|
|
/*
* This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2014-2017 CERN * Copyright The KiCad Developers, see AUTHORS.txt for contributors. * @author Tomasz Włostowski <tomasz.wlostowski@cern.ch> * * This program is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or (at your * option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */
#include <future>
#include <core/kicad_algo.h>
#include <advanced_config.h>
#include <board.h>
#include <board_design_settings.h>
#include <zone.h>
#include <footprint.h>
#include <pad.h>
#include <pcb_target.h>
#include <pcb_track.h>
#include <pcb_text.h>
#include <pcb_textbox.h>
#include <pcb_tablecell.h>
#include <pcb_table.h>
#include <pcb_dimension.h>
#include <connectivity/connectivity_data.h>
#include <convert_basic_shapes_to_polygon.h>
#include <board_commit.h>
#include <progress_reporter.h>
#include <geometry/shape_poly_set.h>
#include <geometry/convex_hull.h>
#include <geometry/geometry_utils.h>
#include <geometry/vertex_set.h>
#include <kidialog.h>
#include <thread_pool.h>
#include <math/util.h> // for KiROUND
#include "zone_filler.h"
#include "project.h"
#include "project/project_local_settings.h"
// Helper classes for connect_nearby_polys
class RESULTS{public: RESULTS( int aOutline1, int aOutline2, int aVertex1, int aVertex2 ) : m_outline1( aOutline1 ), m_outline2( aOutline2 ), m_vertex1( aVertex1 ), m_vertex2( aVertex2 ) { }
bool operator<( const RESULTS& aOther ) const { if( m_outline1 != aOther.m_outline1 ) return m_outline1 < aOther.m_outline1; if( m_outline2 != aOther.m_outline2 ) return m_outline2 < aOther.m_outline2; if( m_vertex1 != aOther.m_vertex1 ) return m_vertex1 < aOther.m_vertex1; return m_vertex2 < aOther.m_vertex2; }
int m_outline1; int m_outline2; int m_vertex1; int m_vertex2;};
class VERTEX_CONNECTOR : protected VERTEX_SET{public: VERTEX_CONNECTOR( const BOX2I& aBBox, const SHAPE_POLY_SET& aPolys, int aDist ) : VERTEX_SET( 0 ) { SetBoundingBox( aBBox ); VERTEX* tail = nullptr;
for( int i = 0; i < aPolys.OutlineCount(); i++ ) tail = createList( aPolys.Outline( i ), tail, (void*)( intptr_t )( i ) );
if( tail ) tail->updateList(); m_dist = aDist; }
VERTEX* getPoint( VERTEX* aPt ) const { // z-order range for the current point ± limit bounding box
const uint32_t maxZ = zOrder( aPt->x + m_dist, aPt->y + m_dist ); const uint32_t minZ = zOrder( aPt->x - m_dist, aPt->y - m_dist ); const SEG::ecoord limit2 = SEG::Square( m_dist );
// first look for points in increasing z-order
SEG::ecoord min_dist = std::numeric_limits<SEG::ecoord>::max(); VERTEX* retval = nullptr;
auto check_pt = [&]( VERTEX* p ) { VECTOR2D diff( p->x - aPt->x, p->y - aPt->y ); SEG::ecoord dist2 = diff.SquaredEuclideanNorm();
if( dist2 > 0 && dist2 < limit2 && dist2 < min_dist && p->isEar( true ) ) { min_dist = dist2; retval = p; } };
VERTEX* p = aPt->nextZ;
while( p && p->z <= maxZ ) { check_pt( p ); p = p->nextZ; }
p = aPt->prevZ;
while( p && p->z >= minZ ) { check_pt( p ); p = p->prevZ; }
return retval; }
void FindResults() { if( m_vertices.empty() ) return;
VERTEX* p = m_vertices.front().next; std::set<VERTEX*> visited;
while( p != &m_vertices.front() ) { // Skip points that are concave
if( !p->isEar() ) { p = p->next; continue; }
VERTEX* q = nullptr;
if( ( visited.empty() || !visited.contains( p ) ) && ( q = getPoint( p ) ) ) { visited.insert( p );
if( !visited.contains( q ) && m_results.emplace( (intptr_t) p->GetUserData(), (intptr_t) q->GetUserData(), p->i, q->i ).second ) { // We don't want to connect multiple points in the same vicinity, so skip
// 2 points before and after each point and match.
visited.insert( p->prev ); visited.insert( p->prev->prev ); visited.insert( p->next ); visited.insert( p->next->next );
visited.insert( q->prev ); visited.insert( q->prev->prev ); visited.insert( q->next ); visited.insert( q->next->next );
visited.insert( q ); } }
p = p->next; } }
std::set<RESULTS> GetResults() const { return m_results; }
private: std::set<RESULTS> m_results; int m_dist;};
ZONE_FILLER::ZONE_FILLER( BOARD* aBoard, COMMIT* aCommit ) : m_board( aBoard ), m_brdOutlinesValid( false ), m_commit( aCommit ), m_progressReporter( nullptr ), m_maxError( ARC_HIGH_DEF ), m_worstClearance( 0 ){ // To enable add "DebugZoneFiller=1" to kicad_advanced settings file.
m_debugZoneFiller = ADVANCED_CFG::GetCfg().m_DebugZoneFiller;}
ZONE_FILLER::~ZONE_FILLER(){}
void ZONE_FILLER::SetProgressReporter( PROGRESS_REPORTER* aReporter ){ m_progressReporter = aReporter; wxASSERT_MSG( m_commit, wxT( "ZONE_FILLER must have a valid commit to call " "SetProgressReporter" ) );}
/**
* Fills the given list of zones. * * NB: Invalidates connectivity - it is up to the caller to obtain a lock on the connectivity * data before calling Fill to prevent access to stale data by other coroutines (for example, * ratsnest redraw). This will generally be required if a UI-based progress reporter has been * installed. * * Caller is also responsible for re-building connectivity afterwards. */bool ZONE_FILLER::Fill( const std::vector<ZONE*>& aZones, bool aCheck, wxWindow* aParent ){ std::lock_guard<KISPINLOCK> lock( m_board->GetConnectivity()->GetLock() );
std::vector<std::pair<ZONE*, PCB_LAYER_ID>> toFill; std::map<std::pair<ZONE*, PCB_LAYER_ID>, HASH_128> oldFillHashes; std::map<ZONE*, std::map<PCB_LAYER_ID, ISOLATED_ISLANDS>> isolatedIslandsMap;
std::shared_ptr<CONNECTIVITY_DATA> connectivity = m_board->GetConnectivity();
// Rebuild (from scratch, ignoring dirty flags) just in case. This really needs to be reliable.
connectivity->ClearRatsnest(); connectivity->Build( m_board, m_progressReporter );
m_worstClearance = m_board->GetMaxClearanceValue();
if( m_progressReporter ) { m_progressReporter->Report( aCheck ? _( "Checking zone fills..." ) : _( "Building zone fills..." ) ); m_progressReporter->SetMaxProgress( aZones.size() ); m_progressReporter->KeepRefreshing(); }
// The board outlines is used to clip solid areas inside the board (when outlines are valid)
m_boardOutline.RemoveAllContours(); m_brdOutlinesValid = m_board->GetBoardPolygonOutlines( m_boardOutline );
// Update and cache zone bounding boxes and pad effective shapes so that we don't have to
// make them thread-safe.
//
for( ZONE* zone : m_board->Zones() ) zone->CacheBoundingBox();
for( FOOTPRINT* footprint : m_board->Footprints() ) { for( PAD* pad : footprint->Pads() ) { if( pad->IsDirty() ) { pad->BuildEffectiveShapes(); pad->BuildEffectivePolygon( ERROR_OUTSIDE ); } }
for( ZONE* zone : footprint->Zones() ) zone->CacheBoundingBox();
// Rules may depend on insideCourtyard() or other expressions
footprint->BuildCourtyardCaches(); footprint->BuildNetTieCache(); }
LSET boardCuMask = m_board->GetEnabledLayers() & LSET::AllCuMask();
auto findHighestPriorityZone = [&]( const BOX2I& bbox, PCB_LAYER_ID itemLayer, int netcode, const std::function<bool( const ZONE* )>& testFn ) -> ZONE* { unsigned highestPriority = 0; ZONE* highestPriorityZone = nullptr;
for( ZONE* zone : m_board->Zones() ) { // Rule areas are not filled
if( zone->GetIsRuleArea() ) continue;
if( zone->GetAssignedPriority() < highestPriority ) continue;
if( !zone->IsOnLayer( itemLayer ) ) continue;
// Degenerate zones will cause trouble; skip them
if( zone->GetNumCorners() <= 2 ) continue;
if( !zone->GetBoundingBox().Intersects( bbox ) ) continue;
if( !testFn( zone ) ) continue;
// Prefer highest priority and matching netcode
if( zone->GetAssignedPriority() > highestPriority || zone->GetNetCode() == netcode ) { highestPriority = zone->GetAssignedPriority(); highestPriorityZone = zone; } }
return highestPriorityZone; };
auto isInPourKeepoutArea = [&]( const BOX2I& bbox, PCB_LAYER_ID itemLayer, const VECTOR2I& testPoint ) -> bool { for( ZONE* zone : m_board->Zones() ) { if( !zone->GetIsRuleArea() ) continue;
if( !zone->HasKeepoutParametersSet() ) continue;
if( !zone->GetDoNotAllowZoneFills() ) continue;
if( !zone->IsOnLayer( itemLayer ) ) continue;
// Degenerate zones will cause trouble; skip them
if( zone->GetNumCorners() <= 2 ) continue;
if( !zone->GetBoundingBox().Intersects( bbox ) ) continue;
if( zone->Outline()->Contains( testPoint ) ) return true; }
return false; };
// Determine state of conditional via flashing
// This is now done completely deterministically prior to filling due to the pathological
// case presented in https://gitlab.com/kicad/code/kicad/-/issues/12964.
