 Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago  Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago  Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago  Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago |
|
/*
* This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2018 Jean-Pierre Charras, jp.charras at wanadoo.fr * Copyright (C) 2012 SoftPLC Corporation, Dick Hollenbeck <dick@softplc.com> * Copyright (C) 1992-2022 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */
#include <base_units.h>
#include <bitmaps.h>
#include <core/mirror.h>
#include <math/util.h> // for KiROUND
#include <eda_draw_frame.h>
#include <geometry/shape_circle.h>
#include <geometry/shape_segment.h>
#include <geometry/shape_simple.h>
#include <geometry/shape_rect.h>
#include <geometry/shape_compound.h>
#include <geometry/shape_null.h>
#include <string_utils.h>
#include <i18n_utility.h>
#include <view/view.h>
#include <board.h>
#include <board_connected_item.h>
#include <board_design_settings.h>
#include <footprint.h>
#include <pad.h>
#include <pcb_shape.h>
#include <connectivity/connectivity_data.h>
#include <eda_units.h>
#include <convert_basic_shapes_to_polygon.h>
#include <widgets/msgpanel.h>
#include <pcb_painter.h>
#include <wx/log.h>
#include <memory>
#include <macros.h>
#include "kiface_base.h"
#include "pcbnew_settings.h"
using KIGFX::PCB_PAINTER; using KIGFX::PCB_RENDER_SETTINGS;
PAD::PAD( FOOTPRINT* parent ) : BOARD_CONNECTED_ITEM( parent, PCB_PAD_T ) { m_size.x = m_size.y = EDA_UNIT_UTILS::Mils2IU( pcbIUScale, 60 ); // Default pad size 60 mils.
m_drill.x = m_drill.y = EDA_UNIT_UTILS::Mils2IU( pcbIUScale, 30 ); // Default drill size 30 mils.
m_orient = ANGLE_0; m_lengthPadToDie = 0;
if( m_parent && m_parent->Type() == PCB_FOOTPRINT_T ) m_pos = GetParent()->GetPosition();
SetShape( PAD_SHAPE::CIRCLE ); // Default pad shape is PAD_CIRCLE.
SetAnchorPadShape( PAD_SHAPE::CIRCLE ); // Default shape for custom shaped pads
// is PAD_CIRCLE.
SetDrillShape( PAD_DRILL_SHAPE_CIRCLE ); // Default pad drill shape is a circle.
m_attribute = PAD_ATTRIB::PTH; // Default pad type is plated through hole
SetProperty( PAD_PROP::NONE ); // no special fabrication property
m_localClearance = 0; m_localSolderMaskMargin = 0; m_localSolderPasteMargin = 0; m_localSolderPasteMarginRatio = 0.0;
// Parameters for round rect only:
m_roundedCornerScale = 0.25; // from IPC-7351C standard
// Parameters for chamfered rect only:
m_chamferScale = 0.2; // Size of chamfer: ratio of smallest of X,Y size
m_chamferPositions = RECT_NO_CHAMFER; // No chamfered corner
m_zoneConnection = ZONE_CONNECTION::INHERITED; // Use parent setting by default
m_thermalSpokeWidth = 0; // Use parent setting by default
m_thermalSpokeAngle = ANGLE_45; // Default for circular pads
m_thermalGap = 0; // Use parent setting by default
m_customShapeClearanceArea = CUST_PAD_SHAPE_IN_ZONE_OUTLINE;
// Set layers mask to default for a standard thru hole pad.
m_layerMask = PTHMask();
SetSubRatsnest( 0 ); // used in ratsnest calculations
SetDirty(); m_effectiveBoundingRadius = 0; m_removeUnconnectedLayer = false; m_keepTopBottomLayer = true;
for( size_t ii = 0; ii < arrayDim( m_zoneLayerConnections ); ++ii ) m_zoneLayerConnections[ ii ] = ZLC_UNCONNECTED; }
PAD::PAD( const PAD& aOther ) : BOARD_CONNECTED_ITEM( aOther.GetParent(), PCB_PAD_T ) { PAD::operator=( aOther );
const_cast<KIID&>( m_Uuid ) = aOther.m_Uuid; }
PAD& PAD::operator=( const PAD &aOther ) { BOARD_CONNECTED_ITEM::operator=( aOther );
ImportSettingsFrom( aOther ); SetPadToDieLength( aOther.GetPadToDieLength() ); SetPosition( aOther.GetPosition() ); SetPos0( aOther.GetPos0() ); SetNumber( aOther.GetNumber() ); SetPinType( aOther.GetPinType() ); SetPinFunction( aOther.GetPinFunction() ); SetSubRatsnest( aOther.GetSubRatsnest() ); m_effectiveBoundingRadius = aOther.m_effectiveBoundingRadius; m_removeUnconnectedLayer = aOther.m_removeUnconnectedLayer; m_keepTopBottomLayer = aOther.m_keepTopBottomLayer;
return *this; }
bool PAD::CanHaveNumber() const { // Aperture pads don't get a number
if( IsAperturePad() ) return false;
// NPTH pads don't get numbers
if( GetAttribute() == PAD_ATTRIB::NPTH ) return false;
return true; }
bool PAD::IsLocked() const { if( GetParent() && GetParent()->IsLocked() ) return true;
return BOARD_ITEM::IsLocked(); };
bool PAD::IsNoConnectPad() const { return GetShortNetname().StartsWith( wxT( "unconnected-(" ) ) && ( m_pinType == wxT( "no_connect" ) || m_pinType.EndsWith( wxT( "+no_connect" ) ) ); }
bool PAD::IsFreePad() const { return GetShortNetname().StartsWith( wxT( "unconnected-(" ) ) && m_pinType == wxT( "free" ); }
LSET PAD::PTHMask() { static LSET saved = LSET::AllCuMask() | LSET( 2, F_Mask, B_Mask ); return saved; }
LSET PAD::SMDMask() { static LSET saved( 3, F_Cu, F_Paste, F_Mask ); return saved; }
LSET PAD::ConnSMDMask() { static LSET saved( 2, F_Cu, F_Mask ); return saved; }
LSET PAD::UnplatedHoleMask() { static LSET saved = LSET( 4, F_Cu, B_Cu, F_Mask, B_Mask ); return saved; }
LSET PAD::ApertureMask() { static LSET saved( 1, F_Paste ); return saved; }
bool PAD::IsFlipped() const { FOOTPRINT* parent = GetParent();
return ( parent && parent->GetLayer() == B_Cu ); }
PCB_LAYER_ID PAD::GetLayer() const { return BOARD_ITEM::GetLayer(); }
PCB_LAYER_ID PAD::GetPrincipalLayer() const { if( m_attribute == PAD_ATTRIB::SMD || m_attribute == PAD_ATTRIB::CONN || GetLayerSet().none() ) return m_layer; else return GetLayerSet().Seq().front();
}
bool PAD::FlashLayer( LSET aLayers ) const { for( PCB_LAYER_ID layer : aLayers.Seq() ) { if( FlashLayer( layer ) ) return true; }
return false; }
bool PAD::FlashLayer( int aLayer ) const { if( aLayer != UNDEFINED_LAYER && !IsOnLayer( static_cast<PCB_LAYER_ID>( aLayer ) ) ) return false;
if( aLayer == UNDEFINED_LAYER ) return true;
if( GetAttribute() == PAD_ATTRIB::NPTH && IsCopperLayer( aLayer ) ) { if( GetShape() == PAD_SHAPE::CIRCLE && GetDrillShape() == PAD_DRILL_SHAPE_CIRCLE ) { if( GetOffset() == VECTOR2I( 0, 0 ) && GetDrillSize().x >= GetSize().x ) return false; } else if( GetShape() == PAD_SHAPE::OVAL && GetDrillShape() == PAD_DRILL_SHAPE_OBLONG ) { if( GetOffset() == VECTOR2I( 0, 0 ) && GetDrillSize().x >= GetSize().x && GetDrillSize().y >= GetSize().y ) { return false; } } }
if( LSET::FrontBoardTechMask().test( aLayer ) ) aLayer = F_Cu; else if( LSET::BackBoardTechMask().test( aLayer ) ) aLayer = B_Cu;
if( GetAttribute() == PAD_ATTRIB::PTH && IsCopperLayer( aLayer ) ) { /// Heat sink pads always get copper
if( GetProperty() == PAD_PROP::HEATSINK ) return true;
if( !m_removeUnconnectedLayer ) return true;
// Plated through hole pads need copper on the top/bottom layers for proper soldering
// Unless the user has removed them in the pad dialog
if( m_keepTopBottomLayer && ( aLayer == F_Cu || aLayer == B_Cu ) ) return true;
if( const BOARD* board = GetBoard() ) { // Must be static to keep from raising its ugly head in performance profiles
static std::initializer_list<KICAD_T> types = { PCB_TRACE_T, PCB_ARC_T, PCB_VIA_T, PCB_PAD_T };
// Only the highest priority zone that a via interacts with on any given layer gets
// to determine if it is connected or not. This keeps us from deciding it's not
// flashed when filling the first zone, and then later having another zone connect to
// it, causing it to become flashed, resulting in the first zone having insufficient
// clearance.
