|
|
/*
* This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2014-2017 CERN * Copyright (C) 2014-2022 KiCad Developers, see AUTHORS.txt for contributors. * @author Tomasz Włostowski <tomasz.wlostowski@cern.ch> * * This program is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or (at your * option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */
#include <future>
#include <core/kicad_algo.h>
#include <advanced_config.h>
#include <board.h>
#include <board_design_settings.h>
#include <zone.h>
#include <footprint.h>
#include <pad.h>
#include <pcb_shape.h>
#include <pcb_target.h>
#include <pcb_track.h>
#include <pcb_text.h>
#include <pcb_textbox.h>
#include <fp_text.h>
#include <fp_textbox.h>
#include <connectivity/connectivity_data.h>
#include <convert_basic_shapes_to_polygon.h>
#include <board_commit.h>
#include <progress_reporter.h>
#include <geometry/shape_poly_set.h>
#include <geometry/convex_hull.h>
#include <geometry/geometry_utils.h>
#include <confirm.h>
#include <convert_to_biu.h>
#include <thread_pool.h>
#include <math/util.h> // for KiROUND
#include "zone_filler.h"
ZONE_FILLER::ZONE_FILLER( BOARD* aBoard, COMMIT* aCommit ) : m_board( aBoard ), m_brdOutlinesValid( false ), m_commit( aCommit ), m_progressReporter( nullptr ), m_maxError( ARC_HIGH_DEF ), m_worstClearance( 0 ) { // To enable add "DebugZoneFiller=1" to kicad_advanced settings file.
m_debugZoneFiller = ADVANCED_CFG::GetCfg().m_DebugZoneFiller; }
ZONE_FILLER::~ZONE_FILLER() { }
void ZONE_FILLER::SetProgressReporter( PROGRESS_REPORTER* aReporter ) { m_progressReporter = aReporter; wxASSERT_MSG( m_commit, wxT( "ZONE_FILLER must have a valid commit to call " "SetProgressReporter" ) ); }
bool ZONE_FILLER::Fill( std::vector<ZONE*>& aZones, bool aCheck, wxWindow* aParent ) { std::lock_guard<KISPINLOCK> lock( m_board->GetConnectivity()->GetLock() );
std::vector<std::pair<ZONE*, PCB_LAYER_ID>> toFill; std::map<std::pair<ZONE*, PCB_LAYER_ID>, MD5_HASH> oldFillHashes; std::vector<CN_ZONE_ISOLATED_ISLAND_LIST> islandsList;
std::shared_ptr<CONNECTIVITY_DATA> connectivity = m_board->GetConnectivity();
// Rebuild just in case. This really needs to be reliable.
connectivity->Clear(); connectivity->Build( m_board, m_progressReporter );
BOARD_DESIGN_SETTINGS& bds = m_board->GetDesignSettings();
m_worstClearance = bds.GetBiggestClearanceValue();
if( m_progressReporter ) { m_progressReporter->Report( aCheck ? _( "Checking zone fills..." ) : _( "Building zone fills..." ) ); m_progressReporter->SetMaxProgress( aZones.size() ); m_progressReporter->KeepRefreshing(); }
// The board outlines is used to clip solid areas inside the board (when outlines are valid)
m_boardOutline.RemoveAllContours(); m_brdOutlinesValid = m_board->GetBoardPolygonOutlines( m_boardOutline );
// Update and cache zone bounding boxes and pad effective shapes so that we don't have to
// make them thread-safe.
//
for( ZONE* zone : m_board->Zones() ) { zone->CacheBoundingBox(); m_worstClearance = std::max( m_worstClearance, zone->GetLocalClearance() ); }
for( FOOTPRINT* footprint : m_board->Footprints() ) { for( PAD* pad : footprint->Pads() ) { if( pad->IsDirty() ) { pad->BuildEffectiveShapes( UNDEFINED_LAYER ); pad->BuildEffectivePolygon(); }
m_worstClearance = std::max( m_worstClearance, pad->GetLocalClearance() ); }
for( ZONE* zone : footprint->Zones() ) { zone->CacheBoundingBox(); m_worstClearance = std::max( m_worstClearance, zone->GetLocalClearance() ); }
// Rules may depend on insideCourtyard() or other expressions
footprint->BuildPolyCourtyards(); }
// Sort by priority to reduce deferrals waiting on higher priority zones.
//
std::sort( aZones.begin(), aZones.end(), []( const ZONE* lhs, const ZONE* rhs ) { return lhs->HigherPriority( rhs ); } );
for( ZONE* zone : aZones ) { // Rule areas are not filled
if( zone->GetIsRuleArea() ) continue;
if( m_commit ) m_commit->Modify( zone );
// calculate the hash value for filled areas. it will be used later to know if the
// current filled areas are up to date
for( PCB_LAYER_ID layer : zone->GetLayerSet().Seq() ) { zone->BuildHashValue( layer ); oldFillHashes[ { zone, layer } ] = zone->GetHashValue( layer );
// Add the zone to the list of zones to test or refill
toFill.emplace_back( std::make_pair( zone, layer ) ); }
islandsList.emplace_back( CN_ZONE_ISOLATED_ISLAND_LIST( zone ) );
// Remove existing fill first to prevent drawing invalid polygons on some platforms
zone->UnFill(); }
auto check_fill_dependency = [&]( ZONE* aZone, PCB_LAYER_ID aLayer, ZONE* aOtherZone ) -> bool { // Check to see if we have to knock-out the filled areas of a higher-priority
// zone. If so we have to wait until said zone is filled before we can fill.
// If the other zone is already filled then we're good-to-go
if( aOtherZone->GetFillFlag( aLayer ) ) return false;
// Even if keepouts exclude copper pours the exclusion is by outline, not by
// filled area, so we're good-to-go here too.
if( aOtherZone->GetIsRuleArea() ) return false;
// If the zones share no common layers
if( !aOtherZone->GetLayerSet().test( aLayer ) ) return false;
if( aZone->HigherPriority( aOtherZone ) ) return false;
// Same-net zones always use outline to produce predictable results
if( aOtherZone->SameNet( aZone ) ) return false;
// A higher priority zone is found: if we intersect and it's not filled yet
// then we have to wait.
EDA_RECT inflatedBBox = aZone->GetCachedBoundingBox(); inflatedBBox.Inflate( m_worstClearance );
return inflatedBBox.Intersects( aOtherZone->GetCachedBoundingBox() ); };
auto fill_lambda = [&]( std::pair<ZONE*, PCB_LAYER_ID> aFillItem ) -> int { PCB_LAYER_ID layer = aFillItem.second; ZONE* zone = aFillItem.first; bool canFill = true;
// Check for any fill dependencies. If our zone needs to be clipped by
// another zone then we can't fill until that zone is filled.
for( ZONE* otherZone : aZones ) { if( otherZone == zone ) continue;
if( check_fill_dependency( zone, layer, otherZone ) ) { canFill = false; break; } }
if( m_progressReporter && m_progressReporter->IsCancelled() ) return 0;
if( !canFill ) return 0;
// Now we're ready to fill.
