
*/ else { if( brd->IsLayerVisible( GetLayer() ) == false && !( aDrawMode & GR_HIGHLIGHT ) ) { return; }
draw_layer = GetLayer(); }
assert( draw_layer != UNDEFINED_LAYER );
auto color = frame->Settings().Colors().GetLayerColor( draw_layer );
GRSetDrawMode( DC, aDrawMode ); auto displ_opts = (PCB_DISPLAY_OPTIONS*)( panel->GetDisplayOptions() );
if( displ_opts->m_ContrastModeDisplay ) { if( !IsOnLayer( curr_layer ) ) { color = COLOR4D( DARKDARKGRAY ); } }
if( ( aDrawMode & GR_HIGHLIGHT ) && !( aDrawMode & GR_AND ) ) { color.SetToLegacyHighlightColor(); }
color.a = 0.588;
// draw the lines
std::vector<wxPoint> lines; lines.reserve( (GetNumCorners() * 2) + 2 );
// Iterate through the segments of the outline
for( auto iterator = m_Poly->IterateSegmentsWithHoles(); iterator; iterator++ ) { // Create the segment
SEG segment = *iterator;
lines.push_back( static_cast<wxPoint>( segment.A ) + offset ); lines.push_back( static_cast<wxPoint>( segment.B ) + offset ); }
GRLineArray( panel->GetClipBox(), DC, lines, 0, color );
// draw hatches
lines.clear(); lines.reserve( (m_HatchLines.size() * 2) + 2 );
for( unsigned ic = 0; ic < m_HatchLines.size(); ic++ ) { seg_start = static_cast<wxPoint>( m_HatchLines[ic].A ) + offset; seg_end = static_cast<wxPoint>( m_HatchLines[ic].B ) + offset; lines.push_back( seg_start ); lines.push_back( seg_end ); }
GRLineArray( panel->GetClipBox(), DC, lines, 0, color ); }
void ZONE_CONTAINER::DrawFilledArea( EDA_DRAW_PANEL* panel, wxDC* DC, GR_DRAWMODE aDrawMode, const wxPoint& offset ) {
static std::vector <wxPoint> CornersBuffer; auto displ_opts = (PCB_DISPLAY_OPTIONS*)( panel->GetDisplayOptions() );
// outline_mode is false to show filled polys,
// and true to show polygons outlines only (test and debug purposes)
bool outline_mode = displ_opts->m_DisplayZonesMode == 2 ? true : false;
if( DC == NULL ) return;
if( displ_opts->m_DisplayZonesMode == 1 ) // Do not show filled areas
return;
if( m_FilledPolysList.IsEmpty() ) // Nothing to draw
return;
BOARD* brd = GetBoard(); PCB_LAYER_ID curr_layer = ( (PCB_SCREEN*) panel->GetScreen() )->m_Active_Layer;
auto frame = static_cast<PCB_BASE_FRAME*> ( panel->GetParent() ); auto color = frame->Settings().Colors().GetLayerColor( GetLayer() );
if( brd->IsLayerVisible( GetLayer() ) == false && !( aDrawMode & GR_HIGHLIGHT ) ) return;
GRSetDrawMode( DC, aDrawMode );
if( displ_opts->m_ContrastModeDisplay ) { if( !IsOnLayer( curr_layer ) ) color = COLOR4D( DARKDARKGRAY ); }
if( ( aDrawMode & GR_HIGHLIGHT ) && !( aDrawMode & GR_AND ) ) color.SetToLegacyHighlightColor();
color.a = 0.588;
for ( int ic = 0; ic < m_FilledPolysList.OutlineCount(); ic++ ) { const SHAPE_LINE_CHAIN& path = m_FilledPolysList.COutline( ic );
CornersBuffer.clear();
wxPoint p0;
for( int j = 0; j < path.PointCount(); j++ ) { const VECTOR2I& corner = path.CPoint( j );
wxPoint coord( corner.x + offset.x, corner.y + offset.y );
if( j == 0 ) p0 = coord;
CornersBuffer.push_back( coord ); }
CornersBuffer.push_back( p0 );
// Draw outlines:
if( ( m_ZoneMinThickness > 1 ) || outline_mode ) { int ilim = CornersBuffer.size() - 1;
for( int is = 0, ie = ilim; is <= ilim; ie = is, is++ ) { int x0 = CornersBuffer[is].x; int y0 = CornersBuffer[is].y; int x1 = CornersBuffer[ie].x; int y1 = CornersBuffer[ie].y;
// Draw only basic outlines, not extra segments.
