|
|
/*
* This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2014-2017 CERN * Copyright (C) 2014-2019 KiCad Developers, see AUTHORS.txt for contributors. * @author Tomasz Włostowski <tomasz.wlostowski@cern.ch> * * This program is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or (at your * option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */
#include <cstdint>
#include <thread>
#include <mutex>
#include <algorithm>
#include <future>
#include <class_board.h>
#include <class_zone.h>
#include <class_module.h>
#include <class_edge_mod.h>
#include <class_drawsegment.h>
#include <class_track.h>
#include <class_pcb_text.h>
#include <class_pcb_target.h>
#include <connectivity/connectivity_data.h>
#include <board_commit.h>
#include <widgets/progress_reporter.h>
#include <geometry/shape_poly_set.h>
#include <geometry/shape_file_io.h>
#include <geometry/convex_hull.h>
#include <geometry/geometry_utils.h>
#include <confirm.h>
#include "zone_filler.h"
#include <advanced_config.h> // To be removed later, when the zone fill option will be always allowed
class PROGRESS_REPORTER_HIDER{public: PROGRESS_REPORTER_HIDER( WX_PROGRESS_REPORTER* aReporter ) { m_reporter = aReporter;
if( aReporter ) aReporter->Hide(); }
~PROGRESS_REPORTER_HIDER() { if( m_reporter ) m_reporter->Show(); }
private: WX_PROGRESS_REPORTER* m_reporter;};
static const double s_RoundPadThermalSpokeAngle = 450;static const bool s_DumpZonesWhenFilling = false;
ZONE_FILLER::ZONE_FILLER( BOARD* aBoard, COMMIT* aCommit ) : m_board( aBoard ), m_brdOutlinesValid( false ), m_commit( aCommit ), m_progressReporter( nullptr ){}
ZONE_FILLER::~ZONE_FILLER(){}
void ZONE_FILLER::InstallNewProgressReporter( wxWindow* aParent, const wxString& aTitle, int aNumPhases ){ m_uniqueReporter = std::make_unique<WX_PROGRESS_REPORTER>( aParent, aTitle, aNumPhases ); m_progressReporter = m_uniqueReporter.get();}
bool ZONE_FILLER::Fill( const std::vector<ZONE_CONTAINER*>& aZones, bool aCheck ){ std::vector<CN_ZONE_ISOLATED_ISLAND_LIST> toFill; auto connectivity = m_board->GetConnectivity(); bool filledPolyWithOutline = not m_board->GetDesignSettings().m_ZoneUseNoOutlineInFill;
if( ADVANCED_CFG::GetCfg().m_forceThickOutlinesInZones ) filledPolyWithOutline = true;
std::unique_lock<std::mutex> lock( connectivity->GetLock(), std::try_to_lock );
if( !lock ) return false;
if( m_progressReporter ) { m_progressReporter->Report( aCheck ? _( "Checking zone fills..." ) : _( "Building zone fills..." ) ); m_progressReporter->SetMaxProgress( toFill.size() ); }
// The board outlines is used to clip solid areas inside the board (when outlines are valid)
m_boardOutline.RemoveAllContours(); m_brdOutlinesValid = m_board->GetBoardPolygonOutlines( m_boardOutline );
for( auto zone : aZones ) { // Keepout zones are not filled
if( zone->GetIsKeepout() ) continue;
if( m_commit ) m_commit->Modify( zone );
// calculate the hash value for filled areas. it will be used later
// to know if the current filled areas are up to date
zone->BuildHashValue();
// Add the zone to the list of zones to test or refill
toFill.emplace_back( CN_ZONE_ISOLATED_ISLAND_LIST(zone) );
// Remove existing fill first to prevent drawing invalid polygons
// on some platforms
zone->UnFill(); }
std::atomic<size_t> nextItem( 0 ); size_t parallelThreadCount = std::min<size_t>( std::thread::hardware_concurrency(), aZones.size() ); std::vector<std::future<size_t>> returns( parallelThreadCount );
auto fill_lambda = [&] ( PROGRESS_REPORTER* aReporter ) -> size_t { size_t num = 0;
for( size_t i = nextItem++; i < toFill.size(); i = nextItem++ ) { ZONE_CONTAINER* zone = toFill[i].m_zone; zone->SetFilledPolysUseThickness( filledPolyWithOutline ); SHAPE_POLY_SET rawPolys, finalPolys; fillSingleZone( zone, rawPolys, finalPolys );
zone->SetRawPolysList( rawPolys ); zone->SetFilledPolysList( finalPolys ); zone->SetIsFilled( true );
if( m_progressReporter ) m_progressReporter->AdvanceProgress();
num++; }
return num; };
if( parallelThreadCount <= 1 ) fill_lambda( m_progressReporter ); else { for( size_t ii = 0; ii < parallelThreadCount; ++ii ) returns[ii] = std::async( std::launch::async, fill_lambda, m_progressReporter );
for( size_t ii = 0; ii < parallelThreadCount; ++ii ) { // Here we balance returns with a 100ms timeout to allow UI updating
std::future_status status; do { if( m_progressReporter ) m_progressReporter->KeepRefreshing();
status = returns[ii].wait_for( std::chrono::milliseconds( 100 ) ); } while( status != std::future_status::ready ); } }
// Now update the connectivity to check for copper islands
if( m_progressReporter ) { m_progressReporter->AdvancePhase(); m_progressReporter->Report( _( "Removing insulated copper islands..." ) ); m_progressReporter->KeepRefreshing(); }
connectivity->SetProgressReporter( m_progressReporter ); connectivity->FindIsolatedCopperIslands( toFill );
// Now remove insulated copper islands and islands outside the board edge
bool outOfDate = false;
for( auto& zone : toFill ) { std::sort( zone.m_islands.begin(), zone.m_islands.end(), std::greater<int>() ); SHAPE_POLY_SET poly = zone.m_zone->GetFilledPolysList();
// Remove solid areas outside the board cutouts and the insulated islands
// only zones with net code > 0 can have insulated islands by definition
if( zone.m_zone->GetNetCode() > 0 ) { // solid areas outside the board cutouts are also removed, because they are usually
// insulated islands
for( auto idx : zone.m_islands ) { poly.DeletePolygon( idx ); } } // Zones with no net can have areas outside the board cutouts.