std::unique_lock<std::mutex> zoneLock( zone->GetLock(), std::try_to_lock );
if( zoneLock.owns_lock() ) { SHAPE_POLY_SET fillPolys; if( !fillSingleZone( zone, layer, fillPolys ) ) return 0;
zone->SetFilledPolysList( layer, fillPolys ); zone->SetFillFlag( layer, true );
if( m_progressReporter ) m_progressReporter->AdvanceProgress(); }
return 0; };
// Calculate the copper fills (NB: this is multi-threaded)
//
while( !toFill.empty() ) { std::vector<std::future<int>> returns; returns.reserve( toFill.size() );
thread_pool& tp = GetKiCadThreadPool();
for( auto& fillItem : toFill ) returns.emplace_back( tp.submit( fill_lambda, fillItem ) );
for( auto& ret : returns ) { std::future_status status;
do { if( m_progressReporter ) m_progressReporter->KeepRefreshing();
status = ret.wait_for( std::chrono::milliseconds( 100 ) ); } while( status != std::future_status::ready ); }
alg::delete_if( toFill, [&]( const std::pair<ZONE*, PCB_LAYER_ID> pair ) -> bool { return pair.first->GetFillFlag( pair.second ); } );
if( m_progressReporter && m_progressReporter->IsCancelled() ) break; }
// Triangulate the copper fills (NB: this is multi-threaded)
//
m_board->CacheTriangulation( m_progressReporter, aZones );
// Now update the connectivity to check for isolated copper islands
// (NB: FindIsolatedCopperIslands() is multi-threaded)
//
if( m_progressReporter ) { if( m_progressReporter->IsCancelled() ) return false;
m_progressReporter->AdvancePhase(); m_progressReporter->Report( _( "Removing isolated copper islands..." ) ); m_progressReporter->KeepRefreshing(); }
connectivity->SetProgressReporter( m_progressReporter ); connectivity->FindIsolatedCopperIslands( islandsList ); connectivity->SetProgressReporter( nullptr );
if( m_progressReporter && m_progressReporter->IsCancelled() ) return false;
for( ZONE* zone : aZones ) { // Keepout zones are not filled
if( zone->GetIsRuleArea() ) continue;
zone->SetIsFilled( true ); }
// Now remove isolated copper islands according to the isolated islands strategy assigned
// by the user (always, never, below-certain-size).
//
for( CN_ZONE_ISOLATED_ISLAND_LIST& zone : islandsList ) { for( PCB_LAYER_ID layer : zone.m_zone->GetLayerSet().Seq() ) { if( m_debugZoneFiller && LSET::InternalCuMask().Contains( layer ) ) continue;
if( !zone.m_islands.count( layer ) ) continue;
std::vector<int>& islands = zone.m_islands.at( layer );
// The list of polygons to delete must be explored from last to first in list,
// to allow deleting a polygon from list without breaking the remaining of the list
std::sort( islands.begin(), islands.end(), std::greater<int>() );
std::shared_ptr<SHAPE_POLY_SET> poly = zone.m_zone->GetFilledPolysList( layer ); long long int minArea = zone.m_zone->GetMinIslandArea(); ISLAND_REMOVAL_MODE mode = zone.m_zone->GetIslandRemovalMode();
for( int idx : islands ) { SHAPE_LINE_CHAIN& outline = poly->Outline( idx );
if( mode == ISLAND_REMOVAL_MODE::ALWAYS ) poly->DeletePolygonAndTriangulationData( idx, false ); else if ( mode == ISLAND_REMOVAL_MODE::AREA && outline.Area() < minArea ) poly->DeletePolygonAndTriangulationData( idx, false ); else zone.m_zone->SetIsIsland( layer, idx ); }
poly->UpdateTriangulationDataHash(); zone.m_zone->CalculateFilledArea();
if( m_progressReporter && m_progressReporter->IsCancelled() ) return false; } }
// Now remove islands which are either outside the board edge or fail to meet the minimum
// area requirements
//
for( ZONE* zone : aZones ) { LSET zoneCopperLayers = zone->GetLayerSet() & LSET::AllCuMask( MAX_CU_LAYERS );
// Min-thickness is the web thickness. On the other hand, a blob min-thickness by
// min-thickness is not useful. Since there's no obvious definition of web vs. blob, we
// arbitrarily choose "at least 2X the area".
double minArea = (double) zone->GetMinThickness() * zone->GetMinThickness() * 2;
for( PCB_LAYER_ID layer : zoneCopperLayers.Seq() ) { if( m_debugZoneFiller && LSET::InternalCuMask().Contains( layer ) ) continue;
std::shared_ptr<SHAPE_POLY_SET> poly = zone->GetFilledPolysList( layer );
for( int ii = poly->OutlineCount() - 1; ii >= 0; ii-- ) { std::vector<SHAPE_LINE_CHAIN>& island = poly->Polygon( ii );
if( island.empty() || !m_boardOutline.Contains( island.front().CPoint( 0 ) ) || island.front().Area() < minArea ) { poly->DeletePolygonAndTriangulationData( ii, false ); } }
poly->UpdateTriangulationDataHash(); zone->CalculateFilledArea();
if( m_progressReporter && m_progressReporter->IsCancelled() ) return false; } }
if( aCheck ) { bool outOfDate = false;
for( ZONE* zone : aZones ) { // Keepout zones are not filled
if( zone->GetIsRuleArea() ) continue;
for( PCB_LAYER_ID layer : zone->GetLayerSet().Seq() ) { zone->BuildHashValue( layer );
if( oldFillHashes[ { zone, layer } ] != zone->GetHashValue( layer ) ) outOfDate = true; } }
if( outOfDate ) { KIDIALOG dlg( aParent, _( "Zone fills are out-of-date. Refill?" ), _( "Confirmation" ), wxOK | wxCANCEL | wxICON_WARNING ); dlg.SetOKCancelLabels( _( "Refill" ), _( "Continue without Refill" ) ); dlg.DoNotShowCheckbox( __FILE__, __LINE__ );
if( dlg.ShowModal() == wxID_CANCEL ) return false; } else { // No need to commit something that hasn't changed (and committing will set
// the modified flag).
return false; } }
if( m_progressReporter ) { if( m_progressReporter->IsCancelled() ) return false;
m_progressReporter->AdvancePhase(); m_progressReporter->KeepRefreshing(); }
return true; }
/**
* Add a knockout for a pad. The knockout is 'aGap' larger than the pad (which might be * either the thermal clearance or the electrical clearance). */ void ZONE_FILLER::addKnockout( PAD* aPad, PCB_LAYER_ID aLayer, int aGap, SHAPE_POLY_SET& aHoles ) { if( aPad->GetShape() == PAD_SHAPE::CUSTOM ) { SHAPE_POLY_SET poly; aPad->TransformShapeWithClearanceToPolygon( poly, aLayer, aGap, m_maxError, ERROR_OUTSIDE );
// the pad shape in zone can be its convex hull or the shape itself
if( aPad->GetCustomShapeInZoneOpt() == CUST_PAD_SHAPE_IN_ZONE_CONVEXHULL ) { std::vector<VECTOR2I> convex_hull; BuildConvexHull( convex_hull, poly );
aHoles.NewOutline();
for( const VECTOR2I& pt : convex_hull ) aHoles.Append( pt ); } else aHoles.Append( poly ); } else { aPad->TransformShapeWithClearanceToPolygon( aHoles, aLayer, aGap, m_maxError, ERROR_OUTSIDE ); } }
/**
* Add a knockout for a pad's hole. */ void ZONE_FILLER::addHoleKnockout( PAD* aPad, int aGap, SHAPE_POLY_SET& aHoles ) { // Note: drill size represents finish size, which means the actual hole size is the plating
// thickness larger.
