|
|
/*
* This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2014-2017 CERN * Copyright (C) 2014-2020 KiCad Developers, see AUTHORS.txt for contributors. * @author Tomasz Włostowski <tomasz.wlostowski@cern.ch> * * This program is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or (at your * option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */
#include <thread>
#include <algorithm>
#include <future>
#include <advanced_config.h>
#include <class_board.h>
#include <class_zone.h>
#include <class_module.h>
#include <class_edge_mod.h>
#include <class_drawsegment.h>
#include <class_pcb_text.h>
#include <class_pcb_target.h>
#include <class_track.h>
#include <connectivity/connectivity_data.h>
#include <convert_basic_shapes_to_polygon.h>
#include <board_commit.h>
#include <widgets/progress_reporter.h>
#include <geometry/shape_poly_set.h>
#include <geometry/convex_hull.h>
#include <geometry/geometry_utils.h>
#include <confirm.h>
#include <convert_to_biu.h>
#include <math/util.h> // for KiROUND
#include "zone_filler.h"
static const double s_RoundPadThermalSpokeAngle = 450; // in deci-degrees
ZONE_FILLER::ZONE_FILLER( BOARD* aBoard, COMMIT* aCommit ) : m_board( aBoard ), m_brdOutlinesValid( false ), m_commit( aCommit ), m_progressReporter( nullptr ), m_maxError( ARC_HIGH_DEF ){ // To enable add "DebugZoneFiller=1" to kicad_advanced settings file.
m_debugZoneFiller = ADVANCED_CFG::GetCfg().m_DebugZoneFiller;}
ZONE_FILLER::~ZONE_FILLER(){}
void ZONE_FILLER::InstallNewProgressReporter( wxWindow* aParent, const wxString& aTitle, int aNumPhases ){ m_uniqueReporter = std::make_unique<WX_PROGRESS_REPORTER>( aParent, aTitle, aNumPhases ); SetProgressReporter( m_uniqueReporter.get() );}
void ZONE_FILLER::SetProgressReporter( PROGRESS_REPORTER* aReporter ){ m_progressReporter = aReporter; wxASSERT_MSG( m_commit, "ZONE_FILLER must have a valid commit to call SetProgressReporter" );}
bool ZONE_FILLER::Fill( std::vector<ZONE_CONTAINER*>& aZones, bool aCheck, wxWindow* aParent ){ std::vector<std::pair<ZONE_CONTAINER*, PCB_LAYER_ID>> toFill; std::vector<CN_ZONE_ISOLATED_ISLAND_LIST> islandsList;
std::shared_ptr<CONNECTIVITY_DATA> connectivity = m_board->GetConnectivity(); std::unique_lock<std::mutex> lock( connectivity->GetLock(), std::try_to_lock );
BOARD_DESIGN_SETTINGS& bds = m_board->GetDesignSettings(); int worstClearance = bds.GetBiggestClearanceValue();
if( !lock ) return false;
if( m_progressReporter ) { m_progressReporter->Report( aCheck ? _( "Checking zone fills..." ) : _( "Building zone fills..." ) ); m_progressReporter->SetMaxProgress( aZones.size() ); m_progressReporter->KeepRefreshing(); }
// The board outlines is used to clip solid areas inside the board (when outlines are valid)
m_boardOutline.RemoveAllContours(); m_brdOutlinesValid = m_board->GetBoardPolygonOutlines( m_boardOutline );
// Update the bounding box and shape caches in the pads to prevent multi-threaded rebuilds.
for( MODULE* module : m_board->Modules() ) { for( D_PAD* pad : module->Pads() ) { if( pad->IsDirty() ) pad->BuildEffectiveShapes( UNDEFINED_LAYER ); } }
// Sort by priority to reduce deferrals waiting on higher priority zones.
std::sort( aZones.begin(), aZones.end(), []( const ZONE_CONTAINER* lhs, const ZONE_CONTAINER* rhs ) { return lhs->GetPriority() > rhs->GetPriority(); } );
for( ZONE_CONTAINER* zone : aZones ) { zone->CacheBoundingBox();
// Rule areas are not filled
if( zone->GetIsRuleArea() ) continue;
if( m_commit ) m_commit->Modify( zone );
// calculate the hash value for filled areas. it will be used later
// to know if the current filled areas are up to date
for( PCB_LAYER_ID layer : zone->GetLayerSet().Seq() ) { zone->BuildHashValue( layer );
// Add the zone to the list of zones to test or refill
toFill.emplace_back( std::make_pair( zone, layer ) ); }
islandsList.emplace_back( CN_ZONE_ISOLATED_ISLAND_LIST( zone ) );
// Remove existing fill first to prevent drawing invalid polygons
// on some platforms
zone->UnFill();
zone->SetFillVersion( bds.m_ZoneFillVersion ); }
size_t cores = std::thread::hardware_concurrency(); std::atomic<size_t> nextItem;
auto check_fill_dependency = [&]( ZONE_CONTAINER* aZone, PCB_LAYER_ID aLayer, ZONE_CONTAINER* aOtherZone ) -> bool { // Check to see if we have to knock-out the filled areas of a higher-priority
// zone. If so we have to wait until said zone is filled before we can fill.
// If the other zone is already filled then we're good-to-go
if( aOtherZone->GetFillFlag( aLayer ) ) return false;
// Even if keepouts exclude copper pours the exclusion is by outline, not by
// filled area, so we're good-to-go here too.
if( aOtherZone->GetIsRuleArea() ) return false;
// If the zones share no common layers
if( !aOtherZone->GetLayerSet().test( aLayer ) ) return false;
if( aOtherZone->GetPriority() <= aZone->GetPriority() ) return false;
// Same-net zones always use outline to produce predictable results
if( aOtherZone->GetNetCode() == aZone->GetNetCode() ) return false;
// A higher priority zone is found: if we intersect and it's not filled yet
// then we have to wait.
