|
|
/*
* KiRouter - a push-and-(sometimes-)shove PCB router * * Copyright (C) 2013-2017 CERN * Copyright The KiCad Developers, see AUTHORS.txt for contributors. * Author: Tomasz Wlostowski <tomasz.wlostowski@cern.ch> * * This program is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or (at your * option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <optional>
#include <math/box2.h>
#include <math/vector2d.h>
#include "pns_line.h"
#include "pns_node.h"
#include "pns_via.h"
#include "pns_utils.h"
#include "pns_router.h"
#include "pns_debug_decorator.h"
#include <geometry/shape_rect.h>
namespace PNS {
LINE::LINE( const LINE& aOther ) : LINK_HOLDER( aOther ), m_line( aOther.m_line ), m_width( aOther.m_width ), m_snapThreshhold( aOther.m_snapThreshhold ){ m_net = aOther.m_net; m_movable = aOther.m_movable; m_layers = aOther.m_layers;
m_via = nullptr;
if( aOther.m_via ) { if( aOther.m_via->BelongsTo( &aOther ) ) { m_via = aOther.m_via->Clone(); m_via->SetOwner( this ); m_via->SetNet( m_net ); } else { m_via = aOther.m_via; } }
m_marker = aOther.m_marker; m_rank = aOther.m_rank; m_blockingObstacle = aOther.m_blockingObstacle;
copyLinks( &aOther );}
LINE::~LINE(){ if( m_via && m_via->BelongsTo( this ) ) delete m_via;}
LINE& LINE::operator=( const LINE& aOther ){ m_parent = aOther.m_parent; m_sourceItem = aOther.m_sourceItem;
m_line = aOther.m_line; m_width = aOther.m_width; m_net = aOther.m_net; m_movable = aOther.m_movable; m_layers = aOther.m_layers;
m_via = nullptr;
if( aOther.m_via ) { if( aOther.m_via->BelongsTo( &aOther ) ) { m_via = aOther.m_via->Clone(); m_via->SetOwner( this ); m_via->SetNet( m_net ); } else { m_via = aOther.m_via; } }
m_marker = aOther.m_marker; m_rank = aOther.m_rank; m_routable = aOther.m_routable; m_owner = aOther.m_owner; m_snapThreshhold = aOther.m_snapThreshhold; m_blockingObstacle = aOther.m_blockingObstacle;
copyLinks( &aOther );
return *this;}
LINE* LINE::Clone() const{ LINE* l = new LINE( *this );
return l;}
void LINE::Mark( int aMarker ) const{ m_marker = aMarker;
for( const LINKED_ITEM* s : m_links ) s->Mark( aMarker );
}
void LINE::Unmark( int aMarker ) const{ for( const LINKED_ITEM* s : m_links ) s->Unmark( aMarker );
m_marker = 0;}
int LINE::Marker() const{ int marker = m_marker;
for( LINKED_ITEM* s : m_links ) marker |= s->Marker();
return marker;}
SEGMENT* SEGMENT::Clone() const{ SEGMENT* s = new SEGMENT( *this );
s->m_seg = m_seg; s->m_net = m_net; s->m_layers = m_layers; s->m_marker = m_marker; s->m_rank = m_rank;
return s;}
int LINE::CountCorners( int aAngles ) const{ int count = 0;
for( int i = 0; i < m_line.SegmentCount() - 1; i++ ) { const SEG seg1 = m_line.CSegment( i ); const SEG seg2 = m_line.CSegment( i + 1 );
const DIRECTION_45 dir1( seg1 ); const DIRECTION_45 dir2( seg2 );
DIRECTION_45::AngleType a = dir1.Angle( dir2 );
if( a & aAngles ) count++; }
return count;}
static int areNeighbours( int x, int y, int max = 0 ){ if( x > 0 && x - 1 == y ) return true;
if( x < max - 1 && x + 1 == y ) return true;
return false;}
#ifdef TOM_EXTRA_DEBUG
SHAPE_LINE_CHAIN g_pnew, g_hnew;#endif
bool LINE::Walkaround( const SHAPE_LINE_CHAIN& aObstacle, SHAPE_LINE_CHAIN& aPath, bool aCw ) const{ const SHAPE_LINE_CHAIN& line( CLine() );
if( line.SegmentCount() < 1 ) { return false; }
const VECTOR2I pFirst = line.CPoint(0);
bool inFirst = aObstacle.PointInside( pFirst ) && !aObstacle.PointOnEdge( pFirst );
// We can't really walk around if the beginning of the path lies inside the obstacle hull.