// See https://gitlab.com/kicad/code/kicad/-/issues/11299.
if( m_zoneLayerConnections[ aLayer ] == ZLC_CONNECTED ) return true;
return board->GetConnectivity()->IsConnectedOnLayer( this, aLayer, types ); } }
return true; }
int PAD::GetRoundRectCornerRadius() const { return KiROUND( std::min( m_size.x, m_size.y ) * m_roundedCornerScale ); }
void PAD::SetRoundRectCornerRadius( double aRadius ) { int min_r = std::min( m_size.x, m_size.y );
if( min_r > 0 ) SetRoundRectRadiusRatio( aRadius / min_r ); }
void PAD::SetRoundRectRadiusRatio( double aRadiusScale ) { m_roundedCornerScale = std::max( 0.0, std::min( aRadiusScale, 0.5 ) );
SetDirty(); }
void PAD::SetChamferRectRatio( double aChamferScale ) { m_chamferScale = std::max( 0.0, std::min( aChamferScale, 0.5 ) );
SetDirty(); }
const std::shared_ptr<SHAPE_POLY_SET>& PAD::GetEffectivePolygon() const { if( m_polyDirty ) BuildEffectivePolygon();
return m_effectivePolygon; }
std::shared_ptr<SHAPE> PAD::GetEffectiveShape( PCB_LAYER_ID aLayer, FLASHING flashPTHPads ) const { if( aLayer == Edge_Cuts ) { if( GetAttribute() == PAD_ATTRIB::PTH || GetAttribute() == PAD_ATTRIB::NPTH ) return GetEffectiveHoleShape(); else return std::make_shared<SHAPE_NULL>(); }
if( GetAttribute() == PAD_ATTRIB::PTH ) { bool flash;
if( flashPTHPads == FLASHING::NEVER_FLASHED ) flash = false; else if( flashPTHPads == FLASHING::ALWAYS_FLASHED ) flash = true; else flash = FlashLayer( aLayer );
if( !flash ) { if( GetAttribute() == PAD_ATTRIB::PTH ) return GetEffectiveHoleShape(); else return std::make_shared<SHAPE_NULL>(); } }
if( m_shapesDirty ) BuildEffectiveShapes( aLayer );
return m_effectiveShape; }
std::shared_ptr<SHAPE_SEGMENT> PAD::GetEffectiveHoleShape() const { if( m_shapesDirty ) BuildEffectiveShapes( UNDEFINED_LAYER );
return m_effectiveHoleShape; }
int PAD::GetBoundingRadius() const { if( m_polyDirty ) BuildEffectivePolygon();
return m_effectiveBoundingRadius; }
void PAD::BuildEffectiveShapes( PCB_LAYER_ID aLayer ) const { std::lock_guard<std::mutex> RAII_lock( m_shapesBuildingLock );
// If we had to wait for the lock then we were probably waiting for someone else to
// finish rebuilding the shapes. So check to see if they're clean now.
if( !m_shapesDirty ) return;
const BOARD* board = GetBoard(); int maxError = board ? board->GetDesignSettings().m_MaxError : ARC_HIGH_DEF;
m_effectiveShape = std::make_shared<SHAPE_COMPOUND>(); m_effectiveHoleShape = nullptr;
auto add = [this]( SHAPE* aShape ) { m_effectiveShape->AddShape( aShape ); };
VECTOR2I shapePos = ShapePos(); // Fetch only once; rotation involves trig
PAD_SHAPE effectiveShape = GetShape();
if( GetShape() == PAD_SHAPE::CUSTOM ) effectiveShape = GetAnchorPadShape();
switch( effectiveShape ) { case PAD_SHAPE::CIRCLE: add( new SHAPE_CIRCLE( shapePos, m_size.x / 2 ) ); break;
case PAD_SHAPE::OVAL: if( m_size.x == m_size.y ) // the oval pad is in fact a circle
{ add( new SHAPE_CIRCLE( shapePos, m_size.x / 2 ) ); } else { VECTOR2I half_size = m_size / 2; int half_width = std::min( half_size.x, half_size.y ); VECTOR2I half_len( half_size.x - half_width, half_size.y - half_width ); RotatePoint( half_len, m_orient ); add( new SHAPE_SEGMENT( shapePos - half_len, shapePos + half_len, half_width * 2 ) ); }
break;
case PAD_SHAPE::RECT: case PAD_SHAPE::TRAPEZOID: case PAD_SHAPE::ROUNDRECT: { int r = ( effectiveShape == PAD_SHAPE::ROUNDRECT ) ? GetRoundRectCornerRadius() : 0; VECTOR2I half_size( m_size.x / 2, m_size.y / 2 ); VECTOR2I trap_delta( 0, 0 );
if( r ) { half_size -= VECTOR2I( r, r );
// Avoid degenerated shapes (0 length segments) that always create issues
// For roundrect pad very near a circle, use only a circle
const int min_len = pcbIUScale.mmToIU( 0.0001);
if( half_size.x < min_len && half_size.y < min_len ) { add( new SHAPE_CIRCLE( shapePos, r ) ); break; } } else if( effectiveShape == PAD_SHAPE::TRAPEZOID ) { trap_delta = m_deltaSize / 2; }
SHAPE_LINE_CHAIN corners;
corners.Append( -half_size.x - trap_delta.y, half_size.y + trap_delta.x ); corners.Append( half_size.x + trap_delta.y, half_size.y - trap_delta.x ); corners.Append( half_size.x - trap_delta.y, -half_size.y + trap_delta.x ); corners.Append( -half_size.x + trap_delta.y, -half_size.y - trap_delta.x );
corners.Rotate( m_orient ); corners.Move( shapePos );
// GAL renders rectangles faster than 4-point polygons so it's worth checking if our
// body shape is a rectangle.