EDA_RECT inflatedBBox = aZone->GetCachedBoundingBox(); inflatedBBox.Inflate( worstClearance );
return inflatedBBox.Intersects( aOtherZone->GetCachedBoundingBox() ); };
auto fill_lambda = [&]( PROGRESS_REPORTER* aReporter ) { size_t num = 0;
for( size_t i = nextItem++; i < toFill.size(); i = nextItem++ ) { PCB_LAYER_ID layer = toFill[i].second; ZONE_CONTAINER* zone = toFill[i].first; bool canFill = true;
// Check for any fill dependencies. If our zone needs to be clipped by
// another zone then we can't fill until that zone is filled.
for( ZONE_CONTAINER* otherZone : m_board->Zones() ) { if( otherZone == zone ) continue;
if( check_fill_dependency( zone, layer, otherZone ) ) { canFill = false; break; } }
for( MODULE* module : m_board->Modules() ) { for( ZONE_CONTAINER* otherZone : module->Zones() ) { if( check_fill_dependency( zone, layer, otherZone ) ) { canFill = false; break; } } }
if( m_progressReporter && m_progressReporter->IsCancelled() ) break;
if( !canFill ) continue;
// Now we're ready to fill.
SHAPE_POLY_SET rawPolys, finalPolys; fillSingleZone( zone, layer, rawPolys, finalPolys );
std::unique_lock<std::mutex> zoneLock( zone->GetLock() );
zone->SetRawPolysList( layer, rawPolys ); zone->SetFilledPolysList( layer, finalPolys ); zone->SetFillFlag( layer, true );
if( m_progressReporter ) m_progressReporter->AdvanceProgress();
num++; }
return num; };
while( !toFill.empty() ) { size_t parallelThreadCount = std::min( cores, toFill.size() ); std::vector<std::future<size_t>> returns( parallelThreadCount );
nextItem = 0;
if( parallelThreadCount <= 1 ) fill_lambda( m_progressReporter ); else { for( size_t ii = 0; ii < parallelThreadCount; ++ii ) returns[ii] = std::async( std::launch::async, fill_lambda, m_progressReporter );
for( size_t ii = 0; ii < parallelThreadCount; ++ii ) { // Here we balance returns with a 100ms timeout to allow UI updating
std::future_status status; do { if( m_progressReporter ) m_progressReporter->KeepRefreshing();
status = returns[ii].wait_for( std::chrono::milliseconds( 100 ) ); } while( status != std::future_status::ready ); } }
toFill.erase( std::remove_if( toFill.begin(), toFill.end(), [&] ( const std::pair<ZONE_CONTAINER*, PCB_LAYER_ID> pair ) -> bool { return pair.first->GetFillFlag( pair.second ); } ), toFill.end() );
if( m_progressReporter && m_progressReporter->IsCancelled() ) break; }
// Now update the connectivity to check for copper islands
if( m_progressReporter ) { if( m_progressReporter->IsCancelled() ) return false;
m_progressReporter->AdvancePhase(); m_progressReporter->Report( _( "Removing insulated copper islands..." ) ); m_progressReporter->KeepRefreshing(); }
connectivity->SetProgressReporter( m_progressReporter ); connectivity->FindIsolatedCopperIslands( islandsList ); connectivity->SetProgressReporter( nullptr );
if( m_progressReporter && m_progressReporter->IsCancelled() ) return false;
for( ZONE_CONTAINER* zone : aZones ) { // Keepout zones are not filled
if( zone->GetIsRuleArea() ) continue;
zone->SetIsFilled( true ); }
// Now remove insulated copper islands
for( CN_ZONE_ISOLATED_ISLAND_LIST& zone : islandsList ) { for( PCB_LAYER_ID layer : zone.m_zone->GetLayerSet().Seq() ) { if( m_debugZoneFiller && LSET::InternalCuMask().Contains( layer ) ) continue;
if( !zone.m_islands.count( layer ) ) continue;
std::vector<int>& islands = zone.m_islands.at( layer );
// The list of polygons to delete must be explored from last to first in list,
// to allow deleting a polygon from list without breaking the remaining of the list
std::sort( islands.begin(), islands.end(), std::greater<int>() );
SHAPE_POLY_SET poly = zone.m_zone->GetFilledPolysList( layer ); long long int minArea = zone.m_zone->GetMinIslandArea(); ISLAND_REMOVAL_MODE mode = zone.m_zone->GetIslandRemovalMode();
for( int idx : islands ) { SHAPE_LINE_CHAIN& outline = poly.Outline( idx );
if( mode == ISLAND_REMOVAL_MODE::ALWAYS ) poly.DeletePolygon( idx ); else if ( mode == ISLAND_REMOVAL_MODE::AREA && outline.Area() < minArea ) poly.DeletePolygon( idx ); else zone.m_zone->SetIsIsland( layer, idx ); }
zone.m_zone->SetFilledPolysList( layer, poly ); zone.m_zone->CalculateFilledArea();
if( m_progressReporter && m_progressReporter->IsCancelled() ) return false; } }
// Now remove islands outside the board edge
for( ZONE_CONTAINER* zone : aZones ) { LSET zoneCopperLayers = zone->GetLayerSet() & LSET::AllCuMask( MAX_CU_LAYERS );
for( PCB_LAYER_ID layer : zoneCopperLayers.Seq() ) { if( m_debugZoneFiller && LSET::InternalCuMask().Contains( layer ) ) continue;
SHAPE_POLY_SET poly = zone->GetFilledPolysList( layer );
for( int ii = poly.OutlineCount() - 1; ii >= 0; ii-- ) { std::vector<SHAPE_LINE_CHAIN>& island = poly.Polygon( ii );
if( island.empty() || !m_boardOutline.Contains( island.front().CPoint( 0 ) ) ) poly.DeletePolygon( ii ); }
zone->SetFilledPolysList( layer, poly ); zone->CalculateFilledArea();
if( m_progressReporter && m_progressReporter->IsCancelled() ) return false; } }
if( aCheck ) { bool outOfDate = false;
for( ZONE_CONTAINER* zone : aZones ) { // Keepout zones are not filled
if( zone->GetIsRuleArea() ) continue;
for( PCB_LAYER_ID layer : zone->GetLayerSet().Seq() ) { MD5_HASH was = zone->GetHashValue( layer ); zone->CacheTriangulation( layer ); zone->BuildHashValue( layer ); MD5_HASH is = zone->GetHashValue( layer );
if( is != was ) outOfDate = true; } }
if( outOfDate ) { KIDIALOG dlg( aParent, _( "Zone fills are out-of-date. Refill?" ), _( "Confirmation" ), wxOK | wxCANCEL | wxICON_WARNING ); dlg.SetOKCancelLabels( _( "Refill" ), _( "Continue without Refill" ) ); dlg.DoNotShowCheckbox( __FILE__, __LINE__ );
if( dlg.ShowModal() == wxID_CANCEL ) return false; } }
if( m_progressReporter ) { m_progressReporter->AdvancePhase(); m_progressReporter->Report( _( "Performing polygon fills..." ) ); m_progressReporter->SetMaxProgress( islandsList.size() ); }
nextItem = 0;
auto tri_lambda = [&]( PROGRESS_REPORTER* aReporter ) -> size_t { size_t num = 0;
for( size_t i = nextItem++; i < islandsList.size(); i = nextItem++ ) { islandsList[i].m_zone->CacheTriangulation(); num++;