if( !displ_opts->m_DisplayPcbTrackFill || GetState( FORCE_SKETCH ) ) GRCSegm( panel->GetClipBox(), DC, x0, y0, x1, y1, m_ZoneMinThickness, color ); else GRFillCSegm( panel->GetClipBox(), DC, x0, y0, x1, y1, m_ZoneMinThickness, color ); } }
// Draw areas:
if( m_FillMode == ZFM_POLYGONS && !outline_mode ) GRPoly( panel->GetClipBox(), DC, CornersBuffer.size(), &CornersBuffer[0], true, 0, color, color ); }
if( m_FillMode == 1 && !outline_mode ) // filled with segments
{ for( unsigned ic = 0; ic < m_FillSegmList.size(); ic++ ) { wxPoint start = (wxPoint) ( m_FillSegmList[ic].A + VECTOR2I(offset) ); wxPoint end = (wxPoint) ( m_FillSegmList[ic].B + VECTOR2I(offset) );
if( !displ_opts->m_DisplayPcbTrackFill || GetState( FORCE_SKETCH ) ) GRCSegm( panel->GetClipBox(), DC, start.x, start.y, end.x, end.y, m_ZoneMinThickness, color ); else GRFillCSegm( panel->GetClipBox(), DC, start.x, start.y, end.x, end.y, m_ZoneMinThickness, color ); } } }
const EDA_RECT ZONE_CONTAINER::GetBoundingBox() const { const int PRELOAD = 0x7FFFFFFF; // Biggest integer (32 bits)
int ymax = -PRELOAD; int ymin = PRELOAD; int xmin = PRELOAD; int xmax = -PRELOAD;
int count = GetNumCorners();
for( int i = 0; i<count; ++i ) { wxPoint corner = static_cast<wxPoint>( GetCornerPosition( i ) );
ymax = std::max( ymax, corner.y ); xmax = std::max( xmax, corner.x ); ymin = std::min( ymin, corner.y ); xmin = std::min( xmin, corner.x ); }
EDA_RECT ret( wxPoint( xmin, ymin ), wxSize( xmax - xmin + 1, ymax - ymin + 1 ) );
return ret; }
void ZONE_CONTAINER::DrawWhileCreateOutline( EDA_DRAW_PANEL* panel, wxDC* DC, GR_DRAWMODE draw_mode ) { GR_DRAWMODE current_gr_mode = draw_mode; bool is_close_segment = false;
if( !DC ) return;
PCB_LAYER_ID curr_layer = ( (PCB_SCREEN*) panel->GetScreen() )->m_Active_Layer;
auto frame = static_cast<PCB_BASE_FRAME*> ( panel->GetParent() ); auto color = frame->Settings().Colors().GetLayerColor( GetLayer() );
auto displ_opts = (PCB_DISPLAY_OPTIONS*)( panel->GetDisplayOptions() );
if( displ_opts->m_ContrastModeDisplay ) { if( !IsOnLayer( curr_layer ) ) color = COLOR4D( DARKDARKGRAY ); }
// Object to iterate through the corners of the outlines
SHAPE_POLY_SET::ITERATOR iterator = m_Poly->Iterate();
// Segment start and end
VECTOR2I seg_start, seg_end;
// Remember the first point of this contour
VECTOR2I contour_first_point = *iterator;
// Iterate through all the corners of the outlines and build the segments to draw
while( iterator ) { // Get the first point of the current segment
seg_start = *iterator;
// Get the last point of the current segment, handling the case where the end of the
// contour is reached, when the last point of the segment is the first point of the
// contour
if( !iterator.IsEndContour() ) { // Set GR mode to default
current_gr_mode = draw_mode;
SHAPE_POLY_SET::ITERATOR iterator_copy = iterator; iterator_copy++; if( iterator_copy.IsEndContour() ) current_gr_mode = GR_XOR;
is_close_segment = false;
iterator++; seg_end = *iterator; } else { is_close_segment = true;
seg_end = contour_first_point;