if( aPad->GetAttribute() == PAD_ATTRIB::PTH ) aGap += aPad->GetBoard()->GetDesignSettings().GetHolePlatingThickness();
aPad->TransformHoleWithClearanceToPolygon( aHoles, aGap, m_maxError, ERROR_OUTSIDE ); }
/**
* Add a knockout for a graphic item. The knockout is 'aGap' larger than the item (which * might be either the electrical clearance or the board edge clearance). */ void ZONE_FILLER::addKnockout( BOARD_ITEM* aItem, PCB_LAYER_ID aLayer, int aGap, bool aIgnoreLineWidth, SHAPE_POLY_SET& aHoles ) { EDA_TEXT* text = nullptr;
switch( aItem->Type() ) { case PCB_TEXT_T: text = static_cast<PCB_TEXT*>( aItem ); break; case PCB_TEXTBOX_T: text = static_cast<PCB_TEXTBOX*>( aItem ); break; case PCB_FP_TEXT_T: text = static_cast<FP_TEXT*>( aItem ); break; case PCB_FP_TEXTBOX_T: text = static_cast<FP_TEXTBOX*>( aItem ); break; default: break; }
if( text ) aGap += GetKnockoutTextMargin( text->GetTextSize(), text->GetTextThickness() );
switch( aItem->Type() ) { case PCB_SHAPE_T: case PCB_TEXT_T: case PCB_TEXTBOX_T: case PCB_FP_TEXTBOX_T: case PCB_FP_SHAPE_T: case PCB_TARGET_T: aItem->TransformShapeWithClearanceToPolygon( aHoles, aLayer, aGap, m_maxError, ERROR_OUTSIDE, aIgnoreLineWidth ); break;
case PCB_FP_TEXT_T: if( text->IsVisible() ) { aItem->TransformShapeWithClearanceToPolygon( aHoles, aLayer, aGap, m_maxError, ERROR_OUTSIDE, aIgnoreLineWidth ); }
break;
default: break; } }
/**
* Removes thermal reliefs from the shape for any pads connected to the zone. Does NOT add * in spokes, which must be done later. */ void ZONE_FILLER::knockoutThermalReliefs( const ZONE* aZone, PCB_LAYER_ID aLayer, SHAPE_POLY_SET& aFill, std::vector<PAD*>& aThermalConnectionPads, std::vector<PAD*>& aNoConnectionPads ) { BOARD_DESIGN_SETTINGS& bds = m_board->GetDesignSettings(); ZONE_CONNECTION connection; DRC_CONSTRAINT constraint; int padClearance; int holeClearance; SHAPE_POLY_SET holes;
for( FOOTPRINT* footprint : m_board->Footprints() ) { for( PAD* pad : footprint->Pads() ) { EDA_RECT padBBox = pad->GetBoundingBox(); padBBox.Inflate( m_worstClearance );
if( !padBBox.Intersects( aZone->GetCachedBoundingBox() ) ) continue;
if( pad->GetNetCode() != aZone->GetNetCode() || pad->GetNetCode() <= 0 ) { // collect these for knockout in buildCopperItemClearances()
aNoConnectionPads.push_back( pad ); continue; }
if( aZone->IsTeardropArea() ) { connection = ZONE_CONNECTION::FULL; } else { constraint = bds.m_DRCEngine->EvalZoneConnection( pad, aZone, aLayer ); connection = constraint.m_ZoneConnection; }
switch( connection ) { case ZONE_CONNECTION::THERMAL: constraint = bds.m_DRCEngine->EvalRules( THERMAL_RELIEF_GAP_CONSTRAINT, pad, aZone, aLayer ); padClearance = constraint.GetValue().Min(); holeClearance = padClearance;
if( pad->FlashLayer( aLayer ) ) aThermalConnectionPads.push_back( pad );
break;
case ZONE_CONNECTION::NONE: constraint = bds.m_DRCEngine->EvalRules( PHYSICAL_CLEARANCE_CONSTRAINT, pad, aZone, aLayer );
if( constraint.GetValue().Min() > aZone->GetLocalClearance() ) padClearance = constraint.GetValue().Min(); else padClearance = aZone->GetLocalClearance();
constraint = bds.m_DRCEngine->EvalRules( PHYSICAL_HOLE_CLEARANCE_CONSTRAINT, pad, aZone, aLayer );
if( constraint.GetValue().Min() > padClearance ) holeClearance = constraint.GetValue().Min(); else holeClearance = padClearance;
break;
default: // No knockout
continue; }
if( pad->FlashLayer( aLayer ) ) { addKnockout( pad, aLayer, padClearance, holes ); } else if( pad->GetDrillSize().x > 0 ) { // Note: drill size represents finish size, which means the actual holes size
// is the plating thickness larger.
holeClearance += pad->GetBoard()->GetDesignSettings().GetHolePlatingThickness();
pad->TransformHoleWithClearanceToPolygon( holes, holeClearance, m_maxError, ERROR_OUTSIDE ); } } }
aFill.BooleanSubtract( holes, SHAPE_POLY_SET::PM_FAST ); }
/**
* Removes clearance from the shape for copper items which share the zone's layer but are * not connected to it. */ void ZONE_FILLER::buildCopperItemClearances( const ZONE* aZone, PCB_LAYER_ID aLayer, const std::vector<PAD*> aNoConnectionPads, SHAPE_POLY_SET& aHoles ) { BOARD_DESIGN_SETTINGS& bds = m_board->GetDesignSettings(); long ticker = 0;
auto checkForCancel = [&ticker]( PROGRESS_REPORTER* aReporter ) -> bool { return aReporter && ( ticker++ % 50 ) == 0 && aReporter->IsCancelled(); };
// A small extra clearance to be sure actual track clearances are not smaller than
// requested clearance due to many approximations in calculations, like arc to segment
// approx, rounding issues, etc.