if( m_progressReporter ) { m_progressReporter->AdvanceProgress();
if( m_progressReporter->IsCancelled() ) break; } }
return num; };
size_t parallelThreadCount = std::min( cores, islandsList.size() ); std::vector<std::future<size_t>> returns( parallelThreadCount );
if( parallelThreadCount <= 1 ) tri_lambda( m_progressReporter ); else { for( size_t ii = 0; ii < parallelThreadCount; ++ii ) returns[ii] = std::async( std::launch::async, tri_lambda, m_progressReporter );
for( size_t ii = 0; ii < parallelThreadCount; ++ii ) { // Here we balance returns with a 100ms timeout to allow UI updating
std::future_status status; do { if( m_progressReporter ) { m_progressReporter->KeepRefreshing();
if( m_progressReporter->IsCancelled() ) break; }
status = returns[ii].wait_for( std::chrono::milliseconds( 100 ) ); } while( status != std::future_status::ready ); } }
if( m_progressReporter ) { if( m_progressReporter->IsCancelled() ) return false;
m_progressReporter->AdvancePhase(); m_progressReporter->KeepRefreshing(); }
connectivity->SetProgressReporter( nullptr ); return true;}
/**
* Return true if the given pad has a thermal connection with the given zone. */bool hasThermalConnection( D_PAD* pad, const ZONE_CONTAINER* aZone ){ // Rejects non-standard pads with tht-only thermal reliefs
if( aZone->GetPadConnection( pad ) == ZONE_CONNECTION::THT_THERMAL && pad->GetAttribute() != PAD_ATTRIB_PTH ) { return false; }
if( aZone->GetPadConnection( pad ) != ZONE_CONNECTION::THERMAL && aZone->GetPadConnection( pad ) != ZONE_CONNECTION::THT_THERMAL ) { return false; }
if( pad->GetNetCode() != aZone->GetNetCode() || pad->GetNetCode() <= 0 ) return false;
EDA_RECT item_boundingbox = pad->GetBoundingBox(); int thermalGap = aZone->GetThermalReliefGap( pad ); item_boundingbox.Inflate( thermalGap, thermalGap );
return item_boundingbox.Intersects( aZone->GetCachedBoundingBox() );}
/**
* Setup aDummyPad to have the same size and shape of aPad's hole. This allows us to create * thermal reliefs and clearances for holes using the pad code. */static void setupDummyPadForHole( const D_PAD* aPad, D_PAD& aDummyPad ){ // People may author clearance rules that look at a bunch of different stuff so we need
// to copy over pretty much everything except the shape info, which we fill from the drill
// info.
aDummyPad.SetLayerSet( aPad->GetLayerSet() ); aDummyPad.SetAttribute( aPad->GetAttribute() ); aDummyPad.SetProperty( aPad->GetProperty() );
aDummyPad.SetNetCode( aPad->GetNetCode() ); aDummyPad.SetLocalClearance( aPad->GetLocalClearance() ); aDummyPad.SetLocalSolderMaskMargin( aPad->GetLocalSolderMaskMargin() ); aDummyPad.SetLocalSolderPasteMargin( aPad->GetLocalSolderPasteMargin() ); aDummyPad.SetLocalSolderPasteMarginRatio( aPad->GetLocalSolderPasteMarginRatio() );
aDummyPad.SetZoneConnection( aPad->GetEffectiveZoneConnection() ); aDummyPad.SetThermalSpokeWidth( aPad->GetEffectiveThermalSpokeWidth() ); aDummyPad.SetThermalGap( aPad->GetEffectiveThermalGap() );
aDummyPad.SetCustomShapeInZoneOpt( aPad->GetCustomShapeInZoneOpt() );
// Note: drill size represents finish size, which means the actual holes size is the
// plating thickness larger.
int platingThickness = 0;
if( aPad->GetAttribute() == PAD_ATTRIB_PTH ) platingThickness = aPad->GetBoard()->GetDesignSettings().GetHolePlatingThickness();
aDummyPad.SetOffset( wxPoint( 0, 0 ) ); aDummyPad.SetSize( aPad->GetDrillSize() + wxSize( platingThickness, platingThickness ) ); aDummyPad.SetShape( aPad->GetDrillShape() == PAD_DRILL_SHAPE_OBLONG ? PAD_SHAPE_OVAL : PAD_SHAPE_CIRCLE ); aDummyPad.SetOrientation( aPad->GetOrientation() ); aDummyPad.SetPosition( aPad->GetPosition() );}
/**
* Add a knockout for a pad. The knockout is 'aGap' larger than the pad (which might be * either the thermal clearance or the electrical clearance). */void ZONE_FILLER::addKnockout( D_PAD* aPad, PCB_LAYER_ID aLayer, int aGap, SHAPE_POLY_SET& aHoles ){ if( aPad->GetShape() == PAD_SHAPE_CUSTOM ) { SHAPE_POLY_SET poly; aPad->TransformShapeWithClearanceToPolygon( poly, aLayer, aGap, m_maxError );
// the pad shape in zone can be its convex hull or the shape itself
if( aPad->GetCustomShapeInZoneOpt() == CUST_PAD_SHAPE_IN_ZONE_CONVEXHULL ) { std::vector<wxPoint> convex_hull; BuildConvexHull( convex_hull, poly );
aHoles.NewOutline();
for( const wxPoint& pt : convex_hull ) aHoles.Append( pt ); } else aHoles.Append( poly ); } else { aPad->TransformShapeWithClearanceToPolygon( aHoles, aLayer, aGap, m_maxError ); }}
/**
* Add a knockout for a graphic item. The knockout is 'aGap' larger than the item (which * might be either the electrical clearance or the board edge clearance). */void ZONE_FILLER::addKnockout( BOARD_ITEM* aItem, PCB_LAYER_ID aLayer, int aGap, bool aIgnoreLineWidth, SHAPE_POLY_SET& aHoles ){ switch( aItem->Type() ) { case PCB_LINE_T: { DRAWSEGMENT* seg = (DRAWSEGMENT*) aItem; seg->TransformShapeWithClearanceToPolygon( aHoles, aLayer, aGap, m_maxError, aIgnoreLineWidth ); break; } case PCB_TEXT_T: { TEXTE_PCB* text = (TEXTE_PCB*) aItem; text->TransformBoundingBoxWithClearanceToPolygon( &aHoles, aGap ); break; } case PCB_MODULE_EDGE_T: { EDGE_MODULE* edge = (EDGE_MODULE*) aItem; edge->TransformShapeWithClearanceToPolygon( aHoles, aLayer, aGap, m_maxError, aIgnoreLineWidth ); break; } case PCB_MODULE_TEXT_T: { TEXTE_MODULE* text = (TEXTE_MODULE*) aItem;
if( text->IsVisible() ) text->TransformBoundingBoxWithClearanceToPolygon( &aHoles, aGap );
break; } default: break; }}
/**
* Removes thermal reliefs from the shape for any pads connected to the zone. Does NOT add * in spokes, which must be done later. */void ZONE_FILLER::knockoutThermalReliefs( const ZONE_CONTAINER* aZone, PCB_LAYER_ID aLayer, SHAPE_POLY_SET& aFill ){ SHAPE_POLY_SET holes;
// Use a dummy pad to calculate relief when a pad has a hole but is not on the zone's
// copper layer. The dummy pad has the size and shape of the original pad's hole. We have
// to give it a parent because some functions expect a non-null parent to find clearance
// data, etc.