for( PCB_TRACK* track : m_board->Tracks() ) { if( track->Type() == PCB_VIA_T ) { PCB_VIA* via = static_cast<PCB_VIA*>( track );
via->ClearZoneLayerOverrides();
if( !via->GetRemoveUnconnected() ) continue;
BOX2I bbox = via->GetBoundingBox(); VECTOR2I center = via->GetPosition(); int holeRadius = via->GetDrillValue() / 2 + 1; int netcode = via->GetNetCode(); LSET layers = via->GetLayerSet() & boardCuMask;
// Checking if the via hole touches the zone outline
auto viaTestFn = [&]( const ZONE* aZone ) -> bool { return aZone->Outline()->Contains( center, -1, holeRadius ); };
for( PCB_LAYER_ID layer : layers.Seq() ) { if( !via->ConditionallyFlashed( layer ) ) continue;
if( isInPourKeepoutArea( bbox, layer, center ) ) { via->SetZoneLayerOverride( layer, ZLO_FORCE_NO_ZONE_CONNECTION ); } else { ZONE* zone = findHighestPriorityZone( bbox, layer, netcode, viaTestFn );
if( zone && zone->GetNetCode() == via->GetNetCode() ) via->SetZoneLayerOverride( layer, ZLO_FORCE_FLASHED ); else via->SetZoneLayerOverride( layer, ZLO_FORCE_NO_ZONE_CONNECTION ); } } } }
// Determine state of conditional pad flashing
for( FOOTPRINT* footprint : m_board->Footprints() ) { for( PAD* pad : footprint->Pads() ) { pad->ClearZoneLayerOverrides();
if( !pad->GetRemoveUnconnected() ) continue;
BOX2I bbox = pad->GetBoundingBox(); VECTOR2I center = pad->GetPosition(); int netcode = pad->GetNetCode(); LSET layers = pad->GetLayerSet() & boardCuMask;
auto padTestFn = [&]( const ZONE* aZone ) -> bool { return aZone->Outline()->Contains( center ); };
for( PCB_LAYER_ID layer : layers.Seq() ) { if( !pad->ConditionallyFlashed( layer ) ) continue;
if( isInPourKeepoutArea( bbox, layer, center ) ) { pad->SetZoneLayerOverride( layer, ZLO_FORCE_NO_ZONE_CONNECTION ); } else { ZONE* zone = findHighestPriorityZone( bbox, layer, netcode, padTestFn );
if( zone && zone->GetNetCode() == pad->GetNetCode() ) pad->SetZoneLayerOverride( layer, ZLO_FORCE_FLASHED ); else pad->SetZoneLayerOverride( layer, ZLO_FORCE_NO_ZONE_CONNECTION ); } } } }
for( ZONE* zone : aZones ) { // Rule areas are not filled
if( zone->GetIsRuleArea() ) continue;
// Degenerate zones will cause trouble; skip them
if( zone->GetNumCorners() <= 2 ) continue;
if( m_commit ) m_commit->Modify( zone );
// calculate the hash value for filled areas. it will be used later to know if the
// current filled areas are up to date
for( PCB_LAYER_ID layer : zone->GetLayerSet().Seq() ) { zone->BuildHashValue( layer ); oldFillHashes[ { zone, layer } ] = zone->GetHashValue( layer );
// Add the zone to the list of zones to test or refill
toFill.emplace_back( std::make_pair( zone, layer ) );
isolatedIslandsMap[ zone ][ layer ] = ISOLATED_ISLANDS(); }
// Remove existing fill first to prevent drawing invalid polygons on some platforms
zone->UnFill(); }
auto check_fill_dependency = [&]( ZONE* aZone, PCB_LAYER_ID aLayer, ZONE* aOtherZone ) -> bool { // Check to see if we have to knock-out the filled areas of a higher-priority
// zone. If so we have to wait until said zone is filled before we can fill.
// If the other zone is already filled on the requested layer then we're
// good-to-go
if( aOtherZone->GetFillFlag( aLayer ) ) return false;
// Even if keepouts exclude copper pours, the exclusion is by outline rather than
// filled area, so we're good-to-go here too
if( aOtherZone->GetIsRuleArea() ) return false;
// If the other zone is never going to be filled then don't wait for it
if( aOtherZone->GetNumCorners() <= 2 ) return false;
// If the zones share no common layers
if( !aOtherZone->GetLayerSet().test( aLayer ) ) return false;
if( aZone->HigherPriority( aOtherZone ) ) return false;
// Same-net zones always use outlines to produce determinate results
if( aOtherZone->SameNet( aZone ) ) return false;
// A higher priority zone is found: if we intersect and it's not filled yet
// then we have to wait.
BOX2I inflatedBBox = aZone->GetBoundingBox(); inflatedBBox.Inflate( m_worstClearance );
if( !inflatedBBox.Intersects( aOtherZone->GetBoundingBox() ) ) return false;
return aZone->Outline()->Collide( aOtherZone->Outline(), m_worstClearance ); };
auto fill_lambda = [&]( std::pair<ZONE*, PCB_LAYER_ID> aFillItem ) -> int { PCB_LAYER_ID layer = aFillItem.second; ZONE* zone = aFillItem.first; bool canFill = true;
// Check for any fill dependencies. If our zone needs to be clipped by
// another zone then we can't fill until that zone is filled.
for( ZONE* otherZone : aZones ) { if( otherZone == zone ) continue;
if( check_fill_dependency( zone, layer, otherZone ) ) { canFill = false; break; } }
if( m_progressReporter && m_progressReporter->IsCancelled() ) return 0;
if( !canFill ) return 0;
// Now we're ready to fill.
{ std::unique_lock<std::mutex> zoneLock( zone->GetLock(), std::try_to_lock );
if( !zoneLock.owns_lock() ) return 0;
SHAPE_POLY_SET fillPolys;
if( !fillSingleZone( zone, layer, fillPolys ) ) return 0;
zone->SetFilledPolysList( layer, fillPolys ); }
if( m_progressReporter ) m_progressReporter->AdvanceProgress();
return 1; };
auto tesselate_lambda = [&]( std::pair<ZONE*, PCB_LAYER_ID> aFillItem ) -> int { if( m_progressReporter && m_progressReporter->IsCancelled() ) return 0;
PCB_LAYER_ID layer = aFillItem.second; ZONE* zone = aFillItem.first;
{ std::unique_lock<std::mutex> zoneLock( zone->GetLock(), std::try_to_lock );
if( !zoneLock.owns_lock() ) return 0;
zone->CacheTriangulation( layer ); zone->SetFillFlag( layer, true ); }
return 1; };
// Calculate the copper fills (NB: this is multi-threaded)
//
std::vector<std::pair<std::future<int>, int>> returns; returns.reserve( toFill.size() ); size_t finished = 0; bool cancelled = false;
thread_pool& tp = GetKiCadThreadPool();
for( const std::pair<ZONE*, PCB_LAYER_ID>& fillItem : toFill ) returns.emplace_back( std::make_pair( tp.submit( fill_lambda, fillItem ), 0 ) );
while( !cancelled && finished != 2 * toFill.size() ) { for( size_t ii = 0; ii < returns.size(); ++ii ) { auto& ret = returns[ii];
if( ret.second > 1 ) continue;
std::future_status status = ret.first.wait_for( std::chrono::seconds( 0 ) );
if( status == std::future_status::ready ) { if( ret.first.get() ) // lambda completed
{ ++finished; ret.second++; // go to next step
}
if( !cancelled ) { // Queue the next step (will re-queue the existing step if it didn't complete)
if( ret.second == 0 ) returns[ii].first = tp.submit( fill_lambda, toFill[ii] ); else if( ret.second == 1 ) returns[ii].first = tp.submit( tesselate_lambda, toFill[ii] ); } } }
std::this_thread::sleep_for( std::chrono::milliseconds( 100 ) );
if( m_progressReporter ) { m_progressReporter->KeepRefreshing();
if( m_progressReporter->IsCancelled() ) cancelled = true; } }
// Make sure that all futures have finished.
// This can happen when the user cancels the above operation
for( auto& ret : returns ) { if( ret.first.valid() ) { std::future_status status = ret.first.wait_for( std::chrono::seconds( 0 ) );
while( status != std::future_status::ready ) { if( m_progressReporter ) m_progressReporter->KeepRefreshing();
status = ret.first.wait_for( std::chrono::milliseconds( 100 ) ); } } }
// Now update the connectivity to check for isolated copper islands
// (NB: FindIsolatedCopperIslands() is multi-threaded)
//
if( m_progressReporter ) { if( m_progressReporter->IsCancelled() ) return false;
m_progressReporter->AdvancePhase(); m_progressReporter->Report( _( "Removing isolated copper islands..." ) ); m_progressReporter->KeepRefreshing(); }
connectivity->SetProgressReporter( m_progressReporter ); connectivity->FillIsolatedIslandsMap( isolatedIslandsMap ); connectivity->SetProgressReporter( nullptr );
if( m_progressReporter && m_progressReporter->IsCancelled() ) return false;
for( ZONE* zone : aZones ) { // Keepout zones are not filled
if( zone->GetIsRuleArea() ) continue;
zone->SetIsFilled( true ); }
// Now remove isolated copper islands according to the isolated islands strategy assigned
// by the user (always, never, below-certain-size).
//
for( const auto& [ zone, zoneIslands ] : isolatedIslandsMap ) { // If *all* the polygons are islands, do not remove any of them
bool allIslands = true;
for( const auto& [ layer, layerIslands ] : zoneIslands ) { if( layerIslands.m_IsolatedOutlines.size() != static_cast<size_t>( zone->GetFilledPolysList( layer )->OutlineCount() ) ) { allIslands = false; break; } }
if( allIslands ) continue;
for( const auto& [ layer, layerIslands ] : zoneIslands ) { if( m_debugZoneFiller && LSET::InternalCuMask().Contains( layer ) ) continue;
if( layerIslands.m_IsolatedOutlines.empty() ) continue;
std::vector<int> islands = layerIslands.m_IsolatedOutlines;
// The list of polygons to delete must be explored from last to first in list,
// to allow deleting a polygon from list without breaking the remaining of the list
std::sort( islands.begin(), islands.end(), std::greater<int>() );
std::shared_ptr<SHAPE_POLY_SET> poly = zone->GetFilledPolysList( layer ); long long int minArea = zone->GetMinIslandArea(); ISLAND_REMOVAL_MODE mode = zone->GetIslandRemovalMode();
for( int idx : islands ) { SHAPE_LINE_CHAIN& outline = poly->Outline( idx );
if( mode == ISLAND_REMOVAL_MODE::ALWAYS ) poly->DeletePolygonAndTriangulationData( idx, false ); else if ( mode == ISLAND_REMOVAL_MODE::AREA && outline.Area( true ) < minArea ) poly->DeletePolygonAndTriangulationData( idx, false ); else zone->SetIsIsland( layer, idx ); }
poly->UpdateTriangulationDataHash(); zone->CalculateFilledArea();
if( m_progressReporter && m_progressReporter->IsCancelled() ) return false; } }
// Now remove islands which are either outside the board edge or fail to meet the minimum
// area requirements
using island_check_return = std::vector<std::pair<std::shared_ptr<SHAPE_POLY_SET>, int>>;
std::vector<std::pair<std::shared_ptr<SHAPE_POLY_SET>, double>> polys_to_check;
// rough estimate to save re-allocation time
polys_to_check.reserve( m_board->GetCopperLayerCount() * aZones.size() );
for( ZONE* zone : aZones ) { // Don't check for connections on layers that only exist in the zone but
// were disabled in the board
BOARD* board = zone->GetBoard(); LSET zoneCopperLayers = zone->GetLayerSet() & LSET::AllCuMask() & board->GetEnabledLayers();
// Min-thickness is the web thickness. On the other hand, a blob min-thickness by
// min-thickness is not useful. Since there's no obvious definition of web vs. blob, we
// arbitrarily choose "at least 3X the area".