// By definition, Zones with no net have no isolated island
// (in fact all filled areas are isolated islands)
// but they can have some areas outside the board cutouts.
// A filled area outside the board cutouts has all points outside cutouts,
// so we only need to check one point for each filled polygon.
// Note also non copper zones are already clipped
else if( m_brdOutlinesValid && zone.m_zone->IsOnCopperLayer() ) { for( int idx = 0; idx < poly.OutlineCount(); ) { if( poly.Polygon( idx ).empty() || !m_boardOutline.Contains( poly.Polygon( idx ).front().CPoint( 0 ) ) ) { poly.DeletePolygon( idx ); } else idx++; } }
zone.m_zone->SetFilledPolysList( poly );
if( aCheck && zone.m_zone->GetHashValue() != poly.GetHash() ) outOfDate = true; }
if( aCheck && outOfDate ) { PROGRESS_REPORTER_HIDER raii( m_progressReporter ); KIDIALOG dlg( m_progressReporter->GetParent(), _( "Zone fills are out-of-date. Refill?" ), _( "Confirmation" ), wxOK | wxCANCEL | wxICON_WARNING ); dlg.SetOKCancelLabels( _( "Refill" ), _( "Continue without Refill" ) ); dlg.DoNotShowCheckbox( __FILE__, __LINE__ );
if( dlg.ShowModal() == wxID_CANCEL ) { if( m_commit ) m_commit->Revert();
connectivity->SetProgressReporter( nullptr ); return false; } }
if( m_progressReporter ) { m_progressReporter->AdvancePhase(); m_progressReporter->Report( _( "Performing polygon fills..." ) ); m_progressReporter->SetMaxProgress( toFill.size() ); }
nextItem = 0;
auto tri_lambda = [&] ( PROGRESS_REPORTER* aReporter ) -> size_t { size_t num = 0;
for( size_t i = nextItem++; i < toFill.size(); i = nextItem++ ) { toFill[i].m_zone->CacheTriangulation(); num++;
if( m_progressReporter ) m_progressReporter->AdvanceProgress(); }
return num; };
if( parallelThreadCount <= 1 ) tri_lambda( m_progressReporter ); else { for( size_t ii = 0; ii < parallelThreadCount; ++ii ) returns[ii] = std::async( std::launch::async, tri_lambda, m_progressReporter );
for( size_t ii = 0; ii < parallelThreadCount; ++ii ) { // Here we balance returns with a 100ms timeout to allow UI updating
std::future_status status; do { if( m_progressReporter ) m_progressReporter->KeepRefreshing();
status = returns[ii].wait_for( std::chrono::milliseconds( 100 ) ); } while( status != std::future_status::ready ); } }
if( m_progressReporter ) { m_progressReporter->AdvancePhase(); m_progressReporter->Report( _( "Committing changes..." ) ); m_progressReporter->KeepRefreshing(); }
connectivity->SetProgressReporter( nullptr );
if( m_commit ) { m_commit->Push( _( "Fill Zone(s)" ), false ); } else { for( auto& i : toFill ) connectivity->Update( i.m_zone );
connectivity->RecalculateRatsnest(); }
return true;}
/**
* Return true if the given pad has a thermal connection with the given zone. */bool hasThermalConnection( D_PAD* pad, const ZONE_CONTAINER* aZone ){ // Rejects non-standard pads with tht-only thermal reliefs
if( aZone->GetPadConnection( pad ) == PAD_ZONE_CONN_THT_THERMAL && pad->GetAttribute() != PAD_ATTRIB_STANDARD ) { return false; }
if( aZone->GetPadConnection( pad ) != PAD_ZONE_CONN_THERMAL && aZone->GetPadConnection( pad ) != PAD_ZONE_CONN_THT_THERMAL ) { return false; }
if( pad->GetNetCode() != aZone->GetNetCode() || pad->GetNetCode() <= 0 ) return false;
EDA_RECT item_boundingbox = pad->GetBoundingBox(); int thermalGap = aZone->GetThermalReliefGap( pad ); item_boundingbox.Inflate( thermalGap, thermalGap );
return item_boundingbox.Intersects( aZone->GetBoundingBox() );}
/**
