Browse Source
pcbnew: made zone filling algorithm thread-safe.
pcbnew: made zone filling algorithm thread-safe.
- moved zone filling algo outside ZONE_CONTAINER class - const'ified methods that don't need to modify zone's properties - cleanup: m_FillMode -> enumpull/5/merge
19 changed files with 920 additions and 1038 deletions
-
1pcbnew/CMakeLists.txt
-
2pcbnew/board_items_to_polygon_shape_transform.cpp
-
57pcbnew/class_zone.cpp
-
120pcbnew/class_zone.h
-
2pcbnew/class_zone_settings.cpp
-
12pcbnew/class_zone_settings.h
-
4pcbnew/dialogs/dialog_copper_zones.cpp
-
2pcbnew/dialogs/dialog_non_copper_zones_properties.cpp
-
9pcbnew/exporters/export_vrml.cpp
-
8pcbnew/kicad_plugin.cpp
-
8pcbnew/legacy_plugin.cpp
-
12pcbnew/pcb_parser.cpp
-
2pcbnew/plot_board_layers.cpp
-
4pcbnew/plot_brditems_plotter.cpp
-
736pcbnew/zone_filler.cpp
-
67pcbnew/zone_filler.h
-
878pcbnew/zone_filling_algorithm.cpp
-
8pcbnew/zones_convert_to_polygons_aux_functions.cpp
-
26pcbnew/zones_test_and_combine_areas.cpp
@ -1,878 +0,0 @@ |
|||
/**
|
|||
* @file zone_filling_algorithm.cpp: |
|||
* Algorithms used to fill a zone defined by a polygon and a filling starting point. |
|||
*/ |
|||
/*
|
|||
* This program source code file is part of KiCad, a free EDA CAD application. |
|||
* |
|||
* Copyright (C) 2016 Jean-Pierre Charras, jp.charras at wanadoo.fr |
|||
* Copyright (C) 1992-2016 KiCad Developers, see AUTHORS.txt for contributors. |
|||
* |
|||
* This program is free software; you can redistribute it and/or |
|||
* modify it under the terms of the GNU General Public License |
|||
* as published by the Free Software Foundation; either version 2 |
|||
* of the License, or (at your option) any later version. |
|||
* |
|||
* This program is distributed in the hope that it will be useful, |
|||
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|||
* GNU General Public License for more details. |
|||
* |
|||
* You should have received a copy of the GNU General Public License |
|||
* along with this program; if not, you may find one here: |
|||
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
|
|||
* or you may search the http://www.gnu.org website for the version 2 license,
|
|||
* or you may write to the Free Software Foundation, Inc., |
|||
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA |
|||
*/ |
|||
|
|||
|
|||
#include <algorithm> // sort
|
|||
|
|||
#include <cmath>
|
|||
#include <sstream>
|
|||
|
|||
#include <fctsys.h>
|
|||
#include <wxPcbStruct.h>
|
|||
#include <trigo.h>
|
|||
|
|||
#include <class_board.h>
|
|||
#include <class_module.h>
|
|||
#include <class_track.h>
|
|||
#include <class_edge_mod.h>
|
|||
#include <class_drawsegment.h>
|
|||
#include <class_pcb_text.h>
|
|||
#include <class_zone.h>
|
|||
#include <project.h>
|
|||
|
|||
#include <pcbnew.h>
|
|||
#include <zones.h>
|
|||
#include <convert_basic_shapes_to_polygon.h>
|
|||
|
|||
#include <geometry/shape_poly_set.h>
|
|||
#include <geometry/shape_file_io.h>
|
|||
#include <geometry/convex_hull.h>
|
|||
|
|||
#include <connectivity_data.h>
|
|||
|
|||
|
|||
/* Functions to convert some board items to polygons
|
|||
* (pads, tracks ..) |
|||
* This is used to calculate filled areas in copper zones. |
|||
* Filled areas are areas remainder of the full zone area after removed all polygons |
|||
* calculated from these items shapes and the clearance area |
|||
* |
|||
* Important note: |
|||
* Because filled areas must have a minimum thickness to match with Design rule, they are |
|||
* draw in 2 step: |
|||
* 1 - filled polygons are drawn |
|||
* 2 - polygon outlines are drawn with a "minimum thickness width" ( or with a minimum |
|||
* thickness pen ) |
|||
* So outlines of filled polygons are calculated with the constraint they match with clearance, |
|||
* taking in account outlines have thickness |
|||
* This ensures: |
|||
* - areas meet the minimum thickness requirement. |
|||
* - shapes are smoothed. |
|||
*/ |
|||
|
|||
// Polygon calculations can use fast mode or force strickly simple polygons after calculations
|
|||
// Forcing strickly simple polygons is time consuming, and we have not see issues in fast mode
|
|||
// so we use fast mode when possible (intermediate calculations)
|
|||
// (choice is SHAPE_POLY_SET::PM_STRICTLY_SIMPLE or SHAPE_POLY_SET::PM_FAST)
|
|||
#define POLY_CALC_MODE SHAPE_POLY_SET::PM_FAST
|
|||
|
|||
/* DEBUG OPTION:
|
|||
* To emit zone data to a file when filling zones for the debugging purposes, |
|||
* set this 'true' and build. |
|||
*/ |
|||
static const bool s_DumpZonesWhenFilling = false; |
|||
|
|||
extern void BuildUnconnectedThermalStubsPolygonList( SHAPE_POLY_SET& aCornerBuffer, |
|||
BOARD* aPcb, ZONE_CONTAINER* aZone, |
|||
double aArcCorrection, |
|||
double aRoundPadThermalRotation); |
|||
|
|||
|
|||
extern void CreateThermalReliefPadPolygon( SHAPE_POLY_SET& aCornerBuffer, |
|||
D_PAD& aPad, |
|||
int aThermalGap, |
|||