EDA_RECT zone_boundingbox = aZone->GetCachedBoundingBox(); int extra_margin = Millimeter2iu( ADVANCED_CFG::GetCfg().m_ExtraClearance );
// Items outside the zone bounding box are skipped, so it needs to be inflated by the
// largest clearance value found in the netclasses and rules
zone_boundingbox.Inflate( m_worstClearance + extra_margin );
auto evalRulesForItems = [&bds]( DRC_CONSTRAINT_T aConstraint, const BOARD_ITEM* a, const BOARD_ITEM* b, PCB_LAYER_ID aEvalLayer ) -> int { DRC_CONSTRAINT c = bds.m_DRCEngine->EvalRules( aConstraint, a, b, aEvalLayer ); return c.GetValue().Min(); };
// Add non-connected pad clearances
//
auto knockoutPadClearance = [&]( PAD* aPad ) { int gap = evalRulesForItems( PHYSICAL_CLEARANCE_CONSTRAINT, aZone, aPad, aLayer ); bool hasHole = aPad->GetDrillSize().x > 0; bool flashLayer = aPad->FlashLayer( aLayer ); bool platedHole = hasHole && aPad->GetAttribute() == PAD_ATTRIB::PTH;
if( flashLayer || platedHole ) { gap = std::max( gap, evalRulesForItems( CLEARANCE_CONSTRAINT, aZone, aPad, aLayer ) ); }
if( flashLayer && gap > 0 ) addKnockout( aPad, aLayer, gap + extra_margin, aHoles );
if( hasHole ) { gap = std::max( gap, evalRulesForItems( PHYSICAL_HOLE_CLEARANCE_CONSTRAINT, aZone, aPad, aLayer ) );
gap = std::max( gap, evalRulesForItems( HOLE_CLEARANCE_CONSTRAINT, aZone, aPad, aLayer ) );
if( gap > 0 ) addHoleKnockout( aPad, gap + extra_margin, aHoles ); } };
for( PAD* pad : aNoConnectionPads ) { if( checkForCancel( m_progressReporter ) ) return;
knockoutPadClearance( pad ); }
// Add non-connected track clearances
//
auto knockoutTrackClearance = [&]( PCB_TRACK* aTrack ) { if( aTrack->GetBoundingBox().Intersects( zone_boundingbox ) ) { bool sameNet = aTrack->GetNetCode() == aZone->GetNetCode() && aZone->GetNetCode() != 0;
int gap = evalRulesForItems( PHYSICAL_CLEARANCE_CONSTRAINT, aZone, aTrack, aLayer );
if( !sameNet ) { gap = std::max( gap, evalRulesForItems( CLEARANCE_CONSTRAINT, aZone, aTrack, aLayer ) ); }
if( aTrack->Type() == PCB_VIA_T ) { PCB_VIA* via = static_cast<PCB_VIA*>( aTrack );
if( via->FlashLayer( aLayer ) && gap > 0 ) { via->TransformShapeWithClearanceToPolygon( aHoles, aLayer, gap + extra_margin, m_maxError, ERROR_OUTSIDE ); }
gap = std::max( gap, evalRulesForItems( PHYSICAL_HOLE_CLEARANCE_CONSTRAINT, aZone, via, aLayer ) );
if( !sameNet ) { gap = std::max( gap, evalRulesForItems( HOLE_CLEARANCE_CONSTRAINT, aZone, via, aLayer ) ); }
if( gap > 0 ) { int radius = via->GetDrillValue() / 2 + bds.GetHolePlatingThickness();
TransformCircleToPolygon( aHoles, via->GetPosition(), radius + gap + extra_margin, m_maxError, ERROR_OUTSIDE ); } } else { if( gap > 0 ) { aTrack->TransformShapeWithClearanceToPolygon( aHoles, aLayer, gap + extra_margin, m_maxError, ERROR_OUTSIDE ); } } } };
for( PCB_TRACK* track : m_board->Tracks() ) { if( !track->IsOnLayer( aLayer ) ) continue;
if( checkForCancel( m_progressReporter ) ) return;
knockoutTrackClearance( track ); }
// Add graphic item clearances. They are by definition unconnected, and have no clearance
// definitions of their own.
//
auto knockoutGraphicClearance = [&]( BOARD_ITEM* aItem ) { // A item on the Edge_Cuts or Margin is always seen as on any layer:
if( aItem->IsOnLayer( aLayer ) || aItem->IsOnLayer( Edge_Cuts ) || aItem->IsOnLayer( Margin ) ) { if( aItem->GetBoundingBox().Intersects( zone_boundingbox ) ) { bool ignoreLineWidths = false; int gap = evalRulesForItems( PHYSICAL_CLEARANCE_CONSTRAINT, aZone, aItem, aLayer );
if( aItem->IsOnLayer( aLayer ) ) { gap = std::max( gap, evalRulesForItems( CLEARANCE_CONSTRAINT, aZone, aItem, aLayer ) ); } else if( aItem->IsOnLayer( Edge_Cuts ) ) { gap = std::max( gap, evalRulesForItems( EDGE_CLEARANCE_CONSTRAINT, aZone, aItem, Edge_Cuts ) ); ignoreLineWidths = true; } else if( aItem->IsOnLayer( Margin ) ) { gap = std::max( gap, evalRulesForItems( EDGE_CLEARANCE_CONSTRAINT, aZone, aItem, Margin ) ); }
addKnockout( aItem, aLayer, gap + extra_margin, ignoreLineWidths, aHoles ); } } };
for( FOOTPRINT* footprint : m_board->Footprints() ) { bool skipFootprint = false;
knockoutGraphicClearance( &footprint->Reference() ); knockoutGraphicClearance( &footprint->Value() );
// Don't knock out holes in zones that share a net with a nettie footprint
if( footprint->IsNetTie() ) { for( PAD* pad : footprint->Pads() ) { if( aZone->GetNetCode() == pad->GetNetCode() ) { skipFootprint = true; break; } } }
if( skipFootprint ) continue;
for( BOARD_ITEM* item : footprint->GraphicalItems() ) { if( checkForCancel( m_progressReporter ) ) return;
knockoutGraphicClearance( item ); } }
for( BOARD_ITEM* item : m_board->Drawings() ) { if( checkForCancel( m_progressReporter ) ) return;
knockoutGraphicClearance( item ); }
// Add non-connected zone clearances
//
auto knockoutZoneClearance = [&]( ZONE* aKnockout ) { // If the zones share no common layers
if( !aKnockout->GetLayerSet().test( aLayer ) ) return;
if( aKnockout->GetCachedBoundingBox().Intersects( zone_boundingbox ) ) { if( aKnockout->GetIsRuleArea() ) { // Keepouts use outline with no clearance
aKnockout->TransformSmoothedOutlineToPolygon( aHoles, 0, m_maxError, ERROR_OUTSIDE, nullptr ); } else { int gap = evalRulesForItems( PHYSICAL_CLEARANCE_CONSTRAINT, aZone, aKnockout, aLayer );
gap = std::max( gap, evalRulesForItems( CLEARANCE_CONSTRAINT, aZone, aKnockout, aLayer ) );
SHAPE_POLY_SET poly; aKnockout->TransformShapeWithClearanceToPolygon( poly, aLayer, gap + extra_margin, m_maxError, ERROR_OUTSIDE ); aHoles.Append( poly ); } } };
for( ZONE* otherZone : m_board->Zones() ) { if( checkForCancel( m_progressReporter ) ) return;
if( otherZone->GetIsRuleArea() ) { if( otherZone->GetDoNotAllowCopperPour() && !aZone->IsTeardropArea() ) knockoutZoneClearance( otherZone ); } else if( otherZone->HigherPriority( aZone ) ) { if( !otherZone->SameNet( aZone ) ) knockoutZoneClearance( otherZone ); } }
for( FOOTPRINT* footprint : m_board->Footprints() ) { for( ZONE* otherZone : footprint->Zones() ) { if( checkForCancel( m_progressReporter ) ) return;
if( otherZone->GetIsRuleArea() ) { if( otherZone->GetDoNotAllowCopperPour() && !aZone->IsTeardropArea() ) knockoutZoneClearance( otherZone ); } else if( otherZone->HigherPriority( aZone ) ) { if( !otherZone->SameNet( aZone ) ) knockoutZoneClearance( otherZone ); } } }
aHoles.Simplify( SHAPE_POLY_SET::PM_FAST ); }
/**
* Removes the outlines of higher-proirity zones with the same net. These zones should be * in charge of the fill parameters within their own outlines. */ void ZONE_FILLER::subtractHigherPriorityZones( const ZONE* aZone, PCB_LAYER_ID aLayer, SHAPE_POLY_SET& aRawFill ) { auto knockoutZoneOutline = [&]( ZONE* aKnockout ) { // If the zones share no common layers
if( !aKnockout->GetLayerSet().test( aLayer ) ) return;
if( aKnockout->GetCachedBoundingBox().Intersects( aZone->GetCachedBoundingBox() ) ) { // Processing of arc shapes in zones is not yet supported because Clipper
// can't do boolean operations on them. The poly outline must be converted to
// segments first.