// Double check if it's not on the hull itself as this triggers many unroutable corner cases.
if( inFirst ) { return false; }
enum VERTEX_TYPE { INSIDE = 0, OUTSIDE, ON_EDGE };
// Represents an entry in directed graph of hull/path vertices. Scanning this graph
// starting from the path's first point results (if possible) with a correct walkaround path
struct VERTEX { // vertex classification (inside/outside/exactly on the hull)
VERTEX_TYPE type; // true = vertex coming from the hull primitive
bool isHull; // position
VECTOR2I pos; // list of neighboring vertices
std::vector<VERTEX*> neighbours; // index of this vertex in path (pnew)
int indexp = -1; // index of this vertex in the hull (hnew)
int indexh = -1; // visited indicator (for BFS search)
bool visited = false; };
SHAPE_LINE_CHAIN::INTERSECTIONS ips;
HullIntersection( aObstacle, line, ips );
SHAPE_LINE_CHAIN pnew( CLine() ), hnew( aObstacle );
std::vector<VERTEX> vts;
auto findVertex = [&]( const VECTOR2I& pos ) -> VERTEX* { for( VERTEX& v : vts ) { if( v.pos == pos ) return &v; }
return nullptr; };
// corner case for loopy tracks: insert the end loop point back into the hull
if( const std::optional<SHAPE_LINE_CHAIN::INTERSECTION> isect = pnew.SelfIntersecting() ) { if( isect->p != pnew.CPoint( -1 ) ) pnew.Split( isect->p ); }
// insert all intersections found into the new hull/path SLCs
for( SHAPE_LINE_CHAIN::INTERSECTION& ip : ips ) { if( pnew.Find( ip.p, 1 ) < 0) pnew.Split(ip.p);
if( hnew.Find( ip.p, 1 ) < 0 ) hnew.Split(ip.p); }
for( int i = 0; i < pnew.PointCount(); i++ ) { const VECTOR2I& p = pnew.CPoint( i ); bool onEdge = hnew.PointOnEdge( p );
if ( !onEdge ) continue;
int idx = hnew.Find( p );
if(idx < 0 ) hnew.Split( p ); }
#ifdef TOM_EXTRA_DEBUG
for( auto& ip : ips ) { printf("Chk: %d %d\n", pnew.Find( ip.p ), hnew.Find(ip.p) ); } #endif
// we assume the default orientation of the hulls is clockwise, so just reverse the vertex
// order if the caller wants a counter-clockwise walkaround
if ( !aCw ) hnew = hnew.Reverse();
vts.reserve( 2 * ( hnew.PointCount() + pnew.PointCount() ) );
// create a graph of hull/path vertices and classify them (inside/on edge/outside the hull)
for( int i = 0; i < pnew.PointCount(); i++ ) { const VECTOR2I& p = pnew.CPoint(i); bool onEdge = hnew.PointOnEdge( p ); bool inside = hnew.PointInside( p );
#ifdef TOM_EXTRA_DEBUG
printf("pnew %d inside %d onedge %d\n", i, !!inside, !!onEdge ); #endif
VERTEX v;
v.indexp = i; v.isHull = false; v.pos = p; v.type = inside && !onEdge ? INSIDE : onEdge ? ON_EDGE : OUTSIDE; vts.push_back( v ); }
#ifdef TOM_EXTRA_DEBUG
g_pnew = pnew; g_hnew = hnew; #endif
// each path vertex neighbour list points for sure to the next vertex in the path
for( int i = 0; i < pnew.PointCount() - 1; i++ ) { vts[i].neighbours.push_back( &vts[ i+1 ] ); }
// each path vertex neighbour list points for sure to the next vertex in the path
for( int i = 1; i < pnew.PointCount() ; i++ ) { vts[i].neighbours.push_back( &vts[ i-1 ] ); }
// insert hull vertices into the graph
for( int i = 0; i < hnew.PointCount(); i++ ) { const VECTOR2I& hp = hnew.CPoint( i ); VERTEX* vn = findVertex( hp );
// if vertex already present (it's very likely that in recursive shoving hull and path vertices will overlap)