double minArea = (double) zone->GetMinThickness() * zone->GetMinThickness() * 3;
for( PCB_LAYER_ID layer : zoneCopperLayers.Seq() ) { if( m_debugZoneFiller && LSET::InternalCuMask().Contains( layer ) ) continue;
polys_to_check.emplace_back( zone->GetFilledPolysList( layer ), minArea ); } }
auto island_lambda = [&]( int aStart, int aEnd ) -> island_check_return { island_check_return retval;
for( int ii = aStart; ii < aEnd && !cancelled; ++ii ) { auto [poly, minArea] = polys_to_check[ii];
for( int jj = poly->OutlineCount() - 1; jj >= 0; jj-- ) { SHAPE_POLY_SET island; SHAPE_POLY_SET intersection; const SHAPE_LINE_CHAIN& test_poly = poly->Polygon( jj ).front(); double island_area = test_poly.Area();
if( island_area < minArea ) continue;
island.AddOutline( test_poly ); intersection.BooleanIntersection( m_boardOutline, island );
// Nominally, all of these areas should be either inside or outside the
// board outline. So this test should be able to just compare areas (if
// they are equal, you are inside). But in practice, we sometimes have
// slight overlap at the edges, so testing against half-size area acts as
// a fail-safe.
if( intersection.Area() < island_area / 2.0 ) retval.emplace_back( poly, jj ); } }
return retval; };
auto island_returns = tp.parallelize_loop( 0, polys_to_check.size(), island_lambda ); cancelled = false;
// Allow island removal threads to finish
for( size_t ii = 0; ii < island_returns.size(); ++ii ) { std::future<island_check_return>& ret = island_returns[ii];
if( ret.valid() ) { std::future_status status = ret.wait_for( std::chrono::seconds( 0 ) );
while( status != std::future_status::ready ) { if( m_progressReporter ) { m_progressReporter->KeepRefreshing();
if( m_progressReporter->IsCancelled() ) cancelled = true; }
status = ret.wait_for( std::chrono::milliseconds( 100 ) ); } } }
if( cancelled ) return false;
for( size_t ii = 0; ii < island_returns.size(); ++ii ) { std::future<island_check_return>& ret = island_returns[ii];
if( ret.valid() ) { for( auto& action_item : ret.get() ) action_item.first->DeletePolygonAndTriangulationData( action_item.second, true ); } }
for( ZONE* zone : aZones ) zone->CalculateFilledArea();
if( aCheck ) { bool outOfDate = false;
for( ZONE* zone : aZones ) { // Keepout zones are not filled
if( zone->GetIsRuleArea() ) continue;
for( PCB_LAYER_ID layer : zone->GetLayerSet().Seq() ) { zone->BuildHashValue( layer );
if( oldFillHashes[ { zone, layer } ] != zone->GetHashValue( layer ) ) outOfDate = true; } }
if( ( m_board->GetProject() && m_board->GetProject()->GetLocalSettings().m_PrototypeZoneFill ) ) { KIDIALOG dlg( aParent, _( "Prototype zone fill enabled. Disable setting and refill?" ), _( "Confirmation" ), wxOK | wxCANCEL | wxICON_WARNING ); dlg.SetOKCancelLabels( _( "Disable and refill" ), _( "Continue without Refill" ) ); dlg.DoNotShowCheckbox( __FILE__, __LINE__ );
if( dlg.ShowModal() == wxID_OK ) { m_board->GetProject()->GetLocalSettings().m_PrototypeZoneFill = false; } else if( !outOfDate ) { return false; } }
if( outOfDate ) { KIDIALOG dlg( aParent, _( "Zone fills are out-of-date. Refill?" ), _( "Confirmation" ), wxOK | wxCANCEL | wxICON_WARNING ); dlg.SetOKCancelLabels( _( "Refill" ), _( "Continue without Refill" ) ); dlg.DoNotShowCheckbox( __FILE__, __LINE__ );
if( dlg.ShowModal() == wxID_CANCEL ) return false; } else { // No need to commit something that hasn't changed (and committing will set
// the modified flag).
return false; } }
if( m_progressReporter ) { if( m_progressReporter->IsCancelled() ) return false;
m_progressReporter->AdvancePhase(); m_progressReporter->KeepRefreshing(); }
return true;}
/**
* Add a knockout for a pad or via. The knockout is 'aGap' larger than the pad (which might be * either the thermal clearance or the electrical clearance). */void ZONE_FILLER::addKnockout( BOARD_ITEM* aItem, PCB_LAYER_ID aLayer, int aGap, SHAPE_POLY_SET& aHoles ){ if( aItem->Type() == PCB_PAD_T && static_cast<PAD*>( aItem )->GetShape( aLayer ) == PAD_SHAPE::CUSTOM ) { PAD* pad = static_cast<PAD*>( aItem ); SHAPE_POLY_SET poly; pad->TransformShapeToPolygon( poly, aLayer, aGap, m_maxError, ERROR_OUTSIDE );
// the pad shape in zone can be its convex hull or the shape itself
if( pad->GetCustomShapeInZoneOpt() == PADSTACK::CUSTOM_SHAPE_ZONE_MODE::CONVEXHULL ) { std::vector<VECTOR2I> convex_hull; BuildConvexHull( convex_hull, poly );
aHoles.NewOutline();
for( const VECTOR2I& pt : convex_hull ) aHoles.Append( pt ); } else aHoles.Append( poly ); } else { aItem->TransformShapeToPolygon( aHoles, aLayer, aGap, m_maxError, ERROR_OUTSIDE ); }}
/**
* Add a knockout for a pad's hole. */void ZONE_FILLER::addHoleKnockout( PAD* aPad, int aGap, SHAPE_POLY_SET& aHoles ){ aPad->TransformHoleToPolygon( aHoles, aGap, m_maxError, ERROR_OUTSIDE );}
int getHatchFillThermalClearance( const ZONE* aZone, BOARD_ITEM* aItem, PCB_LAYER_ID aLayer ){ int minorAxis = 0;
if( aItem->Type() == PCB_PAD_T ) { PAD* pad = static_cast<PAD*>( aItem ); VECTOR2I padSize = pad->GetSize( aLayer );
minorAxis = std::min( padSize.x, padSize.y ); } else if( aItem->Type() == PCB_VIA_T ) { PCB_VIA* via = static_cast<PCB_VIA*>( aItem );
minorAxis = via->GetWidth( aLayer ); }
return ( aZone->GetHatchGap() - aZone->GetHatchThickness() - minorAxis ) / 2;}
/**
* Add a knockout for a graphic item. The knockout is 'aGap' larger than the item (which * might be either the electrical clearance or the board edge clearance). */void ZONE_FILLER::addKnockout( BOARD_ITEM* aItem, PCB_LAYER_ID aLayer, int aGap, bool aIgnoreLineWidth, SHAPE_POLY_SET& aHoles ){ switch( aItem->Type() ) { case PCB_FIELD_T: case PCB_TEXT_T: { PCB_TEXT* text = static_cast<PCB_TEXT*>( aItem );
if( text->IsVisible() ) { if( text->IsKnockout() ) { // Knockout text should only leave holes where the text is, not where the copper fill
// around it would be.
PCB_TEXT textCopy = *text; textCopy.SetIsKnockout( false ); textCopy.TransformTextToPolySet( aHoles, 0, m_maxError, ERROR_INSIDE ); } else { text->TransformShapeToPolygon( aHoles, aLayer, aGap, m_maxError, ERROR_OUTSIDE ); } }
break; }
case PCB_TEXTBOX_T: case PCB_TABLE_T: case PCB_SHAPE_T: case PCB_TARGET_T: aItem->TransformShapeToPolygon( aHoles, aLayer, aGap, m_maxError, ERROR_OUTSIDE, aIgnoreLineWidth ); break;
case PCB_DIM_ALIGNED_T: case PCB_DIM_LEADER_T: case PCB_DIM_CENTER_T: case PCB_DIM_RADIAL_T: case PCB_DIM_ORTHOGONAL_T: { PCB_DIMENSION_BASE* dim = static_cast<PCB_DIMENSION_BASE*>( aItem );
dim->TransformShapeToPolygon( aHoles, aLayer, aGap, m_maxError, ERROR_OUTSIDE, false ); dim->PCB_TEXT::TransformShapeToPolygon( aHoles, aLayer, aGap, m_maxError, ERROR_OUTSIDE ); break; }
default: break; }}
/**
* Removes thermal reliefs from the shape for any pads connected to the zone. Does NOT add * in spokes, which must be done later. */void ZONE_FILLER::knockoutThermalReliefs( const ZONE* aZone, PCB_LAYER_ID aLayer, SHAPE_POLY_SET& aFill, std::vector<BOARD_ITEM*>& aThermalConnectionPads, std::vector<PAD*>& aNoConnectionPads ){ BOARD_DESIGN_SETTINGS& bds = m_board->GetDesignSettings(); ZONE_CONNECTION connection; DRC_CONSTRAINT constraint; int padClearance; std::shared_ptr<SHAPE> padShape; int holeClearance; SHAPE_POLY_SET holes;
for( FOOTPRINT* footprint : m_board->Footprints() ) { for( PAD* pad : footprint->Pads() ) { BOX2I padBBox = pad->GetBoundingBox(); padBBox.Inflate( m_worstClearance );
if( !padBBox.Intersects( aZone->GetBoundingBox() ) ) continue;
bool noConnection = pad->GetNetCode() != aZone->GetNetCode();
if( !aZone->IsTeardropArea() ) { if( aZone->GetNetCode() == 0 || pad->GetZoneLayerOverride( aLayer ) == ZLO_FORCE_NO_ZONE_CONNECTION ) { noConnection = true; } }
if( noConnection ) { // collect these for knockout in buildCopperItemClearances()
aNoConnectionPads.push_back( pad ); continue; }
// We put thermal reliefs on all connected items in a hatch fill zone as a way of
// guaranteeing that they connect to the webbing. (The thermal gap is the hatch
// gap minus the pad/via size, making it impossible for the pad/via to be isolated
// within the center of a hole.)