if( corners.PointCount() == 4 && ( ( corners.CPoint( 0 ).y == corners.CPoint( 1 ).y && corners.CPoint( 1 ).x == corners.CPoint( 2 ).x && corners.CPoint( 2 ).y == corners.CPoint( 3 ).y && corners.CPoint( 3 ).x == corners.CPoint( 0 ).x ) || ( corners.CPoint( 0 ).x == corners.CPoint( 1 ).x && corners.CPoint( 1 ).y == corners.CPoint( 2 ).y && corners.CPoint( 2 ).x == corners.CPoint( 3 ).x && corners.CPoint( 3 ).y == corners.CPoint( 0 ).y ) ) ) { int width = std::abs( corners.CPoint( 2 ).x - corners.CPoint( 0 ).x ); int height = std::abs( corners.CPoint( 2 ).y - corners.CPoint( 0 ).y ); VECTOR2I pos( std::min( corners.CPoint( 2 ).x, corners.CPoint( 0 ).x ), std::min( corners.CPoint( 2 ).y, corners.CPoint( 0 ).y ) );
add( new SHAPE_RECT( pos, width, height ) ); } else { add( new SHAPE_SIMPLE( corners ) ); }
if( r ) { add( new SHAPE_SEGMENT( corners.CPoint( 0 ), corners.CPoint( 1 ), r * 2 ) ); add( new SHAPE_SEGMENT( corners.CPoint( 1 ), corners.CPoint( 2 ), r * 2 ) ); add( new SHAPE_SEGMENT( corners.CPoint( 2 ), corners.CPoint( 3 ), r * 2 ) ); add( new SHAPE_SEGMENT( corners.CPoint( 3 ), corners.CPoint( 0 ), r * 2 ) ); } } break;
case PAD_SHAPE::CHAMFERED_RECT: { SHAPE_POLY_SET outline;
TransformRoundChamferedRectToPolygon( outline, shapePos, GetSize(), m_orient, GetRoundRectCornerRadius(), GetChamferRectRatio(), GetChamferPositions(), 0, maxError, ERROR_INSIDE );
add( new SHAPE_SIMPLE( outline.COutline( 0 ) ) ); } break;
default: wxFAIL_MSG( wxT( "PAD::buildEffectiveShapes: Unsupported pad shape: " ) + PAD_SHAPE_T_asString( effectiveShape ) ); break; }
if( GetShape() == PAD_SHAPE::CUSTOM ) { for( const std::shared_ptr<PCB_SHAPE>& primitive : m_editPrimitives ) { for( SHAPE* shape : primitive->MakeEffectiveShapes() ) { shape->Rotate( m_orient ); shape->Move( shapePos ); add( shape ); } } }
m_effectiveBoundingBox = m_effectiveShape->BBox();
// Hole shape
VECTOR2I half_size = m_drill / 2; int half_width = std::min( half_size.x, half_size.y ); VECTOR2I half_len( half_size.x - half_width, half_size.y - half_width );
RotatePoint( half_len, m_orient );
m_effectiveHoleShape = std::make_shared<SHAPE_SEGMENT>( m_pos - half_len, m_pos + half_len, half_width * 2 ); m_effectiveBoundingBox.Merge( m_effectiveHoleShape->BBox() );
// All done
m_shapesDirty = false; }
void PAD::BuildEffectivePolygon() const { std::lock_guard<std::mutex> RAII_lock( m_polyBuildingLock );
// If we had to wait for the lock then we were probably waiting for someone else to
// finish rebuilding the shapes. So check to see if they're clean now.
if( !m_polyDirty ) return;
const BOARD* board = GetBoard(); int maxError = board ? board->GetDesignSettings().m_MaxError : ARC_HIGH_DEF;
// Polygon
m_effectivePolygon = std::make_shared<SHAPE_POLY_SET>(); TransformShapeToPolygon( *m_effectivePolygon, UNDEFINED_LAYER, 0, maxError, ERROR_INSIDE );
// Bounding radius
//
// PADSTACKS TODO: these will both need to cycle through all layers to get the largest
// values....
m_effectiveBoundingRadius = 0;
for( int cnt = 0; cnt < m_effectivePolygon->OutlineCount(); ++cnt ) { const SHAPE_LINE_CHAIN& poly = m_effectivePolygon->COutline( cnt );
for( int ii = 0; ii < poly.PointCount(); ++ii ) { int dist = KiROUND( ( poly.CPoint( ii ) - m_pos ).EuclideanNorm() ); m_effectiveBoundingRadius = std::max( m_effectiveBoundingRadius, dist ); } }
// All done
m_polyDirty = false; }
const BOX2I PAD::GetBoundingBox() const { if( m_shapesDirty ) BuildEffectiveShapes( UNDEFINED_LAYER );
return m_effectiveBoundingBox; }
void PAD::SetDrawCoord() { FOOTPRINT* parentFootprint = static_cast<FOOTPRINT*>( m_parent );
m_pos = m_pos0;
if( parentFootprint == nullptr ) return;
RotatePoint( &m_pos.x, &m_pos.y, parentFootprint->GetOrientation() ); m_pos += parentFootprint->GetPosition();
SetDirty(); }
void PAD::SetLocalCoord() { FOOTPRINT* parentFootprint = static_cast<FOOTPRINT*>( m_parent );
if( parentFootprint == nullptr ) { m_pos0 = m_pos; return; }
m_pos0 = m_pos - parentFootprint->GetPosition(); RotatePoint( &m_pos0.x, &m_pos0.y, -parentFootprint->GetOrientation() ); }
void PAD::SetAttribute( PAD_ATTRIB aAttribute ) { m_attribute = aAttribute;
if( aAttribute == PAD_ATTRIB::SMD ) m_drill = VECTOR2I( 0, 0 );
SetDirty(); }
void PAD::SetProperty( PAD_PROP aProperty ) { m_property = aProperty;
SetDirty(); }
void PAD::SetOrientation( const EDA_ANGLE& aAngle ) { m_orient = aAngle; m_orient.Normalize();
SetDirty(); }
void PAD::Flip( const VECTOR2I& aCentre, bool aFlipLeftRight ) { if( aFlipLeftRight ) { MIRROR( m_pos.x, aCentre.x ); MIRROR( m_pos0.x, 0 ); MIRROR( m_offset.x, 0 ); MIRROR( m_deltaSize.x, 0 ); } else { MIRROR( m_pos.y, aCentre.y ); MIRROR( m_pos0.y, 0 ); MIRROR( m_offset.y, 0 ); MIRROR( m_deltaSize.y, 0 ); }
SetOrientation( -GetOrientation() );
auto mirrorBitFlags = []( int& aBitfield, int a, int b ) { bool temp = aBitfield & a;
if( aBitfield & b ) aBitfield |= a; else aBitfield &= ~a;
if( temp ) aBitfield |= b; else aBitfield &= ~b; };
if( aFlipLeftRight ) { mirrorBitFlags( m_chamferPositions, RECT_CHAMFER_TOP_LEFT, RECT_CHAMFER_TOP_RIGHT ); mirrorBitFlags( m_chamferPositions, RECT_CHAMFER_BOTTOM_LEFT, RECT_CHAMFER_BOTTOM_RIGHT ); } else { mirrorBitFlags( m_chamferPositions, RECT_CHAMFER_TOP_LEFT, RECT_CHAMFER_BOTTOM_LEFT ); mirrorBitFlags( m_chamferPositions, RECT_CHAMFER_TOP_RIGHT, RECT_CHAMFER_BOTTOM_RIGHT ); }
// flip pads layers
// PADS items are currently on all copper layers, or
// currently, only on Front or Back layers.