// Reassign first point of the contour to the next contour start
iterator++;
if( iterator ) contour_first_point = *iterator;
// Set GR mode to XOR
current_gr_mode = GR_XOR; }
GRSetDrawMode( DC, current_gr_mode );
if( is_close_segment ) GRLine( panel->GetClipBox(), DC, seg_start.x, seg_start.y, seg_end.x, seg_end.y, 0, WHITE ); else GRLine( panel->GetClipBox(), DC, seg_start.x, seg_start.y, seg_end.x, seg_end.y, 0, color ); } }
int ZONE_CONTAINER::GetThermalReliefGap( D_PAD* aPad ) const { if( aPad == NULL || aPad->GetThermalGap() == 0 ) return m_ThermalReliefGap; else return aPad->GetThermalGap(); }
int ZONE_CONTAINER::GetThermalReliefCopperBridge( D_PAD* aPad ) const { if( aPad == NULL || aPad->GetThermalWidth() == 0 ) return m_ThermalReliefCopperBridge; else return aPad->GetThermalWidth(); }
void ZONE_CONTAINER::SetCornerRadius( unsigned int aRadius ) { m_cornerRadius = aRadius; }
bool ZONE_CONTAINER::HitTest( const wxPoint& aPosition ) const { return HitTestForCorner( aPosition ) || HitTestForEdge( aPosition ) || HitTestFilledArea( aPosition ); }
void ZONE_CONTAINER::SetSelectedCorner( const wxPoint& aPosition ) { SHAPE_POLY_SET::VERTEX_INDEX corner;
// If there is some corner to be selected, assign it to m_CornerSelection
if( HitTestForCorner( aPosition, corner ) || HitTestForEdge( aPosition, corner ) ) { if( m_CornerSelection == nullptr ) m_CornerSelection = new SHAPE_POLY_SET::VERTEX_INDEX;
*m_CornerSelection = corner; } }
// Zones outlines have no thickness, so it Hit Test functions
// we must have a default distance between the test point
// and a corner or a zone edge:
#define MAX_DIST_IN_MM 0.25
bool ZONE_CONTAINER::HitTestForCorner( const wxPoint& refPos, SHAPE_POLY_SET::VERTEX_INDEX& aCornerHit ) const { int distmax = Millimeter2iu( MAX_DIST_IN_MM );
return m_Poly->CollideVertex( VECTOR2I( refPos ), aCornerHit, distmax ); }
bool ZONE_CONTAINER::HitTestForCorner( const wxPoint& refPos ) const { SHAPE_POLY_SET::VERTEX_INDEX dummy; return HitTestForCorner( refPos, dummy ); }
bool ZONE_CONTAINER::HitTestForEdge( const wxPoint& refPos, SHAPE_POLY_SET::VERTEX_INDEX& aCornerHit ) const { int distmax = Millimeter2iu( MAX_DIST_IN_MM );
return m_Poly->CollideEdge( VECTOR2I( refPos ), aCornerHit, distmax ); }
bool ZONE_CONTAINER::HitTestForEdge( const wxPoint& refPos ) const { SHAPE_POLY_SET::VERTEX_INDEX dummy; return HitTestForEdge( refPos, dummy ); }
bool ZONE_CONTAINER::HitTest( const EDA_RECT& aRect, bool aContained, int aAccuracy ) const { // Calculate bounding box for zone
EDA_RECT bbox = GetBoundingBox(); bbox.Normalize();
EDA_RECT arect = aRect; arect.Normalize(); arect.Inflate( aAccuracy );
if( aContained ) { return arect.Contains( bbox ); } else // Test for intersection between aBox and the polygon
// For a polygon, using its bounding box has no sense here
{ // Fast test: if aBox is outside the polygon bounding box,
// rectangles cannot intersect
if( !arect.Intersects( bbox ) ) return false;
// aBox is inside the polygon bounding box,
// and can intersect the polygon: use a fine test.