int aCopperThickness, |
|||
int aMinThicknessValue, |
|||
int aCircleToSegmentsCount, |
|||
double aCorrectionFactor, |
|||
double aThermalRot ); |
|||
|
|||
// Local Variables:
|
|||
static double s_thermalRot = 450; // angle of stubs in thermal reliefs for round pads
|
|||
|
|||
|
|||
/* Build the filled solid areas data from real outlines (stored in m_Poly)
|
|||
* The solid areas can be more than one on copper layers, and do not have holes |
|||
( holes are linked by overlapping segments to the main outline) |
|||
* aPcb: the current board (can be NULL for non copper zones) |
|||
* aCornerBuffer: A reference to a buffer to store polygon corners, or NULL |
|||
* if aCornerBuffer == NULL: |
|||
* - m_FilledPolysList is used to store solid areas polygons. |
|||
* - on copper layers, tracks and other items shapes of other nets are |
|||
* removed from solid areas |
|||
* if not null: |
|||
* Only the zone outline (with holes, if any) are stored in aCornerBuffer |
|||
* with holes linked. Therefore only one polygon is created |
|||
* This function calls ComputeRawFilledAreas() |
|||
* to add holes for pads and tracks and other items not in net. |
|||
*/ |
|||
|
|||
bool ZONE_CONTAINER::BuildFilledSolidAreasPolygons( BOARD* aPcb, SHAPE_POLY_SET* aOutlineBuffer ) |
|||
{ |
|||
/* convert outlines + holes to outlines without holes (adding extra segments if necessary)
|
|||
* m_Poly data is expected normalized, i.e. NormalizeAreaOutlines was used after building |
|||
* this zone |
|||
*/ |
|||
|
|||
if( GetNumCorners() <= 2 ) // malformed zone. polygon calculations do not like it ...
|
|||
return false; |
|||
|
|||
// Make a smoothed polygon out of the user-drawn polygon if required
|
|||
if( m_smoothedPoly ) |
|||
{ |
|||
delete m_smoothedPoly; |
|||
m_smoothedPoly = NULL; |
|||
} |
|||
|
|||
switch( m_cornerSmoothingType ) |
|||
{ |
|||
case ZONE_SETTINGS::SMOOTHING_CHAMFER: |
|||
m_smoothedPoly = new SHAPE_POLY_SET(); |
|||
*m_smoothedPoly = m_Poly->Chamfer( m_cornerRadius ); |
|||
break; |
|||
|
|||
case ZONE_SETTINGS::SMOOTHING_FILLET: |
|||
m_smoothedPoly = new SHAPE_POLY_SET(); |
|||
*m_smoothedPoly = m_Poly->Fillet( m_cornerRadius, m_ArcToSegmentsCount ); |
|||
break; |
|||
|
|||
default: |
|||
// Acute angles between adjacent edges can create issues in calculations,
|
|||
// in inflate/deflate outlines transforms, especially when the angle is very small.
|
|||
// We can avoid issues by creating a very small chamfer which remove acute angles,
|
|||
// or left it without chamfer and use only CPOLYGONS_LIST::InflateOutline to create
|
|||
// clearance areas
|
|||
m_smoothedPoly = new SHAPE_POLY_SET(); |
|||
*m_smoothedPoly = m_Poly->Chamfer( Millimeter2iu( 0.0 ) ); |
|||
break; |
|||
} |
|||
|
|||
if( aOutlineBuffer ) |
|||
aOutlineBuffer->Append( *m_smoothedPoly ); |
|||
|
|||
/* For copper layers, we now must add holes in the Polygon list.
|
|||
* holes are pads and tracks with their clearance area |
|||
* For non copper layers, just recalculate the m_FilledPolysList |
|||
* with m_ZoneMinThickness taken in account |
|||
*/ |
|||
else |
|||
{ |
|||
m_FilledPolysList.RemoveAllContours(); |
|||
|
|||
if( IsOnCopperLayer() ) |
|||
{ |
|||
ComputeRawFilledAreas( aPcb ); |
|||
|
|||
if( m_FillMode ) // if fill mode uses segments, create them:
|
|||
{ |
|||
if( !FillZoneAreasWithSegments() ) |
|||
return false; |
|||
} |
|||
} |
|||
else |
|||
{ |
|||
m_FillMode = 0; // Fill by segments is no more used in non copper layers
|
|||
// force use solid polygons (usefull only for old boards)
|
|||
m_FilledPolysList = *m_smoothedPoly; |
|||
|
|||
// The filled areas are deflated by -m_ZoneMinThickness / 2, because
|
|||
// the outlines are drawn with a line thickness = m_ZoneMinThickness to
|
|||
// give a good shape with the minimal thickness
|
|||
m_FilledPolysList.Inflate( -m_ZoneMinThickness / 2, 16 ); |
|||
m_FilledPolysList.Fracture( SHAPE_POLY_SET::PM_FAST ); |
|||
} |
|||
|
|||
m_IsFilled = true; |
|||
} |
|||
|
|||
return true; |
|||
} |
|||
|
|||
|
|||
/** Helper function fillPolygonWithHorizontalSegments
|
|||
* fills a polygon with horizontal segments. |
|||
* It can be used for any angle, if the zone outline to fill is rotated by this angle |
|||
* and the result is rotated by -angle |
|||
* @param aPolygon = a SHAPE_LINE_CHAIN polygon to fill |
|||
* @param aFillSegmList = a std::vector\<SEGMENT\> which will be populated by filling segments |
|||
* @param aStep = the horizontal grid size |
|||
*/ |
|||
bool fillPolygonWithHorizontalSegments( const SHAPE_LINE_CHAIN& aPolygon, |
|||
std::vector <SEGMENT>& aFillSegmList, int aStep ); |
|||
|
|||
bool ZONE_CONTAINER::FillZoneAreasWithSegments() |
|||
{ |
|||
bool success = true; |
|||
// segments are on something like a grid. Give it a minimal size
|
|||
// to avoid too many segments, and use the m_ZoneMinThickness when (this is usually the case)
|
|||
// the size is > mingrid_size.