// just mark it as a path vertex that also belongs to the hull
if( vn ) { vn->isHull = true; vn->indexh = i; } else // new hull vertex
{ VERTEX v; v.pos = hp; v.type = ON_EDGE; v.indexh = i; v.isHull = true; vts.push_back( v ); } }
// go around the hull and fix up the neighbour link lists
for( int i = 0; i < hnew.PointCount(); i++ ) { VERTEX* vc = findVertex( hnew.CPoint( i ) ); VERTEX* vnext = findVertex( hnew.CPoint( i+1 ) );
if( vc && vnext ) vc->neighbours.push_back( vnext ); }
// In the case that the initial path ends *inside* the current obstacle (i.e. the mouse cursor
// is somewhere inside the hull for the current obstacle) we want to end the walkaround at the
// point closest to the cursor
bool inLast = aObstacle.PointInside( CPoint( -1 ) ) && !aObstacle.PointOnEdge( CPoint( -1 ) ); bool appendV = true; int lastDst = INT_MAX;
int i = 0;#ifdef TOM_EXTRA_DEBUG
for( VERTEX* &v: vts ) { if( v.indexh < 0 && v.type == ON_EDGE ) v.type = OUTSIDE; // hack
printf("V %d pos %d %d ip %d ih %d type %d\n", i++, v.pos.x, v.pos.y, v.indexp, v.indexh, v.type ); }#endif
// vts[0] = start point
VERTEX* v = &vts[0]; VERTEX* v_prev = nullptr; SHAPE_LINE_CHAIN out;
int iterLimit = 1000;
// keep scanning the graph until we reach the end point of the path
while( v->indexp != ( pnew.PointCount() - 1 ) ) { iterLimit--;
// I'm not 100% sure this algorithm doesn't have bugs that may cause it to freeze,
// so here's a temporary iteration limit
if( iterLimit == 0 ) return false;
if( v->visited ) { // loop found? stop walking
break; }
#ifdef TOM_EXTRA_DEBUG
printf("---\nvisit ip %d ih %d type %d outs %d neig %d\n", v->indexp, v->indexh, v->type, out.PointCount(), v->neighbours.size() );#endif
out.Append( v->pos );
VERTEX* v_next = nullptr;
if( v->type == OUTSIDE ) { // current vertex is outside? first look for any vertex further down the path
// that is not inside the hull
out.Append( v->pos ); VERTEX* v_next_fallback = nullptr;
for( VERTEX* vn : v->neighbours ) { if( areNeighbours( vn->indexp , v->indexp, pnew.PointCount() ) && vn->type != INSIDE ) { if( !vn->visited ) { v_next = vn; break; } else if( vn != v_prev ) { v_next_fallback = vn; } } }
if( !v_next ) v_next = v_next_fallback;
// such a vertex must always be present, if not, bummer.
if( !v_next ) { #ifdef TOM_EXTRA_DEBUG
printf("FAIL VN fallback %p\n", v_next_fallback ); #endif
return false; } } else if( v->type == ON_EDGE ) { // look first for the first vertex outside the hull
for( VERTEX* vn : v->neighbours ) {#ifdef TOM_EXTRA_DEBUG
printf( "- OUT scan ip %d ih %d type %d\n", vn->indexp, vn->indexh, vn->type );#endif
if( vn->type == OUTSIDE && !vn->visited ) { v_next = vn; break; } }
// no outside vertices found? continue traversing the hull
if( !v_next ) { for( VERTEX* vn : v->neighbours ) { #ifdef TOM_EXTRA_DEBUG
printf("- scan ip %d ih %d type %d\n", vn->indexp, vn->indexh, vn->type ); #endif
if( vn->type == ON_EDGE && !vn->isHull && areNeighbours( vn->indexp, v->indexp, pnew.PointCount() ) && ( vn->indexh == ( ( v->indexh + 1 ) % hnew.PointCount() ) ) ) { v_next = vn; break; } } }
// still nothing found? try to find the next (index-wise) point on the hull. I guess
// we should never reach this part of the code, but who really knows?