* Setup aDummyPad to have the same size and shape of aPad's hole. This allows us to create * thermal reliefs and clearances for holes using the pad code. */static void setupDummyPadForHole( const D_PAD* aPad, D_PAD& aDummyPad ){ aDummyPad.SetNetCode( aPad->GetNetCode() ); aDummyPad.SetSize( aPad->GetDrillSize() ); aDummyPad.SetOrientation( aPad->GetOrientation() ); aDummyPad.SetShape( aPad->GetDrillShape() == PAD_DRILL_SHAPE_OBLONG ? PAD_SHAPE_OVAL : PAD_SHAPE_CIRCLE ); aDummyPad.SetPosition( aPad->GetPosition() );}
/**
* Add a knockout for a pad. The knockout is 'aGap' larger than the pad (which might be * either the thermal clearance or the electrical clearance). */void ZONE_FILLER::addKnockout( D_PAD* aPad, int aGap, SHAPE_POLY_SET& aHoles ){ if( aPad->GetShape() == PAD_SHAPE_CUSTOM ) { // the pad shape in zone can be its convex hull or the shape itself
SHAPE_POLY_SET outline( aPad->GetCustomShapeAsPolygon() ); int numSegs = std::max( GetArcToSegmentCount( aGap, m_high_def, 360.0 ), 6 ); double correction = GetCircletoPolyCorrectionFactor( numSegs ); outline.Inflate( KiROUND( aGap * correction ), numSegs ); aPad->CustomShapeAsPolygonToBoardPosition( &outline, aPad->GetPosition(), aPad->GetOrientation() );
if( aPad->GetCustomShapeInZoneOpt() == CUST_PAD_SHAPE_IN_ZONE_CONVEXHULL ) { std::vector<wxPoint> convex_hull; BuildConvexHull( convex_hull, outline );
aHoles.NewOutline();
for( const wxPoint& pt : convex_hull ) aHoles.Append( pt ); } else aHoles.Append( outline ); } else { // Optimizing polygon vertex count: the high definition is used for round
// and oval pads (pads with large arcs) but low def for other shapes (with
// small arcs)
if( aPad->GetShape() == PAD_SHAPE_CIRCLE || aPad->GetShape() == PAD_SHAPE_OVAL || ( aPad->GetShape() == PAD_SHAPE_ROUNDRECT && aPad->GetRoundRectRadiusRatio() > 0.4 ) ) aPad->TransformShapeWithClearanceToPolygon( aHoles, aGap, m_high_def ); else aPad->TransformShapeWithClearanceToPolygon( aHoles, aGap, m_low_def ); }}
/**
* Add a knockout for a graphic item. The knockout is 'aGap' larger than the item (which * might be either the electrical clearance or the board edge clearance). */void ZONE_FILLER::addKnockout( BOARD_ITEM* aItem, int aGap, bool aIgnoreLineWidth, SHAPE_POLY_SET& aHoles ){ switch( aItem->Type() ) { case PCB_LINE_T: { DRAWSEGMENT* seg = (DRAWSEGMENT*) aItem; seg->TransformShapeWithClearanceToPolygon( aHoles, aGap, m_high_def, aIgnoreLineWidth ); break; } case PCB_TEXT_T: { TEXTE_PCB* text = (TEXTE_PCB*) aItem; text->TransformBoundingBoxWithClearanceToPolygon( &aHoles, aGap ); break; } case PCB_MODULE_EDGE_T: { EDGE_MODULE* edge = (EDGE_MODULE*) aItem; edge->TransformShapeWithClearanceToPolygon( aHoles, aGap, m_high_def, aIgnoreLineWidth ); break; } case PCB_MODULE_TEXT_T: { TEXTE_MODULE* text = (TEXTE_MODULE*) aItem;
if( text->IsVisible() ) text->TransformBoundingBoxWithClearanceToPolygon( &aHoles, aGap );
break; } default: break; }}
/**
* Removes thermal reliefs from the shape for any pads connected to the zone. Does NOT add * in spokes, which must be done later. */void ZONE_FILLER::knockoutThermalReliefs( const ZONE_CONTAINER* aZone, SHAPE_POLY_SET& aFill ){ SHAPE_POLY_SET holes;
// Use a dummy pad to calculate relief when a pad has a hole but is not on the zone's
// copper layer. The dummy pad has the size and shape of the original pad's hole. We have
// to give it a parent because some functions expect a non-null parent to find clearance
// data, etc.