// So the copper layers count is not taken in account
SetLayerSet( FlipLayerMask( m_layerMask ) );
// Flip the basic shapes, in custom pads
FlipPrimitives( aFlipLeftRight );
SetDirty(); }
void PAD::FlipPrimitives( bool aFlipLeftRight ) { for( std::shared_ptr<PCB_SHAPE>& primitive : m_editPrimitives ) primitive->Flip( VECTOR2I( 0, 0 ), aFlipLeftRight );
SetDirty(); }
VECTOR2I PAD::ShapePos() const { if( m_offset.x == 0 && m_offset.y == 0 ) return m_pos;
VECTOR2I loc_offset = m_offset;
RotatePoint( loc_offset, m_orient );
VECTOR2I shape_pos = m_pos + loc_offset;
return shape_pos; }
int PAD::GetLocalClearanceOverrides( wxString* aSource ) const { // A pad can have specific clearance that overrides its NETCLASS clearance value
if( GetLocalClearance() ) return GetLocalClearance( aSource );
// A footprint can have a specific clearance value
if( GetParent() && GetParent()->GetLocalClearance() ) return GetParent()->GetLocalClearance( aSource );
return 0; }
int PAD::GetLocalClearance( wxString* aSource ) const { if( aSource ) *aSource = _( "pad" );
return m_localClearance; }
int PAD::GetOwnClearance( PCB_LAYER_ID aLayer, wxString* aSource ) const { DRC_CONSTRAINT c;
if( GetBoard() && GetBoard()->GetDesignSettings().m_DRCEngine ) { BOARD_DESIGN_SETTINGS& bds = GetBoard()->GetDesignSettings();
if( GetAttribute() == PAD_ATTRIB::NPTH ) c = bds.m_DRCEngine->EvalRules( HOLE_CLEARANCE_CONSTRAINT, this, nullptr, aLayer ); else c = bds.m_DRCEngine->EvalRules( CLEARANCE_CONSTRAINT, this, nullptr, aLayer ); }
if( c.Value().HasMin() ) { if( aSource ) *aSource = c.GetName();
return c.Value().Min(); }
return 0; }
int PAD::GetSolderMaskExpansion() const { // The pad inherits the margin only to calculate a default shape,
// therefore only if it is also a copper layer
// Pads defined only on mask layers (and perhaps on other tech layers) use the shape
// defined by the pad settings only
bool isOnCopperLayer = ( m_layerMask & LSET::AllCuMask() ).any();
if( !isOnCopperLayer ) return 0;
int margin = m_localSolderMaskMargin;
FOOTPRINT* parentFootprint = GetParent();
if( parentFootprint ) { if( margin == 0 ) { if( parentFootprint->GetLocalSolderMaskMargin() ) margin = parentFootprint->GetLocalSolderMaskMargin(); }
if( margin == 0 ) { const BOARD* brd = GetBoard();
if( brd ) margin = brd->GetDesignSettings().m_SolderMaskExpansion; } }
// ensure mask have a size always >= 0
if( margin < 0 ) { int minsize = -std::min( m_size.x, m_size.y ) / 2;
if( margin < minsize ) margin = minsize; }
return margin; }
VECTOR2I PAD::GetSolderPasteMargin() const { // The pad inherits the margin only to calculate a default shape,
// therefore only if it is also a copper layer.
// Pads defined only on mask layers (and perhaps on other tech layers) use the shape
// defined by the pad settings only
bool isOnCopperLayer = ( m_layerMask & LSET::AllCuMask() ).any();
if( !isOnCopperLayer ) return VECTOR2I( 0, 0 );
int margin = m_localSolderPasteMargin; double mratio = m_localSolderPasteMarginRatio;
FOOTPRINT* parentFootprint = GetParent();
if( parentFootprint ) { if( margin == 0 ) margin = parentFootprint->GetLocalSolderPasteMargin();
auto brd = GetBoard();
if( margin == 0 && brd ) margin = brd->GetDesignSettings().m_SolderPasteMargin;
if( mratio == 0.0 ) mratio = parentFootprint->GetLocalSolderPasteMarginRatio();
if( mratio == 0.0 && brd ) { mratio = brd->GetDesignSettings().m_SolderPasteMarginRatio; } }
VECTOR2I pad_margin; pad_margin.x = margin + KiROUND( m_size.x * mratio ); pad_margin.y = margin + KiROUND( m_size.y * mratio );
// ensure mask have a size always >= 0
if( pad_margin.x < -m_size.x / 2 ) pad_margin.x = -m_size.x / 2;
if( pad_margin.y < -m_size.y / 2 ) pad_margin.y = -m_size.y / 2;
return pad_margin; }
ZONE_CONNECTION PAD::GetLocalZoneConnectionOverride( wxString* aSource ) const { if( m_zoneConnection != ZONE_CONNECTION::INHERITED && aSource ) *aSource = _( "pad" );
return m_zoneConnection; }
int PAD::GetLocalSpokeWidthOverride( wxString* aSource ) const { if( m_thermalSpokeWidth > 0 && aSource ) *aSource = _( "pad" );
return m_thermalSpokeWidth; }
int PAD::GetLocalThermalGapOverride( wxString* aSource ) const { if( m_thermalGap > 0 && aSource ) *aSource = _( "pad" );
return m_thermalGap; }
void PAD::GetMsgPanelInfo( EDA_DRAW_FRAME* aFrame, std::vector<MSG_PANEL_ITEM>& aList ) { wxString msg; FOOTPRINT* parentFootprint = static_cast<FOOTPRINT*>( m_parent );
if( aFrame->GetName() == PCB_EDIT_FRAME_NAME ) { if( parentFootprint ) aList.emplace_back( _( "Footprint" ), parentFootprint->GetReference() ); }
aList.emplace_back( _( "Pad" ), m_number );
if( !GetPinFunction().IsEmpty() ) aList.emplace_back( _( "Pin Name" ), GetPinFunction() );
if( !GetPinType().IsEmpty() ) aList.emplace_back( _( "Pin Type" ), GetPinType() );
if( aFrame->GetName() == PCB_EDIT_FRAME_NAME ) { aList.emplace_back( _( "Net" ), UnescapeString( GetNetname() ) );
aList.emplace_back( _( "Resolved Netclass" ), UnescapeString( GetEffectiveNetClass()->GetName() ) );
if( IsLocked() ) aList.emplace_back( _( "Status" ), _( "Locked" ) ); }
if( GetAttribute() == PAD_ATTRIB::SMD || GetAttribute() == PAD_ATTRIB::CONN ) aList.emplace_back( _( "Layer" ), layerMaskDescribe() );
// Show the pad shape, attribute and property
wxString props = ShowPadAttr();
if( GetProperty() != PAD_PROP::NONE ) props += ',';
switch( GetProperty() ) { case PAD_PROP::NONE: break; case PAD_PROP::BGA: props += _( "BGA" ); break; case PAD_PROP::FIDUCIAL_GLBL: props += _( "Fiducial global" ); break; case PAD_PROP::FIDUCIAL_LOCAL: props += _( "Fiducial local" ); break; case PAD_PROP::TESTPOINT: props += _( "Test point" ); break; case PAD_PROP::HEATSINK: props += _( "Heat sink" ); break; case PAD_PROP::CASTELLATED: props += _( "Castellated" ); break; }
aList.emplace_back( ShowPadShape(), props );
if( ( GetShape() == PAD_SHAPE::CIRCLE || GetShape() == PAD_SHAPE::OVAL ) && m_size.x == m_size.y ) { aList.emplace_back( _( "Diameter" ), aFrame->MessageTextFromValue( m_size.x ) ); } else { aList.emplace_back( _( "Width" ), aFrame->MessageTextFromValue( m_size.x ) ); aList.emplace_back( _( "Height" ), aFrame->MessageTextFromValue( m_size.y ) ); }
EDA_ANGLE fp_orient = parentFootprint ? parentFootprint->GetOrientation() : ANGLE_0; EDA_ANGLE pad_orient = GetOrientation() - fp_orient; pad_orient.Normalize180();
if( !fp_orient.IsZero() ) msg.Printf( wxT( "%g(+ %g)" ), pad_orient.AsDegrees(), fp_orient.AsDegrees() ); else msg.Printf( wxT( "%g" ), GetOrientation().AsDegrees() );
aList.emplace_back( _( "Rotation" ), msg );
if( GetPadToDieLength() ) { aList.emplace_back( _( "Length in Package" ), aFrame->MessageTextFromValue( GetPadToDieLength() ) ); }