SHAPE_POLY_SET outline = aKnockout->Outline()->CloneDropTriangulation(); outline.ClearArcs();
aRawFill.BooleanSubtract( outline, SHAPE_POLY_SET::PM_FAST ); } };
for( ZONE* otherZone : m_board->Zones() ) { if( otherZone->SameNet( aZone ) && otherZone->HigherPriority( aZone ) ) { // Do not remove teardrop area: it is not useful and not good
if( !otherZone->IsTeardropArea() ) knockoutZoneOutline( otherZone ); } }
for( FOOTPRINT* footprint : m_board->Footprints() ) { for( ZONE* otherZone : footprint->Zones() ) { if( otherZone->SameNet( aZone ) && otherZone->HigherPriority( aZone ) ) { // Do not remove teardrop area: it is not useful and not good
if( !otherZone->IsTeardropArea() ) knockoutZoneOutline( otherZone ); } } } }
#define DUMP_POLYS_TO_COPPER_LAYER( a, b, c ) \
{ if( m_debugZoneFiller && aDebugLayer == b ) \ { \ m_board->SetLayerName( b, c ); \ SHAPE_POLY_SET d = a; \ d.Simplify( SHAPE_POLY_SET::PM_STRICTLY_SIMPLE ); \ d.Fracture( SHAPE_POLY_SET::PM_STRICTLY_SIMPLE ); \ aFillPolys = d; \ return false; \ } \ }
/**
* 1 - Creates the main zone outline using a correction to shrink the resulting area by * m_ZoneMinThickness / 2. The result is areas with a margin of m_ZoneMinThickness / 2 * so that when drawing outline with segments having a thickness of m_ZoneMinThickness the * outlines will match exactly the initial outlines * 2 - Knocks out thermal reliefs around thermally-connected pads * 3 - Builds a set of thermal spoke for the whole zone * 4 - Knocks out unconnected copper items, deleting any affected spokes * 5 - Removes unconnected copper islands, deleting any affected spokes * 6 - Adds in the remaining spokes */ bool ZONE_FILLER::fillCopperZone( const ZONE* aZone, PCB_LAYER_ID aLayer, PCB_LAYER_ID aDebugLayer, const SHAPE_POLY_SET& aSmoothedOutline, const SHAPE_POLY_SET& aMaxExtents, SHAPE_POLY_SET& aFillPolys ) { m_maxError = m_board->GetDesignSettings().m_MaxError;
// Features which are min_width should survive pruning; features that are *less* than
// min_width should not. Therefore we subtract epsilon from the min_width when
// deflating/inflating.
int half_min_width = aZone->GetMinThickness() / 2; int epsilon = Millimeter2iu( 0.001 ); int numSegs = GetArcToSegmentCount( half_min_width, m_maxError, FULL_CIRCLE );
// Solid polygons are deflated and inflated during calculations. Deflating doesn't cause
// issues, but inflate is tricky as it can create excessively long and narrow spikes for
// acute angles.
// ALLOW_ACUTE_CORNERS cannot be used due to the spike problem.
// CHAMFER_ACUTE_CORNERS is tempting, but can still produce spikes in some unusual
// circumstances (https://gitlab.com/kicad/code/kicad/-/issues/5581).
// It's unclear if ROUND_ACUTE_CORNERS would have the same issues, but is currently avoided
// as a "less-safe" option.
// ROUND_ALL_CORNERS produces the uniformly nicest shapes, but also a lot of segments.
// CHAMFER_ALL_CORNERS improves the segment count.
SHAPE_POLY_SET::CORNER_STRATEGY fastCornerStrategy = SHAPE_POLY_SET::CHAMFER_ALL_CORNERS; SHAPE_POLY_SET::CORNER_STRATEGY cornerStrategy = SHAPE_POLY_SET::ROUND_ALL_CORNERS;
std::vector<PAD*> thermalConnectionPads; std::vector<PAD*> noConnectionPads; std::deque<SHAPE_LINE_CHAIN> thermalSpokes; SHAPE_POLY_SET clearanceHoles;
aFillPolys = aSmoothedOutline; DUMP_POLYS_TO_COPPER_LAYER( aFillPolys, In1_Cu, wxT( "smoothed-outline" ) );
if( m_progressReporter && m_progressReporter->IsCancelled() ) return false;
/* -------------------------------------------------------------------------------------
* Knockout thermal reliefs. */
knockoutThermalReliefs( aZone, aLayer, aFillPolys, thermalConnectionPads, noConnectionPads ); DUMP_POLYS_TO_COPPER_LAYER( aFillPolys, In2_Cu, wxT( "minus-thermal-reliefs" ) );
if( m_progressReporter && m_progressReporter->IsCancelled() ) return false;
/* -------------------------------------------------------------------------------------
* Knockout electrical clearances. */
buildCopperItemClearances( aZone, aLayer, noConnectionPads, clearanceHoles ); DUMP_POLYS_TO_COPPER_LAYER( clearanceHoles, In3_Cu, wxT( "clearance-holes" ) );
if( m_progressReporter && m_progressReporter->IsCancelled() ) return false;
/* -------------------------------------------------------------------------------------
* Add thermal relief spokes. */
buildThermalSpokes( aZone, aLayer, thermalConnectionPads, thermalSpokes );
if( m_progressReporter && m_progressReporter->IsCancelled() ) return false;
// Create a temporary zone that we can hit-test spoke-ends against. It's only temporary
// because the "real" subtract-clearance-holes has to be done after the spokes are added.
static const bool USE_BBOX_CACHES = true; SHAPE_POLY_SET testAreas = aFillPolys.CloneDropTriangulation(); testAreas.BooleanSubtract( clearanceHoles, SHAPE_POLY_SET::PM_FAST ); DUMP_POLYS_TO_COPPER_LAYER( testAreas, In4_Cu, wxT( "minus-clearance-holes" ) );
// Prune features that don't meet minimum-width criteria
if( half_min_width - epsilon > epsilon ) { testAreas.Deflate( half_min_width - epsilon, numSegs, fastCornerStrategy ); DUMP_POLYS_TO_COPPER_LAYER( testAreas, In5_Cu, wxT( "spoke-test-deflated" ) );
testAreas.Inflate( half_min_width - epsilon, numSegs, fastCornerStrategy ); DUMP_POLYS_TO_COPPER_LAYER( testAreas, In6_Cu, wxT( "spoke-test-reinflated" ) ); }
if( m_progressReporter && m_progressReporter->IsCancelled() ) return false;
// Spoke-end-testing is hugely expensive so we generate cached bounding-boxes to speed
// things up a bit.