MODULE dummymodule( m_board ); D_PAD dummypad( &dummymodule );
for( auto module : m_board->Modules() ) { for( auto pad : module->Pads() ) { if( !hasThermalConnection( pad, aZone ) ) continue;
// If the pad isn't on the current layer but has a hole, knock out a thermal relief
// for the hole.
if( !pad->IsOnLayer( aLayer ) ) { if( pad->GetDrillSize().x == 0 && pad->GetDrillSize().y == 0 ) continue;
setupDummyPadForHole( pad, dummypad ); pad = &dummypad; }
addKnockout( pad, aLayer, aZone->GetThermalReliefGap( pad ), holes ); } }
aFill.BooleanSubtract( holes, SHAPE_POLY_SET::PM_FAST );}
/**
* Removes clearance from the shape for copper items which share the zone's layer but are * not connected to it. */void ZONE_FILLER::buildCopperItemClearances( const ZONE_CONTAINER* aZone, PCB_LAYER_ID aLayer, SHAPE_POLY_SET& aHoles ){ static DRAWSEGMENT dummyEdge; dummyEdge.SetParent( m_board ); dummyEdge.SetLayer( Edge_Cuts );
// A small extra clearance to be sure actual track clearances are not smaller than
// requested clearance due to many approximations in calculations, like arc to segment
// approx, rounding issues, etc.
// 1 micron is a good value
int extra_margin = Millimeter2iu( ADVANCED_CFG::GetCfg().m_ExtraClearance );
BOARD_DESIGN_SETTINGS& bds = m_board->GetDesignSettings(); int zone_clearance = aZone->GetLocalClearance(); EDA_RECT zone_boundingbox = aZone->GetCachedBoundingBox();
// Items outside the zone bounding box are skipped, so it needs to be inflated by the
// largest clearance value found in the netclasses and rules
int biggest_clearance = std::max( zone_clearance, bds.GetBiggestClearanceValue() ); zone_boundingbox.Inflate( biggest_clearance + extra_margin );
// Use a dummy pad to calculate hole clearance when a pad has a hole but is not on the
// zone's copper layer. The dummy pad has the size and shape of the original pad's hole.
// We have to give it a parent because some functions expect a non-null parent to find
// clearance data, etc.
MODULE dummymodule( m_board ); D_PAD dummypad( &dummymodule );
// Add non-connected pad clearances
//
for( MODULE* module : m_board->Modules() ) { for( D_PAD* pad : module->Pads() ) { if( !pad->FlashLayer( aLayer ) ) { if( pad->GetDrillSize().x == 0 && pad->GetDrillSize().y == 0 ) continue;
setupDummyPadForHole( pad, dummypad ); pad = &dummypad; }
if( pad->GetNetCode() != aZone->GetNetCode() || pad->GetNetCode() <= 0 || aZone->GetPadConnection( pad ) == ZONE_CONNECTION::NONE ) { if( pad->GetBoundingBox().Intersects( zone_boundingbox ) ) { int gap;
// for pads having the same netcode as the zone, the net clearance has no
// meaning so use the greater of the zone clearance and the thermal relief
if( pad->GetNetCode() > 0 && pad->GetNetCode() == aZone->GetNetCode() ) gap = std::max( zone_clearance, aZone->GetThermalReliefGap( pad ) ); else gap = aZone->GetClearance( aLayer, pad );
addKnockout( pad, aLayer, gap, aHoles ); } } } }
// Add non-connected track clearances
//
for( TRACK* track : m_board->Tracks() ) { if( !track->IsOnLayer( aLayer ) ) continue;
if( track->GetNetCode() == aZone->GetNetCode() && ( aZone->GetNetCode() != 0) ) continue;
if( track->GetBoundingBox().Intersects( zone_boundingbox ) ) { int gap = aZone->GetClearance( aLayer, track ) + extra_margin;
if( track->Type() == PCB_VIA_T ) { VIA* via = static_cast<VIA*>( track );
if( !via->FlashLayer( aLayer ) ) { int radius = via->GetDrillValue() / 2 + bds.GetHolePlatingThickness() + gap; TransformCircleToPolygon( aHoles, via->GetPosition(), radius, m_maxError ); } else { via->TransformShapeWithClearanceToPolygon( aHoles, aLayer, gap, m_maxError ); } } else { track->TransformShapeWithClearanceToPolygon( aHoles, aLayer, gap, m_maxError ); } } }
// Add graphic item clearances. They are by definition unconnected, and have no clearance
// definitions of their own.