if( !v_next ) {#ifdef TOM_EXTRA_DEBUG
printf("still no v_next\n");#endif
for( VERTEX* vn : v->neighbours ) { if( vn->type == ON_EDGE ) { if( vn->indexh == ( ( v->indexh + 1 ) % hnew.PointCount() ) ) { v_next = vn; break; } } }
if( v_next ) { for( VERTEX &vt : vts ) { if( vt.isHull ) vt.visited = false; } }
#ifdef TOM_EXTRA_DEBUG
printf("v_next %p\n", v_next);#endif
// Did we get the next hull point but the end of the line is inside? Instead of walking
// around the hull some more (which will just end up taking us back to the start), lets
// just project the normal of the endpoint onto this next segment and call it quits.
if( inLast && v_next ) { int d = ( v_next->pos - CPoint( -1 ) ).SquaredEuclideanNorm();
if( d < lastDst ) { lastDst = d; } else { VECTOR2I proj = SEG( v->pos, v_next->pos ).NearestPoint( CPoint( -1 ) ); out.Append( proj ); appendV = false; break; } } } }
v->visited = true; v_prev = v; v = v_next;
if( !v ) return false; }
if( appendV ) out.Append( v->pos );
aPath = out;
return true;}
const SHAPE_LINE_CHAIN SEGMENT::Hull( int aClearance, int aWalkaroundThickness, int aLayer ) const{ /*DEBUG_DECORATOR* debugDecorator = ROUTER::GetInstance()->GetInterface()->GetDebugDecorator();
PNS_DBG( debugDecorator, Message, wxString::Format( wxT( "seghull %d %d" ), aWalkaroundThickness, aClearance ) ); PNS_DBG(debugDecorator, AddShape, &m_seg, RED, 0, wxT("theseg") ); */
return SegmentHull( m_seg, aClearance, aWalkaroundThickness );}
const LINE LINE::ClipToNearestObstacle( NODE* aNode ) const{ const int IterationLimit = 5; int i; LINE l( *this );
for( i = 0; i < IterationLimit; i++ ) { NODE::OPT_OBSTACLE obs = aNode->NearestObstacle( &l );
if( obs ) { l.RemoveVia(); VECTOR2I collisionPoint = obs->m_ipFirst; int segIdx = l.Line().NearestSegment( collisionPoint );
if( l.Line().IsArcSegment( segIdx ) ) { // Don't clip at arcs, start again
l.Line().Clear(); } else { SEG nearestSegment = l.Line().CSegment( segIdx ); VECTOR2I nearestPt = nearestSegment.NearestPoint( collisionPoint ); int p = l.Line().Split( nearestPt ); l.Line().Remove( p + 1, -1 ); } } else { break; } }
if( i == IterationLimit ) l.Line().Clear();
return l;}
SHAPE_LINE_CHAIN dragCornerInternal( const SHAPE_LINE_CHAIN& aOrigin, const VECTOR2I& aP, DIRECTION_45 aPreferredEndingDirection = DIRECTION_45() ){ std::optional<SHAPE_LINE_CHAIN> picked; int i; int d = 2;
wxASSERT( aOrigin.PointCount() > 0 );
if( aOrigin.PointCount() == 1 ) { return DIRECTION_45().BuildInitialTrace( aOrigin.CPoint( 0 ), aP ); } else if( aOrigin.SegmentCount() == 1 ) { DIRECTION_45 dir( aOrigin.CPoint( 0 ) - aOrigin.CPoint( 1 ) );
return DIRECTION_45().BuildInitialTrace( aOrigin.CPoint( 0 ), aP, dir.IsDiagonal() ); }
//if( aOrigin.CSegment( -1 ).Length() > 100000 * 30 ) // fixme: constant/parameter?