// aBox intersects the polygon if at least one aBox corner
// is inside the polygon
/*
wxPoint origin = arect.GetOrigin();
int w = arect.GetWidth(); int h = arect.GetHeight();
if ( HitTestInsideZone( origin ) || HitTestInsideZone( origin + wxPoint( w, 0 ) ) || HitTestInsideZone( origin + wxPoint( w, h ) ) || HitTestInsideZone( origin + wxPoint( 0, h ) ) ) { return true; } */
// No corner inside aBox, but outlines can intersect aBox
// if one of outline corners is inside aBox
int count = m_Poly->TotalVertices(); for( int ii =0; ii < count; ii++ ) { auto vertex = m_Poly->Vertex( ii ); auto vertexNext = m_Poly->Vertex( ( ii + 1 ) % count );
// Test if the point is within the rect
if( arect.Contains( ( wxPoint ) vertex ) ) { return true; }
// Test if this edge intersects the rect
if( arect.Intersects( ( wxPoint ) vertex, ( wxPoint ) vertexNext ) ) { return true; } }
return false; } }
int ZONE_CONTAINER::GetClearance( BOARD_CONNECTED_ITEM* aItem ) const { int myClearance = m_ZoneClearance;
#if 1 // Maybe the netclass clearance should not come into play for a zone?
// At least the policy decision can be controlled by the zone
// itself, i.e. here. On reasons of insufficient documentation,
// the user will be less bewildered if we simply respect the
// "zone clearance" setting in the zone properties dialog. (At least
// until there is a UI boolean for this.)
NETCLASSPTR myClass = GetNetClass();
if( myClass ) myClearance = std::max( myClearance, myClass->GetClearance() ); #endif
if( aItem ) { int hisClearance = aItem->GetClearance( NULL ); myClearance = std::max( hisClearance, myClearance ); }
return myClearance; }
bool ZONE_CONTAINER::HitTestFilledArea( const wxPoint& aRefPos ) const { return m_FilledPolysList.Contains( VECTOR2I( aRefPos.x, aRefPos.y ) ); }
void ZONE_CONTAINER::GetMsgPanelInfo( EDA_UNITS_T aUnits, std::vector< MSG_PANEL_ITEM >& aList ) { wxString msg;
msg = _( "Zone Outline" );
// Display Cutout instead of Outline for holes inside a zone
// i.e. when num contour !=0
// Check whether the selected corner is in a hole; i.e., in any contour but the first one.