//
auto doGraphicItem = [&]( BOARD_ITEM* aItem ) { // A item on the Edge_Cuts is always seen as on any layer:
if( !aItem->IsOnLayer( aLayer ) && !aItem->IsOnLayer( Edge_Cuts ) ) return;
if( aItem->GetBoundingBox().Intersects( zone_boundingbox ) ) { PCB_LAYER_ID layer = aLayer; bool ignoreLineWidth = false;
if( aItem->IsOnLayer( Edge_Cuts ) ) { layer = Edge_Cuts; ignoreLineWidth = true; }
int gap = aZone->GetClearance( aLayer, aItem ) + extra_margin;
addKnockout( aItem, layer, gap, ignoreLineWidth, aHoles ); } };
for( MODULE* module : m_board->Modules() ) { doGraphicItem( &module->Reference() ); doGraphicItem( &module->Value() );
for( BOARD_ITEM* item : module->GraphicalItems() ) doGraphicItem( item ); }
for( BOARD_ITEM* item : m_board->Drawings() ) doGraphicItem( item );
// Add keepout zones and higher-priority zones
//
auto knockoutZone = [&]( ZONE_CONTAINER* aKnockout ) { // If the zones share no common layers
if( !aKnockout->GetLayerSet().test( aLayer ) ) return;
if( aKnockout->GetBoundingBox().Intersects( zone_boundingbox ) ) { if( aKnockout->GetIsRuleArea() || aZone->GetNetCode() == aKnockout->GetNetCode() ) { // Keepouts and same-net zones use outline with no clearance
aKnockout->TransformSmoothedOutlineWithClearanceToPolygon( aHoles, 0 ); } else { int gap = aZone->GetClearance( aLayer, aKnockout );
if( bds.m_ZoneFillVersion == 5 ) { // 5.x used outline with clearance
aKnockout->TransformSmoothedOutlineWithClearanceToPolygon( aHoles, gap ); } else { // 6.0 uses filled areas with clearance
SHAPE_POLY_SET poly; aKnockout->TransformShapeWithClearanceToPolygon( poly, aLayer, gap ); aHoles.Append( poly ); } } } };
for( ZONE_CONTAINER* otherZone : m_board->Zones() ) { if( otherZone == aZone ) continue;
if( otherZone->GetIsRuleArea() ) { if( otherZone->GetDoNotAllowCopperPour() ) knockoutZone( otherZone ); } else { if( otherZone->GetPriority() > aZone->GetPriority() ) knockoutZone( otherZone ); } }
for( MODULE* module : m_board->Modules() ) { for( ZONE_CONTAINER* otherZone : module->Zones() ) { if( otherZone->GetIsRuleArea() ) { if( otherZone->GetDoNotAllowCopperPour() ) knockoutZone( otherZone ); } else { if( otherZone->GetPriority() > aZone->GetPriority() ) knockoutZone( otherZone ); } } }
aHoles.Simplify( SHAPE_POLY_SET::PM_FAST );}
#define DUMP_POLYS_TO_COPPER_LAYER( a, b, c ) \
{ if( m_debugZoneFiller && dumpLayer == b ) \ { \ m_board->SetLayerName( b, c ); \ a.Simplify( SHAPE_POLY_SET::PM_STRICTLY_SIMPLE ); \ a.Fracture( SHAPE_POLY_SET::PM_STRICTLY_SIMPLE ); \ aRawPolys = a; \ aFinalPolys = a; \ return; \ } \ }
/**
* 1 - Creates the main zone outline using a correction to shrink the resulting area by * m_ZoneMinThickness / 2. The result is areas with a margin of m_ZoneMinThickness / 2 * so that when drawing outline with segments having a thickness of m_ZoneMinThickness the * outlines will match exactly the initial outlines * 2 - Knocks out thermal reliefs around thermally-connected pads * 3 - Builds a set of thermal spoke for the whole zone * 4 - Knocks out unconnected copper items, deleting any affected spokes * 5 - Removes unconnected copper islands, deleting any affected spokes * 6 - Adds in the remaining spokes */void ZONE_FILLER::computeRawFilledArea( const ZONE_CONTAINER* aZone, PCB_LAYER_ID aLayer, const SHAPE_POLY_SET& aSmoothedOutline, SHAPE_POLY_SET& aRawPolys, SHAPE_POLY_SET& aFinalPolys ){ PCB_LAYER_ID dumpLayer = aLayer;
if( m_debugZoneFiller && LSET::InternalCuMask().Contains( aLayer ) ) aLayer = F_Cu;
m_maxError = m_board->GetDesignSettings().m_MaxError;
// Features which are min_width should survive pruning; features that are *less* than
// min_width should not. Therefore we subtract epsilon from the min_width when
// deflating/inflating.
int half_min_width = aZone->GetMinThickness() / 2; int epsilon = Millimeter2iu( 0.001 ); int numSegs = GetArcToSegmentCount( half_min_width, m_maxError, 360.0 );
// Solid polygons are deflated and inflated during calculations. Deflating doesn't cause
// issues, but inflate is tricky as it can create excessively long and narrow spikes for
// acute angles.
// ALLOW_ACUTE_CORNERS cannot be used due to the spike problem.
// CHAMFER_ACUTE_CORNERS is tempting, but can still produce spikes in some unusual
// circumstances (https://gitlab.com/kicad/code/kicad/-/issues/5581).
// It's unclear if ROUND_ACUTE_CORNERS would have the same issues, but is currently avoided
// as a "less-safe" option.
// ROUND_ALL_CORNERS produces the uniformly nicest shapes, but also a lot of segments.
// CHAMFER_ALL_CORNERS improves the segement count.
SHAPE_POLY_SET::CORNER_STRATEGY fastCornerStrategy = SHAPE_POLY_SET::CHAMFER_ALL_CORNERS; SHAPE_POLY_SET::CORNER_STRATEGY cornerStrategy = SHAPE_POLY_SET::ROUND_ALL_CORNERS;
std::deque<SHAPE_LINE_CHAIN> thermalSpokes; SHAPE_POLY_SET clearanceHoles;
aRawPolys = aSmoothedOutline; DUMP_POLYS_TO_COPPER_LAYER( aRawPolys, In1_Cu, "smoothed-outline" );
if( m_progressReporter && m_progressReporter->IsCancelled() ) return;
knockoutThermalReliefs( aZone, aLayer, aRawPolys ); DUMP_POLYS_TO_COPPER_LAYER( aRawPolys, In2_Cu, "minus-thermal-reliefs" );
if( m_progressReporter && m_progressReporter->IsCancelled() ) return;
buildCopperItemClearances( aZone, aLayer, clearanceHoles );
if( m_progressReporter && m_progressReporter->IsCancelled() ) return;
buildThermalSpokes( aZone, aLayer, thermalSpokes );
if( m_progressReporter && m_progressReporter->IsCancelled() ) return;
// Create a temporary zone that we can hit-test spoke-ends against. It's only temporary
// because the "real" subtract-clearance-holes has to be done after the spokes are added.