|
|||
// This is not perfect, but the actual purpose of this code
|
|||
// is to allow filling zones on a grid, with grid size > m_ZoneMinThickness,
|
|||
// in order to have really a grid.
|
|||
//
|
|||
// Using a user selectable grid size is for future Kicad versions.
|
|||
// For now the area is fully filled.
|
|||
int mingrid_size = Millimeter2iu( 0.05 ); |
|||
int grid_size = std::max( mingrid_size, m_ZoneMinThickness ); |
|||
// Make segments slightly overlapping to ensure a good full filling
|
|||
grid_size -= grid_size/20; |
|||
|
|||
// All filled areas are in m_FilledPolysList
|
|||
// m_FillSegmList will contain the horizontal and vertical segments
|
|||
// the segment width is m_ZoneMinThickness.
|
|||
m_FillSegmList.clear(); |
|||
|
|||
// Creates the horizontal segments
|
|||
for ( int index = 0; index < m_FilledPolysList.OutlineCount(); index++ ) |
|||
{ |
|||
const SHAPE_LINE_CHAIN& outline0 = m_FilledPolysList.COutline( index ); |
|||
success = fillPolygonWithHorizontalSegments( outline0, m_FillSegmList, grid_size ); |
|||
|
|||
if( !success ) |
|||
break; |
|||
|
|||
// Creates the vertical segments. Because the filling algo creates horizontal segments,
|
|||
// to reuse the fillPolygonWithHorizontalSegments function, we rotate the polygons to fill
|
|||
// then fill them, then inverse rotate the result
|
|||
SHAPE_LINE_CHAIN outline90; |
|||
outline90.Append( outline0 ); |
|||
|
|||
// Rotate 90 degrees the outline:
|
|||
for( int ii = 0; ii < outline90.PointCount(); ii++ ) |
|||
{ |
|||
VECTOR2I& point = outline90.Point( ii ); |
|||
std::swap( point.x, point.y ); |
|||
point.y = -point.y; |
|||
} |
|||
|
|||
int first_point = m_FillSegmList.size(); |
|||
success = fillPolygonWithHorizontalSegments( outline90, m_FillSegmList, grid_size ); |
|||
|
|||
if( !success ) |
|||
break; |
|||
|
|||
// Rotate -90 degrees the segments:
|
|||
for( unsigned ii = first_point; ii < m_FillSegmList.size(); ii++ ) |
|||
{ |
|||
SEGMENT& segm = m_FillSegmList[ii]; |
|||
std::swap( segm.m_Start.x, segm.m_Start.y ); |
|||
std::swap( segm.m_End.x, segm.m_End.y ); |
|||
segm.m_Start.x = - segm.m_Start.x; |
|||
segm.m_End.x = - segm.m_End.x; |
|||
} |
|||
} |
|||
|
|||
if( success ) |
|||
m_IsFilled = true; |
|||
else |
|||
m_FillSegmList.clear(); |
|||
|
|||
return success; |
|||
} |
|||
|
|||
|
|||
bool fillPolygonWithHorizontalSegments( const SHAPE_LINE_CHAIN& aPolygon, |
|||
std::vector <SEGMENT>& aFillSegmList, int aStep ) |
|||
{ |
|||
std::vector <int> x_coordinates; |
|||
bool success = true; |
|||
|
|||
// Creates the horizontal segments
|
|||
const SHAPE_LINE_CHAIN& outline = aPolygon; |
|||
const BOX2I& rect = outline.BBox(); |
|||
|
|||
// Calculate the y limits of the zone
|
|||
for( int refy = rect.GetY(), endy = rect.GetBottom(); refy < endy; refy += aStep ) |
|||
{ |
|||
// find all intersection points of an infinite line with polyline sides
|
|||
x_coordinates.clear(); |
|||
|
|||
for( int v = 0; v < outline.PointCount(); v++ ) |
|||
{ |
|||
|
|||
int seg_startX = outline.CPoint( v ).x; |
|||
int seg_startY = outline.CPoint( v ).y; |
|||
int seg_endX = outline.CPoint( v + 1 ).x; |
|||
int seg_endY = outline.CPoint( v + 1 ).y; |
|||
|
|||
/* Trivial cases: skip if ref above or below the segment to test */ |
|||
if( ( seg_startY > refy ) && ( seg_endY > refy ) ) |
|||
continue; |
|||
|
|||
// segment below ref point, or its Y end pos on Y coordinate ref point: skip
|
|||
if( ( seg_startY <= refy ) && (seg_endY <= refy ) ) |
|||
continue; |
|||
|
|||
/* at this point refy is between seg_startY and seg_endY
|
|||
* see if an horizontal line at Y = refy is intersecting this segment |
|||
*/ |
|||
// calculate the x position of the intersection of this segment and the
|
|||
// infinite line this is more easier if we move the X,Y axis origin to
|
|||
// the segment start point:
|
|||
|
|||
seg_endX -= seg_startX; |
|||
seg_endY -= seg_startY; |
|||
double newrefy = (double) ( refy - seg_startY ); |
|||
double intersec_x; |
|||
|
|||
if ( seg_endY == 0 ) // horizontal segment on the same line: skip
|
|||
continue; |
|||
|
|||
// Now calculate the x intersection coordinate of the horizontal line at
|
|||
// y = newrefy and the segment from (0,0) to (seg_endX,seg_endY) with the
|
|||
// horizontal line at the new refy position the line slope is:
|
|||
// slope = seg_endY/seg_endX; and inv_slope = seg_endX/seg_endY
|
|||
