 ++PCBNew
* Removed Pcb_Frame argument from BOARD() constructor, since it precludes
having a BOARD being edited by more than one editor, it was a bad design.
And this meant removing m_PcbFrame from BOARD.
* removed BOARD::SetWindowFrame(), and BOARD::m_PcbFrame
* Removed the global BOARD_DESIGN_SETTINGS which was in class_board.cpp
* added BOARD_DESIGN_SETTINGS to the BOARD class, a full instance
* a couple dialogs now only change BOARD_DESIGN_SETTINGS when OK is pressed,
such as dialog_mask_clearance, dialog_drc, etc.
* Removed common/pcbcommon.cpp's int g_CurrentVersionPCB = 1 and replaced it
with build_version.h's #define BOARD_FILE_VERSION, although there may be a
better place for this constant.
* Made the public functions in PARAM_CFG_ARRAY be type const.
void SaveParam(..) const and void ReadParam(..) const
* PARAM_CFG_BASE now has virtual destructor since we have various way of
destroying the derived class and boost::ptr_vector must be told about this.
* Pass const PARAM_CFG_ARRAY& instead of PARAM_CFG_ARRAY so that we can use
an automatic PARAM_CFG_ARRAY which is on the stack.\
* PCB_EDIT_FRAME::GetProjectFileParameters() may no longer cache the array,
since it has to access the current BOARD and the BOARD can change.
Remember BOARD_DESIGN_SETTINGS are now in the BOARD.
* Made the m_BoundingBox member private, this was a brutally hard task,
and indicative of the lack of commitment to accessors and object oriented
design on the part of KiCad developers. We must do better.
Added BOARD::GetBoundingBox, SetBoundingBox(), ComputeBoundingBox().
* Added PCB_BASE_FRAME::GetBoardBoundingBox() which calls BOARD::ComputeBoundingBox()
14 years ago  ++PCBNew
* Removed Pcb_Frame argument from BOARD() constructor, since it precludes
having a BOARD being edited by more than one editor, it was a bad design.
And this meant removing m_PcbFrame from BOARD.
* removed BOARD::SetWindowFrame(), and BOARD::m_PcbFrame
* Removed the global BOARD_DESIGN_SETTINGS which was in class_board.cpp
* added BOARD_DESIGN_SETTINGS to the BOARD class, a full instance
* a couple dialogs now only change BOARD_DESIGN_SETTINGS when OK is pressed,
such as dialog_mask_clearance, dialog_drc, etc.
* Removed common/pcbcommon.cpp's int g_CurrentVersionPCB = 1 and replaced it
with build_version.h's #define BOARD_FILE_VERSION, although there may be a
better place for this constant.
* Made the public functions in PARAM_CFG_ARRAY be type const.
void SaveParam(..) const and void ReadParam(..) const
* PARAM_CFG_BASE now has virtual destructor since we have various way of
destroying the derived class and boost::ptr_vector must be told about this.
* Pass const PARAM_CFG_ARRAY& instead of PARAM_CFG_ARRAY so that we can use
an automatic PARAM_CFG_ARRAY which is on the stack.\
* PCB_EDIT_FRAME::GetProjectFileParameters() may no longer cache the array,
since it has to access the current BOARD and the BOARD can change.
Remember BOARD_DESIGN_SETTINGS are now in the BOARD.
* Made the m_BoundingBox member private, this was a brutally hard task,
and indicative of the lack of commitment to accessors and object oriented
design on the part of KiCad developers. We must do better.
Added BOARD::GetBoundingBox, SetBoundingBox(), ComputeBoundingBox().
* Added PCB_BASE_FRAME::GetBoardBoundingBox() which calls BOARD::ComputeBoundingBox()
14 years ago  ++PCBNew
* Removed Pcb_Frame argument from BOARD() constructor, since it precludes
having a BOARD being edited by more than one editor, it was a bad design.
And this meant removing m_PcbFrame from BOARD.
* removed BOARD::SetWindowFrame(), and BOARD::m_PcbFrame
* Removed the global BOARD_DESIGN_SETTINGS which was in class_board.cpp
* added BOARD_DESIGN_SETTINGS to the BOARD class, a full instance
* a couple dialogs now only change BOARD_DESIGN_SETTINGS when OK is pressed,
such as dialog_mask_clearance, dialog_drc, etc.
* Removed common/pcbcommon.cpp's int g_CurrentVersionPCB = 1 and replaced it
with build_version.h's #define BOARD_FILE_VERSION, although there may be a
better place for this constant.
* Made the public functions in PARAM_CFG_ARRAY be type const.
void SaveParam(..) const and void ReadParam(..) const
* PARAM_CFG_BASE now has virtual destructor since we have various way of
destroying the derived class and boost::ptr_vector must be told about this.
* Pass const PARAM_CFG_ARRAY& instead of PARAM_CFG_ARRAY so that we can use
an automatic PARAM_CFG_ARRAY which is on the stack.\
* PCB_EDIT_FRAME::GetProjectFileParameters() may no longer cache the array,
since it has to access the current BOARD and the BOARD can change.