if( aZone->GetFillMode() == ZONE_FILL_MODE::HATCH_PATTERN ) { aThermalConnectionPads.push_back( pad ); addKnockout( pad, aLayer, getHatchFillThermalClearance( aZone, pad, aLayer ), holes ); continue; }
if( aZone->IsTeardropArea() ) { connection = ZONE_CONNECTION::FULL; } else { constraint = bds.m_DRCEngine->EvalZoneConnection( pad, aZone, aLayer ); connection = constraint.m_ZoneConnection; }
if( connection == ZONE_CONNECTION::THERMAL && !pad->CanFlashLayer( aLayer ) ) connection = ZONE_CONNECTION::NONE;
switch( connection ) { case ZONE_CONNECTION::THERMAL: padShape = pad->GetEffectiveShape( aLayer, FLASHING::ALWAYS_FLASHED );
if( aFill.Collide( padShape.get(), 0 ) ) { constraint = bds.m_DRCEngine->EvalRules( THERMAL_RELIEF_GAP_CONSTRAINT, pad, aZone, aLayer ); padClearance = constraint.GetValue().Min();
aThermalConnectionPads.push_back( pad ); addKnockout( pad, aLayer, padClearance, holes ); }
break;
case ZONE_CONNECTION::NONE: constraint = bds.m_DRCEngine->EvalRules( PHYSICAL_CLEARANCE_CONSTRAINT, pad, aZone, aLayer );
if( constraint.GetValue().Min() > aZone->GetLocalClearance().value() ) padClearance = constraint.GetValue().Min(); else padClearance = aZone->GetLocalClearance().value();
if( pad->FlashLayer( aLayer ) ) { addKnockout( pad, aLayer, padClearance, holes ); } else if( pad->GetDrillSize().x > 0 ) { constraint = bds.m_DRCEngine->EvalRules( PHYSICAL_HOLE_CLEARANCE_CONSTRAINT, pad, aZone, aLayer );
if( constraint.GetValue().Min() > padClearance ) holeClearance = constraint.GetValue().Min(); else holeClearance = padClearance;
pad->TransformHoleToPolygon( holes, holeClearance, m_maxError, ERROR_OUTSIDE ); }
break;
default: // No knockout
continue; } } }
// We put thermal reliefs on all connected items in a hatch fill zone as a way of guaranteeing
// that they connect to the webbing. (The thermal gap is the hatch gap minus the pad/via size,
// making it impossible for the pad/via to be isolated within the center of a hole.)
if( aZone->GetFillMode() == ZONE_FILL_MODE::HATCH_PATTERN ) { for( PCB_TRACK* track : m_board->Tracks() ) { if( track->Type() == PCB_VIA_T ) { PCB_VIA* via = static_cast<PCB_VIA*>( track );
BOX2I viaBBox = via->GetBoundingBox(); viaBBox.Inflate( m_worstClearance );
if( !viaBBox.Intersects( aZone->GetBoundingBox() ) ) continue;
bool noConnection = via->GetNetCode() != aZone->GetNetCode();
if( noConnection ) continue;
aThermalConnectionPads.push_back( via ); addKnockout( via, aLayer, getHatchFillThermalClearance( aZone, via, aLayer ), holes ); } } }
aFill.BooleanSubtract( holes );}
/**
* Removes clearance from the shape for copper items which share the zone's layer but are * not connected to it. */void ZONE_FILLER::buildCopperItemClearances( const ZONE* aZone, PCB_LAYER_ID aLayer, const std::vector<PAD*>& aNoConnectionPads, SHAPE_POLY_SET& aHoles ){ BOARD_DESIGN_SETTINGS& bds = m_board->GetDesignSettings(); long ticker = 0;
auto checkForCancel = [&ticker]( PROGRESS_REPORTER* aReporter ) -> bool { return aReporter && ( ticker++ % 50 ) == 0 && aReporter->IsCancelled(); };
// A small extra clearance to be sure actual track clearances are not smaller than
// requested clearance due to many approximations in calculations, like arc to segment
// approx, rounding issues, etc.
BOX2I zone_boundingbox = aZone->GetBoundingBox(); int extra_margin = pcbIUScale.mmToIU( ADVANCED_CFG::GetCfg().m_ExtraClearance );
// Items outside the zone bounding box are skipped, so it needs to be inflated by the
// largest clearance value found in the netclasses and rules
zone_boundingbox.Inflate( m_worstClearance + extra_margin );
auto evalRulesForItems = [&bds]( DRC_CONSTRAINT_T aConstraint, const BOARD_ITEM* a, const BOARD_ITEM* b, PCB_LAYER_ID aEvalLayer ) -> int { DRC_CONSTRAINT c = bds.m_DRCEngine->EvalRules( aConstraint, a, b, aEvalLayer );
if( c.IsNull() ) return -1; else return c.GetValue().Min(); };
// Add non-connected pad clearances
//
auto knockoutPadClearance = [&]( PAD* aPad ) { int init_gap = evalRulesForItems( PHYSICAL_CLEARANCE_CONSTRAINT, aZone, aPad, aLayer ); int gap = init_gap; bool hasHole = aPad->GetDrillSize().x > 0; bool flashLayer = aPad->FlashLayer( aLayer ); bool platedHole = hasHole && aPad->GetAttribute() == PAD_ATTRIB::PTH;
if( flashLayer || platedHole ) { gap = std::max( gap, evalRulesForItems( CLEARANCE_CONSTRAINT, aZone, aPad, aLayer ) ); }
if( flashLayer && gap >= 0 ) addKnockout( aPad, aLayer, gap + extra_margin, aHoles );
if( hasHole ) { // NPTH do not need copper clearance gaps to their holes
if( aPad->GetAttribute() == PAD_ATTRIB::NPTH ) gap = init_gap;
gap = std::max( gap, evalRulesForItems( PHYSICAL_HOLE_CLEARANCE_CONSTRAINT, aZone, aPad, aLayer ) );
gap = std::max( gap, evalRulesForItems( HOLE_CLEARANCE_CONSTRAINT, aZone, aPad, aLayer ) );
if( gap >= 0 ) addHoleKnockout( aPad, gap + extra_margin, aHoles ); } };
for( PAD* pad : aNoConnectionPads ) { if( checkForCancel( m_progressReporter ) ) return;
knockoutPadClearance( pad ); }
// Add non-connected track clearances
//
auto knockoutTrackClearance = [&]( PCB_TRACK* aTrack ) { if( aTrack->GetBoundingBox().Intersects( zone_boundingbox ) ) { bool sameNet = aTrack->GetNetCode() == aZone->GetNetCode();
if( !aZone->IsTeardropArea() && aZone->GetNetCode() == 0 ) sameNet = false;
int gap = evalRulesForItems( PHYSICAL_CLEARANCE_CONSTRAINT, aZone, aTrack, aLayer );
if( aTrack->Type() == PCB_VIA_T ) { PCB_VIA* via = static_cast<PCB_VIA*>( aTrack );
if( via->GetZoneLayerOverride( aLayer ) == ZLO_FORCE_NO_ZONE_CONNECTION ) sameNet = false; }
if( !sameNet ) { gap = std::max( gap, evalRulesForItems( CLEARANCE_CONSTRAINT, aZone, aTrack, aLayer ) ); }
if( aTrack->Type() == PCB_VIA_T ) { PCB_VIA* via = static_cast<PCB_VIA*>( aTrack );
if( via->FlashLayer( aLayer ) && gap > 0 ) { via->TransformShapeToPolygon( aHoles, aLayer, gap + extra_margin, m_maxError, ERROR_OUTSIDE ); }
gap = std::max( gap, evalRulesForItems( PHYSICAL_HOLE_CLEARANCE_CONSTRAINT, aZone, via, aLayer ) );
if( !sameNet ) { gap = std::max( gap, evalRulesForItems( HOLE_CLEARANCE_CONSTRAINT, aZone, via, aLayer ) ); }
if( gap >= 0 ) { int radius = via->GetDrillValue() / 2;
TransformCircleToPolygon( aHoles, via->GetPosition(), radius + gap + extra_margin, m_maxError, ERROR_OUTSIDE ); } } else { if( gap >= 0 ) { aTrack->TransformShapeToPolygon( aHoles, aLayer, gap + extra_margin, m_maxError, ERROR_OUTSIDE ); } } } };
for( PCB_TRACK* track : m_board->Tracks() ) { if( !track->IsOnLayer( aLayer ) ) continue;
if( checkForCancel( m_progressReporter ) ) return;
knockoutTrackClearance( track ); }
// Add graphic item clearances.
//
auto knockoutGraphicClearance = [&]( BOARD_ITEM* aItem ) { int shapeNet = -1;
if( aItem->Type() == PCB_SHAPE_T ) shapeNet = static_cast<PCB_SHAPE*>( aItem )->GetNetCode();
bool sameNet = shapeNet == aZone->GetNetCode();
if( !aZone->IsTeardropArea() && aZone->GetNetCode() == 0 ) sameNet = false;
// A item on the Edge_Cuts or Margin is always seen as on any layer:
if( aItem->IsOnLayer( aLayer ) || aItem->IsOnLayer( Edge_Cuts ) || aItem->IsOnLayer( Margin ) ) { if( aItem->GetBoundingBox().Intersects( zone_boundingbox ) ) { bool ignoreLineWidths = false; int gap = evalRulesForItems( PHYSICAL_CLEARANCE_CONSTRAINT, aZone, aItem, aLayer );
if( aItem->IsOnLayer( aLayer ) && !sameNet ) { gap = std::max( gap, evalRulesForItems( CLEARANCE_CONSTRAINT, aZone, aItem, aLayer ) ); } else if( aItem->IsOnLayer( Edge_Cuts ) ) { gap = std::max( gap, evalRulesForItems( EDGE_CLEARANCE_CONSTRAINT, aZone, aItem, aLayer ) ); ignoreLineWidths = true; } else if( aItem->IsOnLayer( Margin ) ) { gap = std::max( gap, evalRulesForItems( EDGE_CLEARANCE_CONSTRAINT, aZone, aItem, aLayer ) ); }
if( gap >= 0 ) { gap += extra_margin; addKnockout( aItem, aLayer, gap, ignoreLineWidths, aHoles ); } } } };
auto knockoutCourtyardClearance = [&]( FOOTPRINT* aFootprint ) { if( aFootprint->GetBoundingBox().Intersects( zone_boundingbox ) ) { int gap = evalRulesForItems( PHYSICAL_CLEARANCE_CONSTRAINT, aZone, aFootprint, aLayer );
if( gap == 0 ) { aHoles.Append( aFootprint->GetCourtyard( aLayer ) ); } else if( gap > 0 ) { SHAPE_POLY_SET hole = aFootprint->GetCourtyard( aLayer ); hole.Inflate( gap, CORNER_STRATEGY::ROUND_ALL_CORNERS, m_maxError ); aHoles.Append( hole ); } } };
for( FOOTPRINT* footprint : m_board->Footprints() ) { knockoutCourtyardClearance( footprint ); knockoutGraphicClearance( &footprint->Reference() ); knockoutGraphicClearance( &footprint->Value() );
std::set<PAD*> allowedNetTiePads;
// Don't knock out holes for graphic items which implement a net-tie to the zone's net
// on the layer being filled.