// and the x pos relative to the new origin is:
|
|||
// intersec_x = refy/slope = refy * inv_slope
|
|||
// Note: because horizontal segments are already tested and skipped, slope
|
|||
// exists (seg_end_y not O)
|
|||
double inv_slope = (double) seg_endX / seg_endY; |
|||
intersec_x = newrefy * inv_slope; |
|||
x_coordinates.push_back( (int) intersec_x + seg_startX ); |
|||
} |
|||
|
|||
// A line scan is finished: build list of segments
|
|||
|
|||
// Sort intersection points by increasing x value:
|
|||
// So 2 consecutive points are the ends of a segment
|
|||
std::sort( x_coordinates.begin(), x_coordinates.end() ); |
|||
|
|||
// An even number of coordinates is expected, because a segment has 2 ends.
|
|||
// An if this algorithm always works, it must always find an even count.
|
|||
if( ( x_coordinates.size() & 1 ) != 0 ) |
|||
{ |
|||
success = false; |
|||
break; |
|||
} |
|||
|
|||
// Create segments having the same Y coordinate
|
|||
int iimax = x_coordinates.size() - 1; |
|||
|
|||
for( int ii = 0; ii < iimax; ii += 2 ) |
|||
{ |
|||
wxPoint seg_start, seg_end; |
|||
seg_start.x = x_coordinates[ii]; |
|||
seg_start.y = refy; |
|||
seg_end.x = x_coordinates[ii + 1]; |
|||
seg_end.y = refy; |
|||
SEGMENT segment( seg_start, seg_end ); |
|||
aFillSegmList.push_back( segment ); |
|||
} |
|||
} // End examine segments in one area
|
|||
|
|||
return success; |
|||
} |
|||
|
|||
void ZONE_CONTAINER::buildFeatureHoleList( BOARD* aPcb, SHAPE_POLY_SET& aFeatures ) |
|||
{ |
|||
int segsPerCircle; |
|||
double correctionFactor; |
|||
|
|||
// Set the number of segments in arc approximations
|
|||
if( m_ArcToSegmentsCount == ARC_APPROX_SEGMENTS_COUNT_HIGHT_DEF ) |
|||
segsPerCircle = ARC_APPROX_SEGMENTS_COUNT_HIGHT_DEF; |
|||
else |
|||
segsPerCircle = ARC_APPROX_SEGMENTS_COUNT_LOW_DEF; |
|||
|
|||
/* calculates the coeff to compensate radius reduction of holes clearance
|
|||
* due to the segment approx. |
|||
* For a circle the min radius is radius * cos( 2PI / s_CircleToSegmentsCount / 2) |
|||
* s_Correction is 1 /cos( PI/s_CircleToSegmentsCount ) |
|||
*/ |
|||
correctionFactor = 1.0 / cos( M_PI / (double) segsPerCircle ); |
|||
|
|||
aFeatures.RemoveAllContours(); |
|||
|
|||
int outline_half_thickness = m_ZoneMinThickness / 2; |
|||
|
|||
// When removing holes, the holes must be expanded by outline_half_thickness
|
|||
// to take in account the thickness of the zone outlines
|
|||
int zone_clearance = GetClearance() + outline_half_thickness; |
|||
|
|||
// When holes are created by non copper items (edge cut items), use only
|
|||
// the m_ZoneClearance parameter (zone clearance with no netclass clearance)
|
|||
int zone_to_edgecut_clearance = GetZoneClearance() + outline_half_thickness; |
|||
|
|||
/* store holes (i.e. tracks and pads areas as polygons outlines)
|
|||
* in a polygon list |
|||
*/ |
|||
|
|||
/* items ouside the zone bounding box are skipped
|
|||
* the bounding box is the zone bounding box + the biggest clearance found in Netclass list |
|||
*/ |
|||
EDA_RECT item_boundingbox; |
|||
EDA_RECT zone_boundingbox = GetBoundingBox(); |
|||
int biggest_clearance = aPcb->GetDesignSettings().GetBiggestClearanceValue(); |
|||
biggest_clearance = std::max( biggest_clearance, zone_clearance ); |
|||
zone_boundingbox.Inflate( biggest_clearance ); |
|||
|
|||
/*
|
|||
* First : Add pads. Note: pads having the same net as zone are left in zone. |
|||
* Thermal shapes will be created later if necessary |
|||
*/ |
|||
|
|||
/* Use a dummy pad to calculate hole clearance when a pad is not on all copper layers
|
|||
* and this pad has a hole |
|||
* This dummy pad has the size and shape of the hole |
|||
* Therefore, this dummy pad is a circle or an oval. |
|||
* A pad must have a parent because some functions expect a non null parent |
|||
* to find the parent board, and some other data |
|||
*/ |
|||
MODULE dummymodule( aPcb ); // Creates a dummy parent
|
|||
D_PAD dummypad( &dummymodule ); |
|||
|
|||
for( MODULE* module = aPcb->m_Modules; module; module = module->Next() ) |
|||
{ |
|||
D_PAD* nextpad; |
|||
|
|||
for( D_PAD* pad = module->PadsList(); pad != NULL; pad = nextpad ) |
|||
{ |
|||
nextpad = pad->Next(); // pad pointer can be modified by next code, so
|
|||
// calculate the next pad here
|
|||
|
|||
if( !pad->IsOnLayer( GetLayer() ) ) |
|||
{ |
|||
/* Test for pads that are on top or bottom only and have a hole.