d = 1;
for( i = aOrigin.SegmentCount() - d; i >= 0; i-- ) { DIRECTION_45 d_start( aOrigin.CSegment( i ) ); const VECTOR2I& p_start = aOrigin.CPoint( i ); SHAPE_LINE_CHAIN paths[2]; DIRECTION_45 dirs[2]; DIRECTION_45 d_prev = ( i > 0 ? DIRECTION_45( aOrigin.CSegment( i-1 ) ) : DIRECTION_45() ); int dirCount = 0;
for( int j = 0; j < 2; j++ ) { paths[j] = d_start.BuildInitialTrace( p_start, aP, j );
if( paths[j].SegmentCount() < 1 ) continue;
assert( dirCount < int( sizeof( dirs ) / sizeof( dirs[0] ) ) );
dirs[dirCount] = DIRECTION_45( paths[j].CSegment( 0 ) ); ++dirCount; }
if( aPreferredEndingDirection != DIRECTION_45::UNDEFINED ) { for( int j = 0; j < dirCount; j++ ) { DIRECTION_45 endingDir( paths[j].CSegment(-1) ); if( endingDir == aPreferredEndingDirection ) { picked = paths[j]; break; } } }
if( !picked ) { for( int j = 0; j < dirCount; j++ ) { if( dirs[j] == d_start ) { picked = paths[j]; break; } } }
if( picked ) break;
for( int j = 0; j < dirCount; j++ ) { if( dirs[j].IsObtuse( d_prev ) ) { picked = paths[j]; break; } }
if( picked ) break; }
if( picked ) { SHAPE_LINE_CHAIN path = aOrigin.Slice( 0, i ); path.Append( *picked );
return path; }
DIRECTION_45 dir( aOrigin.CPoint( -1 ) - aOrigin.CPoint( -2 ) );
return DIRECTION_45().BuildInitialTrace( aOrigin.CPoint( 0 ), aP, dir.IsDiagonal() );}
void LINE::dragCorner45( const VECTOR2I& aP, int aIndex, DIRECTION_45 aPreferredEndingDirection ){ SHAPE_LINE_CHAIN path;
int width = m_line.Width(); VECTOR2I snapped = snapDraggedCorner( m_line, aP, aIndex );
if( aIndex == 0 ) { path = dragCornerInternal( m_line.Reverse(), snapped, aPreferredEndingDirection ).Reverse(); } else if( aIndex == m_line.SegmentCount() ) { path = dragCornerInternal( m_line, snapped, aPreferredEndingDirection ); } else { // Are we next to an arc? Insert a new point so we slice correctly
if( m_line.IsPtOnArc( static_cast<size_t>( aIndex ) + 1 ) ) m_line.Insert( aIndex + 1, m_line.CPoint( aIndex + 1 ) );
// fixme: awkward behaviour for "outwards" drags
path = dragCornerInternal( m_line.Slice( 0, aIndex ), snapped, aPreferredEndingDirection ); SHAPE_LINE_CHAIN path_rev = dragCornerInternal( m_line.Slice( aIndex, -1 ).Reverse(), snapped, aPreferredEndingDirection ).Reverse(); path.Append( path_rev ); }
path.Simplify(); path.SetWidth( width ); m_line = path;}
void LINE::dragCornerFree( const VECTOR2I& aP, int aIndex ){ ssize_t idx = static_cast<ssize_t>( aIndex ); ssize_t numpts = static_cast<ssize_t>( m_line.PointCount() );
// If we're asked to drag the end of an arc, insert a new vertex to drag instead
if( m_line.IsPtOnArc( idx ) ) { if( idx == 0 || ( idx > 0 && !m_line.IsPtOnArc( idx - 1 ) ) ) { m_line.Insert( idx, m_line.GetPoint( idx ) ); } else if( ( idx == numpts - 1 ) || ( idx < numpts - 1 && !m_line.IsArcSegment( idx ) ) ) { idx++; m_line.Insert( idx, m_line.GetPoint( idx ) ); } else { wxASSERT_MSG( false, wxT( "Attempt to dragCornerFree in the middle of an arc!" ) ); } }
m_line.SetPoint( idx, aP ); m_line.Simplify();}
void LINE::DragCorner( const VECTOR2I& aP, int aIndex, bool aFreeAngle, DIRECTION_45 aPreferredEndingDirection ){ wxCHECK_RET( aIndex >= 0, wxT( "Negative index passed to LINE::DragCorner" ) );
if( aFreeAngle ) { dragCornerFree( aP, aIndex ); } else { dragCorner45( aP, aIndex, aPreferredEndingDirection ); }}
void LINE::DragSegment( const VECTOR2I& aP, int aIndex, bool aFreeAngle ){ if( aFreeAngle ) { assert( false ); } else { dragSegment45( aP, aIndex ); }}