if( footprint->IsNetTie() ) { for( PAD* pad : footprint->Pads() ) { bool sameNet = pad->GetNetCode() == aZone->GetNetCode();
if( !aZone->IsTeardropArea() && aZone->GetNetCode() == 0 ) sameNet = false;
if( sameNet ) { if( pad->IsOnLayer( aLayer ) ) allowedNetTiePads.insert( pad );
for( PAD* other : footprint->GetNetTiePads( pad ) ) { if( other->IsOnLayer( aLayer ) ) allowedNetTiePads.insert( other ); } } } }
for( BOARD_ITEM* item : footprint->GraphicalItems() ) { if( checkForCancel( m_progressReporter ) ) return;
BOX2I itemBBox = item->GetBoundingBox();
if( !zone_boundingbox.Intersects( itemBBox ) ) continue;
bool skipItem = false;
if( item->IsOnLayer( aLayer ) ) { std::shared_ptr<SHAPE> itemShape = item->GetEffectiveShape();
for( PAD* pad : allowedNetTiePads ) { if( pad->GetBoundingBox().Intersects( itemBBox ) && pad->GetEffectiveShape( aLayer )->Collide( itemShape.get() ) ) { skipItem = true; break; } } }
if( !skipItem ) knockoutGraphicClearance( item ); } }
for( BOARD_ITEM* item : m_board->Drawings() ) { if( checkForCancel( m_progressReporter ) ) return;
knockoutGraphicClearance( item ); }
// Add non-connected zone clearances
//
auto knockoutZoneClearance = [&]( ZONE* aKnockout ) { // If the zones share no common layers
if( !aKnockout->GetLayerSet().test( aLayer ) ) return;
if( aKnockout->GetBoundingBox().Intersects( zone_boundingbox ) ) { if( aKnockout->GetIsRuleArea() ) { // Keepouts use outline with no clearance
aKnockout->TransformSmoothedOutlineToPolygon( aHoles, 0, m_maxError, ERROR_OUTSIDE, nullptr ); } else { int gap = std::max( 0, evalRulesForItems( PHYSICAL_CLEARANCE_CONSTRAINT, aZone, aKnockout, aLayer ) );
gap = std::max( gap, evalRulesForItems( CLEARANCE_CONSTRAINT, aZone, aKnockout, aLayer ) );
SHAPE_POLY_SET poly; aKnockout->TransformShapeToPolygon( poly, aLayer, gap + extra_margin, m_maxError, ERROR_OUTSIDE ); aHoles.Append( poly ); } } };
for( ZONE* otherZone : m_board->Zones() ) { if( checkForCancel( m_progressReporter ) ) return;
// Negative clearance permits zones to short
if( evalRulesForItems( CLEARANCE_CONSTRAINT, aZone, otherZone, aLayer ) < 0 ) continue;
if( otherZone->GetIsRuleArea() ) { if( otherZone->GetDoNotAllowZoneFills() && !aZone->IsTeardropArea() ) knockoutZoneClearance( otherZone ); } else if( otherZone->HigherPriority( aZone ) ) { if( !otherZone->SameNet( aZone ) ) knockoutZoneClearance( otherZone ); } }
for( FOOTPRINT* footprint : m_board->Footprints() ) { for( ZONE* otherZone : footprint->Zones() ) { if( checkForCancel( m_progressReporter ) ) return;
if( otherZone->GetIsRuleArea() ) { if( otherZone->GetDoNotAllowZoneFills() && !aZone->IsTeardropArea() ) knockoutZoneClearance( otherZone ); } else if( otherZone->HigherPriority( aZone ) ) { if( !otherZone->SameNet( aZone ) ) knockoutZoneClearance( otherZone ); } } }
aHoles.Simplify();}
/**
* Removes the outlines of higher-proirity zones with the same net. These zones should be * in charge of the fill parameters within their own outlines. */void ZONE_FILLER::subtractHigherPriorityZones( const ZONE* aZone, PCB_LAYER_ID aLayer, SHAPE_POLY_SET& aRawFill ){ BOX2I zoneBBox = aZone->GetBoundingBox();
auto knockoutZoneOutline = [&]( ZONE* aKnockout ) { // If the zones share no common layers
if( !aKnockout->GetLayerSet().test( aLayer ) ) return;
if( aKnockout->GetBoundingBox().Intersects( zoneBBox ) ) { // Processing of arc shapes in zones is not yet supported because Clipper
// can't do boolean operations on them. The poly outline must be converted to
// segments first.
SHAPE_POLY_SET outline = aKnockout->Outline()->CloneDropTriangulation(); outline.ClearArcs();
aRawFill.BooleanSubtract( outline ); } };
for( ZONE* otherZone : m_board->Zones() ) { // Don't use the `HigherPriority()` check here because we _only_ want to knock out zones
// with explicitly higher priorities, not those with equal priorities
if( otherZone->SameNet( aZone ) && otherZone->GetAssignedPriority() > aZone->GetAssignedPriority() ) { // Do not remove teardrop area: it is not useful and not good
if( !otherZone->IsTeardropArea() ) knockoutZoneOutline( otherZone ); } }
for( FOOTPRINT* footprint : m_board->Footprints() ) { for( ZONE* otherZone : footprint->Zones() ) { if( otherZone->SameNet( aZone ) && otherZone->HigherPriority( aZone ) ) { // Do not remove teardrop area: it is not useful and not good
if( !otherZone->IsTeardropArea() ) knockoutZoneOutline( otherZone ); } } }}
void ZONE_FILLER::connect_nearby_polys( SHAPE_POLY_SET& aPolys, double aDistance ){ if( aPolys.OutlineCount() < 1 ) return;
VERTEX_CONNECTOR vs( aPolys.BBoxFromCaches(), aPolys, aDistance );
vs.FindResults();
// This cannot be a reference because we need to do the comparison below while
// changing the values
std::map<int, std::vector<std::pair<int, VECTOR2I>>> insertion_points;
for( const RESULTS& result : vs.GetResults() ) { SHAPE_LINE_CHAIN& line1 = aPolys.Outline( result.m_outline1 ); SHAPE_LINE_CHAIN& line2 = aPolys.Outline( result.m_outline2 );
VECTOR2I pt1 = line1.CPoint( result.m_vertex1 ); VECTOR2I pt2 = line2.CPoint( result.m_vertex2 );
// We want to insert the existing point first so that we can place the new point
// between the two points at the same location.
insertion_points[result.m_outline1].push_back( { result.m_vertex1, pt1 } ); insertion_points[result.m_outline1].push_back( { result.m_vertex1, pt2 } ); }
for( auto& [outline, vertices] : insertion_points ) { SHAPE_LINE_CHAIN& line = aPolys.Outline( outline );
// Stable sort here because we want to make sure that we are inserting pt1 first and
// pt2 second but still sorting the rest of the indices from highest to lowest.
// This allows us to insert into the existing polygon without modifying the future
// insertion points.
std::stable_sort( vertices.begin(), vertices.end(), []( const std::pair<int, VECTOR2I>& a, const std::pair<int, VECTOR2I>& b ) { return a.first > b.first; } );
for( const auto& [vertex, pt] : vertices ) line.Insert( vertex + 1, pt ); // +1 here because we want to insert after the existing point
}}
#define DUMP_POLYS_TO_COPPER_LAYER( a, b, c ) \
{ if( m_debugZoneFiller && aDebugLayer == b ) \ { \ m_board->SetLayerName( b, c ); \ SHAPE_POLY_SET d = a; \ d.Fracture(); \ aFillPolys = d; \ return false; \ } \ }
/*
* Note that aSmoothedOutline is larger than the zone where it intersects with other, same-net * zones. This is to prevent the re-inflation post min-width trimming from createing divots * between adjacent zones. The final aMaxExtents trimming will remove these areas from the final * fill. */bool ZONE_FILLER::fillCopperZone( const ZONE* aZone, PCB_LAYER_ID aLayer, PCB_LAYER_ID aDebugLayer, const SHAPE_POLY_SET& aSmoothedOutline, const SHAPE_POLY_SET& aMaxExtents, SHAPE_POLY_SET& aFillPolys ){ m_maxError = m_board->GetDesignSettings().m_MaxError;
// Features which are min_width should survive pruning; features that are *less* than
// min_width should not. Therefore we subtract epsilon from the min_width when
// deflating/inflating.
int half_min_width = aZone->GetMinThickness() / 2; int epsilon = pcbIUScale.mmToIU( 0.001 );
// Solid polygons are deflated and inflated during calculations. Deflating doesn't cause
// issues, but inflate is tricky as it can create excessively long and narrow spikes for
// acute angles.
// ALLOW_ACUTE_CORNERS cannot be used due to the spike problem.
// CHAMFER_ACUTE_CORNERS is tempting, but can still produce spikes in some unusual
// circumstances (https://gitlab.com/kicad/code/kicad/-/issues/5581).
// It's unclear if ROUND_ACUTE_CORNERS would have the same issues, but is currently avoided
// as a "less-safe" option.
// ROUND_ALL_CORNERS produces the uniformly nicest shapes, but also a lot of segments.
// CHAMFER_ALL_CORNERS improves the segment count.