if( m_CornerSelection != nullptr && m_CornerSelection->m_contour > 0 ) msg << wxT( " " ) << _( "(Cutout)" );
aList.push_back( MSG_PANEL_ITEM( _( "Type" ), msg, DARKCYAN ) );
if( GetIsKeepout() ) { msg.Empty();
if( GetDoNotAllowVias() ) AccumulateDescription( msg, _( "No via" ) );
if( GetDoNotAllowTracks() ) AccumulateDescription( msg, _("No track") );
if( GetDoNotAllowCopperPour() ) AccumulateDescription( msg, _("No copper pour") );
aList.push_back( MSG_PANEL_ITEM( _( "Keepout" ), msg, RED ) ); } else if( IsOnCopperLayer() ) { if( GetNetCode() >= 0 ) { NETINFO_ITEM* net = GetNet();
if( net ) msg = net->GetNetname(); else // Should not occur
msg = _( "<unknown>" ); } else // a netcode < 0 is an error
msg = wxT( "<error>" );
aList.push_back( MSG_PANEL_ITEM( _( "NetName" ), msg, RED ) );
// Display net code : (useful in test or debug)
msg.Printf( wxT( "%d" ), GetNetCode() ); aList.push_back( MSG_PANEL_ITEM( _( "NetCode" ), msg, RED ) );
// Display priority level
msg.Printf( wxT( "%d" ), GetPriority() ); aList.push_back( MSG_PANEL_ITEM( _( "Priority" ), msg, BLUE ) ); } else { aList.push_back( MSG_PANEL_ITEM( _( "Non Copper Zone" ), wxEmptyString, RED ) ); }
aList.push_back( MSG_PANEL_ITEM( _( "Layer" ), GetLayerName(), BROWN ) );
msg.Printf( wxT( "%d" ), (int) m_Poly->TotalVertices() ); aList.push_back( MSG_PANEL_ITEM( _( "Corners" ), msg, BLUE ) );
if( m_FillMode ) msg = _( "Segments" ); else msg = _( "Polygons" );
aList.push_back( MSG_PANEL_ITEM( _( "Fill Mode" ), msg, BROWN ) );
// Useful for statistics :
msg.Printf( wxT( "%d" ), (int) m_HatchLines.size() ); aList.push_back( MSG_PANEL_ITEM( _( "Hatch Lines" ), msg, BLUE ) );
if( !m_FilledPolysList.IsEmpty() ) { msg.Printf( wxT( "%d" ), m_FilledPolysList.TotalVertices() ); aList.push_back( MSG_PANEL_ITEM( _( "Corner Count" ), msg, BLUE ) ); } }
/* Geometric transforms: */
void ZONE_CONTAINER::Move( const wxPoint& offset ) { /* move outlines */ m_Poly->Move( VECTOR2I( offset ) );
Hatch();
m_FilledPolysList.Move( VECTOR2I( offset.x, offset.y ) );
for( unsigned ic = 0; ic < m_FillSegmList.size(); ic++ ) { m_FillSegmList[ic].A += VECTOR2I(offset); m_FillSegmList[ic].B += VECTOR2I(offset); } }
void ZONE_CONTAINER::MoveEdge( const wxPoint& offset, int aEdge ) { int next_corner;
if( m_Poly->GetNeighbourIndexes( aEdge, nullptr, &next_corner ) ) { m_Poly->Vertex( aEdge ) += VECTOR2I( offset ); m_Poly->Vertex( next_corner ) += VECTOR2I( offset ); Hatch(); } }
void ZONE_CONTAINER::Rotate( const wxPoint& centre, double angle ) { wxPoint pos;
for( auto iterator = m_Poly->IterateWithHoles(); iterator; iterator++ ) { pos = static_cast<wxPoint>( *iterator ); RotatePoint( &pos, centre, angle ); iterator->x = pos.x; iterator->y = pos.y; }
Hatch();
/* rotate filled areas: */ for( auto ic = m_FilledPolysList.Iterate(); ic; ++ic ) RotatePoint( &ic->x, &ic->y, centre.x, centre.y, angle );
for( unsigned ic = 0; ic < m_FillSegmList.size(); ic++ ) { wxPoint a( m_FillSegmList[ic].A ); RotatePoint( &a, centre, angle ); m_FillSegmList[ic].A = a; wxPoint b( m_FillSegmList[ic].B ); RotatePoint( &b, centre, angle ); m_FillSegmList[ic].B = a; } }