if( m_drill.x > 0 || m_drill.y > 0 ) { if( GetDrillShape() == PAD_DRILL_SHAPE_CIRCLE ) { aList.emplace_back( _( "Hole" ), wxString::Format( wxT( "%s" ), aFrame->MessageTextFromValue( m_drill.x ) ) ); } else { aList.emplace_back( _( "Hole X / Y" ), wxString::Format( wxT( "%s / %s" ), aFrame->MessageTextFromValue( m_drill.x ), aFrame->MessageTextFromValue( m_drill.y ) ) ); } }
wxString source; int clearance = GetOwnClearance( UNDEFINED_LAYER, &source );
if( !source.IsEmpty() ) { aList.emplace_back( wxString::Format( _( "Min Clearance: %s" ), aFrame->MessageTextFromValue( clearance ) ), wxString::Format( _( "(from %s)" ), source ) ); } #if 0
// useful for debug only
aList.emplace_back( wxT( "UUID" ), m_Uuid.AsString() ); #endif
}
bool PAD::HitTest( const VECTOR2I& aPosition, int aAccuracy ) const { VECTOR2I delta = aPosition - GetPosition(); int boundingRadius = GetBoundingRadius() + aAccuracy;
if( delta.SquaredEuclideanNorm() > SEG::Square( boundingRadius ) ) return false;
return GetEffectivePolygon()->Contains( aPosition, -1, aAccuracy ); }
bool PAD::HitTest( const BOX2I& aRect, bool aContained, int aAccuracy ) const { BOX2I arect = aRect; arect.Normalize(); arect.Inflate( aAccuracy );
BOX2I bbox = GetBoundingBox();
if( aContained ) { return arect.Contains( bbox ); } else { // Fast test: if aRect is outside the polygon bounding box,
// rectangles cannot intersect
if( !arect.Intersects( bbox ) ) return false;
const std::shared_ptr<SHAPE_POLY_SET>& poly = GetEffectivePolygon();
int count = poly->TotalVertices();
for( int ii = 0; ii < count; ii++ ) { VECTOR2I vertex = poly->CVertex( ii ); VECTOR2I vertexNext = poly->CVertex( ( ii + 1 ) % count );
// Test if the point is within aRect
if( arect.Contains( vertex ) ) return true;
// Test if this edge intersects aRect
if( arect.Intersects( vertex, vertexNext ) ) return true; }
return false; } }
int PAD::Compare( const PAD* aPadRef, const PAD* aPadCmp ) { int diff;
if( ( diff = static_cast<int>( aPadRef->GetShape() ) - static_cast<int>( aPadCmp->GetShape() ) ) != 0 ) return diff;
if( ( diff = static_cast<int>( aPadRef->m_attribute ) - static_cast<int>( aPadCmp->m_attribute ) ) != 0 ) return diff;
if( ( diff = aPadRef->m_drillShape - aPadCmp->m_drillShape ) != 0 ) return diff;
if( ( diff = aPadRef->m_drill.x - aPadCmp->m_drill.x ) != 0 ) return diff;
if( ( diff = aPadRef->m_drill.y - aPadCmp->m_drill.y ) != 0 ) return diff;
if( ( diff = aPadRef->m_size.x - aPadCmp->m_size.x ) != 0 ) return diff;
if( ( diff = aPadRef->m_size.y - aPadCmp->m_size.y ) != 0 ) return diff;
if( ( diff = aPadRef->m_offset.x - aPadCmp->m_offset.x ) != 0 ) return diff;
if( ( diff = aPadRef->m_offset.y - aPadCmp->m_offset.y ) != 0 ) return diff;
if( ( diff = aPadRef->m_deltaSize.x - aPadCmp->m_deltaSize.x ) != 0 ) return diff;
if( ( diff = aPadRef->m_deltaSize.y - aPadCmp->m_deltaSize.y ) != 0 ) return diff;
if( ( diff = aPadRef->m_roundedCornerScale - aPadCmp->m_roundedCornerScale ) != 0 ) return diff;
if( ( diff = aPadRef->m_chamferPositions - aPadCmp->m_chamferPositions ) != 0 ) return diff;
if( ( diff = aPadRef->m_chamferScale - aPadCmp->m_chamferScale ) != 0 ) return diff;
if( ( diff = static_cast<int>( aPadRef->m_editPrimitives.size() ) - static_cast<int>( aPadCmp->m_editPrimitives.size() ) ) != 0 ) return diff;
// @todo: Compare custom pad primitives for pads that have the same number of primitives
// here. Currently there is no compare function for PCB_SHAPE objects.
// Dick: specctra_export needs this
// Lorenzo: gencad also needs it to implement padstacks!
#if __cplusplus >= 201103L
long long d = aPadRef->m_layerMask.to_ullong() - aPadCmp->m_layerMask.to_ullong();
if( d < 0 ) return -1; else if( d > 0 ) return 1;
return 0; #else
// these strings are not typically constructed, since we don't get here often.
std::string s1 = aPadRef->m_layerMask.to_string(); std::string s2 = aPadCmp->m_layerMask.to_string(); return s1.compare( s2 ); #endif
}
void PAD::Rotate( const VECTOR2I& aRotCentre, const EDA_ANGLE& aAngle ) { RotatePoint( m_pos, aRotCentre, aAngle );
m_orient += aAngle; m_orient.Normalize();
SetLocalCoord();
SetDirty(); }
wxString PAD::ShowPadShape() const { switch( GetShape() ) { case PAD_SHAPE::CIRCLE: return _( "Circle" ); case PAD_SHAPE::OVAL: return _( "Oval" ); case PAD_SHAPE::RECT: return _( "Rect" ); case PAD_SHAPE::TRAPEZOID: return _( "Trap" ); case PAD_SHAPE::ROUNDRECT: return _( "Roundrect" ); case PAD_SHAPE::CHAMFERED_RECT: return _( "Chamferedrect" ); case PAD_SHAPE::CUSTOM: return _( "CustomShape" ); default: return wxT( "???" ); } }
wxString PAD::ShowPadAttr() const { switch( GetAttribute() ) { case PAD_ATTRIB::PTH: return _( "PTH" ); case PAD_ATTRIB::SMD: return _( "SMD" ); case PAD_ATTRIB::CONN: return _( "Conn" ); case PAD_ATTRIB::NPTH: return _( "NPTH" ); default: return wxT( "???" ); } }
wxString PAD::GetSelectMenuText( UNITS_PROVIDER* aUnitsProvider ) const { if( GetNumber().IsEmpty() ) { if( GetAttribute() == PAD_ATTRIB::SMD || GetAttribute() == PAD_ATTRIB::CONN ) { return wxString::Format( _( "Pad %s of %s on %s" ), GetNetnameMsg(), GetParent()->GetReference(), layerMaskDescribe() ); } else if( GetAttribute() == PAD_ATTRIB::NPTH ) { return wxString::Format( _( "NPTH pad of %s" ), GetParent()->GetReference() ); } else { return wxString::Format( _( "PTH pad %s of %s" ), GetNetnameMsg(), GetParent()->GetReference() ); } } else { if( GetAttribute() == PAD_ATTRIB::SMD || GetAttribute() == PAD_ATTRIB::CONN ) { return wxString::Format( _( "Pad %s %s of %s on %s" ), GetNumber(), GetNetnameMsg(), GetParent()->GetReference(), layerMaskDescribe() ); } else if( GetAttribute() == PAD_ATTRIB::NPTH ) { return wxString::Format( _( "NPTH of %s" ), GetParent()->GetReference() ); } else { return wxString::Format( _( "PTH pad %s %s of %s" ), GetNumber(), GetNetnameMsg(), GetParent()->GetReference() ); } } }
BITMAPS PAD::GetMenuImage() const { return BITMAPS::pad; }
EDA_ITEM* PAD::Clone() const { return new PAD( *this ); }
void PAD::ViewGetLayers( int aLayers[], int& aCount ) const { aCount = 0;
// These 2 types of pads contain a hole
if( m_attribute == PAD_ATTRIB::PTH ) { aLayers[aCount++] = LAYER_PAD_PLATEDHOLES; aLayers[aCount++] = LAYER_PAD_HOLEWALLS; }
if( m_attribute == PAD_ATTRIB::NPTH ) aLayers[aCount++] = LAYER_NON_PLATEDHOLES;
if( IsOnLayer( F_Cu ) && IsOnLayer( B_Cu ) ) { // Multi layer pad
aLayers[aCount++] = LAYER_PADS_TH; aLayers[aCount++] = LAYER_PAD_NETNAMES; } else if( IsOnLayer( F_Cu ) ) { aLayers[aCount++] = LAYER_PAD_FR;
// Is this a PTH pad that has only front copper? If so, we need to also display the
// net name on the PTH netname layer so that it isn't blocked by the drill hole.