MODULE dummymodule( m_board ); D_PAD dummypad( &dummymodule );
for( auto module : m_board->Modules() ) { for( auto pad : module->Pads() ) { if( !hasThermalConnection( pad, aZone ) ) continue;
// If the pad isn't on the current layer but has a hole, knock out a thermal relief
// for the hole.
if( !pad->IsOnLayer( aZone->GetLayer() ) ) { if( pad->GetDrillSize().x == 0 && pad->GetDrillSize().y == 0 ) continue;
setupDummyPadForHole( pad, dummypad ); pad = &dummypad; }
addKnockout( pad, aZone->GetThermalReliefGap( pad ), holes ); } }
holes.Simplify( SHAPE_POLY_SET::PM_FAST ); aFill.BooleanSubtract( holes, SHAPE_POLY_SET::PM_FAST );}
/**
* Removes clearance from the shape for copper items which share the zone's layer but are * not connected to it. */void ZONE_FILLER::buildCopperItemClearances( const ZONE_CONTAINER* aZone, SHAPE_POLY_SET& aHoles ){ int zone_clearance = aZone->GetClearance(); int edgeClearance = m_board->GetDesignSettings().m_CopperEdgeClearance; int zone_to_edgecut_clearance = std::max( aZone->GetZoneClearance(), edgeClearance );
// items outside the zone bounding box are skipped
// the bounding box is the zone bounding box + the biggest clearance found in Netclass list
EDA_RECT zone_boundingbox = aZone->GetBoundingBox(); int biggest_clearance = m_board->GetDesignSettings().GetBiggestClearanceValue(); biggest_clearance = std::max( biggest_clearance, zone_clearance ); zone_boundingbox.Inflate( biggest_clearance );
// Use a dummy pad to calculate hole clearance when a pad has a hole but is not on the
// zone's copper layer. The dummy pad has the size and shape of the original pad's hole.
// We have to give it a parent because some functions expect a non-null parent to find
// clearance data, etc.
MODULE dummymodule( m_board ); D_PAD dummypad( &dummymodule );
// Add non-connected pad clearances
//
for( auto module : m_board->Modules() ) { for( auto pad : module->Pads() ) { if( !pad->IsOnLayer( aZone->GetLayer() ) ) { if( pad->GetDrillSize().x == 0 && pad->GetDrillSize().y == 0 ) continue;
setupDummyPadForHole( pad, dummypad ); pad = &dummypad; }
if( pad->GetNetCode() != aZone->GetNetCode() || pad->GetNetCode() <= 0 || aZone->GetPadConnection( pad ) == PAD_ZONE_CONN_NONE ) { int gap = std::max( zone_clearance, pad->GetClearance() ); EDA_RECT item_boundingbox = pad->GetBoundingBox(); item_boundingbox.Inflate( pad->GetClearance() );
if( item_boundingbox.Intersects( zone_boundingbox ) ) addKnockout( pad, gap, aHoles ); } } }
// Add non-connected track clearances
//
for( auto track : m_board->Tracks() ) { if( !track->IsOnLayer( aZone->GetLayer() ) ) continue;
if( track->GetNetCode() == aZone->GetNetCode() && ( aZone->GetNetCode() != 0) ) continue;
int gap = std::max( zone_clearance, track->GetClearance() ); EDA_RECT item_boundingbox = track->GetBoundingBox();
if( item_boundingbox.Intersects( zone_boundingbox ) ) track->TransformShapeWithClearanceToPolygon( aHoles, gap, m_low_def ); }
// Add graphic item clearances. They are by definition unconnected, and have no clearance
// definitions of their own.
//
auto doGraphicItem = [&]( BOARD_ITEM* aItem ) { // A item on the Edge_Cuts is always seen as on any layer:
if( !aItem->IsOnLayer( aZone->GetLayer() ) && !aItem->IsOnLayer( Edge_Cuts ) ) return;
if( !aItem->GetBoundingBox().Intersects( zone_boundingbox ) ) return;
bool ignoreLineWidth = false; int gap = zone_clearance;
if( aItem->IsOnLayer( Edge_Cuts ) ) { gap = zone_to_edgecut_clearance;
// edge cuts by definition don't have a width
ignoreLineWidth = true; }
addKnockout( aItem, gap, ignoreLineWidth, aHoles ); };
for( auto module : m_board->Modules() ) { doGraphicItem( &module->Reference() ); doGraphicItem( &module->Value() );
for( auto item : module->GraphicalItems() ) doGraphicItem( item ); }
for( auto item : m_board->Drawings() ) doGraphicItem( item );
// Add zones outlines having an higher priority and keepout
//
for( int ii = 0; ii < m_board->GetAreaCount(); ii++ ) { ZONE_CONTAINER* zone = m_board->GetArea( ii );
// If the zones share no common layers
if( !aZone->CommonLayerExists( zone->GetLayerSet() ) ) continue;
if( !zone->GetIsKeepout() && zone->GetPriority() <= aZone->GetPriority() ) continue;
if( zone->GetIsKeepout() && !zone->GetDoNotAllowCopperPour() ) continue;
// A highter priority zone or keepout area is found: remove this area
EDA_RECT item_boundingbox = zone->GetBoundingBox();
if( !item_boundingbox.Intersects( zone_boundingbox ) ) continue;
// Add the zone outline area. Don't use any clearance for keepouts, or for zones with
// the same net (they will be connected but will honor their own clearance, thermal
// connections, etc.).