|
|||
* There are curious pads but they can be used for some components that are |
|||
* inside the board (in fact inside the hole. Some photo diodes and Leds are |
|||
* like this) |
|||
*/ |
|||
if( pad->GetDrillSize().x == 0 && pad->GetDrillSize().y == 0 ) |
|||
continue; |
|||
|
|||
// Use a dummy pad to calculate a hole shape that have the same dimension as
|
|||
// the pad hole
|
|||
dummypad.SetSize( pad->GetDrillSize() ); |
|||
dummypad.SetOrientation( pad->GetOrientation() ); |
|||
dummypad.SetShape( pad->GetDrillShape() == PAD_DRILL_SHAPE_OBLONG ? |
|||
PAD_SHAPE_OVAL : PAD_SHAPE_CIRCLE ); |
|||
dummypad.SetPosition( pad->GetPosition() ); |
|||
|
|||
pad = &dummypad; |
|||
} |
|||
|
|||
// Note: netcode <=0 means not connected item
|
|||
if( ( pad->GetNetCode() != GetNetCode() ) || ( pad->GetNetCode() <= 0 ) ) |
|||
{ |
|||
int item_clearance = pad->GetClearance() + outline_half_thickness; |
|||
item_boundingbox = pad->GetBoundingBox(); |
|||
item_boundingbox.Inflate( item_clearance ); |
|||
|
|||
if( item_boundingbox.Intersects( zone_boundingbox ) ) |
|||
{ |
|||
int clearance = std::max( zone_clearance, item_clearance ); |
|||
|
|||
// PAD_SHAPE_CUSTOM can have a specific keepout, to avoid to break the shape
|
|||
if( pad->GetShape() == PAD_SHAPE_CUSTOM && |
|||
pad->GetCustomShapeInZoneOpt() == CUST_PAD_SHAPE_IN_ZONE_CONVEXHULL ) |
|||
{ |
|||
// the pad shape in zone can be its convex hull or
|
|||
// the shape itself
|
|||
SHAPE_POLY_SET outline( pad->GetCustomShapeAsPolygon() ); |
|||
outline.Inflate( KiROUND( clearance*correctionFactor) , segsPerCircle ); |
|||
pad->CustomShapeAsPolygonToBoardPosition( &outline, |
|||
pad->GetPosition(), pad->GetOrientation() ); |
|||
|
|||
if( pad->GetCustomShapeInZoneOpt() == CUST_PAD_SHAPE_IN_ZONE_CONVEXHULL ) |
|||
{ |
|||
std::vector<wxPoint> convex_hull; |
|||
BuildConvexHull( convex_hull, outline ); |
|||
|
|||
aFeatures.NewOutline(); |
|||
for( unsigned ii = 0; ii < convex_hull.size(); ++ii ) |
|||
aFeatures.Append( convex_hull[ii] ); |
|||
} |
|||
else |
|||
aFeatures.Append( outline ); |
|||
} |
|||
else |
|||
pad->TransformShapeWithClearanceToPolygon( aFeatures, |
|||
clearance, |
|||
segsPerCircle, |
|||
correctionFactor ); |
|||
} |
|||
|
|||
continue; |
|||
} |
|||
|
|||
// Pads are removed from zone if the setup is PAD_ZONE_CONN_NONE
|
|||
// or if they have a custom shape, because a thermal relief will break
|
|||
// the shape
|
|||
if( GetPadConnection( pad ) == PAD_ZONE_CONN_NONE || |
|||
pad->GetShape() == PAD_SHAPE_CUSTOM ) |
|||
{ |
|||
int gap = zone_clearance; |
|||
int thermalGap = GetThermalReliefGap( pad ); |
|||
gap = std::max( gap, thermalGap ); |
|||
item_boundingbox = pad->GetBoundingBox(); |
|||
item_boundingbox.Inflate( gap ); |
|||
|
|||
if( item_boundingbox.Intersects( zone_boundingbox ) ) |
|||
{ |
|||
// PAD_SHAPE_CUSTOM has a specific keepout, to avoid to break the shape
|
|||
// the pad shape in zone can be its convex hull or the shape itself
|
|||
if( pad->GetShape() == PAD_SHAPE_CUSTOM && |
|||
pad->GetCustomShapeInZoneOpt() == CUST_PAD_SHAPE_IN_ZONE_CONVEXHULL ) |
|||
{ |
|||
// the pad shape in zone can be its convex hull or
|
|||
// the shape itself
|
|||
SHAPE_POLY_SET outline( pad->GetCustomShapeAsPolygon() ); |
|||
outline.Inflate( KiROUND( gap*correctionFactor) , segsPerCircle ); |
|||
pad->CustomShapeAsPolygonToBoardPosition( &outline, |
|||
pad->GetPosition(), pad->GetOrientation() ); |
|||
|
|||
std::vector<wxPoint> convex_hull; |
|||
BuildConvexHull( convex_hull, outline ); |
|||
|
|||
aFeatures.NewOutline(); |
|||
for( unsigned ii = 0; ii < convex_hull.size(); ++ii ) |
|||
aFeatures.Append( convex_hull[ii] ); |
|||
} |
|||
else |
|||
pad->TransformShapeWithClearanceToPolygon( aFeatures, |