void ZONE_CONTAINER::Flip( const wxPoint& aCentre ) { Mirror( aCentre ); int copperLayerCount = GetBoard()->GetCopperLayerCount();
if( GetIsKeepout() ) { SetLayerSet( FlipLayerMask( GetLayerSet(), copperLayerCount ) ); } else { SetLayer( FlipLayer( GetLayer(), copperLayerCount ) ); } }
void ZONE_CONTAINER::Mirror( const wxPoint& mirror_ref ) { for( auto iterator = m_Poly->IterateWithHoles(); iterator; iterator++ ) { int py = mirror_ref.y - iterator->y; iterator->y = py + mirror_ref.y; }
Hatch();
for( auto ic = m_FilledPolysList.Iterate(); ic; ++ic ) { int py = mirror_ref.y - ic->y; ic->y = py + mirror_ref.y; }
for( unsigned ic = 0; ic < m_FillSegmList.size(); ic++ ) { MIRROR( m_FillSegmList[ic].A.y, mirror_ref.y ); MIRROR( m_FillSegmList[ic].B.y, mirror_ref.y ); } }
ZoneConnection ZONE_CONTAINER::GetPadConnection( D_PAD* aPad ) const { if( aPad == NULL || aPad->GetZoneConnection() == PAD_ZONE_CONN_INHERITED ) return m_PadConnection; else return aPad->GetZoneConnection(); }
void ZONE_CONTAINER::AddPolygon( std::vector< wxPoint >& aPolygon ) { if( aPolygon.empty() ) return;
SHAPE_LINE_CHAIN outline;
// Create an outline and populate it with the points of aPolygon
for( unsigned i = 0; i < aPolygon.size(); i++ ) { outline.Append( VECTOR2I( aPolygon[i] ) ); }
outline.SetClosed( true );
// Add the outline as a new polygon in the polygon set
if( m_Poly->OutlineCount() == 0 ) m_Poly->AddOutline( outline ); else m_Poly->AddHole( outline ); }
bool ZONE_CONTAINER::AppendCorner( wxPoint aPosition, int aHoleIdx, bool aAllowDuplication ) { // Ensure the main outline exists:
if( m_Poly->OutlineCount() == 0 ) m_Poly->NewOutline();
// If aHoleIdx >= 0, the corner musty be added to the hole, index aHoleIdx.
// (remember: the index of the first hole is 0)
// Return error if if does dot exist.
if( aHoleIdx >= m_Poly->HoleCount( 0 ) ) return false;
m_Poly->Append( aPosition.x, aPosition.y, -1, aHoleIdx, aAllowDuplication );
return true; }
wxString ZONE_CONTAINER::GetSelectMenuText( EDA_UNITS_T aUnits ) const { wxString text;
// Check whether the selected contour is a hole (contour index > 0)
if( m_CornerSelection != nullptr && m_CornerSelection->m_contour > 0 ) text << wxT( " " ) << _( "(Cutout)" );
if( GetIsKeepout() ) text << wxT( " " ) << _( "(Keepout)" ); else text << GetNetnameMsg();
return wxString::Format( _( "Zone Outline %s on %s" ), text, GetLayerName() ); }
int ZONE_CONTAINER::GetHatchPitch() const { return m_hatchPitch; }
void ZONE_CONTAINER::SetHatch( int aHatchStyle, int aHatchPitch, bool aRebuildHatch ) { SetHatchPitch( aHatchPitch ); m_hatchStyle = (ZONE_CONTAINER::HATCH_STYLE) aHatchStyle;
if( aRebuildHatch ) Hatch(); }
void ZONE_CONTAINER::SetHatchPitch( int aPitch ) { m_hatchPitch = aPitch; }
void ZONE_CONTAINER::UnHatch() { m_HatchLines.clear(); }
// Creates hatch lines inside the outline of the complex polygon
// sort function used in ::Hatch to sort points by descending wxPoint.x values