VECTOR2I LINE::snapDraggedCorner( const SHAPE_LINE_CHAIN& aPath, const VECTOR2I& aP, int aIndex ) const{ int s_start = std::max( aIndex - 2, 0 ); int s_end = std::min( aIndex + 2, aPath.SegmentCount() - 1 );
int i, j; int best_dist = INT_MAX; VECTOR2I best_snap = aP;
if( m_snapThreshhold <= 0 ) return aP;
for( i = s_start; i <= s_end; i++ ) { const SEG& a = aPath.CSegment( i );
for( j = s_start; j < i; j++ ) { const SEG& b = aPath.CSegment( j );
if( !( DIRECTION_45( a ).IsObtuse( DIRECTION_45( b ) ) ) ) continue;
OPT_VECTOR2I ip = a.IntersectLines( b );
if( ip ) { int dist = ( *ip - aP ).EuclideanNorm();
if( dist < m_snapThreshhold && dist < best_dist ) { best_dist = dist; best_snap = *ip; } } } }
return best_snap;}
VECTOR2I LINE::snapToNeighbourSegments( const SHAPE_LINE_CHAIN& aPath, const VECTOR2I& aP, int aIndex ) const{ VECTOR2I snap_p[2]; DIRECTION_45 dragDir( aPath.CSegment( aIndex ) ); int snap_d[2] = { -1, -1 };
if( m_snapThreshhold == 0 ) return aP;
if( aIndex >= 2 ) { SEG s = aPath.CSegment( aIndex - 2 );
if( DIRECTION_45( s ) == dragDir ) snap_d[0] = s.LineDistance( aP );
snap_p[0] = s.A; }
if( aIndex < aPath.SegmentCount() - 2 ) { SEG s = aPath.CSegment( aIndex + 2 );
if( DIRECTION_45( s ) == dragDir ) snap_d[1] = s.LineDistance( aP );
snap_p[1] = s.A; }
VECTOR2I best = aP; int minDist = INT_MAX;
for( int i = 0; i < 2; i++ ) { if( snap_d[i] >= 0 && snap_d[i] < minDist && snap_d[i] <= m_snapThreshhold ) { minDist = snap_d[i]; best = snap_p[i]; } }
return best;}
void LINE::dragSegment45( const VECTOR2I& aP, int aIndex ){ SHAPE_LINE_CHAIN path( m_line ); VECTOR2I target( aP );
wxASSERT( aIndex < m_line.PointCount() );
SEG guideA[2], guideB[2]; int index = aIndex;
target = snapToNeighbourSegments( path, aP, aIndex );
// We require a valid s_prev and s_next. If we are at the start or end of the line, we insert
// a new point at the start or end so there is a zero-length segment for prev or next (we will
// resize it as part of the drag operation). If we are next to an arc, we do this also, as we
// cannot drag away one of the arc's points.
if( index == 0 || path.IsPtOnArc( index ) ) { path.Insert( index > 0 ? index + 1 : 0, path.CPoint( index ) ); index++; }
if( index == path.SegmentCount() - 1 ) { path.Insert( path.PointCount() - 1, path.CPoint( -1 ) ); } else if( path.IsPtOnArc( index + 1 ) ) { path.Insert( index + 1, path.CPoint( index + 1 ) ); }
SEG dragged = path.CSegment( index ); DIRECTION_45 drag_dir( dragged );
SEG s_prev = path.CSegment( index - 1 ); SEG s_next = path.CSegment( index + 1 );
DIRECTION_45 dir_prev( s_prev ); DIRECTION_45 dir_next( s_next );
if( dir_prev == drag_dir ) { dir_prev = dir_prev.Left(); path.Insert( index, path.CPoint( index ) ); index++; } else if( dir_prev == DIRECTION_45::UNDEFINED ) { dir_prev = drag_dir.Left(); }
if( dir_next == drag_dir ) { dir_next = dir_next.Right(); path.Insert( index + 1, path.CPoint( index + 1 ) ); } else if( dir_next == DIRECTION_45::UNDEFINED ) { dir_next = drag_dir.Right(); }
s_prev = path.CSegment( index - 1 ); s_next = path.CSegment( index + 1 ); dragged = path.CSegment( index );
if( aIndex == 0 ) { guideA[0] = SEG( dragged.A, dragged.A + drag_dir.Right().ToVector() ); guideA[1] = SEG( dragged.A, dragged.A + drag_dir.Left().ToVector() ); } else { if( dir_prev.Angle( drag_dir ) & ( DIRECTION_45::ANG_OBTUSE | DIRECTION_45::ANG_HALF_FULL ) ) { guideA[0] = SEG( s_prev.A, s_prev.A + drag_dir.Left().ToVector() ); guideA[1] = SEG( s_prev.A, s_prev.A + drag_dir.Right().ToVector() ); } else guideA[0] = guideA[1] = SEG( dragged.A, dragged.A + dir_prev.ToVector() ); }