CORNER_STRATEGY fastCornerStrategy = CORNER_STRATEGY::CHAMFER_ALL_CORNERS; CORNER_STRATEGY cornerStrategy = CORNER_STRATEGY::ROUND_ALL_CORNERS;
std::vector<BOARD_ITEM*> thermalConnectionPads; std::vector<PAD*> noConnectionPads; std::deque<SHAPE_LINE_CHAIN> thermalSpokes; SHAPE_POLY_SET clearanceHoles;
aFillPolys = aSmoothedOutline; DUMP_POLYS_TO_COPPER_LAYER( aFillPolys, In1_Cu, wxT( "smoothed-outline" ) );
if( m_progressReporter && m_progressReporter->IsCancelled() ) return false;
/* -------------------------------------------------------------------------------------
* Knockout thermal reliefs. */
knockoutThermalReliefs( aZone, aLayer, aFillPolys, thermalConnectionPads, noConnectionPads ); DUMP_POLYS_TO_COPPER_LAYER( aFillPolys, In2_Cu, wxT( "minus-thermal-reliefs" ) );
if( m_progressReporter && m_progressReporter->IsCancelled() ) return false;
/* -------------------------------------------------------------------------------------
* Knockout electrical clearances. */
buildCopperItemClearances( aZone, aLayer, noConnectionPads, clearanceHoles ); DUMP_POLYS_TO_COPPER_LAYER( clearanceHoles, In3_Cu, wxT( "clearance-holes" ) );
if( m_progressReporter && m_progressReporter->IsCancelled() ) return false;
/* -------------------------------------------------------------------------------------
* Add thermal relief spokes. */
buildThermalSpokes( aZone, aLayer, thermalConnectionPads, thermalSpokes );
if( m_progressReporter && m_progressReporter->IsCancelled() ) return false;
// Create a temporary zone that we can hit-test spoke-ends against. It's only temporary
// because the "real" subtract-clearance-holes has to be done after the spokes are added.
static const bool USE_BBOX_CACHES = true; SHAPE_POLY_SET testAreas = aFillPolys.CloneDropTriangulation(); testAreas.BooleanSubtract( clearanceHoles ); DUMP_POLYS_TO_COPPER_LAYER( testAreas, In4_Cu, wxT( "minus-clearance-holes" ) );
// Prune features that don't meet minimum-width criteria
if( half_min_width - epsilon > epsilon ) { testAreas.Deflate( half_min_width - epsilon, fastCornerStrategy, m_maxError ); DUMP_POLYS_TO_COPPER_LAYER( testAreas, In5_Cu, wxT( "spoke-test-deflated" ) );
testAreas.Inflate( half_min_width - epsilon, fastCornerStrategy, m_maxError ); DUMP_POLYS_TO_COPPER_LAYER( testAreas, In6_Cu, wxT( "spoke-test-reinflated" ) ); }
if( m_progressReporter && m_progressReporter->IsCancelled() ) return false;
// Spoke-end-testing is hugely expensive so we generate cached bounding-boxes to speed
// things up a bit.
testAreas.BuildBBoxCaches(); int interval = 0;
SHAPE_POLY_SET debugSpokes;
for( const SHAPE_LINE_CHAIN& spoke : thermalSpokes ) { const VECTOR2I& testPt = spoke.CPoint( 3 );
// Hit-test against zone body
if( testAreas.Contains( testPt, -1, 1, USE_BBOX_CACHES ) ) { if( m_debugZoneFiller ) debugSpokes.AddOutline( spoke );
aFillPolys.AddOutline( spoke ); continue; }
if( interval++ > 400 ) { if( m_progressReporter && m_progressReporter->IsCancelled() ) return false;
interval = 0; }
// Hit-test against other spokes
for( const SHAPE_LINE_CHAIN& other : thermalSpokes ) { // Hit test in both directions to avoid interactions with round-off errors.
// (See https://gitlab.com/kicad/code/kicad/-/issues/13316.)
if( &other != &spoke && other.PointInside( testPt, 1, USE_BBOX_CACHES ) && spoke.PointInside( other.CPoint( 3 ), 1, USE_BBOX_CACHES ) ) { if( m_debugZoneFiller ) debugSpokes.AddOutline( spoke );
aFillPolys.AddOutline( spoke ); break; } } }
DUMP_POLYS_TO_COPPER_LAYER( debugSpokes, In7_Cu, wxT( "spokes" ) );
if( m_progressReporter && m_progressReporter->IsCancelled() ) return false;
aFillPolys.BooleanSubtract( clearanceHoles ); DUMP_POLYS_TO_COPPER_LAYER( aFillPolys, In8_Cu, wxT( "after-spoke-trimming" ) );
/* -------------------------------------------------------------------------------------
* Prune features that don't meet minimum-width criteria */
if( half_min_width - epsilon > epsilon ) aFillPolys.Deflate( half_min_width - epsilon, fastCornerStrategy, m_maxError );
// Min-thickness is the web thickness. On the other hand, a blob min-thickness by
// min-thickness is not useful. Since there's no obvious definition of web vs. blob, we
// arbitrarily choose "at least 2X min-thickness on one axis". (Since we're doing this
// during the deflated state, that means we test for "at least min-thickness".)
for( int ii = aFillPolys.OutlineCount() - 1; ii >= 0; ii-- ) { std::vector<SHAPE_LINE_CHAIN>& island = aFillPolys.Polygon( ii ); BOX2I islandExtents;
for( const VECTOR2I& pt : island.front().CPoints() ) { islandExtents.Merge( pt );
if( islandExtents.GetSizeMax() > aZone->GetMinThickness() ) break; }
if( islandExtents.GetSizeMax() < aZone->GetMinThickness() ) aFillPolys.DeletePolygon( ii ); }
DUMP_POLYS_TO_COPPER_LAYER( aFillPolys, In9_Cu, wxT( "deflated" ) );
if( m_progressReporter && m_progressReporter->IsCancelled() ) return false;
/* -------------------------------------------------------------------------------------
* Process the hatch pattern (note that we do this while deflated) */
if( aZone->GetFillMode() == ZONE_FILL_MODE::HATCH_PATTERN && ( !m_board->GetProject() || !m_board->GetProject()->GetLocalSettings().m_PrototypeZoneFill ) ) { if( !addHatchFillTypeOnZone( aZone, aLayer, aDebugLayer, aFillPolys ) ) return false; } else { /* ---------------------------------------------------------------------------------
* Connect nearby polygons with zero-width lines in order to ensure correct * re-inflation. */ aFillPolys.Fracture(); connect_nearby_polys( aFillPolys, aZone->GetMinThickness() );
DUMP_POLYS_TO_COPPER_LAYER( aFillPolys, In10_Cu, wxT( "connected-nearby-polys" ) ); }
if( m_progressReporter && m_progressReporter->IsCancelled() ) return false;
/* -------------------------------------------------------------------------------------
* Finish minimum-width pruning by re-inflating */
if( half_min_width - epsilon > epsilon ) aFillPolys.Inflate( half_min_width - epsilon, cornerStrategy, m_maxError, true );
DUMP_POLYS_TO_COPPER_LAYER( aFillPolys, In15_Cu, wxT( "after-reinflating" ) );
/* -------------------------------------------------------------------------------------
* Ensure additive changes (thermal stubs and inflating acute corners) do not add copper * outside the zone boundary, inside the clearance holes, or between otherwise isolated * islands */
for( BOARD_ITEM* item : thermalConnectionPads ) { if( item->Type() == PCB_PAD_T ) addHoleKnockout( static_cast<PAD*>( item ), 0, clearanceHoles ); }
aFillPolys.BooleanIntersection( aMaxExtents ); DUMP_POLYS_TO_COPPER_LAYER( aFillPolys, In16_Cu, wxT( "after-trim-to-outline" ) ); aFillPolys.BooleanSubtract( clearanceHoles ); DUMP_POLYS_TO_COPPER_LAYER( aFillPolys, In17_Cu, wxT( "after-trim-to-clearance-holes" ) );
/* -------------------------------------------------------------------------------------
* Lastly give any same-net but higher-priority zones control over their own area. */
subtractHigherPriorityZones( aZone, aLayer, aFillPolys ); DUMP_POLYS_TO_COPPER_LAYER( aFillPolys, In18_Cu, wxT( "minus-higher-priority-zones" ) );
aFillPolys.Fracture(); return true;}
bool ZONE_FILLER::fillNonCopperZone( const ZONE* aZone, PCB_LAYER_ID aLayer, const SHAPE_POLY_SET& aSmoothedOutline, SHAPE_POLY_SET& aFillPolys ){ BOX2I zone_boundingbox = aZone->GetBoundingBox(); SHAPE_POLY_SET clearanceHoles; long ticker = 0;
auto checkForCancel = [&ticker]( PROGRESS_REPORTER* aReporter ) -> bool { return aReporter && ( ticker++ % 50 ) == 0 && aReporter->IsCancelled(); };
auto knockoutGraphicItem = [&]( BOARD_ITEM* aItem ) { if( aItem->IsKnockout() && aItem->IsOnLayer( aLayer ) && aItem->GetBoundingBox().Intersects( zone_boundingbox ) ) { addKnockout( aItem, aLayer, 0, true, clearanceHoles ); } };
for( FOOTPRINT* footprint : m_board->Footprints() ) { if( checkForCancel( m_progressReporter ) ) return false;
knockoutGraphicItem( &footprint->Reference() ); knockoutGraphicItem( &footprint->Value() );
for( BOARD_ITEM* item : footprint->GraphicalItems() ) knockoutGraphicItem( item ); }
for( BOARD_ITEM* item : m_board->Drawings() ) { if( checkForCancel( m_progressReporter ) ) return false;
knockoutGraphicItem( item ); }
aFillPolys = aSmoothedOutline; aFillPolys.BooleanSubtract( clearanceHoles );
auto subtractKeepout = [&]( ZONE* candidate ) { if( !candidate->GetIsRuleArea() ) return;
if( !candidate->HasKeepoutParametersSet() ) return;
if( candidate->GetDoNotAllowZoneFills() && candidate->IsOnLayer( aLayer ) ) { if( candidate->GetBoundingBox().Intersects( zone_boundingbox ) ) { if( candidate->Outline()->ArcCount() == 0 ) { aFillPolys.BooleanSubtract( *candidate->Outline() ); } else { SHAPE_POLY_SET keepoutOutline( *candidate->Outline() ); keepoutOutline.ClearArcs(); aFillPolys.BooleanSubtract( keepoutOutline ); } } } };
for( ZONE* keepout : m_board->Zones() ) { if( checkForCancel( m_progressReporter ) ) return false;
subtractKeepout( keepout ); }
for( FOOTPRINT* footprint : m_board->Footprints() ) { if( checkForCancel( m_progressReporter ) ) return false;
for( ZONE* keepout : footprint->Zones() ) subtractKeepout( keepout ); }
// Features which are min_width should survive pruning; features that are *less* than
// min_width should not. Therefore we subtract epsilon from the min_width when
// deflating/inflating.