bool sameNet = aZone->GetNetCode() == zone->GetNetCode(); bool useNetClearance = true; int minClearance = zone_clearance;
// The final clearance is obviously the max value of each zone clearance
minClearance = std::max( minClearance, zone->GetClearance() );
if( zone->GetIsKeepout() || sameNet ) { minClearance = 0; useNetClearance = false; }
zone->TransformOutlinesShapeWithClearanceToPolygon( aHoles, minClearance, useNetClearance ); }
aHoles.Simplify( SHAPE_POLY_SET::PM_FAST );}
/**
* 1 - Creates the main zone outline using a correction to shrink the resulting area by * m_ZoneMinThickness / 2. The result is areas with a margin of m_ZoneMinThickness / 2 * so that when drawing outline with segments having a thickness of m_ZoneMinThickness the * outlines will match exactly the initial outlines * 2 - Knocks out thermal reliefs around thermally-connected pads * 3 - Builds a set of thermal spoke for the whole zone * 4 - Knocks out unconnected copper items, deleting any affected spokes * 5 - Removes unconnected copper islands, deleting any affected spokes * 6 - Adds in the remaining spokes */void ZONE_FILLER::computeRawFilledArea( const ZONE_CONTAINER* aZone, const SHAPE_POLY_SET& aSmoothedOutline, std::set<VECTOR2I>* aPreserveCorners, SHAPE_POLY_SET& aRawPolys, SHAPE_POLY_SET& aFinalPolys ){ m_high_def = m_board->GetDesignSettings().m_MaxError; m_low_def = std::min( ARC_LOW_DEF, int( m_high_def*1.5 ) ); // Reasonable value
// Features which are min_width should survive pruning; features that are *less* than
// min_width should not. Therefore we subtract epsilon from the min_width when
// deflating/inflating.
int half_min_width = aZone->GetMinThickness() / 2; int epsilon = Millimeter2iu( 0.001 ); int numSegs = std::max( GetArcToSegmentCount( half_min_width, m_high_def, 360.0 ), 6 );
SHAPE_POLY_SET::CORNER_STRATEGY cornerStrategy = SHAPE_POLY_SET::CHOP_ACUTE_CORNERS;
if( aZone->GetCornerSmoothingType() == ZONE_SETTINGS::SMOOTHING_FILLET ) cornerStrategy = SHAPE_POLY_SET::ROUND_ACUTE_CORNERS;
std::deque<SHAPE_LINE_CHAIN> thermalSpokes; SHAPE_POLY_SET clearanceHoles;
std::unique_ptr<SHAPE_FILE_IO> dumper( new SHAPE_FILE_IO( s_DumpZonesWhenFilling ? "zones_dump.txt" : "", SHAPE_FILE_IO::IOM_APPEND ) );
aRawPolys = aSmoothedOutline;
if( s_DumpZonesWhenFilling ) dumper->BeginGroup( "clipper-zone" );
knockoutThermalReliefs( aZone, aRawPolys );
if( s_DumpZonesWhenFilling ) dumper->Write( &aRawPolys, "solid-areas-minus-thermal-reliefs" );
buildCopperItemClearances( aZone, clearanceHoles );
if( s_DumpZonesWhenFilling ) dumper->Write( &aRawPolys, "clearance holes" );
buildThermalSpokes( aZone, thermalSpokes );
// Create a temporary zone that we can hit-test spoke-ends against. It's only temporary
// because the "real" subtract-clearance-holes has to be done after the spokes are added.
static const bool USE_BBOX_CACHES = true; SHAPE_POLY_SET testAreas = aRawPolys; testAreas.BooleanSubtract( clearanceHoles, SHAPE_POLY_SET::PM_FAST );
// Prune features that don't meet minimum-width criteria
if( half_min_width - epsilon > epsilon ) { testAreas.Deflate( half_min_width - epsilon, numSegs, cornerStrategy ); testAreas.Inflate( half_min_width - epsilon, numSegs, cornerStrategy ); }
// Spoke-end-testing is hugely expensive so we generate cached bounding-boxes to speed
// things up a bit.