if( m_attribute == PAD_ATTRIB::PTH ) aLayers[aCount++] = LAYER_PAD_NETNAMES; else aLayers[aCount++] = LAYER_PAD_FR_NETNAMES; } else if( IsOnLayer( B_Cu ) ) { aLayers[aCount++] = LAYER_PAD_BK;
// Is this a PTH pad that has only back copper? If so, we need to also display the
// net name on the PTH netname layer so that it isn't blocked by the drill hole.
if( m_attribute == PAD_ATTRIB::PTH ) aLayers[aCount++] = LAYER_PAD_NETNAMES; else aLayers[aCount++] = LAYER_PAD_BK_NETNAMES; } else { // Internal layers only. (Not yet supported in GUI, but is being used by Python
// footprint generators and will be needed anyway once pad stacks are supported.)
for ( int internal = In1_Cu; internal < In30_Cu; ++internal ) { if( IsOnLayer( (PCB_LAYER_ID) internal ) ) aLayers[aCount++] = internal; } }
// Check non-copper layers. This list should include all the layers that the
// footprint editor allows a pad to be placed on.
static const PCB_LAYER_ID layers_mech[] = { F_Mask, B_Mask, F_Paste, B_Paste, F_Adhes, B_Adhes, F_SilkS, B_SilkS, Dwgs_User, Eco1_User, Eco2_User };
for( PCB_LAYER_ID each_layer : layers_mech ) { if( IsOnLayer( each_layer ) ) aLayers[aCount++] = each_layer; }
#ifdef DEBUG
if( aCount == 0 ) // Should not occur
{ wxString msg; msg.Printf( wxT( "footprint %s, pad %s: could not find valid layer for pad" ), GetParent() ? GetParent()->GetReference() : wxT( "<null>" ), GetNumber().IsEmpty() ? wxT( "(unnumbered)" ) : GetNumber() ); wxLogDebug( msg ); } #endif
}
double PAD::ViewGetLOD( int aLayer, KIGFX::VIEW* aView ) const { constexpr double HIDE = std::numeric_limits<double>::max();
PCB_PAINTER* painter = static_cast<PCB_PAINTER*>( aView->GetPainter() ); PCB_RENDER_SETTINGS* renderSettings = painter->GetSettings(); const BOARD* board = GetBoard();
// Meta control for hiding all pads
if( !aView->IsLayerVisible( LAYER_PADS ) ) return HIDE;
// Handle Render tab switches
if( ( GetAttribute() == PAD_ATTRIB::PTH || GetAttribute() == PAD_ATTRIB::NPTH ) && !aView->IsLayerVisible( LAYER_PADS_TH ) ) { return HIDE; }
if( !IsFlipped() && !aView->IsLayerVisible( LAYER_MOD_FR ) ) return HIDE;
if( IsFlipped() && !aView->IsLayerVisible( LAYER_MOD_BK ) ) return HIDE;
if( IsFrontLayer( (PCB_LAYER_ID) aLayer ) && !aView->IsLayerVisible( LAYER_PAD_FR ) ) return HIDE;
if( IsBackLayer( (PCB_LAYER_ID) aLayer ) && !aView->IsLayerVisible( LAYER_PAD_BK ) ) return HIDE;
LSET visible = board->GetVisibleLayers() & board->GetEnabledLayers();
if( IsHoleLayer( aLayer ) ) { if( !( visible & LSET::PhysicalLayersMask() ).any() ) return HIDE; } else if( IsNetnameLayer( aLayer ) ) { if( renderSettings->GetHighContrast() ) { // Hide netnames unless pad is flashed to a high-contrast layer
if( !FlashLayer( renderSettings->GetPrimaryHighContrastLayer() ) ) return HIDE; } else { // Hide netnames unless pad is flashed to a visible layer
if( !FlashLayer( visible ) ) return HIDE; }
// Netnames will be shown only if zoom is appropriate
int divisor = std::min( GetBoundingBox().GetWidth(), GetBoundingBox().GetHeight() );
// Pad sizes can be zero briefly when someone is typing a number like "0.5" in the pad
// properties dialog
if( divisor == 0 ) return HIDE;
return ( double ) pcbIUScale.mmToIU( 5 ) / divisor; }
// Passed all tests; show.
return 0.0; }
const BOX2I PAD::ViewBBox() const { // Bounding box includes soldermask too. Remember mask and/or paste margins can be < 0
int solderMaskMargin = std::max( GetSolderMaskExpansion(), 0 ); VECTOR2I solderPasteMargin = VECTOR2D( GetSolderPasteMargin() ); BOX2I bbox = GetBoundingBox(); int clearance = 0;
// If we're drawing clearance lines then get the biggest possible clearance
if( PCBNEW_SETTINGS* cfg = dynamic_cast<PCBNEW_SETTINGS*>( Kiface().KifaceSettings() ) ) { if( cfg && cfg->m_Display.m_PadClearance && GetBoard() ) clearance = GetBoard()->GetDesignSettings().GetBiggestClearanceValue(); }
// Look for the biggest possible bounding box
int xMargin = std::max( solderMaskMargin, solderPasteMargin.x ) + clearance; int yMargin = std::max( solderMaskMargin, solderPasteMargin.y ) + clearance;
return BOX2I( VECTOR2I( bbox.GetOrigin() ) - VECTOR2I( xMargin, yMargin ), VECTOR2I( bbox.GetSize() ) + VECTOR2I( 2 * xMargin, 2 * yMargin ) ); }
FOOTPRINT* PAD::GetParent() const { return dyn_cast<FOOTPRINT*>( m_parent ); }
void PAD::ImportSettingsFrom( const PAD& aMasterPad ) { SetShape( aMasterPad.GetShape() ); SetLayerSet( aMasterPad.GetLayerSet() ); SetAttribute( aMasterPad.GetAttribute() ); SetProperty( aMasterPad.GetProperty() );
// I am not sure the m_LengthPadToDie should be imported, because this is a parameter
// really specific to a given pad (JPC).
#if 0
SetPadToDieLength( aMasterPad.GetPadToDieLength() ); #endif
// The pad orientation, for historical reasons is the pad rotation + parent rotation.