|||
gap, segsPerCircle, correctionFactor ); |
|||
} |
|||
} |
|||
} |
|||
} |
|||
|
|||
/* Add holes (i.e. tracks and vias areas as polygons outlines)
|
|||
* in cornerBufferPolysToSubstract |
|||
*/ |
|||
for( TRACK* track = aPcb->m_Track; track; track = track->Next() ) |
|||
{ |
|||
if( !track->IsOnLayer( GetLayer() ) ) |
|||
continue; |
|||
|
|||
if( track->GetNetCode() == GetNetCode() && (GetNetCode() != 0) ) |
|||
continue; |
|||
|
|||
int item_clearance = track->GetClearance() + outline_half_thickness; |
|||
item_boundingbox = track->GetBoundingBox(); |
|||
|
|||
if( item_boundingbox.Intersects( zone_boundingbox ) ) |
|||
{ |
|||
int clearance = std::max( zone_clearance, item_clearance ); |
|||
track->TransformShapeWithClearanceToPolygon( aFeatures, |
|||
clearance, |
|||
segsPerCircle, |
|||
correctionFactor ); |
|||
} |
|||
} |
|||
|
|||
/* Add module edge items that are on copper layers
|
|||
* Pcbnew allows these items to be on copper layers in microwave applictions |
|||
* This is a bad thing, but must be handled here, until a better way is found |
|||
*/ |
|||
for( MODULE* module = aPcb->m_Modules; module; module = module->Next() ) |
|||
{ |
|||
for( BOARD_ITEM* item = module->GraphicalItemsList(); item; item = item->Next() ) |
|||
{ |
|||
if( !item->IsOnLayer( GetLayer() ) && !item->IsOnLayer( Edge_Cuts ) ) |
|||
continue; |
|||
|
|||
if( item->Type() != PCB_MODULE_EDGE_T ) |
|||
continue; |
|||
|
|||
item_boundingbox = item->GetBoundingBox(); |
|||
|
|||
if( item_boundingbox.Intersects( zone_boundingbox ) ) |
|||
{ |
|||
int zclearance = zone_clearance; |
|||
|
|||
if( item->IsOnLayer( Edge_Cuts ) ) |
|||
// use only the m_ZoneClearance, not the clearance using
|
|||
// the netclass value, because we do not have a copper item
|
|||
zclearance = zone_to_edgecut_clearance; |
|||
|
|||
( (EDGE_MODULE*) item )->TransformShapeWithClearanceToPolygon( |
|||
aFeatures, zclearance, segsPerCircle, correctionFactor ); |
|||
} |
|||
} |
|||
} |
|||
|
|||
// Add graphic items (copper texts) and board edges
|
|||
// Currently copper texts have no net, so only the zone_clearance
|
|||
// is used.
|
|||
for( auto item : aPcb->Drawings() ) |
|||
{ |
|||
if( item->GetLayer() != GetLayer() && item->GetLayer() != Edge_Cuts ) |
|||
continue; |
|||
|
|||
int zclearance = zone_clearance; |
|||
|
|||
if( item->GetLayer() == Edge_Cuts ) |
|||
// use only the m_ZoneClearance, not the clearance using
|
|||
// the netclass value, because we do not have a copper item
|
|||
zclearance = zone_to_edgecut_clearance; |
|||
|
|||
switch( item->Type() ) |
|||
{ |
|||
case PCB_LINE_T: |
|||
( (DRAWSEGMENT*) item )->TransformShapeWithClearanceToPolygon( |
|||
aFeatures, |
|||
zclearance, segsPerCircle, correctionFactor ); |
|||
break; |
|||
|
|||
case PCB_TEXT_T: |
|||
( (TEXTE_PCB*) item )->TransformBoundingBoxWithClearanceToPolygon( |
|||
aFeatures, zclearance ); |
|||
break; |
|||
|
|||
default: |
|||
break; |
|||
} |
|||
} |
|||
|
|||
// Add zones outlines having an higher priority and keepout
|
|||
for( int ii = 0; ii < GetBoard()->GetAreaCount(); ii++ ) |
|||
{ |
|||
ZONE_CONTAINER* zone = GetBoard()->GetArea( ii ); |
|||
|
|||
// If the zones share no common layers
|
|||
if( !CommonLayerExists( zone->GetLayerSet() ) ) |
|||
continue; |
|||
|
|||
if( !zone->GetIsKeepout() && zone->GetPriority() <= GetPriority() ) |
|||
continue; |
|||
|
|||
if( zone->GetIsKeepout() && ! zone->GetDoNotAllowCopperPour() ) |
|||
continue; |
|||
|
|||
// A highter priority zone or keepout area is found: remove this area
|
|||
item_boundingbox = zone->GetBoundingBox(); |
|||
|
|||
if( !item_boundingbox.Intersects( zone_boundingbox ) ) |
|||
continue; |
|||
|
|||
// Add the zone outline area.