static const bool USE_BBOX_CACHES = true; SHAPE_POLY_SET testAreas = aRawPolys; testAreas.BooleanSubtract( clearanceHoles, SHAPE_POLY_SET::PM_FAST ); DUMP_POLYS_TO_COPPER_LAYER( testAreas, In3_Cu, "minus-clearance-holes" );
// Prune features that don't meet minimum-width criteria
if( half_min_width - epsilon > epsilon ) { testAreas.Deflate( half_min_width - epsilon, numSegs, fastCornerStrategy ); DUMP_POLYS_TO_COPPER_LAYER( testAreas, In4_Cu, "spoke-test-deflated" );
testAreas.Inflate( half_min_width - epsilon, numSegs, fastCornerStrategy ); DUMP_POLYS_TO_COPPER_LAYER( testAreas, In5_Cu, "spoke-test-reinflated" ); }
if( m_progressReporter && m_progressReporter->IsCancelled() ) return;
// Spoke-end-testing is hugely expensive so we generate cached bounding-boxes to speed
// things up a bit.
testAreas.BuildBBoxCaches(); int interval = 0;
for( const SHAPE_LINE_CHAIN& spoke : thermalSpokes ) { const VECTOR2I& testPt = spoke.CPoint( 3 );
// Hit-test against zone body
if( testAreas.Contains( testPt, -1, 1, USE_BBOX_CACHES ) ) { aRawPolys.AddOutline( spoke ); continue; }
if( interval++ > 400 ) { if( m_progressReporter && m_progressReporter->IsCancelled() ) return;
interval = 0; }
// Hit-test against other spokes
for( const SHAPE_LINE_CHAIN& other : thermalSpokes ) { if( &other != &spoke && other.PointInside( testPt, 1, USE_BBOX_CACHES ) ) { aRawPolys.AddOutline( spoke ); break; } } }
DUMP_POLYS_TO_COPPER_LAYER( aRawPolys, In6_Cu, "plus-spokes" );
if( m_progressReporter && m_progressReporter->IsCancelled() ) return;
aRawPolys.BooleanSubtract( clearanceHoles, SHAPE_POLY_SET::PM_FAST ); DUMP_POLYS_TO_COPPER_LAYER( aRawPolys, In7_Cu, "trimmed-spokes" );
// Prune features that don't meet minimum-width criteria
if( half_min_width - epsilon > epsilon ) aRawPolys.Deflate( half_min_width - epsilon, numSegs, cornerStrategy );
DUMP_POLYS_TO_COPPER_LAYER( aRawPolys, In8_Cu, "deflated" );
if( m_progressReporter && m_progressReporter->IsCancelled() ) return;
// Now remove the non filled areas due to the hatch pattern
if( aZone->GetFillMode() == ZONE_FILL_MODE::HATCH_PATTERN ) addHatchFillTypeOnZone( aZone, aLayer, aRawPolys );
DUMP_POLYS_TO_COPPER_LAYER( aRawPolys, In9_Cu, "after-hatching" );
if( m_progressReporter && m_progressReporter->IsCancelled() ) return;
// Re-inflate after pruning of areas that don't meet minimum-width criteria
if( aZone->GetFilledPolysUseThickness() ) { // If we're stroking the zone with a min_width stroke then this will naturally inflate
// the zone by half_min_width
} else if( half_min_width - epsilon > epsilon ) { aRawPolys.Inflate( half_min_width - epsilon, numSegs, cornerStrategy ); }
DUMP_POLYS_TO_COPPER_LAYER( aRawPolys, In10_Cu, "after-reinflating" );
// Ensure additive changes (thermal stubs and particularly inflating acute corners) do not
// add copper outside the zone boundary or inside the clearance holes
aRawPolys.BooleanIntersection( aSmoothedOutline, SHAPE_POLY_SET::PM_FAST ); aRawPolys.BooleanSubtract( clearanceHoles, SHAPE_POLY_SET::PM_FAST );
aRawPolys.Fracture( SHAPE_POLY_SET::PM_FAST );
aFinalPolys = aRawPolys;}
/*
* Build the filled solid areas data from real outlines (stored in m_Poly) * The solid areas can be more than one on copper layers, and do not have holes * ( holes are linked by overlapping segments to the main outline) */bool ZONE_FILLER::fillSingleZone( ZONE_CONTAINER* aZone, PCB_LAYER_ID aLayer, SHAPE_POLY_SET& aRawPolys, SHAPE_POLY_SET& aFinalPolys ){ SHAPE_POLY_SET smoothedPoly;
/*
* convert outlines + holes to outlines without holes (adding extra segments if necessary) * m_Poly data is expected normalized, i.e. NormalizeAreaOutlines was used after building * this zone */ if ( !aZone->BuildSmoothedPoly( smoothedPoly, aLayer ) ) return false;
if( m_progressReporter && m_progressReporter->IsCancelled() ) return false;
if( aZone->IsOnCopperLayer() ) { computeRawFilledArea( aZone, aLayer, smoothedPoly, aRawPolys, aFinalPolys ); } else { // Features which are min_width should survive pruning; features that are *less* than
// min_width should not. Therefore we subtract epsilon from the min_width when
// deflating/inflating.
int half_min_width = aZone->GetMinThickness() / 2; int epsilon = Millimeter2iu( 0.001 ); int numSegs = GetArcToSegmentCount( half_min_width, m_maxError, 360.0 );
if( m_brdOutlinesValid ) smoothedPoly.BooleanIntersection( m_boardOutline, SHAPE_POLY_SET::PM_STRICTLY_SIMPLE );
smoothedPoly.Deflate( half_min_width - epsilon, numSegs );
// Remove the non filled areas due to the hatch pattern
if( aZone->GetFillMode() == ZONE_FILL_MODE::HATCH_PATTERN ) addHatchFillTypeOnZone( aZone, aLayer, smoothedPoly );
// Re-inflate after pruning of areas that don't meet minimum-width criteria
if( aZone->GetFilledPolysUseThickness() ) { // If we're stroking the zone with a min_width stroke then this will naturally
// inflate the zone by half_min_width
} else if( half_min_width - epsilon > epsilon ) smoothedPoly.Deflate( -( half_min_width - epsilon ), numSegs );
aRawPolys = smoothedPoly; aFinalPolys = smoothedPoly;
aFinalPolys.Fracture( SHAPE_POLY_SET::PM_STRICTLY_SIMPLE ); }
aZone->SetNeedRefill( false ); return true;}
/**
* Function buildThermalSpokes */void ZONE_FILLER::buildThermalSpokes( const ZONE_CONTAINER* aZone, PCB_LAYER_ID aLayer, std::deque<SHAPE_LINE_CHAIN>& aSpokesList ){ auto zoneBB = aZone->GetCachedBoundingBox(); int zone_clearance = aZone->GetLocalClearance(); int biggest_clearance = m_board->GetDesignSettings().GetBiggestClearanceValue(); biggest_clearance = std::max( biggest_clearance, zone_clearance ); zoneBB.Inflate( biggest_clearance );
// Is a point on the boundary of the polygon inside or outside? This small epsilon lets
// us avoid the question.