EDA_ANGLE pad_rot = aMasterPad.GetOrientation();
if( aMasterPad.GetParent() ) pad_rot -= aMasterPad.GetParent()->GetOrientation();
if( GetParent() ) pad_rot += GetParent()->GetOrientation();
SetOrientation( pad_rot );
SetRemoveUnconnected( aMasterPad.GetRemoveUnconnected() ); SetKeepTopBottom( aMasterPad.GetKeepTopBottom() );
SetSize( aMasterPad.GetSize() ); SetDelta( VECTOR2I( 0, 0 ) ); SetOffset( aMasterPad.GetOffset() ); SetDrillSize( aMasterPad.GetDrillSize() ); SetDrillShape( aMasterPad.GetDrillShape() ); SetRoundRectRadiusRatio( aMasterPad.GetRoundRectRadiusRatio() ); SetChamferRectRatio( aMasterPad.GetChamferRectRatio() ); SetChamferPositions( aMasterPad.GetChamferPositions() );
switch( aMasterPad.GetShape() ) { case PAD_SHAPE::TRAPEZOID: SetDelta( aMasterPad.GetDelta() ); break;
case PAD_SHAPE::CIRCLE: // ensure size.y == size.x
SetSize( VECTOR2I( GetSize().x, GetSize().x ) ); break;
default: ; }
switch( aMasterPad.GetAttribute() ) { case PAD_ATTRIB::SMD: case PAD_ATTRIB::CONN: // These pads do not have a hole (they are expected to be on one external copper layer)
SetDrillSize( VECTOR2I( 0, 0 ) ); break;
default: ; }
// copy also local settings:
SetLocalClearance( aMasterPad.GetLocalClearance() ); SetLocalSolderMaskMargin( aMasterPad.GetLocalSolderMaskMargin() ); SetLocalSolderPasteMargin( aMasterPad.GetLocalSolderPasteMargin() ); SetLocalSolderPasteMarginRatio( aMasterPad.GetLocalSolderPasteMarginRatio() );
SetZoneConnection( aMasterPad.GetZoneConnection() ); SetThermalSpokeWidth( aMasterPad.GetThermalSpokeWidth() ); SetThermalSpokeAngle( aMasterPad.GetThermalSpokeAngle() ); SetThermalGap( aMasterPad.GetThermalGap() );
SetCustomShapeInZoneOpt( aMasterPad.GetCustomShapeInZoneOpt() );
// Add or remove custom pad shapes:
ReplacePrimitives( aMasterPad.GetPrimitives() ); SetAnchorPadShape( aMasterPad.GetAnchorPadShape() );
SetDirty(); }
void PAD::swapData( BOARD_ITEM* aImage ) { assert( aImage->Type() == PCB_PAD_T );
std::swap( *this, *static_cast<PAD*>( aImage ) ); }
bool PAD::TransformHoleToPolygon( SHAPE_POLY_SET& aBuffer, int aClearance, int aError, ERROR_LOC aErrorLoc ) const { VECTOR2I drillsize = GetDrillSize();
if( !drillsize.x || !drillsize.y ) return false;
std::shared_ptr<SHAPE_SEGMENT> slot = GetEffectiveHoleShape();
TransformOvalToPolygon( aBuffer, slot->GetSeg().A, slot->GetSeg().B, slot->GetWidth() + aClearance * 2, aError, aErrorLoc );
return true; }
void PAD::TransformShapeToPolygon( SHAPE_POLY_SET& aBuffer, PCB_LAYER_ID aLayer, int aClearance, int aError, ERROR_LOC aErrorLoc, bool ignoreLineWidth ) const { wxASSERT_MSG( !ignoreLineWidth, wxT( "IgnoreLineWidth has no meaning for pads." ) );
// minimal segment count to approximate a circle to create the polygonal pad shape
// This minimal value is mainly for very small pads, like SM0402.
// Most of time pads are using the segment count given by aError value.
const int pad_min_seg_per_circle_count = 16; int dx = m_size.x / 2; int dy = m_size.y / 2;
VECTOR2I padShapePos = ShapePos(); // Note: for pad having a shape offset, the pad
// position is NOT the shape position
switch( GetShape() ) { case PAD_SHAPE::CIRCLE: case PAD_SHAPE::OVAL: // Note: dx == dy is not guaranteed for circle pads in legacy boards
if( dx == dy || ( GetShape() == PAD_SHAPE::CIRCLE ) ) { TransformCircleToPolygon( aBuffer, padShapePos, dx + aClearance, aError, aErrorLoc, pad_min_seg_per_circle_count ); } else { int half_width = std::min( dx, dy ); VECTOR2I delta( dx - half_width, dy - half_width );
RotatePoint( delta, m_orient );
TransformOvalToPolygon( aBuffer, padShapePos - delta, padShapePos + delta, ( half_width + aClearance ) * 2, aError, aErrorLoc, pad_min_seg_per_circle_count ); }
break;
case PAD_SHAPE::TRAPEZOID: case PAD_SHAPE::RECT: { int ddx = GetShape() == PAD_SHAPE::TRAPEZOID ? m_deltaSize.x / 2 : 0; int ddy = GetShape() == PAD_SHAPE::TRAPEZOID ? m_deltaSize.y / 2 : 0;
SHAPE_POLY_SET outline; TransformTrapezoidToPolygon( outline, padShapePos, m_size, m_orient, ddx, ddy, aClearance, aError, aErrorLoc ); aBuffer.Append( outline ); break; }
case PAD_SHAPE::CHAMFERED_RECT: case PAD_SHAPE::ROUNDRECT: { bool doChamfer = GetShape() == PAD_SHAPE::CHAMFERED_RECT;
SHAPE_POLY_SET outline; TransformRoundChamferedRectToPolygon( outline, padShapePos, m_size, m_orient, GetRoundRectCornerRadius(), doChamfer ? GetChamferRectRatio() : 0, doChamfer ? GetChamferPositions() : 0, aClearance, aError, aErrorLoc ); aBuffer.Append( outline ); break; }
case PAD_SHAPE::CUSTOM: { SHAPE_POLY_SET outline; MergePrimitivesAsPolygon( &outline, aErrorLoc ); outline.Rotate( m_orient ); outline.Move( VECTOR2I( m_pos ) );
if( aClearance ) { int numSegs = std::max( GetArcToSegmentCount( aClearance, aError, FULL_CIRCLE ), pad_min_seg_per_circle_count ); int clearance = aClearance;
if( aErrorLoc == ERROR_OUTSIDE ) { int actual_error = CircleToEndSegmentDeltaRadius( clearance, numSegs ); clearance += GetCircleToPolyCorrection( actual_error ); }
outline.Inflate( clearance, numSegs ); outline.Simplify( SHAPE_POLY_SET::PM_FAST ); outline.Fracture( SHAPE_POLY_SET::PM_FAST ); }
aBuffer.Append( outline ); break; }
default: wxFAIL_MSG( wxT( "PAD::TransformShapeToPolygon no implementation for " ) + PAD_SHAPE_T_asString( GetShape() ) ); break; } }
wxString PAD::GetParentAsString() const { if( FOOTPRINT* fp = dynamic_cast<FOOTPRINT*>( m_parent ) ) return fp->GetReference();
return m_parent->m_Uuid.AsString(); }