|
|||
// However if the zone has the same net as the current zone,
|
|||
// do not add any clearance.
|
|||
// the zone will be connected to the current zone, but filled areas
|
|||
// will use different parameters (clearance, thermal shapes )
|
|||
bool same_net = GetNetCode() == zone->GetNetCode(); |
|||
bool use_net_clearance = true; |
|||
int min_clearance = zone_clearance; |
|||
|
|||
// Do not forget to make room to draw the thick outlines
|
|||
// of the hole created by the area of the zone to remove
|
|||
int holeclearance = zone->GetClearance() + outline_half_thickness; |
|||
|
|||
// The final clearance is obviously the max value of each zone clearance
|
|||
min_clearance = std::max( min_clearance, holeclearance ); |
|||
|
|||
if( zone->GetIsKeepout() || same_net ) |
|||
{ |
|||
// Just take in account the fact the outline has a thickness, so
|
|||
// the actual area to substract is inflated to take in account this fact
|
|||
min_clearance = outline_half_thickness; |
|||
use_net_clearance = false; |
|||
} |
|||
|
|||
zone->TransformOutlinesShapeWithClearanceToPolygon( |
|||
aFeatures, min_clearance, use_net_clearance ); |
|||
} |
|||
|
|||
// Remove thermal symbols
|
|||
for( MODULE* module = aPcb->m_Modules; module; module = module->Next() ) |
|||
{ |
|||
for( D_PAD* pad = module->PadsList(); pad != NULL; pad = pad->Next() ) |
|||
{ |
|||
// Rejects non-standard pads with tht-only thermal reliefs
|
|||
if( GetPadConnection( pad ) == PAD_ZONE_CONN_THT_THERMAL |
|||
&& pad->GetAttribute() != PAD_ATTRIB_STANDARD ) |
|||
continue; |
|||
|
|||
if( GetPadConnection( pad ) != PAD_ZONE_CONN_THERMAL |
|||
&& GetPadConnection( pad ) != PAD_ZONE_CONN_THT_THERMAL ) |
|||
continue; |
|||
|
|||
if( !pad->IsOnLayer( GetLayer() ) ) |
|||
continue; |
|||
|
|||
if( pad->GetNetCode() != GetNetCode() ) |
|||
continue; |
|||
|
|||
item_boundingbox = pad->GetBoundingBox(); |
|||
int thermalGap = GetThermalReliefGap( pad ); |
|||
item_boundingbox.Inflate( thermalGap, thermalGap ); |
|||
|
|||
if( item_boundingbox.Intersects( zone_boundingbox ) ) |
|||
{ |
|||
CreateThermalReliefPadPolygon( aFeatures, |
|||
*pad, thermalGap, |
|||
GetThermalReliefCopperBridge( pad ), |
|||
m_ZoneMinThickness, |
|||
segsPerCircle, |
|||
correctionFactor, s_thermalRot ); |
|||
} |
|||
} |
|||
} |
|||
|
|||
} |
|||
|
|||
/**
|
|||
* Function ComputeRawFilledAreas |
|||
* Supports a min thickness area constraint. |
|||
* Add non copper areas polygons (pads and tracks with clearance) |
|||
* to the filled copper area found |
|||
* in BuildFilledPolysListData after calculating filled areas in a zone |
|||
* Non filled copper areas are pads and track and their clearance areas |
|||
* The filled copper area must be computed just before. |
|||
* BuildFilledPolysListData() call this function just after creating the |
|||
* filled copper area polygon (without clearance areas) |
|||
* to do that this function: |
|||
* 1 - Creates the main outline (zone outline) using a correction to shrink the resulting area |
|||
* with m_ZoneMinThickness/2 value. |
|||
* The result is areas with a margin of m_ZoneMinThickness/2 |
|||
* When drawing outline with segments having a thickness of m_ZoneMinThickness, the |
|||
* outlines will match exactly the initial outlines |
|||
* 3 - Add all non filled areas (pads, tracks) in group B with a clearance of m_Clearance + |
|||
* m_ZoneMinThickness/2 |
|||
* in a buffer |
|||
* - If Thermal shapes are wanted, add non filled area, in order to create these thermal shapes |
|||
* 4 - calculates the polygon A - B |
|||
* 5 - put resulting list of polygons (filled areas) in m_FilledPolysList |
|||
* This zone contains pads with the same net. |
|||
* 6 - Remove insulated copper islands |
|||
* 7 - If Thermal shapes are wanted, remove unconnected stubs in thermal shapes: |
|||
* creates a buffer of polygons corresponding to stubs to remove |
|||
* sub them to the filled areas. |
|||
* Remove new insulated copper islands |
|||
*/ |
|||
|
|||
void ZONE_CONTAINER::ComputeRawFilledAreas( BOARD* aPcb ) |
|||
{ |
|||
int segsPerCircle; |