testAreas.BuildBBoxCaches();
for( const SHAPE_LINE_CHAIN& spoke : thermalSpokes ) { const VECTOR2I& testPt = spoke.CPoint( 3 );
// Hit-test against zone body
if( testAreas.Contains( testPt, -1, 1, USE_BBOX_CACHES ) ) { aRawPolys.AddOutline( spoke ); continue; }
// Hit-test against other spokes
for( const SHAPE_LINE_CHAIN& other : thermalSpokes ) { if( &other != &spoke && other.PointInside( testPt, 1, USE_BBOX_CACHES ) ) { aRawPolys.AddOutline( spoke ); break; } } }
aRawPolys.Simplify( SHAPE_POLY_SET::PM_FAST );
if( s_DumpZonesWhenFilling ) dumper->Write( &aRawPolys, "solid-areas-with-thermal-spokes" );
aRawPolys.BooleanSubtract( clearanceHoles, SHAPE_POLY_SET::PM_FAST ); // Prune features that don't meet minimum-width criteria
if( half_min_width - epsilon > epsilon ) aRawPolys.Deflate( half_min_width - epsilon, numSegs, cornerStrategy );
if( s_DumpZonesWhenFilling ) dumper->Write( &aRawPolys, "solid-areas-before-hatching" );
// Now remove the non filled areas due to the hatch pattern
if( aZone->GetFillMode() == ZFM_HATCH_PATTERN ) addHatchFillTypeOnZone( aZone, aRawPolys );
if( s_DumpZonesWhenFilling ) dumper->Write( &aRawPolys, "solid-areas-after-hatching" );
// Re-inflate after pruning of areas that don't meet minimum-width criteria
if( aZone->GetFilledPolysUseThickness() ) { // If we're stroking the zone with a min_width stroke then this will naturally
// inflate the zone by half_min_width
} else if( half_min_width - epsilon > epsilon ) { aRawPolys.Simplify( SHAPE_POLY_SET::PM_FAST ); aRawPolys.Inflate( half_min_width - epsilon, numSegs, cornerStrategy );
// If we've deflated/inflated by something near our corner radius then we will have
// ended up with too-sharp corners. Apply outline smoothing again.
if( aZone->GetMinThickness() > aZone->GetCornerRadius() ) aRawPolys.BooleanIntersection( aSmoothedOutline, SHAPE_POLY_SET::PM_FAST ); }
aRawPolys.Fracture( SHAPE_POLY_SET::PM_FAST );
if( s_DumpZonesWhenFilling ) dumper->Write( &aRawPolys, "areas_fractured" );
aFinalPolys = aRawPolys;
if( s_DumpZonesWhenFilling ) dumper->EndGroup();}
/*
* Build the filled solid areas data from real outlines (stored in m_Poly) * The solid areas can be more than one on copper layers, and do not have holes * ( holes are linked by overlapping segments to the main outline) */bool ZONE_FILLER::fillSingleZone( ZONE_CONTAINER* aZone, SHAPE_POLY_SET& aRawPolys, SHAPE_POLY_SET& aFinalPolys ){ SHAPE_POLY_SET smoothedPoly; std::set<VECTOR2I> colinearCorners; aZone->GetColinearCorners( m_board, colinearCorners );
/*
* convert outlines + holes to outlines without holes (adding extra segments if necessary) * m_Poly data is expected normalized, i.e. NormalizeAreaOutlines was used after building * this zone */ if ( !aZone->BuildSmoothedPoly( smoothedPoly, &colinearCorners ) ) return false;
if( aZone->IsOnCopperLayer() ) { computeRawFilledArea( aZone, smoothedPoly, &colinearCorners, aRawPolys, aFinalPolys ); } else { // Features which are min_width should survive pruning; features that are *less* than
// min_width should not. Therefore we subtract epsilon from the min_width when
// deflating/inflating.
int half_min_width = aZone->GetMinThickness() / 2; int epsilon = Millimeter2iu( 0.001 ); int numSegs = std::max( GetArcToSegmentCount( half_min_width, m_high_def, 360.0 ), 6 );
if( m_brdOutlinesValid ) smoothedPoly.BooleanIntersection( m_boardOutline, SHAPE_POLY_SET::PM_FAST );
smoothedPoly.Deflate( half_min_width - epsilon, numSegs );
// Remove the non filled areas due to the hatch pattern
if( aZone->GetFillMode() == ZFM_HATCH_PATTERN ) addHatchFillTypeOnZone( aZone, smoothedPoly );
// Re-inflate after pruning of areas that don't meet minimum-width criteria
if( aZone->GetFilledPolysUseThickness() ) { // If we're stroking the zone with a min_width stroke then this will naturally
// inflate the zone by half_min_width
} else if( half_min_width - epsilon > epsilon ) smoothedPoly.Deflate( -( half_min_width - epsilon ), numSegs );
aRawPolys = smoothedPoly; aFinalPolys = smoothedPoly;
aFinalPolys.Fracture( SHAPE_POLY_SET::PM_STRICTLY_SIMPLE ); }
aZone->SetNeedRefill( false ); return true;}
/**
* Function buildThermalSpokes */void ZONE_FILLER::buildThermalSpokes( const ZONE_CONTAINER* aZone, std::deque<SHAPE_LINE_CHAIN>& aSpokesList ){ auto zoneBB = aZone->GetBoundingBox(); int zone_clearance = aZone->GetZoneClearance(); int biggest_clearance = m_board->GetDesignSettings().GetBiggestClearanceValue(); biggest_clearance = std::max( biggest_clearance, zone_clearance ); zoneBB.Inflate( biggest_clearance );
// Is a point on the boundary of the polygon inside or outside? This small epsilon lets
// us avoid the question.