testAreas.BuildBBoxCaches(); int interval = 0;
SHAPE_POLY_SET debugSpokes;
for( const SHAPE_LINE_CHAIN& spoke : thermalSpokes ) { const VECTOR2I& testPt = spoke.CPoint( 3 );
// Hit-test against zone body
if( testAreas.Contains( testPt, -1, 1, USE_BBOX_CACHES ) ) { if( m_debugZoneFiller ) debugSpokes.AddOutline( spoke );
aFillPolys.AddOutline( spoke ); continue; }
if( interval++ > 400 ) { if( m_progressReporter && m_progressReporter->IsCancelled() ) return false;
interval = 0; }
// Hit-test against other spokes
for( const SHAPE_LINE_CHAIN& other : thermalSpokes ) { if( &other != &spoke && other.PointInside( testPt, 1, USE_BBOX_CACHES ) ) { if( m_debugZoneFiller ) debugSpokes.AddOutline( spoke );
aFillPolys.AddOutline( spoke ); break; } } }
DUMP_POLYS_TO_COPPER_LAYER( debugSpokes, In7_Cu, wxT( "spokes" ) );
if( m_progressReporter && m_progressReporter->IsCancelled() ) return false;
aFillPolys.BooleanSubtract( clearanceHoles, SHAPE_POLY_SET::PM_FAST ); DUMP_POLYS_TO_COPPER_LAYER( aFillPolys, In8_Cu, wxT( "after-spoke-trimming" ) );
/* -------------------------------------------------------------------------------------
* Prune features that don't meet minimum-width criteria */
if( half_min_width - epsilon > epsilon ) aFillPolys.Deflate( half_min_width - epsilon, numSegs, cornerStrategy );
// Min-thickness is the web thickness. On the other hand, a blob min-thickness by
// min-thickness is not useful. Since there's no obvious definition of web vs. blob, we
// arbitrarily choose "at least 1/2 min-thickness on one axis".
for( int ii = aFillPolys.OutlineCount() - 1; ii >= 0; ii-- ) { std::vector<SHAPE_LINE_CHAIN>& island = aFillPolys.Polygon( ii ); EDA_RECT islandExtents = island.front().BBox();
if( islandExtents.GetSizeMax() < half_min_width ) aFillPolys.DeletePolygon( ii ); }
DUMP_POLYS_TO_COPPER_LAYER( aFillPolys, In9_Cu, wxT( "deflated" ) );
if( m_progressReporter && m_progressReporter->IsCancelled() ) return false;
/* -------------------------------------------------------------------------------------
* Process the hatch pattern (note that we do this while deflated) */
if( aZone->GetFillMode() == ZONE_FILL_MODE::HATCH_PATTERN ) { if( !addHatchFillTypeOnZone( aZone, aLayer, aDebugLayer, aFillPolys ) ) return false; }
if( m_progressReporter && m_progressReporter->IsCancelled() ) return false;
/* -------------------------------------------------------------------------------------
* Finish minimum-width pruning by re-inflating */
if( half_min_width - epsilon > epsilon ) aFillPolys.Inflate( half_min_width - epsilon, numSegs, cornerStrategy );
DUMP_POLYS_TO_COPPER_LAYER( aFillPolys, In15_Cu, wxT( "after-reinflating" ) );
/* -------------------------------------------------------------------------------------
* Ensure additive changes (thermal stubs and particularly inflating acute corners) do not * add copper outside the zone boundary or inside the clearance holes */
aFillPolys.BooleanIntersection( aMaxExtents, SHAPE_POLY_SET::PM_FAST ); DUMP_POLYS_TO_COPPER_LAYER( aFillPolys, In16_Cu, wxT( "after-trim-to-outline" ) ); aFillPolys.BooleanSubtract( clearanceHoles, SHAPE_POLY_SET::PM_FAST ); DUMP_POLYS_TO_COPPER_LAYER( aFillPolys, In17_Cu, wxT( "after-trim-to-clearance-holes" ) );
/* -------------------------------------------------------------------------------------
* Lastly give any same-net but higher-priority zones control over their own area. */
subtractHigherPriorityZones( aZone, aLayer, aFillPolys ); DUMP_POLYS_TO_COPPER_LAYER( aFillPolys, In18_Cu, wxT( "minus-higher-priority-zones" ) );
aFillPolys.Fracture( SHAPE_POLY_SET::PM_FAST ); return true; }
bool ZONE_FILLER::fillNonCopperZone( const ZONE* aZone, PCB_LAYER_ID aLayer, const SHAPE_POLY_SET& aSmoothedOutline, SHAPE_POLY_SET& aFillPolys ) { BOARD_DESIGN_SETTINGS& bds = m_board->GetDesignSettings(); EDA_RECT zone_boundingbox = aZone->GetCachedBoundingBox(); SHAPE_POLY_SET clearanceHoles; long ticker = 0;
auto checkForCancel = [&ticker]( PROGRESS_REPORTER* aReporter ) -> bool { return aReporter && ( ticker++ % 50 ) == 0 && aReporter->IsCancelled(); };
auto knockoutGraphicClearance = [&]( BOARD_ITEM* aItem ) { if( aItem->IsKnockout() && aItem->IsOnLayer( aLayer ) && aItem->GetBoundingBox().Intersects( zone_boundingbox ) ) { DRC_CONSTRAINT cc = bds.m_DRCEngine->EvalRules( PHYSICAL_CLEARANCE_CONSTRAINT, aZone, aItem, aLayer );
addKnockout( aItem, aLayer, cc.GetValue().Min(), false, clearanceHoles ); } };
for( FOOTPRINT* footprint : m_board->Footprints() ) { if( checkForCancel( m_progressReporter ) ) return false;
knockoutGraphicClearance( &footprint->Reference() ); knockoutGraphicClearance( &footprint->Value() );
for( BOARD_ITEM* item : footprint->GraphicalItems() ) knockoutGraphicClearance( item ); }
for( BOARD_ITEM* item : m_board->Drawings() ) { if( checkForCancel( m_progressReporter ) ) return false;
knockoutGraphicClearance( item ); }
aFillPolys = aSmoothedOutline; aFillPolys.BooleanSubtract( clearanceHoles, SHAPE_POLY_SET::PM_FAST );
// Features which are min_width should survive pruning; features that are *less* than
// min_width should not. Therefore we subtract epsilon from the min_width when
// deflating/inflating.
int half_min_width = aZone->GetMinThickness() / 2; int epsilon = Millimeter2iu( 0.001 ); int numSegs = GetArcToSegmentCount( half_min_width, m_maxError, FULL_CIRCLE );
aFillPolys.Deflate( half_min_width - epsilon, numSegs );
// Remove the non filled areas due to the hatch pattern
if( aZone->GetFillMode() == ZONE_FILL_MODE::HATCH_PATTERN ) { if( !addHatchFillTypeOnZone( aZone, aLayer, aLayer, aFillPolys ) ) return false; }
// Re-inflate after pruning of areas that don't meet minimum-width criteria
if( half_min_width - epsilon > epsilon ) aFillPolys.Inflate( half_min_width - epsilon, numSegs );
aFillPolys.Fracture( SHAPE_POLY_SET::PM_STRICTLY_SIMPLE ); return true; }
/*
* Build the filled solid areas data from real outlines (stored in m_Poly) * The solid areas can be more than one on copper layers, and do not have holes * ( holes are linked by overlapping segments to the main outline) */ bool ZONE_FILLER::fillSingleZone( ZONE* aZone, PCB_LAYER_ID aLayer, SHAPE_POLY_SET& aFillPolys ) { SHAPE_POLY_SET* boardOutline = m_brdOutlinesValid ? &m_boardOutline : nullptr; SHAPE_POLY_SET maxExtents; SHAPE_POLY_SET smoothedPoly; PCB_LAYER_ID debugLayer = UNDEFINED_LAYER;
if( m_debugZoneFiller && LSET::InternalCuMask().Contains( aLayer ) ) { debugLayer = aLayer; aLayer = F_Cu; }
if ( !aZone->BuildSmoothedPoly( maxExtents, aLayer, boardOutline, &smoothedPoly ) ) return false;
if( m_progressReporter && m_progressReporter->IsCancelled() ) return false;
if( aZone->IsOnCopperLayer() ) { if( fillCopperZone( aZone, aLayer, debugLayer, smoothedPoly, maxExtents, aFillPolys ) ) aZone->SetNeedRefill( false ); } else { if( fillNonCopperZone( aZone, aLayer, smoothedPoly, aFillPolys ) ) aZone->SetNeedRefill( false ); }
return true; }
/**
* Function buildThermalSpokes */ void ZONE_FILLER::buildThermalSpokes( const ZONE* aZone, PCB_LAYER_ID aLayer, const std::vector<PAD*>& aSpokedPadsList, std::deque<SHAPE_LINE_CHAIN>& aSpokesList ) { BOARD_DESIGN_SETTINGS& bds = m_board->GetDesignSettings(); EDA_RECT zoneBB = aZone->GetCachedBoundingBox(); DRC_CONSTRAINT constraint;
zoneBB.Inflate( std::max( bds.GetBiggestClearanceValue(), aZone->GetLocalClearance() ) );
// Is a point on the boundary of the polygon inside or outside? This small epsilon lets
// us avoid the question.