int half_min_width = aZone->GetMinThickness() / 2; int epsilon = pcbIUScale.mmToIU( 0.001 );
aFillPolys.Deflate( half_min_width - epsilon, CORNER_STRATEGY::CHAMFER_ALL_CORNERS, m_maxError );
// Remove the non filled areas due to the hatch pattern
if( aZone->GetFillMode() == ZONE_FILL_MODE::HATCH_PATTERN ) { if( !addHatchFillTypeOnZone( aZone, aLayer, aLayer, aFillPolys ) ) return false; }
// Re-inflate after pruning of areas that don't meet minimum-width criteria
if( half_min_width - epsilon > epsilon ) aFillPolys.Inflate( half_min_width - epsilon, CORNER_STRATEGY::ROUND_ALL_CORNERS, m_maxError );
aFillPolys.Fracture(); return true;}
/*
* Build the filled solid areas data from real outlines (stored in m_Poly) * The solid areas can be more than one on copper layers, and do not have holes * ( holes are linked by overlapping segments to the main outline) */bool ZONE_FILLER::fillSingleZone( ZONE* aZone, PCB_LAYER_ID aLayer, SHAPE_POLY_SET& aFillPolys ){ SHAPE_POLY_SET* boardOutline = m_brdOutlinesValid ? &m_boardOutline : nullptr; SHAPE_POLY_SET maxExtents; SHAPE_POLY_SET smoothedPoly; PCB_LAYER_ID debugLayer = UNDEFINED_LAYER;
if( m_debugZoneFiller && LSET::InternalCuMask().Contains( aLayer ) ) { debugLayer = aLayer; aLayer = F_Cu; }
if( !aZone->BuildSmoothedPoly( maxExtents, aLayer, boardOutline, &smoothedPoly ) ) return false;
if( m_progressReporter && m_progressReporter->IsCancelled() ) return false;
if( aZone->IsOnCopperLayer() ) { if( fillCopperZone( aZone, aLayer, debugLayer, smoothedPoly, maxExtents, aFillPolys ) ) aZone->SetNeedRefill( false ); } else { if( fillNonCopperZone( aZone, aLayer, smoothedPoly, aFillPolys ) ) aZone->SetNeedRefill( false ); }
return true;}
/**
* Function buildThermalSpokes */void ZONE_FILLER::buildThermalSpokes( const ZONE* aZone, PCB_LAYER_ID aLayer, const std::vector<BOARD_ITEM*>& aSpokedPadsList, std::deque<SHAPE_LINE_CHAIN>& aSpokesList ){ BOARD_DESIGN_SETTINGS& bds = m_board->GetDesignSettings(); BOX2I zoneBB = aZone->GetBoundingBox(); DRC_CONSTRAINT constraint; int zone_half_width = aZone->GetMinThickness() / 2;
if( aZone->GetFillMode() == ZONE_FILL_MODE::HATCH_PATTERN ) zone_half_width = aZone->GetHatchThickness() / 2;
zoneBB.Inflate( std::max( bds.GetBiggestClearanceValue(), aZone->GetLocalClearance().value() ) );
// Is a point on the boundary of the polygon inside or outside?
// The boundary may be off by MaxError
int epsilon = bds.m_MaxError;
for( BOARD_ITEM* item : aSpokedPadsList ) { // We currently only connect to pads, not pad holes
if( !item->IsOnLayer( aLayer ) ) continue;
int thermalReliefGap = 0; int spoke_w = 0; PAD* pad = nullptr; PCB_VIA* via = nullptr; bool circular = false;
if( item->Type() == PCB_PAD_T ) { pad = static_cast<PAD*>( item ); VECTOR2I padSize = pad->GetSize( aLayer );
if( pad->GetShape( aLayer) == PAD_SHAPE::CIRCLE || ( pad->GetShape( aLayer ) == PAD_SHAPE::OVAL && padSize.x == padSize.y ) ) { circular = true; } } else if( item->Type() == PCB_VIA_T ) { via = static_cast<PCB_VIA*>( item ); circular = true; }
// Thermal connections in a hatched zone are based on the hatch. Their primary function is to
// guarantee that pads/vias connect to the webbing. (The thermal gap is the hatch gap width minus
// the pad/via size, making it impossible for the pad/via to be isolated within the center of a
// hole.)
if( aZone->GetFillMode() == ZONE_FILL_MODE::HATCH_PATTERN ) { spoke_w = aZone->GetHatchThickness(); thermalReliefGap = getHatchFillThermalClearance( aZone, item, aLayer );
if( thermalReliefGap < 0 ) continue; } else if( pad ) { constraint = bds.m_DRCEngine->EvalRules( THERMAL_RELIEF_GAP_CONSTRAINT, pad, aZone, aLayer ); thermalReliefGap = constraint.GetValue().Min();
constraint = bds.m_DRCEngine->EvalRules( THERMAL_SPOKE_WIDTH_CONSTRAINT, pad, aZone, aLayer ); spoke_w = constraint.GetValue().Opt();
// Spoke width should ideally be smaller than the pad minor axis.
// Otherwise the thermal shape is not really a thermal relief,
// and the algo to count the actual number of spokes can fail
int spoke_max_allowed_w = std::min( pad->GetSize( aLayer ).x, pad->GetSize( aLayer ).y );
spoke_w = std::clamp( spoke_w, constraint.Value().Min(), constraint.Value().Max() );
// ensure the spoke width is smaller than the pad minor size
spoke_w = std::min( spoke_w, spoke_max_allowed_w );
// Cannot create stubs having a width < zone min thickness
if( spoke_w < aZone->GetMinThickness() ) continue; } else { // We don't currently support via thermal connections *except* in a hatched zone.
continue; }
int spoke_half_w = spoke_w / 2;
// Quick test here to possibly save us some work
BOX2I itemBB = item->GetBoundingBox(); itemBB.Inflate( thermalReliefGap + epsilon );
if( !( itemBB.Intersects( zoneBB ) ) ) continue;
bool customSpokes = false;
if( pad && pad->GetShape( aLayer ) == PAD_SHAPE::CUSTOM ) { for( const std::shared_ptr<PCB_SHAPE>& primitive : pad->GetPrimitives( aLayer ) ) { if( primitive->IsProxyItem() && primitive->GetShape() == SHAPE_T::SEGMENT ) { customSpokes = true; break; } } }
// Thermal spokes consist of square-ended segments from the pad center to points just
// outside the thermal relief. The outside end has an extra center point (which must be
// at idx 3) which is used for testing whether or not the spoke connects to copper in the
// parent zone.
auto buildSpokesFromOrigin = [&]( const BOX2I& box, EDA_ANGLE angle ) { VECTOR2I center = box.GetCenter(); VECTOR2I half_size( box.GetWidth() / 2, box.GetHeight() / 2 );
// Function to find intersection of line with box edge
auto intersectLineBox = [&](const VECTOR2D& direction) -> VECTOR2I { double dx = direction.x; double dy = direction.y;
// Short-circuit the axis cases because they will be degenerate in the
// intersection test
if( direction.x == 0 ) return VECTOR2I( 0, dy * half_size.y ); else if( direction.y == 0 ) return VECTOR2I( dx * half_size.x, 0 );
// We are going to intersect with one side or the other. Whichever
// we hit first is the fraction of the spoke length we keep
double tx = std::min( half_size.x / std::abs( dx ), half_size.y / std::abs( dy ) ); return VECTOR2I( dx * tx, dy * tx ); };
// Precalculate angles for four cardinal directions
const EDA_ANGLE angles[4] = { EDA_ANGLE( 0.0, DEGREES_T ) + angle, // Right
EDA_ANGLE( 90.0, DEGREES_T ) + angle, // Up
EDA_ANGLE( 180.0, DEGREES_T ) + angle, // Left
EDA_ANGLE( 270.0, DEGREES_T ) + angle // Down
};
// Generate four spokes in cardinal directions
for( const EDA_ANGLE& spokeAngle : angles ) { VECTOR2D direction( spokeAngle.Cos(), spokeAngle.Sin() ); VECTOR2D perpendicular = direction.Perpendicular();
VECTOR2I intersection = intersectLineBox( direction ); VECTOR2I spoke_side = perpendicular.Resize( spoke_half_w );
SHAPE_LINE_CHAIN spoke; spoke.Append( center + spoke_side ); spoke.Append( center - spoke_side ); spoke.Append( center + intersection - spoke_side ); spoke.Append( center + intersection ); // test pt
spoke.Append( center + intersection + spoke_side ); spoke.SetClosed( true ); aSpokesList.push_back( std::move( spoke ) ); } };
if( customSpokes ) { SHAPE_POLY_SET thermalPoly; SHAPE_LINE_CHAIN thermalOutline;
pad->TransformShapeToPolygon( thermalPoly, aLayer, thermalReliefGap + epsilon, m_maxError, ERROR_OUTSIDE );
if( thermalPoly.OutlineCount() ) thermalOutline = thermalPoly.Outline( 0 );
SHAPE_LINE_CHAIN padOutline = pad->GetEffectivePolygon( aLayer, ERROR_OUTSIDE )->Outline( 0 );
auto trimToOutline = [&]( SEG& aSegment ) { SHAPE_LINE_CHAIN::INTERSECTIONS intersections;
if( padOutline.Intersect( aSegment, intersections ) ) { intersections.clear();
// Trim the segment to the thermal outline
if( thermalOutline.Intersect( aSegment, intersections ) ) { aSegment.B = intersections.front().p; return true; } } return false; };
for( const std::shared_ptr<PCB_SHAPE>& primitive : pad->GetPrimitives( aLayer ) ) { if( primitive->IsProxyItem() && primitive->GetShape() == SHAPE_T::SEGMENT ) { SEG seg( primitive->GetStart(), primitive->GetEnd() ); SHAPE_LINE_CHAIN::INTERSECTIONS intersections;
RotatePoint( seg.A, pad->GetOrientation() ); RotatePoint( seg.B, pad->GetOrientation() ); seg.A += pad->ShapePos( aLayer ); seg.B += pad->ShapePos( aLayer );
// Make sure seg.A is the origin
if( !pad->GetEffectivePolygon( aLayer, ERROR_OUTSIDE )->Contains( seg.A ) ) { // Do not create this spoke if neither point is in the pad.
if( !pad->GetEffectivePolygon( aLayer, ERROR_OUTSIDE )->Contains( seg.B ) ) continue;
seg.Reverse(); }
// Trim segment to pad and thermal outline polygon.
// If there is no intersection with the pad, don't create the spoke.
if( trimToOutline( seg ) ) { VECTOR2I direction = ( seg.B - seg.A ).Resize( spoke_half_w ); VECTOR2I offset = direction.Perpendicular().Resize( spoke_half_w ); // Extend the spoke edges by half the spoke width to capture convex pad shapes
// with a maximum of 45 degrees.