int epsilon = KiROUND( IU_PER_MM * 0.04 ); // about 1.5 mil
for( auto module : m_board->Modules() ) { for( auto pad : module->Pads() ) { if( !hasThermalConnection( pad, aZone ) ) continue;
// We currently only connect to pads, not pad holes
if( !pad->IsOnLayer( aZone->GetLayer() ) ) continue;
int thermalReliefGap = aZone->GetThermalReliefGap( pad );
// Calculate thermal bridge half width
int spoke_half_w = aZone->GetThermalReliefCopperBridge( pad ) / 2;
// Quick test here to possibly save us some work
BOX2I itemBB = pad->GetBoundingBox(); itemBB.Inflate( thermalReliefGap + epsilon );
if( !( itemBB.Intersects( zoneBB ) ) ) continue;
// Thermal spokes consist of segments from the pad center to points just outside
// the thermal relief.
//
// We use the bounding-box to lay out the spokes, but for this to work the
// bounding box has to be built at the same rotation as the spokes.
wxPoint shapePos = pad->ShapePos(); wxPoint padPos = pad->GetPosition(); double padAngle = pad->GetOrientation(); pad->SetOrientation( 0.0 ); pad->SetPosition( { 0, 0 } ); BOX2I reliefBB = pad->GetBoundingBox(); pad->SetPosition( padPos ); pad->SetOrientation( padAngle );
reliefBB.Inflate( thermalReliefGap + epsilon );
// For circle pads, the thermal spoke orientation is 45 deg
if( pad->GetShape() == PAD_SHAPE_CIRCLE ) padAngle = s_RoundPadThermalSpokeAngle;
for( int i = 0; i < 4; i++ ) { SHAPE_LINE_CHAIN spoke; switch( i ) { case 0: // lower stub
spoke.Append( +spoke_half_w, -spoke_half_w ); spoke.Append( -spoke_half_w, -spoke_half_w ); spoke.Append( -spoke_half_w, reliefBB.GetBottom() ); spoke.Append( 0, reliefBB.GetBottom() ); // test pt
spoke.Append( +spoke_half_w, reliefBB.GetBottom() ); break;
case 1: // upper stub
spoke.Append( +spoke_half_w, spoke_half_w ); spoke.Append( -spoke_half_w, spoke_half_w ); spoke.Append( -spoke_half_w, reliefBB.GetTop() ); spoke.Append( 0, reliefBB.GetTop() ); // test pt
spoke.Append( +spoke_half_w, reliefBB.GetTop() ); break;
case 2: // right stub
spoke.Append( -spoke_half_w, spoke_half_w ); spoke.Append( -spoke_half_w, -spoke_half_w ); spoke.Append( reliefBB.GetRight(), -spoke_half_w ); spoke.Append( reliefBB.GetRight(), 0 ); // test pt
spoke.Append( reliefBB.GetRight(), spoke_half_w ); break;
case 3: // left stub
spoke.Append( spoke_half_w, spoke_half_w ); spoke.Append( spoke_half_w, -spoke_half_w ); spoke.Append( reliefBB.GetLeft(), -spoke_half_w ); spoke.Append( reliefBB.GetLeft(), 0 ); // test pt
spoke.Append( reliefBB.GetLeft(), spoke_half_w ); break; }
for( int j = 0; j < spoke.PointCount(); j++ ) { RotatePoint( spoke.Point( j ), padAngle ); spoke.Point( j ) += shapePos; }
spoke.SetClosed( true ); spoke.GenerateBBoxCache(); aSpokesList.push_back( std::move( spoke ) ); } } }}
void ZONE_FILLER::addHatchFillTypeOnZone( const ZONE_CONTAINER* aZone, SHAPE_POLY_SET& aRawPolys ){ // Build grid:
// obvously line thickness must be > zone min thickness. However, it should be
// the case because the zone dialog setup ensure that. However, it can happens
// if a board file was edited by hand by a python script
int thickness = std::max( aZone->GetHatchFillTypeThickness(), aZone->GetMinThickness()+2 ); int linethickness = thickness - aZone->GetMinThickness(); int gridsize = thickness + aZone->GetHatchFillTypeGap(); double orientation = aZone->GetHatchFillTypeOrientation();
SHAPE_POLY_SET filledPolys = aRawPolys; // Use a area that contains the rotated bbox by orientation,
// and after rotate the result by -orientation.