int epsilon = KiROUND( IU_PER_MM * 0.04 ); // about 1.5 mil
for( auto module : m_board->Modules() ) { for( auto pad : module->Pads() ) { if( !hasThermalConnection( pad, aZone ) ) continue;
// We currently only connect to pads, not pad holes
if( !pad->IsOnLayer( aLayer ) ) continue;
int thermalReliefGap = aZone->GetThermalReliefGap( pad );
// Calculate thermal bridge half width
int spoke_w = aZone->GetThermalReliefSpokeWidth( pad ); // Avoid spoke_w bigger than the smaller pad size, because
// it is not possible to create stubs bigger than the pad.
// Possible refinement: have a separate size for vertical and horizontal stubs
spoke_w = std::min( spoke_w, pad->GetSize().x ); spoke_w = std::min( spoke_w, pad->GetSize().y );
// Cannot create stubs having a width < zone min thickness
if( spoke_w <= aZone->GetMinThickness() ) continue;
int spoke_half_w = spoke_w / 2;
// Quick test here to possibly save us some work
BOX2I itemBB = pad->GetBoundingBox(); itemBB.Inflate( thermalReliefGap + epsilon );
if( !( itemBB.Intersects( zoneBB ) ) ) continue;
// Thermal spokes consist of segments from the pad center to points just outside
// the thermal relief.
//
// We use the bounding-box to lay out the spokes, but for this to work the
// bounding box has to be built at the same rotation as the spokes.
// We have to use a dummy pad to avoid dirtying the cached shapes
wxPoint shapePos = pad->ShapePos(); double padAngle = pad->GetOrientation(); D_PAD dummy_pad( *pad ); dummy_pad.SetOrientation( 0.0 ); dummy_pad.SetPosition( { 0, 0 } );
BOX2I reliefBB = dummy_pad.GetBoundingBox(); reliefBB.Inflate( thermalReliefGap + epsilon );
// For circle pads, the thermal spoke orientation is 45 deg
if( pad->GetShape() == PAD_SHAPE_CIRCLE ) padAngle = s_RoundPadThermalSpokeAngle;
for( int i = 0; i < 4; i++ ) { SHAPE_LINE_CHAIN spoke; switch( i ) { case 0: // lower stub
spoke.Append( +spoke_half_w, -spoke_half_w ); spoke.Append( -spoke_half_w, -spoke_half_w ); spoke.Append( -spoke_half_w, reliefBB.GetBottom() ); spoke.Append( 0, reliefBB.GetBottom() ); // test pt
spoke.Append( +spoke_half_w, reliefBB.GetBottom() ); break;
case 1: // upper stub
spoke.Append( +spoke_half_w, spoke_half_w ); spoke.Append( -spoke_half_w, spoke_half_w ); spoke.Append( -spoke_half_w, reliefBB.GetTop() ); spoke.Append( 0, reliefBB.GetTop() ); // test pt
spoke.Append( +spoke_half_w, reliefBB.GetTop() ); break;
case 2: // right stub
spoke.Append( -spoke_half_w, spoke_half_w ); spoke.Append( -spoke_half_w, -spoke_half_w ); spoke.Append( reliefBB.GetRight(), -spoke_half_w ); spoke.Append( reliefBB.GetRight(), 0 ); // test pt
spoke.Append( reliefBB.GetRight(), spoke_half_w ); break;
case 3: // left stub
spoke.Append( spoke_half_w, spoke_half_w ); spoke.Append( spoke_half_w, -spoke_half_w ); spoke.Append( reliefBB.GetLeft(), -spoke_half_w ); spoke.Append( reliefBB.GetLeft(), 0 ); // test pt
spoke.Append( reliefBB.GetLeft(), spoke_half_w ); break; }
spoke.Rotate( -DECIDEG2RAD( padAngle ) ); spoke.Move( shapePos );
spoke.SetClosed( true ); spoke.GenerateBBoxCache(); aSpokesList.push_back( std::move( spoke ) ); } } }}
void ZONE_FILLER::addHatchFillTypeOnZone( const ZONE_CONTAINER* aZone, PCB_LAYER_ID aLayer, SHAPE_POLY_SET& aRawPolys ){ // Build grid:
// obviously line thickness must be > zone min thickness.
// It can happens if a board file was edited by hand by a python script
// Use 1 micron margin to be *sure* there is no issue in Gerber files
// (Gbr file unit = 1 or 10 nm) due to some truncation in coordinates or calculations
// This margin also avoid problems due to rounding coordinates in next calculations
// that can create incorrect polygons
int thickness = std::max( aZone->GetHatchThickness(), aZone->GetMinThickness() + Millimeter2iu( 0.001 ) );
int linethickness = thickness - aZone->GetMinThickness(); int gridsize = thickness + aZone->GetHatchGap(); double orientation = aZone->GetHatchOrientation();
SHAPE_POLY_SET filledPolys = aRawPolys; // Use a area that contains the rotated bbox by orientation,
// and after rotate the result by -orientation.
if( orientation != 0.0 ) filledPolys.Rotate( M_PI/180.0 * orientation, VECTOR2I( 0,0 ) );
BOX2I bbox = filledPolys.BBox( 0 );
// Build hole shape
// the hole size is aZone->GetHatchGap(), but because the outline thickness
// is aZone->GetMinThickness(), the hole shape size must be larger
SHAPE_LINE_CHAIN hole_base; int hole_size = aZone->GetHatchGap() + aZone->GetMinThickness(); VECTOR2I corner( 0, 0 );; hole_base.Append( corner ); corner.x += hole_size; hole_base.Append( corner ); corner.y += hole_size; hole_base.Append( corner ); corner.x = 0; hole_base.Append( corner ); hole_base.SetClosed( true );
// Calculate minimal area of a grid hole.