static struct PAD_DESC { PAD_DESC() { ENUM_MAP<PAD_ATTRIB>::Instance() .Map( PAD_ATTRIB::PTH, _HKI( "Through-hole" ) ) .Map( PAD_ATTRIB::SMD, _HKI( "SMD" ) ) .Map( PAD_ATTRIB::CONN, _HKI( "Edge connector" ) ) .Map( PAD_ATTRIB::NPTH, _HKI( "NPTH, mechanical" ) );
ENUM_MAP<PAD_SHAPE>::Instance() .Map( PAD_SHAPE::CIRCLE, _HKI( "Circle" ) ) .Map( PAD_SHAPE::RECT, _HKI( "Rectangle" ) ) .Map( PAD_SHAPE::OVAL, _HKI( "Oval" ) ) .Map( PAD_SHAPE::TRAPEZOID, _HKI( "Trapezoid" ) ) .Map( PAD_SHAPE::ROUNDRECT, _HKI( "Rounded rectangle" ) ) .Map( PAD_SHAPE::CHAMFERED_RECT, _HKI( "Chamfered rectangle" ) ) .Map( PAD_SHAPE::CUSTOM, _HKI( "Custom" ) );
ENUM_MAP<PAD_PROP>::Instance() .Map( PAD_PROP::NONE, _HKI( "None" ) ) .Map( PAD_PROP::BGA, _HKI( "BGA pad" ) ) .Map( PAD_PROP::FIDUCIAL_GLBL, _HKI( "Fiducial, global to board" ) ) .Map( PAD_PROP::FIDUCIAL_LOCAL, _HKI( "Fiducial, local to footprint" ) ) .Map( PAD_PROP::TESTPOINT, _HKI( "Test point pad" ) ) .Map( PAD_PROP::HEATSINK, _HKI( "Heatsink pad" ) ) .Map( PAD_PROP::CASTELLATED, _HKI( "Castellated pad" ) );
ENUM_MAP<ZONE_CONNECTION>& zcMap = ENUM_MAP<ZONE_CONNECTION>::Instance();
if( zcMap.Choices().GetCount() == 0 ) { zcMap.Undefined( ZONE_CONNECTION::INHERITED ); zcMap.Map( ZONE_CONNECTION::INHERITED, _HKI( "Inherited" ) ) .Map( ZONE_CONNECTION::NONE, _HKI( "None" ) ) .Map( ZONE_CONNECTION::THERMAL, _HKI( "Thermal reliefs" ) ) .Map( ZONE_CONNECTION::FULL, _HKI( "Solid" ) ) .Map( ZONE_CONNECTION::THT_THERMAL, _HKI( "Thermal reliefs for PTH" ) ); }
PROPERTY_MANAGER& propMgr = PROPERTY_MANAGER::Instance(); REGISTER_TYPE( PAD ); propMgr.InheritsAfter( TYPE_HASH( PAD ), TYPE_HASH( BOARD_CONNECTED_ITEM ) );
propMgr.Mask( TYPE_HASH( PAD ), TYPE_HASH( BOARD_CONNECTED_ITEM ), _HKI( "Layer" ) );
propMgr.AddProperty( new PROPERTY<PAD, double>( _HKI( "Orientation" ), &PAD::SetOrientationDegrees, &PAD::GetOrientationDegrees, PROPERTY_DISPLAY::PT_DEGREE ) );
const wxString groupPad = _( "Pad Properties" );
auto padType = new PROPERTY_ENUM<PAD, PAD_ATTRIB>( _HKI( "Pad Type" ), &PAD::SetAttribute, &PAD::GetAttribute ); propMgr.AddProperty( padType, groupPad );
auto shape = new PROPERTY_ENUM<PAD, PAD_SHAPE>( _HKI( "Shape" ), &PAD::SetShape, &PAD::GetShape ); propMgr.AddProperty( shape, groupPad );
propMgr.AddProperty( new PROPERTY<PAD, wxString>( _HKI( "Parent" ), NO_SETTER( PAD, wxString ), &PAD::GetParentAsString ), groupPad ); propMgr.AddProperty( new PROPERTY<PAD, wxString>( _HKI( "Pad Number" ), &PAD::SetNumber, &PAD::GetNumber ), groupPad); propMgr.AddProperty( new PROPERTY<PAD, wxString>( _HKI( "Pin Name" ), NO_SETTER( PAD, wxString ), &PAD::GetPinFunction ), groupPad ); propMgr.AddProperty( new PROPERTY<PAD, wxString>( _HKI( "Pin Type" ), NO_SETTER( PAD, wxString ), &PAD::GetPinType ), groupPad); propMgr.AddProperty( new PROPERTY<PAD, int>( _HKI( "Size X" ), &PAD::SetSizeX, &PAD::GetSizeX, PROPERTY_DISPLAY::PT_SIZE ), groupPad ); propMgr.AddProperty( new PROPERTY<PAD, int>( _HKI( "Size Y" ), &PAD::SetSizeY, &PAD::GetSizeY, PROPERTY_DISPLAY::PT_SIZE ), groupPad );
auto roundRadiusRatio = new PROPERTY<PAD, double>( _HKI( "Round Radius Ratio" ), &PAD::SetRoundRectRadiusRatio, &PAD::GetRoundRectRadiusRatio ); roundRadiusRatio->SetAvailableFunc( [=]( INSPECTABLE* aItem ) -> bool { return aItem->Get( shape ) == static_cast<int>( PAD_SHAPE::ROUNDRECT ); } ); propMgr.AddProperty( roundRadiusRatio, groupPad );
propMgr.AddProperty( new PROPERTY<PAD, int>( _HKI( "Hole Size X" ), &PAD::SetDrillSizeX, &PAD::GetDrillSizeX, PROPERTY_DISPLAY::PT_SIZE ), groupPad ); propMgr.AddProperty( new PROPERTY<PAD, int>( _HKI( "Hole Size Y" ), &PAD::SetDrillSizeY, &PAD::GetDrillSizeY, PROPERTY_DISPLAY::PT_SIZE ), groupPad );
propMgr.AddProperty( new PROPERTY_ENUM<PAD, PAD_PROP>( _HKI( "Fabrication Property" ), &PAD::SetProperty, &PAD::GetProperty ), groupPad ); propMgr.AddProperty( new PROPERTY<PAD, int>( _HKI( "Pad To Die Length" ), &PAD::SetPadToDieLength, &PAD::GetPadToDieLength, PROPERTY_DISPLAY::PT_SIZE ), groupPad );
const wxString groupOverrides = _( "Overrides" );
propMgr.AddProperty( new PROPERTY<PAD, int>( _HKI( "Clearance Override" ), &PAD::SetLocalClearance, &PAD::GetLocalClearance, PROPERTY_DISPLAY::PT_SIZE ), groupOverrides ); propMgr.AddProperty( new PROPERTY<PAD, int>( _HKI( "Soldermask Margin Override" ), &PAD::SetLocalSolderMaskMargin, &PAD::GetLocalSolderMaskMargin, PROPERTY_DISPLAY::PT_SIZE ), groupOverrides ); propMgr.AddProperty( new PROPERTY<PAD, int>( _HKI( "Solderpaste Margin Override" ), &PAD::SetLocalSolderPasteMargin, &PAD::GetLocalSolderPasteMargin, PROPERTY_DISPLAY::PT_SIZE ), groupOverrides ); propMgr.AddProperty( new PROPERTY<PAD, double>( _HKI( "Solderpaste Margin Ratio Override" ), &PAD::SetLocalSolderPasteMarginRatio, &PAD::GetLocalSolderPasteMarginRatio ), groupOverrides ); propMgr.AddProperty( new PROPERTY_ENUM<PAD, ZONE_CONNECTION>( _HKI( "Zone Connection Style" ), &PAD::SetZoneConnection, &PAD::GetZoneConnection ), groupOverrides ); propMgr.AddProperty( new PROPERTY<PAD, int>( _HKI( "Thermal Relief Spoke Width" ), &PAD::SetThermalSpokeWidth, &PAD::GetThermalSpokeWidth, PROPERTY_DISPLAY::PT_SIZE ), groupOverrides ); propMgr.AddProperty( new PROPERTY<PAD, double>( _HKI( "Thermal Relief Spoke Angle" ), &PAD::SetThermalSpokeAngleDegrees, &PAD::GetThermalSpokeAngleDegrees, PROPERTY_DISPLAY::PT_DEGREE ), groupOverrides ); propMgr.AddProperty( new PROPERTY<PAD, int>( _HKI( "Thermal Relief Gap" ), &PAD::SetThermalGap, &PAD::GetThermalGap, PROPERTY_DISPLAY::PT_SIZE ), groupOverrides );
// TODO delta, drill shape offset, layer set
} } _PAD_DESC;
ENUM_TO_WXANY( PAD_ATTRIB ); ENUM_TO_WXANY( PAD_SHAPE ); ENUM_TO_WXANY( PAD_PROP );
|