bool sortEndsByDescendingX( const VECTOR2I& ref, const VECTOR2I& tst ) { return tst.x < ref.x; }
void ZONE_CONTAINER::Hatch() { UnHatch();
if( m_hatchStyle == NO_HATCH || m_hatchPitch == 0 || m_Poly->IsEmpty() ) return;
// define range for hatch lines
int min_x = m_Poly->Vertex( 0 ).x; int max_x = m_Poly->Vertex( 0 ).x; int min_y = m_Poly->Vertex( 0 ).y; int max_y = m_Poly->Vertex( 0 ).y;
for( auto iterator = m_Poly->IterateWithHoles(); iterator; iterator++ ) { if( iterator->x < min_x ) min_x = iterator->x;
if( iterator->x > max_x ) max_x = iterator->x;
if( iterator->y < min_y ) min_y = iterator->y;
if( iterator->y > max_y ) max_y = iterator->y; }
// Calculate spacing between 2 hatch lines
int spacing;
if( m_hatchStyle == DIAGONAL_EDGE ) spacing = m_hatchPitch; else spacing = m_hatchPitch * 2;
// set the "length" of hatch lines (the length on horizontal axis)
int hatch_line_len = m_hatchPitch;
// To have a better look, give a slope depending on the layer
LAYER_NUM layer = GetLayer(); int slope_flag = (layer & 1) ? 1 : -1; // 1 or -1
double slope = 0.707106 * slope_flag; // 45 degrees slope
int max_a, min_a;
if( slope_flag == 1 ) { max_a = KiROUND( max_y - slope * min_x ); min_a = KiROUND( min_y - slope * max_x ); } else { max_a = KiROUND( max_y - slope * max_x ); min_a = KiROUND( min_y - slope * min_x ); }
min_a = (min_a / spacing) * spacing;
// calculate an offset depending on layer number,
// for a better look of hatches on a multilayer board
int offset = (layer * 7) / 8; min_a += offset;
// loop through hatch lines
#define MAXPTS 200 // Usually we store only few values per one hatch line
// depending on the complexity of the zone outline
static std::vector<VECTOR2I> pointbuffer; pointbuffer.clear(); pointbuffer.reserve( MAXPTS + 2 );
for( int a = min_a; a < max_a; a += spacing ) { // get intersection points for this hatch line
// Note: because we should have an even number of intersections with the
// current hatch line and the zone outline (a closed polygon,
// or a set of closed polygons), if an odd count is found
// we skip this line (should not occur)
pointbuffer.clear();
// Iterate through all vertices
for( auto iterator = m_Poly->IterateSegmentsWithHoles(); iterator; iterator++ ) { double x, y, x2, y2; int ok;
SEG segment = *iterator;
ok = FindLineSegmentIntersection( a, slope, segment.A.x, segment.A.y, segment.B.x, segment.B.y, &x, &y, &x2, &y2 );
if( ok ) { VECTOR2I point( KiROUND( x ), KiROUND( y ) ); pointbuffer.push_back( point ); }
if( ok == 2 ) { VECTOR2I point( KiROUND( x2 ), KiROUND( y2 ) ); pointbuffer.push_back( point ); }
if( pointbuffer.size() >= MAXPTS ) // overflow
{ wxASSERT( 0 ); break; } }
// ensure we have found an even intersection points count
// because intersections are the ends of segments
// inside the polygon(s) and a segment has 2 ends.
// if not, this is a strange case (a bug ?) so skip this hatch
if( pointbuffer.size() % 2 != 0 ) continue;
// sort points in order of descending x (if more than 2) to
// ensure the starting point and the ending point of the same segment
// are stored one just after the other.