// All holes smaller than a threshold will be removed
double minimal_hole_area = hole_base.Area() * aZone->GetHatchHoleMinArea();
// Now convert this hole to a smoothed shape:
if( aZone->GetHatchSmoothingLevel() > 0 ) { // the actual size of chamfer, or rounded corner radius is the half size
// of the HatchFillTypeGap scaled by aZone->GetHatchSmoothingValue()
// aZone->GetHatchSmoothingValue() = 1.0 is the max value for the chamfer or the
// radius of corner (radius = half size of the hole)
int smooth_value = KiROUND( aZone->GetHatchGap() * aZone->GetHatchSmoothingValue() / 2 );
// Minimal optimization:
// make smoothing only for reasonnable smooth values, to avoid a lot of useless segments
// and if the smooth value is small, use chamfer even if fillet is requested
#define SMOOTH_MIN_VAL_MM 0.02
#define SMOOTH_SMALL_VAL_MM 0.04
if( smooth_value > Millimeter2iu( SMOOTH_MIN_VAL_MM ) ) { SHAPE_POLY_SET smooth_hole; smooth_hole.AddOutline( hole_base ); int smooth_level = aZone->GetHatchSmoothingLevel();
if( smooth_value < Millimeter2iu( SMOOTH_SMALL_VAL_MM ) && smooth_level > 1 ) smooth_level = 1;
// Use a larger smooth_value to compensate the outline tickness
// (chamfer is not visible is smooth value < outline thickess)
smooth_value += aZone->GetMinThickness() / 2;
// smooth_value cannot be bigger than the half size oh the hole:
smooth_value = std::min( smooth_value, aZone->GetHatchGap() / 2 );
// the error to approximate a circle by segments when smoothing corners by a arc
int error_max = std::max( Millimeter2iu( 0.01 ), smooth_value / 20 );
switch( smooth_level ) { case 1: // Chamfer() uses the distance from a corner to create a end point
// for the chamfer.
hole_base = smooth_hole.Chamfer( smooth_value ).Outline( 0 ); break;
default: if( aZone->GetHatchSmoothingLevel() > 2 ) error_max /= 2; // Force better smoothing
hole_base = smooth_hole.Fillet( smooth_value, error_max ).Outline( 0 ); break;
case 0: break; }; } }
// Build holes
SHAPE_POLY_SET holes;
for( int xx = 0; ; xx++ ) { int xpos = xx * gridsize;
if( xpos > bbox.GetWidth() ) break;
for( int yy = 0; ; yy++ ) { int ypos = yy * gridsize;
if( ypos > bbox.GetHeight() ) break;
// Generate hole
SHAPE_LINE_CHAIN hole( hole_base ); hole.Move( VECTOR2I( xpos, ypos ) ); holes.AddOutline( hole ); } }
holes.Move( bbox.GetPosition() );
// We must buffer holes by at least aZone->GetMinThickness() to guarantee that thermal
// reliefs can be built (and to give the zone a solid outline). However, it looks more
// visually consistent if the buffer width is the same as the hatch width.
int outline_margin = KiROUND( aZone->GetMinThickness() * 1.1 );
if( aZone->GetHatchBorderAlgorithm() ) outline_margin = std::max( outline_margin, aZone->GetHatchThickness() );
if( outline_margin > linethickness / 2 ) filledPolys.Deflate( outline_margin - linethickness / 2, 16 );
holes.BooleanIntersection( filledPolys, SHAPE_POLY_SET::PM_FAST );
if( orientation != 0.0 ) holes.Rotate( -M_PI/180.0 * orientation, VECTOR2I( 0,0 ) );
if( aZone->GetNetCode() != 0 ) { // Vias and pads connected to the zone must not be allowed to become isolated inside
// one of the holes. Effectively this means their copper outline needs to be expanded
// to be at least as wide as the gap so that it is guaranteed to touch at least one
// edge.
EDA_RECT zone_boundingbox = aZone->GetCachedBoundingBox(); SHAPE_POLY_SET aprons; int min_apron_radius = ( aZone->GetHatchGap() * 10 ) / 19;
for( TRACK* track : m_board->Tracks() ) { if( track->Type() == PCB_VIA_T ) { VIA* via = static_cast<VIA*>( track );
if( via->GetNetCode() == aZone->GetNetCode() && via->IsOnLayer( aLayer ) && via->GetBoundingBox().Intersects( zone_boundingbox ) ) { int r = std::max( min_apron_radius, via->GetDrillValue() / 2 + outline_margin );
TransformCircleToPolygon( aprons, via->GetPosition(), r, ARC_HIGH_DEF ); } } }
for( MODULE* module : m_board->Modules() ) { for( D_PAD* pad : module->Pads() ) { if( pad->GetNetCode() == aZone->GetNetCode() && pad->IsOnLayer( aLayer ) && pad->GetBoundingBox().Intersects( zone_boundingbox ) ) { // What we want is to bulk up the pad shape so that the narrowest bit of
// copper between the hole and the apron edge is at least outline_margin
// wide (and that the apron itself meets min_apron_radius. But that would
// take a lot of code and math, and the following approximation is close
// enough.
int pad_width = std::min( pad->GetSize().x, pad->GetSize().y ); int slot_width = std::min( pad->GetDrillSize().x, pad->GetDrillSize().y ); int min_annulus = ( pad_width - slot_width ) / 2; int clearance = std::max( min_apron_radius - pad_width / 2, outline_margin - min_annulus );
clearance = std::max( 0, clearance - linethickness / 2 ); pad->TransformShapeWithClearanceToPolygon( aprons, aLayer, clearance, ARC_HIGH_DEF ); } } }
holes.BooleanSubtract( aprons, SHAPE_POLY_SET::PM_FAST ); }
// Now filter truncated holes to avoid small holes in pattern
// It happens for holes near the zone outline
for( int ii = 0; ii < holes.OutlineCount(); ) { double area = holes.Outline( ii ).Area();
if( area < minimal_hole_area ) // The current hole is too small: remove it
holes.DeletePolygon( ii ); else ++ii; }
// create grid. Use SHAPE_POLY_SET::PM_STRICTLY_SIMPLE to
// generate strictly simple polygons needed by Gerber files and Fracture()
aRawPolys.BooleanSubtract( aRawPolys, holes, SHAPE_POLY_SET::PM_STRICTLY_SIMPLE );}
|