|||
double correctionFactor; |
|||
int outline_half_thickness = m_ZoneMinThickness / 2; |
|||
|
|||
|
|||
std::unique_ptr<SHAPE_FILE_IO> dumper( new SHAPE_FILE_IO( |
|||
s_DumpZonesWhenFilling ? "zones_dump.txt" : "", SHAPE_FILE_IO::IOM_APPEND ) ); |
|||
|
|||
// Set the number of segments in arc approximations
|
|||
if( m_ArcToSegmentsCount == ARC_APPROX_SEGMENTS_COUNT_HIGHT_DEF ) |
|||
segsPerCircle = ARC_APPROX_SEGMENTS_COUNT_HIGHT_DEF; |
|||
else |
|||
segsPerCircle = ARC_APPROX_SEGMENTS_COUNT_LOW_DEF; |
|||
|
|||
/* calculates the coeff to compensate radius reduction of holes clearance
|
|||
* due to the segment approx. |
|||
* For a circle the min radius is radius * cos( 2PI / s_CircleToSegmentsCount / 2) |
|||
* s_Correction is 1 /cos( PI/s_CircleToSegmentsCount ) |
|||
*/ |
|||
correctionFactor = 1.0 / cos( M_PI / (double) segsPerCircle ); |
|||
|
|||
CPOLYGONS_LIST tmp; |
|||
|
|||
if(s_DumpZonesWhenFilling) |
|||
dumper->BeginGroup("clipper-zone"); |
|||
|
|||
SHAPE_POLY_SET solidAreas = *m_smoothedPoly; |
|||
|
|||
solidAreas.Inflate( -outline_half_thickness, segsPerCircle ); |
|||
solidAreas.Simplify( POLY_CALC_MODE ); |
|||
|
|||
SHAPE_POLY_SET holes; |
|||
|
|||
if(s_DumpZonesWhenFilling) |
|||
dumper->Write( &solidAreas, "solid-areas" ); |
|||
|
|||
tmp.RemoveAllContours(); |
|||
buildFeatureHoleList( aPcb, holes ); |
|||
|
|||
if(s_DumpZonesWhenFilling) |
|||
dumper->Write( &holes, "feature-holes" ); |
|||
|
|||
holes.Simplify( POLY_CALC_MODE ); |
|||
|
|||
if (s_DumpZonesWhenFilling) |
|||
dumper->Write( &holes, "feature-holes-postsimplify" ); |
|||
|
|||
// Generate the filled areas (currently, without thermal shapes, which will
|
|||
// be created later).
|
|||
// Use SHAPE_POLY_SET::PM_STRICTLY_SIMPLE to generate strictly simple polygons
|
|||
// needed by Gerber files and Fracture()
|
|||
solidAreas.BooleanSubtract( holes, SHAPE_POLY_SET::PM_STRICTLY_SIMPLE ); |
|||
|
|||
if (s_DumpZonesWhenFilling) |
|||
dumper->Write( &solidAreas, "solid-areas-minus-holes" ); |
|||
|
|||
SHAPE_POLY_SET areas_fractured = solidAreas; |
|||
areas_fractured.Fracture( POLY_CALC_MODE ); |
|||
|
|||
if (s_DumpZonesWhenFilling) |
|||
dumper->Write( &areas_fractured, "areas_fractured" ); |
|||
|
|||
m_FilledPolysList = areas_fractured; |
|||
|
|||
SHAPE_POLY_SET thermalHoles; |
|||
|
|||
// Test thermal stubs connections and add polygons to remove unconnected stubs.
|
|||
// (this is a refinement for thermal relief shapes)
|
|||
if( GetNetCode() > 0 ) |
|||
BuildUnconnectedThermalStubsPolygonList( thermalHoles, aPcb, this, |
|||
correctionFactor, s_thermalRot ); |
|||
|
|||
// remove copper areas corresponding to not connected stubs
|
|||
if( !thermalHoles.IsEmpty() ) |
|||
{ |
|||
thermalHoles.Simplify( POLY_CALC_MODE ); |
|||
// Remove unconnected stubs. Use SHAPE_POLY_SET::PM_STRICTLY_SIMPLE to
|
|||
// generate strictly simple polygons
|
|||
// needed by Gerber files and Fracture()
|
|||
solidAreas.BooleanSubtract( thermalHoles, SHAPE_POLY_SET::PM_STRICTLY_SIMPLE ); |
|||
|
|||
if( s_DumpZonesWhenFilling ) |
|||
dumper->Write( &thermalHoles, "thermal-holes" ); |
|||
|
|||
// put these areas in m_FilledPolysList
|
|||
SHAPE_POLY_SET th_fractured = solidAreas; |
|||
th_fractured.Fracture( POLY_CALC_MODE ); |
|||
|
|||
if( s_DumpZonesWhenFilling ) |
|||
dumper->Write ( &th_fractured, "th_fractured" ); |
|||
|
|||
m_FilledPolysList = th_fractured; |
|||
|
|||
} |
|||
|
|||
m_RawPolysList = m_FilledPolysList; |
|||
|
|||
if(s_DumpZonesWhenFilling) |
|||
dumper->EndGroup(); |
|||
} |
|||
|
|||
void ZONE_CONTAINER::RemoveInsulatedCopperIslands( BOARD* aPcb ) |
|||
{ |
|||
std::vector<int> islands; |
|||
|
|||
auto connectivity = aPcb->GetConnectivity(); |
|||
|
|||
connectivity->FindIsolatedCopperIslands( this, islands ); |
|||
|
|||
std::sort( islands.begin(), islands.end(), std::greater<int>() ); |
|||
|
|||
for( auto idx : islands ) |
|||
{ |
|||
m_FilledPolysList.DeletePolygon( idx ); |
|||
} |
|||
|
|||
connectivity->Update( this ); |
|||
} |
Write
Preview
Loading…
Cancel
Save
Reference in new issue