if( pointbuffer.size() > 2 ) sort( pointbuffer.begin(), pointbuffer.end(), sortEndsByDescendingX );
// creates lines or short segments inside the complex polygon
for( unsigned ip = 0; ip < pointbuffer.size(); ip += 2 ) { int dx = pointbuffer[ip + 1].x - pointbuffer[ip].x;
// Push only one line for diagonal hatch,
// or for small lines < twice the line length
// else push 2 small lines
if( m_hatchStyle == DIAGONAL_FULL || std::abs( dx ) < 2 * hatch_line_len ) { m_HatchLines.push_back( SEG( pointbuffer[ip], pointbuffer[ip + 1] ) ); } else { double dy = pointbuffer[ip + 1].y - pointbuffer[ip].y; slope = dy / dx;
if( dx > 0 ) dx = hatch_line_len; else dx = -hatch_line_len;
int x1 = KiROUND( pointbuffer[ip].x + dx ); int x2 = KiROUND( pointbuffer[ip + 1].x - dx ); int y1 = KiROUND( pointbuffer[ip].y + dx * slope ); int y2 = KiROUND( pointbuffer[ip + 1].y - dx * slope );
m_HatchLines.push_back(SEG(pointbuffer[ip].x, pointbuffer[ip].y, x1, y1));
m_HatchLines.push_back( SEG( pointbuffer[ip+1].x, pointbuffer[ip+1].y, x2, y2 ) ); } } } }
int ZONE_CONTAINER::GetDefaultHatchPitch() { return Mils2iu( 20 ); }
BITMAP_DEF ZONE_CONTAINER::GetMenuImage() const { return add_zone_xpm; }
void ZONE_CONTAINER::SwapData( BOARD_ITEM* aImage ) { assert( aImage->Type() == PCB_ZONE_AREA_T );
std::swap( *((ZONE_CONTAINER*) this), *((ZONE_CONTAINER*) aImage) ); }
void ZONE_CONTAINER::CacheTriangulation() { m_FilledPolysList.CacheTriangulation(); }
bool ZONE_CONTAINER::BuildSmoothedPoly( SHAPE_POLY_SET& aSmoothedPoly ) const { if( GetNumCorners() <= 2 ) // malformed zone. polygon calculations do not like it ...
return false;
// Make a smoothed polygon out of the user-drawn polygon if required
switch( m_cornerSmoothingType ) { case ZONE_SETTINGS::SMOOTHING_CHAMFER: aSmoothedPoly = m_Poly->Chamfer( m_cornerRadius ); break;
case ZONE_SETTINGS::SMOOTHING_FILLET: // Note: we're now using m_ArcToSegmentsCount only as a hint to determine accuracy
// vs. speed.
if( m_ArcToSegmentsCount > SEGMENT_COUNT_CROSSOVER ) aSmoothedPoly = m_Poly->Fillet( m_cornerRadius, ARC_HIGH_DEF ); else aSmoothedPoly = m_Poly->Fillet( m_cornerRadius, ARC_LOW_DEF ); break;
default: // Acute angles between adjacent edges can create issues in calculations,
// in inflate/deflate outlines transforms, especially when the angle is very small.
// We can avoid issues by creating a very small chamfer which remove acute angles,
// or left it without chamfer and use only CPOLYGONS_LIST::InflateOutline to create
// clearance areas
aSmoothedPoly = m_Poly->Chamfer( Millimeter2iu( 0.0 ) ); break; }
return true; };
/* Function TransformOutlinesShapeWithClearanceToPolygon
* Convert the zone filled areas polygons to polygons * inflated (optional) by max( aClearanceValue, the zone clearance) * and copy them in aCornerBuffer * param aClearanceValue = the clearance around polygons * param aAddClearance = true to add a clearance area to the polygon * false to create the outline polygon. */ void ZONE_CONTAINER::TransformOutlinesShapeWithClearanceToPolygon( SHAPE_POLY_SET& aCornerBuffer, int aMinClearanceValue, bool aUseNetClearance ) const { // Creates the zone outline polygon (with holes if any)
SHAPE_POLY_SET polybuffer; BuildSmoothedPoly( polybuffer );
// add clearance to outline
int clearance = aMinClearanceValue;
if( aUseNetClearance && IsOnCopperLayer() ) { clearance = GetClearance(); if( aMinClearanceValue > clearance ) clearance = aMinClearanceValue; }
// Calculate the polygon with clearance
// holes are linked to the main outline, so only one polygon is created.
if( clearance ) polybuffer.Inflate( clearance, 16 );
polybuffer.Fracture( SHAPE_POLY_SET::PM_FAST ); aCornerBuffer.Append( polybuffer ); }
|