int epsilon = KiROUND( IU_PER_MM * 0.04 ); // about 1.5 mil
for( PAD* pad : aSpokedPadsList ) { // We currently only connect to pads, not pad holes
if( !pad->IsOnLayer( aLayer ) ) continue;
constraint = bds.m_DRCEngine->EvalRules( THERMAL_RELIEF_GAP_CONSTRAINT, pad, aZone, aLayer ); int thermalReliefGap = constraint.GetValue().Min();
constraint = bds.m_DRCEngine->EvalRules( THERMAL_SPOKE_WIDTH_CONSTRAINT, pad, aZone, aLayer ); int spoke_w = constraint.GetValue().Opt();
// Spoke width should ideally be smaller than the pad minor axis.
// Otherwise the thermal shape is not really a thermal relief,
// and the algo to count the actual number of spokes can fail
int spoke_max_allowed_w = std::min( pad->GetSize().x, pad->GetSize().y );
spoke_w = std::max( spoke_w, constraint.Value().Min() ); spoke_w = std::min( spoke_w, constraint.Value().Max() );
// ensure the spoke width is smaller than the pad minor size
spoke_w = std::min( spoke_w, spoke_max_allowed_w );
// Cannot create stubs having a width < zone min thickness
if( spoke_w < aZone->GetMinThickness() ) continue;
int spoke_half_w = spoke_w / 2;
// Quick test here to possibly save us some work
BOX2I itemBB = pad->GetBoundingBox(); itemBB.Inflate( thermalReliefGap + epsilon );
if( !( itemBB.Intersects( zoneBB ) ) ) continue;
// Thermal spokes consist of segments from the pad center to points just outside
// the thermal relief.
VECTOR2I shapePos = pad->ShapePos(); EDA_ANGLE spokesAngle = pad->GetThermalSpokeAngle();
// We use the bounding-box to lay out the spokes, but for this to work the bounding
// box has to be built at the same rotation as the spokes. We have to use a dummy pad
// to avoid dirtying the cached shapes.
PAD dummy_pad( *pad ); dummy_pad.SetOrientation( spokesAngle );
// Spokes are from center of pad, not from hole
dummy_pad.SetPosition( -1 * pad->GetOffset() );
BOX2I reliefBB = dummy_pad.GetBoundingBox(); reliefBB.Inflate( thermalReliefGap + epsilon );
for( int i = 0; i < 4; i++ ) { SHAPE_LINE_CHAIN spoke; switch( i ) { case 0: // lower stub
spoke.Append( +spoke_half_w, -spoke_half_w ); spoke.Append( -spoke_half_w, -spoke_half_w ); spoke.Append( -spoke_half_w, reliefBB.GetBottom() ); spoke.Append( 0, reliefBB.GetBottom() ); // test pt
spoke.Append( +spoke_half_w, reliefBB.GetBottom() ); break;
case 1: // upper stub
spoke.Append( +spoke_half_w, spoke_half_w ); spoke.Append( -spoke_half_w, spoke_half_w ); spoke.Append( -spoke_half_w, reliefBB.GetTop() ); spoke.Append( 0, reliefBB.GetTop() ); // test pt
spoke.Append( +spoke_half_w, reliefBB.GetTop() ); break;
case 2: // right stub
spoke.Append( -spoke_half_w, spoke_half_w ); spoke.Append( -spoke_half_w, -spoke_half_w ); spoke.Append( reliefBB.GetRight(), -spoke_half_w ); spoke.Append( reliefBB.GetRight(), 0 ); // test pt
spoke.Append( reliefBB.GetRight(), spoke_half_w ); break;
case 3: // left stub
spoke.Append( spoke_half_w, spoke_half_w ); spoke.Append( spoke_half_w, -spoke_half_w ); spoke.Append( reliefBB.GetLeft(), -spoke_half_w ); spoke.Append( reliefBB.GetLeft(), 0 ); // test pt
spoke.Append( reliefBB.GetLeft(), spoke_half_w ); break; }
// Rotate and move the spokes to the right position
spoke.Rotate( pad->GetOrientation() + spokesAngle ); spoke.Move( shapePos );
spoke.SetClosed( true ); spoke.GenerateBBoxCache(); aSpokesList.push_back( std::move( spoke ) ); } } }
bool ZONE_FILLER::addHatchFillTypeOnZone( const ZONE* aZone, PCB_LAYER_ID aLayer, PCB_LAYER_ID aDebugLayer, SHAPE_POLY_SET& aFillPolys ) { // Build grid:
// obviously line thickness must be > zone min thickness.
// It can happens if a board file was edited by hand by a python script
// Use 1 micron margin to be *sure* there is no issue in Gerber files
// (Gbr file unit = 1 or 10 nm) due to some truncation in coordinates or calculations
// This margin also avoid problems due to rounding coordinates in next calculations
// that can create incorrect polygons
int thickness = std::max( aZone->GetHatchThickness(), aZone->GetMinThickness() + Millimeter2iu( 0.001 ) );
int linethickness = thickness - aZone->GetMinThickness(); int gridsize = thickness + aZone->GetHatchGap();
SHAPE_POLY_SET filledPolys = aFillPolys.CloneDropTriangulation(); // Use a area that contains the rotated bbox by orientation, and after rotate the result
// by -orientation.
if( !aZone->GetHatchOrientation().IsZero() ) filledPolys.Rotate( - aZone->GetHatchOrientation() );
BOX2I bbox = filledPolys.BBox( 0 );
// Build hole shape
// the hole size is aZone->GetHatchGap(), but because the outline thickness
// is aZone->GetMinThickness(), the hole shape size must be larger
SHAPE_LINE_CHAIN hole_base; int hole_size = aZone->GetHatchGap() + aZone->GetMinThickness(); VECTOR2I corner( 0, 0 );; hole_base.Append( corner ); corner.x += hole_size; hole_base.Append( corner ); corner.y += hole_size; hole_base.Append( corner ); corner.x = 0; hole_base.Append( corner ); hole_base.SetClosed( true );
// Calculate minimal area of a grid hole.