SEG segL( seg.A - direction - offset, seg.B + direction - offset ); SEG segR( seg.A - direction + offset, seg.B + direction + offset );
// Only create this spoke if both edges intersect the pad and thermal outline
if( trimToOutline( segL ) && trimToOutline( segR ) ) { // Extend the spoke by the minimum thickness for the zone to ensure full
// connection width
direction = direction.Resize( aZone->GetMinThickness() );
SHAPE_LINE_CHAIN spoke;
spoke.Append( seg.A + offset ); spoke.Append( seg.A - offset );
spoke.Append( segL.B + direction ); spoke.Append( seg.B + direction ); // test pt at index 3.
spoke.Append( segR.B + direction );
spoke.SetClosed( true ); aSpokesList.push_back( std::move( spoke ) ); } } } } } else { EDA_ANGLE thermalSpokeAngle;
if( aZone->GetFillMode() == ZONE_FILL_MODE::HATCH_PATTERN ) thermalSpokeAngle = aZone->GetHatchOrientation(); else if( pad ) thermalSpokeAngle = pad->GetThermalSpokeAngle();
BOX2I spokesBox; VECTOR2I position; EDA_ANGLE orientation;
// Since the bounding-box needs to be correclty rotated we use a dummy pad to keep
// from dirtying the real pad's cached shapes.
if( pad ) { PAD dummy_pad( *pad ); dummy_pad.SetOrientation( ANGLE_0 );
// Spokes are from center of pad shape, not from hole. So the dummy pad has no shape
// offset and is at position 0,0
dummy_pad.SetPosition( VECTOR2I( 0, 0 ) ); dummy_pad.SetOffset( aLayer, VECTOR2I( 0, 0 ) );
spokesBox = dummy_pad.GetBoundingBox( aLayer ); position = pad->ShapePos( aLayer ); orientation = pad->GetOrientation();
// Remove group membership from dummy item before deleting
dummy_pad.SetParentGroup( nullptr ); } else if( via ) { PCB_VIA dummy_via( *via ); dummy_via.SetPosition( VECTOR2I( 0, 0 ) );
spokesBox = dummy_via.GetBoundingBox( aLayer ); position = via->GetPosition(); }
// Add the half width of the zone mininum width to the inflate amount to account for
// the fact that the deflation procedure will shrink the results by half the half the
// zone min width
spokesBox.Inflate( thermalReliefGap + epsilon + zone_half_width );
// This is a touchy case because the bounding box for circles overshoots the mark
// when rotated at 45 degrees. So we just build spokes at 0 degrees and rotate
// them later.
if( circular ) { buildSpokesFromOrigin( spokesBox, ANGLE_0 );
if( thermalSpokeAngle != ANGLE_0 ) { //Rotate the last four elements of aspokeslist
for( auto it = aSpokesList.rbegin(); it != aSpokesList.rbegin() + 4; ++it ) it->Rotate( thermalSpokeAngle ); } } else { buildSpokesFromOrigin( spokesBox, thermalSpokeAngle ); }
auto spokeIter = aSpokesList.rbegin();
for( int ii = 0; ii < 4; ++ii, ++spokeIter ) { spokeIter->Rotate( orientation ); spokeIter->Move( position ); } } }
for( size_t ii = 0; ii < aSpokesList.size(); ++ii ) aSpokesList[ii].GenerateBBoxCache();}
bool ZONE_FILLER::addHatchFillTypeOnZone( const ZONE* aZone, PCB_LAYER_ID aLayer, PCB_LAYER_ID aDebugLayer, SHAPE_POLY_SET& aFillPolys ){ // Build grid:
// obviously line thickness must be > zone min thickness.
// It can happens if a board file was edited by hand by a python script
// Use 1 micron margin to be *sure* there is no issue in Gerber files
// (Gbr file unit = 1 or 10 nm) due to some truncation in coordinates or calculations
// This margin also avoid problems due to rounding coordinates in next calculations
// that can create incorrect polygons
int thickness = std::max( aZone->GetHatchThickness(), aZone->GetMinThickness() + pcbIUScale.mmToIU( 0.001 ) );
int gridsize = thickness + aZone->GetHatchGap(); int maxError = m_board->GetDesignSettings().m_MaxError;
SHAPE_POLY_SET filledPolys = aFillPolys.CloneDropTriangulation(); // Use a area that contains the rotated bbox by orientation, and after rotate the result
// by -orientation.
if( !aZone->GetHatchOrientation().IsZero() ) filledPolys.Rotate( - aZone->GetHatchOrientation() );
BOX2I bbox = filledPolys.BBox( 0 );
// Build hole shape
// the hole size is aZone->GetHatchGap(), but because the outline thickness
// is aZone->GetMinThickness(), the hole shape size must be larger
SHAPE_LINE_CHAIN hole_base; int hole_size = aZone->GetHatchGap() + aZone->GetMinThickness(); VECTOR2I corner( 0, 0 );; hole_base.Append( corner ); corner.x += hole_size; hole_base.Append( corner ); corner.y += hole_size; hole_base.Append( corner ); corner.x = 0; hole_base.Append( corner ); hole_base.SetClosed( true );
// Calculate minimal area of a grid hole.
// All holes smaller than a threshold will be removed
double minimal_hole_area = hole_base.Area() * aZone->GetHatchHoleMinArea();
// Now convert this hole to a smoothed shape:
if( aZone->GetHatchSmoothingLevel() > 0 ) { // the actual size of chamfer, or rounded corner radius is the half size
// of the HatchFillTypeGap scaled by aZone->GetHatchSmoothingValue()
// aZone->GetHatchSmoothingValue() = 1.0 is the max value for the chamfer or the
// radius of corner (radius = half size of the hole)
int smooth_value = KiROUND( aZone->GetHatchGap() * aZone->GetHatchSmoothingValue() / 2 );
// Minimal optimization:
// make smoothing only for reasonable smooth values, to avoid a lot of useless segments
// and if the smooth value is small, use chamfer even if fillet is requested
#define SMOOTH_MIN_VAL_MM 0.02
#define SMOOTH_SMALL_VAL_MM 0.04
if( smooth_value > pcbIUScale.mmToIU( SMOOTH_MIN_VAL_MM ) ) { SHAPE_POLY_SET smooth_hole; smooth_hole.AddOutline( hole_base ); int smooth_level = aZone->GetHatchSmoothingLevel();
if( smooth_value < pcbIUScale.mmToIU( SMOOTH_SMALL_VAL_MM ) && smooth_level > 1 ) smooth_level = 1;
// Use a larger smooth_value to compensate the outline tickness
// (chamfer is not visible is smooth value < outline thickess)
smooth_value += aZone->GetMinThickness() / 2;
// smooth_value cannot be bigger than the half size oh the hole:
smooth_value = std::min( smooth_value, aZone->GetHatchGap() / 2 );
// the error to approximate a circle by segments when smoothing corners by a arc
maxError = std::max( maxError * 2, smooth_value / 20 );
switch( smooth_level ) { case 1: // Chamfer() uses the distance from a corner to create a end point
// for the chamfer.
hole_base = smooth_hole.Chamfer( smooth_value ).Outline( 0 ); break;
default: if( aZone->GetHatchSmoothingLevel() > 2 ) maxError /= 2; // Force better smoothing
hole_base = smooth_hole.Fillet( smooth_value, maxError ).Outline( 0 ); break;
case 0: break; }; } }
// Build holes
SHAPE_POLY_SET holes;
VECTOR2I offset_opt = VECTOR2I(); bool zone_has_offset = false;
if( aZone->LayerProperties().contains( aLayer ) ) { zone_has_offset = aZone->HatchingOffset( aLayer ).has_value();
offset_opt = aZone->HatchingOffset( aLayer ).value_or( VECTOR2I( 0, 0 ) ); }
if( !zone_has_offset ) { if( m_board->GetDesignSettings().GetDefaultZoneSettings().m_layerProperties.contains( aLayer ) ) { const ZONE_LAYER_PROPERTIES& properties = m_board->GetDesignSettings().GetDefaultZoneSettings().m_layerProperties.at( aLayer );
offset_opt = properties.hatching_offset.value_or( VECTOR2I( 0, 0 ) ); } }
int x_offset = bbox.GetX() - ( bbox.GetX() ) % gridsize - gridsize; int y_offset = bbox.GetY() - ( bbox.GetY() ) % gridsize - gridsize;
for( int xx = x_offset; xx <= bbox.GetRight(); xx += gridsize ) { for( int yy = y_offset; yy <= bbox.GetBottom(); yy += gridsize ) { // Generate hole
SHAPE_LINE_CHAIN hole( hole_base ); hole.Move( VECTOR2I( xx, yy ) );
if( !aZone->GetHatchOrientation().IsZero() ) { hole.Rotate( aZone->GetHatchOrientation() ); }
hole.Move( VECTOR2I( offset_opt.x % gridsize, offset_opt.y % gridsize ) );
holes.AddOutline( hole ); } }
DUMP_POLYS_TO_COPPER_LAYER( holes, In10_Cu, wxT( "hatch-holes" ) );
int deflated_thickness = aZone->GetHatchThickness() - aZone->GetMinThickness();
// Don't let thickness drop below maxError * 2 or it might not get reinflated.
deflated_thickness = std::max( deflated_thickness, maxError * 2 );
// The fill has already been deflated to ensure GetMinThickness() so we just have to
// account for anything beyond that.
SHAPE_POLY_SET deflatedFilledPolys = aFillPolys.CloneDropTriangulation(); deflatedFilledPolys.Deflate( deflated_thickness, CORNER_STRATEGY::CHAMFER_ALL_CORNERS, maxError ); holes.BooleanIntersection( deflatedFilledPolys ); DUMP_POLYS_TO_COPPER_LAYER( holes, In11_Cu, wxT( "fill-clipped-hatch-holes" ) );
SHAPE_POLY_SET deflatedOutline = aZone->Outline()->CloneDropTriangulation(); deflatedOutline.Deflate( aZone->GetMinThickness(), CORNER_STRATEGY::CHAMFER_ALL_CORNERS, maxError ); holes.BooleanIntersection( deflatedOutline ); DUMP_POLYS_TO_COPPER_LAYER( holes, In12_Cu, wxT( "outline-clipped-hatch-holes" ) );
// Now filter truncated holes to avoid small holes in pattern
// It happens for holes near the zone outline
for( int ii = 0; ii < holes.OutlineCount(); ) { double area = holes.Outline( ii ).Area();
if( area < minimal_hole_area ) // The current hole is too small: remove it
holes.DeletePolygon( ii ); else ++ii; }
// create grid. Useto
// generate strictly simple polygons needed by Gerber files and Fracture()
aFillPolys.BooleanSubtract( aFillPolys, holes ); DUMP_POLYS_TO_COPPER_LAYER( aFillPolys, In14_Cu, wxT( "after-hatching" ) );
return true;}
|