if( aIndex == m_line.SegmentCount() - 1 ) { guideB[0] = SEG( dragged.B, dragged.B + drag_dir.Right().ToVector() ); guideB[1] = SEG( dragged.B, dragged.B + drag_dir.Left().ToVector() ); } else { if( dir_next.Angle( drag_dir ) & ( DIRECTION_45::ANG_OBTUSE | DIRECTION_45::ANG_HALF_FULL ) ) { guideB[0] = SEG( s_next.B, s_next.B + drag_dir.Left().ToVector() ); guideB[1] = SEG( s_next.B, s_next.B + drag_dir.Right().ToVector() ); } else guideB[0] = guideB[1] = SEG( dragged.B, dragged.B + dir_next.ToVector() ); }
SEG s_current( target, target + drag_dir.ToVector() );
int best_len = INT_MAX; SHAPE_LINE_CHAIN best;
for( int i = 0; i < 2; i++ ) { for( int j = 0; j < 2; j++ ) { OPT_VECTOR2I ip1 = s_current.IntersectLines( guideA[i] ); OPT_VECTOR2I ip2 = s_current.IntersectLines( guideB[j] );
SHAPE_LINE_CHAIN np;
if( !ip1 || !ip2 ) continue;
SEG s1( s_prev.A, *ip1 ); SEG s2( *ip1, *ip2 ); SEG s3( *ip2, s_next.B );
OPT_VECTOR2I ip;
if( ( ip = s1.Intersect( s_next ) ) ) { np.Append( s1.A ); np.Append( *ip ); np.Append( s_next.B ); } else if( ( ip = s3.Intersect( s_prev ) ) ) { np.Append( s_prev.A ); np.Append( *ip ); np.Append( s3.B ); } else if( ( ip = s1.Intersect( s3 ) ) ) { np.Append( s_prev.A ); np.Append( *ip ); np.Append( s_next.B ); } else { np.Append( s_prev.A ); np.Append( *ip1 ); np.Append( *ip2 ); np.Append( s_next.B ); }
if( np.Length() < best_len ) { best_len = np.Length(); best = np; } } }
if( m_line.PointCount() == 1 ) m_line = best; else if( aIndex == 0 ) m_line.Replace( 0, 1, best ); else if( aIndex == m_line.SegmentCount() - 1 ) m_line.Replace( -2, -1, best ); else m_line.Replace( aIndex, aIndex + 1, best );
m_line.Simplify();}
bool LINE::CompareGeometry( const LINE& aOther ){ return m_line.CompareGeometry( aOther.m_line );}
void LINE::Reverse(){ m_line = m_line.Reverse();
std::reverse( m_links.begin(), m_links.end() );}
void LINE::AppendVia( const VIA& aVia ){ if( m_line.PointCount() > 1 && aVia.Pos() == m_line.CPoint( 0 ) ) { Reverse(); }
m_via = aVia.Clone(); m_via->SetOwner( this ); m_via->SetNet( m_net );}
void LINE::LinkVia( VIA* aVia ){ if( m_line.PointCount() > 1 && aVia->Pos() == m_line.CPoint( 0 ) ) { Reverse(); }
m_via = aVia; Link( aVia );}
void LINE::SetRank( int aRank ){ m_rank = aRank;
for( auto s : m_links ) s->SetRank( aRank );
}
int LINE::Rank() const{ int min_rank = INT_MAX;
if( IsLinked() ) { for( const LINKED_ITEM* item : m_links ) min_rank = std::min( min_rank, item->Rank() ); } else { min_rank = m_rank; }
int rank = ( min_rank == INT_MAX ) ? -1 : min_rank;
return rank;}
void LINE::ClipVertexRange( int aStart, int aEnd ){ /**
* We need to figure out which joints to keep after the clip operation, because arcs will have * multiple vertices. It is assumed that anything calling this method will have determined the * vertex range to clip based on joints, meaning we will never clip in the middle of an arc. * Clipping in the middle of an arc would break this and various other things... */ int firstLink = 0; int lastLink = std::max( 0, static_cast<int>( m_links.size() ) - 1 ); int linkIdx = 0;
int numPoints = static_cast<int>( m_line.PointCount() );
for( int i = 0; i >= 0 && i < m_line.PointCount(); i = m_line.NextShape( i ) ) { if( i <= aStart ) firstLink = linkIdx;
if( i < 0 || i >= aEnd - 1 || linkIdx >= lastLink ) { lastLink = linkIdx; break; }
linkIdx++; }
wxASSERT( lastLink >= firstLink );
m_line = m_line.Slice( aStart, aEnd );
if( IsLinked() ) { wxASSERT( m_links.size() < INT_MAX ); wxASSERT( static_cast<int>( m_links.size() ) >= ( lastLink - firstLink ) );
// Note: The range includes aEnd, but we have n-1 segments.