// All holes smaller than a threshold will be removed
double minimal_hole_area = hole_base.Area() * aZone->GetHatchHoleMinArea();
// Now convert this hole to a smoothed shape:
if( aZone->GetHatchSmoothingLevel() > 0 ) { // the actual size of chamfer, or rounded corner radius is the half size
// of the HatchFillTypeGap scaled by aZone->GetHatchSmoothingValue()
// aZone->GetHatchSmoothingValue() = 1.0 is the max value for the chamfer or the
// radius of corner (radius = half size of the hole)
int smooth_value = KiROUND( aZone->GetHatchGap() * aZone->GetHatchSmoothingValue() / 2 );
// Minimal optimization:
// make smoothing only for reasonable smooth values, to avoid a lot of useless segments
// and if the smooth value is small, use chamfer even if fillet is requested
#define SMOOTH_MIN_VAL_MM 0.02
#define SMOOTH_SMALL_VAL_MM 0.04
if( smooth_value > Millimeter2iu( SMOOTH_MIN_VAL_MM ) ) { SHAPE_POLY_SET smooth_hole; smooth_hole.AddOutline( hole_base ); int smooth_level = aZone->GetHatchSmoothingLevel();
if( smooth_value < Millimeter2iu( SMOOTH_SMALL_VAL_MM ) && smooth_level > 1 ) smooth_level = 1;
// Use a larger smooth_value to compensate the outline tickness
// (chamfer is not visible is smooth value < outline thickess)
smooth_value += aZone->GetMinThickness() / 2;
// smooth_value cannot be bigger than the half size oh the hole:
smooth_value = std::min( smooth_value, aZone->GetHatchGap() / 2 );
// the error to approximate a circle by segments when smoothing corners by a arc
int error_max = std::max( Millimeter2iu( 0.01 ), smooth_value / 20 );
switch( smooth_level ) { case 1: // Chamfer() uses the distance from a corner to create a end point
// for the chamfer.
hole_base = smooth_hole.Chamfer( smooth_value ).Outline( 0 ); break;
default: if( aZone->GetHatchSmoothingLevel() > 2 ) error_max /= 2; // Force better smoothing
hole_base = smooth_hole.Fillet( smooth_value, error_max ).Outline( 0 ); break;
case 0: break; }; } }
// Build holes
SHAPE_POLY_SET holes;
for( int xx = 0; ; xx++ ) { int xpos = xx * gridsize;
if( xpos > bbox.GetWidth() ) break;
for( int yy = 0; ; yy++ ) { int ypos = yy * gridsize;
if( ypos > bbox.GetHeight() ) break;
// Generate hole
SHAPE_LINE_CHAIN hole( hole_base ); hole.Move( VECTOR2I( xpos, ypos ) ); holes.AddOutline( hole ); } }
holes.Move( bbox.GetPosition() );
if( !aZone->GetHatchOrientation().IsZero() ) holes.Rotate( aZone->GetHatchOrientation() );
DUMP_POLYS_TO_COPPER_LAYER( holes, In10_Cu, wxT( "hatch-holes" ) );
int outline_margin = aZone->GetMinThickness() * 1.1;
// Using GetHatchThickness() can look more consistent than GetMinThickness().
if( aZone->GetHatchBorderAlgorithm() && aZone->GetHatchThickness() > outline_margin ) outline_margin = aZone->GetHatchThickness();
// The fill has already been deflated to ensure GetMinThickness() so we just have to
// account for anything beyond that.
SHAPE_POLY_SET deflatedFilledPolys = aFillPolys.CloneDropTriangulation(); deflatedFilledPolys.Deflate( outline_margin - aZone->GetMinThickness(), 16 ); holes.BooleanIntersection( deflatedFilledPolys, SHAPE_POLY_SET::PM_FAST ); DUMP_POLYS_TO_COPPER_LAYER( holes, In11_Cu, wxT( "fill-clipped-hatch-holes" ) );
SHAPE_POLY_SET deflatedOutline = aZone->Outline()->CloneDropTriangulation(); deflatedOutline.Deflate( outline_margin, 16 ); holes.BooleanIntersection( deflatedOutline, SHAPE_POLY_SET::PM_FAST ); DUMP_POLYS_TO_COPPER_LAYER( holes, In12_Cu, wxT( "outline-clipped-hatch-holes" ) );
if( aZone->GetNetCode() != 0 ) { // Vias and pads connected to the zone must not be allowed to become isolated inside
// one of the holes. Effectively this means their copper outline needs to be expanded
// to be at least as wide as the gap so that it is guaranteed to touch at least one
// edge.
EDA_RECT zone_boundingbox = aZone->GetCachedBoundingBox(); SHAPE_POLY_SET aprons; int min_apron_radius = ( aZone->GetHatchGap() * 10 ) / 19;
for( PCB_TRACK* track : m_board->Tracks() ) { if( track->Type() == PCB_VIA_T ) { PCB_VIA* via = static_cast<PCB_VIA*>( track );
if( via->GetNetCode() == aZone->GetNetCode() && via->IsOnLayer( aLayer ) && via->GetBoundingBox().Intersects( zone_boundingbox ) ) { int r = std::max( min_apron_radius, via->GetDrillValue() / 2 + outline_margin );
TransformCircleToPolygon( aprons, via->GetPosition(), r, ARC_HIGH_DEF, ERROR_OUTSIDE ); } } }
for( FOOTPRINT* footprint : m_board->Footprints() ) { for( PAD* pad : footprint->Pads() ) { if( pad->GetNetCode() == aZone->GetNetCode() && pad->IsOnLayer( aLayer ) && pad->GetBoundingBox().Intersects( zone_boundingbox ) ) { // What we want is to bulk up the pad shape so that the narrowest bit of
// copper between the hole and the apron edge is at least outline_margin
// wide (and that the apron itself meets min_apron_radius. But that would
// take a lot of code and math, and the following approximation is close
// enough.
int pad_width = std::min( pad->GetSize().x, pad->GetSize().y ); int slot_width = std::min( pad->GetDrillSize().x, pad->GetDrillSize().y ); int min_annular_ring_width = ( pad_width - slot_width ) / 2; int clearance = std::max( min_apron_radius - pad_width / 2, outline_margin - min_annular_ring_width );
clearance = std::max( 0, clearance - linethickness / 2 ); pad->TransformShapeWithClearanceToPolygon( aprons, aLayer, clearance, ARC_HIGH_DEF, ERROR_OUTSIDE ); } } }
holes.BooleanSubtract( aprons, SHAPE_POLY_SET::PM_FAST ); } DUMP_POLYS_TO_COPPER_LAYER( holes, In13_Cu, wxT( "pad-via-clipped-hatch-holes" ) );
// Now filter truncated holes to avoid small holes in pattern
// It happens for holes near the zone outline
for( int ii = 0; ii < holes.OutlineCount(); ) { double area = holes.Outline( ii ).Area();
if( area < minimal_hole_area ) // The current hole is too small: remove it
holes.DeletePolygon( ii ); else ++ii; }
// create grid. Use SHAPE_POLY_SET::PM_STRICTLY_SIMPLE to
// generate strictly simple polygons needed by Gerber files and Fracture()
aFillPolys.BooleanSubtract( aFillPolys, holes, SHAPE_POLY_SET::PM_STRICTLY_SIMPLE ); DUMP_POLYS_TO_COPPER_LAYER( aFillPolys, In14_Cu, wxT( "after-hatching" ) );
return true; }
|