if( orientation != 0.0 ) { filledPolys.Rotate( M_PI/180.0 * orientation, VECTOR2I( 0,0 ) ); }
BOX2I bbox = filledPolys.BBox( 0 );
// Build hole shape
// the hole size is aZone->GetHatchFillTypeGap(), but because the outline thickness
// is aZone->GetMinThickness(), the hole shape size must be larger
SHAPE_LINE_CHAIN hole_base; int hole_size = aZone->GetHatchFillTypeGap() + aZone->GetMinThickness(); VECTOR2I corner( 0, 0 );; hole_base.Append( corner ); corner.x += hole_size; hole_base.Append( corner ); corner.y += hole_size; hole_base.Append( corner ); corner.x = 0; hole_base.Append( corner ); hole_base.SetClosed( true );
// Calculate minimal area of a grid hole.
// All holes smaller than a threshold will be removed
double minimal_hole_area = hole_base.Area() / 2;
// Now convert this hole to a smoothed shape:
if( aZone->GetHatchFillTypeSmoothingLevel() > 0 ) { // the actual size of chamfer, or rounded corner radius is the half size
// of the HatchFillTypeGap scaled by aZone->GetHatchFillTypeSmoothingValue()
// aZone->GetHatchFillTypeSmoothingValue() = 1.0 is the max value for the chamfer or the
// radius of corner (radius = half size of the hole)
int smooth_value = KiROUND( aZone->GetHatchFillTypeGap() * aZone->GetHatchFillTypeSmoothingValue() / 2 );
// Minimal optimization:
// make smoothing only for reasonnable smooth values, to avoid a lot of useless segments
// and if the smooth value is small, use chamfer even if fillet is requested
#define SMOOTH_MIN_VAL_MM 0.02
#define SMOOTH_SMALL_VAL_MM 0.04
if( smooth_value > Millimeter2iu( SMOOTH_MIN_VAL_MM ) ) { SHAPE_POLY_SET smooth_hole; smooth_hole.AddOutline( hole_base ); int smooth_level = aZone->GetHatchFillTypeSmoothingLevel();
if( smooth_value < Millimeter2iu( SMOOTH_SMALL_VAL_MM ) && smooth_level > 1 ) smooth_level = 1; // Use a larger smooth_value to compensate the outline tickness
// (chamfer is not visible is smooth value < outline thickess)
smooth_value += aZone->GetMinThickness()/2;
// smooth_value cannot be bigger than the half size oh the hole:
smooth_value = std::min( smooth_value, aZone->GetHatchFillTypeGap()/2 ); // the error to approximate a circle by segments when smoothing corners by a arc
int error_max = std::max( Millimeter2iu( 0.01), smooth_value/20 );
switch( smooth_level ) { case 1: // Chamfer() uses the distance from a corner to create a end point
// for the chamfer.
hole_base = smooth_hole.Chamfer( smooth_value ).Outline( 0 ); break;
default: if( aZone->GetHatchFillTypeSmoothingLevel() > 2 ) error_max /= 2; // Force better smoothing
hole_base = smooth_hole.Fillet( smooth_value, error_max ).Outline( 0 ); break;
case 0: break; }; } }
// Build holes
SHAPE_POLY_SET holes;
for( int xx = 0; ; xx++ ) { int xpos = xx * gridsize;
if( xpos > bbox.GetWidth() ) break;
for( int yy = 0; ; yy++ ) { int ypos = yy * gridsize;
if( ypos > bbox.GetHeight() ) break;
// Generate hole
SHAPE_LINE_CHAIN hole( hole_base ); hole.Move( VECTOR2I( xpos, ypos ) ); holes.AddOutline( hole ); } }
holes.Move( bbox.GetPosition() );
// Clamp holes to the area of filled zones with a outline thickness
// > aZone->GetMinThickness() to be sure the thermal pads can be built
int outline_margin = std::max( (aZone->GetMinThickness()*10)/9, linethickness/2 ); filledPolys.Deflate( outline_margin, 16 ); holes.BooleanIntersection( filledPolys, SHAPE_POLY_SET::PM_FAST );
if( orientation != 0.0 ) holes.Rotate( -M_PI/180.0 * orientation, VECTOR2I( 0,0 ) );
// Now filter truncated holes to avoid small holes in pattern
// It happens for holes near the zone outline
for( int ii = 0; ii < holes.OutlineCount(); ) { double area = holes.Outline( ii ).Area();
if( area < minimal_hole_area ) // The current hole is too small: remove it
holes.DeletePolygon( ii ); else ++ii; }
// create grid. Use SHAPE_POLY_SET::PM_STRICTLY_SIMPLE to
// generate strictly simple polygons needed by Gerber files and Fracture()
aRawPolys.BooleanSubtract( aRawPolys, holes, SHAPE_POLY_SET::PM_STRICTLY_SIMPLE );}
|