std::rotate( m_links.begin(), m_links.begin() + firstLink, m_links.begin() + lastLink );
m_links.resize( lastLink - firstLink + 1 ); }}
bool LINE::HasLoops() const{ for( int i = 0; i < PointCount(); i++ ) { for( int j = i + 2; j < PointCount(); j++ ) { if( CPoint( i ) == CPoint( j ) ) return true; } }
return false;}
static void extendBox( BOX2I& aBox, bool& aDefined, const VECTOR2I& aP ){ if( aDefined ) { aBox.Merge( aP ); } else { aBox = BOX2I( aP, VECTOR2I( 0, 0 ) ); aDefined = true; }}
OPT_BOX2I LINE::ChangedArea( const LINE* aOther ) const{ BOX2I area; bool areaDefined = false;
int i_start = -1; int i_end_self = -1, i_end_other = -1;
SHAPE_LINE_CHAIN self( m_line ); self.Simplify(); SHAPE_LINE_CHAIN other( aOther->m_line ); other.Simplify();
int np_self = self.PointCount(); int np_other = other.PointCount();
int n = std::min( np_self, np_other );
for( int i = 0; i < n; i++ ) { const VECTOR2I p1 = self.CPoint( i ); const VECTOR2I p2 = other.CPoint( i );
if( p1 != p2 ) { if( i != n - 1 ) { SEG s = self.CSegment( i );
if( !s.Contains( p2 ) ) { i_start = i; break; } } else { i_start = i; break; } } }
for( int i = 0; i < n; i++ ) { const VECTOR2I p1 = self.CPoint( np_self - 1 - i ); const VECTOR2I p2 = other.CPoint( np_other - 1 - i );
if( p1 != p2 ) { i_end_self = np_self - 1 - i; i_end_other = np_other - 1 - i; break; } }
if( i_start < 0 ) i_start = n;
if( i_end_self < 0 ) i_end_self = np_self - 1;
if( i_end_other < 0 ) i_end_other = np_other - 1;
for( int i = i_start; i <= i_end_self; i++ ) extendBox( area, areaDefined, self.CPoint( i ) );
for( int i = i_start; i <= i_end_other; i++ ) extendBox( area, areaDefined, other.CPoint( i ) );
if( areaDefined ) { area.Inflate( std::max( Width(), aOther->Width() ) ); return area; }
return OPT_BOX2I();}
bool LINE::HasLockedSegments() const{ for( const auto seg : m_links ) { if( seg->Marker() & MK_LOCKED ) return true; } return false;}
void LINE::Clear(){ ClearLinks(); RemoveVia(); m_line.Clear();}
void LINE::RemoveVia(){ if( m_via ) { if( ContainsLink( m_via ) ) Unlink( m_via ); if( m_via->BelongsTo( this ) ) delete m_via; }
m_via = nullptr;}
const std::string SEGMENT::Format( ) const{ std::stringstream ss; ss << ITEM::Format() << " "; ss << m_seg.Format( false ); return ss.str();}
int LINE::FindSegment( const SEGMENT* aSeg ) const{ for( int i = 0; i < m_line.SegmentCount(); i++) { const SEG&s = m_line.CSegment(i); if( s == aSeg->Seg() ) return i; }
return -1;}
}
|