Remember BOARD_DESIGN_SETTINGS are now in the BOARD.
* Made the m_BoundingBox member private, this was a brutally hard task,
and indicative of the lack of commitment to accessors and object oriented
design on the part of KiCad developers. We must do better.
Added BOARD::GetBoundingBox, SetBoundingBox(), ComputeBoundingBox().
* Added PCB_BASE_FRAME::GetBoardBoundingBox() which calls BOARD::ComputeBoundingBox()
14 years ago  ++PCBNew
* Removed Pcb_Frame argument from BOARD() constructor, since it precludes
having a BOARD being edited by more than one editor, it was a bad design.
And this meant removing m_PcbFrame from BOARD.
* removed BOARD::SetWindowFrame(), and BOARD::m_PcbFrame
* Removed the global BOARD_DESIGN_SETTINGS which was in class_board.cpp
* added BOARD_DESIGN_SETTINGS to the BOARD class, a full instance
* a couple dialogs now only change BOARD_DESIGN_SETTINGS when OK is pressed,
such as dialog_mask_clearance, dialog_drc, etc.
* Removed common/pcbcommon.cpp's int g_CurrentVersionPCB = 1 and replaced it
with build_version.h's #define BOARD_FILE_VERSION, although there may be a
better place for this constant.
* Made the public functions in PARAM_CFG_ARRAY be type const.
void SaveParam(..) const and void ReadParam(..) const
* PARAM_CFG_BASE now has virtual destructor since we have various way of
destroying the derived class and boost::ptr_vector must be told about this.
* Pass const PARAM_CFG_ARRAY& instead of PARAM_CFG_ARRAY so that we can use
an automatic PARAM_CFG_ARRAY which is on the stack.\
* PCB_EDIT_FRAME::GetProjectFileParameters() may no longer cache the array,
since it has to access the current BOARD and the BOARD can change.
Remember BOARD_DESIGN_SETTINGS are now in the BOARD.
* Made the m_BoundingBox member private, this was a brutally hard task,
and indicative of the lack of commitment to accessors and object oriented
design on the part of KiCad developers. We must do better.
Added BOARD::GetBoundingBox, SetBoundingBox(), ComputeBoundingBox().
* Added PCB_BASE_FRAME::GetBoardBoundingBox() which calls BOARD::ComputeBoundingBox()
14 years ago |
|
/*
* This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2018 Jean-Pierre Charras, jp.charras at wanadoo.fr * Copyright (C) 2012 SoftPLC Corporation, Dick Hollenbeck <dick@softplc.com> * Copyright (C) 2011 Wayne Stambaugh <stambaughw@gmail.com> * * Copyright (C) 1992-2022 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */
#include <iterator>
#include <wx/log.h>
#include <drc/drc_rtree.h>
#include <board_design_settings.h>
#include <board_commit.h>
#include <board.h>
#include <core/arraydim.h>
#include <core/kicad_algo.h>
#include <connectivity/connectivity_data.h>
#include <convert_shape_list_to_polygon.h>
#include <footprint.h>
#include <pcb_base_frame.h>
#include <pcb_track.h>
#include <pcb_marker.h>
#include <pcb_group.h>
#include <pcb_target.h>
#include <pcb_shape.h>
#include <pcb_text.h>
#include <pcb_textbox.h>
#include <pgm_base.h>
#include <pcbnew_settings.h>
#include <progress_reporter.h>
#include <project.h>
#include <project/net_settings.h>
#include <project/project_file.h>
#include <project/project_local_settings.h>
#include <ratsnest/ratsnest_data.h>
#include <reporter.h>
#include <tool/selection_conditions.h>
#include <string_utils.h>
#include <thread_pool.h>
#include <zone.h>
// This is an odd place for this, but CvPcb won't link if it's in board_item.cpp like I first
// tried it.
VECTOR2I BOARD_ITEM::ZeroOffset( 0, 0 );
BOARD::BOARD() : BOARD_ITEM_CONTAINER( (BOARD_ITEM*) nullptr, PCB_T ), m_LegacyDesignSettingsLoaded( false ), m_LegacyCopperEdgeClearanceLoaded( false ), m_LegacyNetclassesLoaded( false ), m_boardUse( BOARD_USE::NORMAL ), m_timeStamp( 1 ), m_paper( PAGE_INFO::A4 ), m_project( nullptr ), m_designSettings( new BOARD_DESIGN_SETTINGS( nullptr, "board.design_settings" ) ), m_NetInfo( this ) { // we have not loaded a board yet, assume latest until then.
m_fileFormatVersionAtLoad = LEGACY_BOARD_FILE_VERSION;
for( int layer = 0; layer < PCB_LAYER_ID_COUNT; ++layer ) { m_layers[layer].m_name = GetStandardLayerName( ToLAYER_ID( layer ) );
if( IsCopperLayer( layer ) ) m_layers[layer].m_type = LT_SIGNAL; else m_layers[layer].m_type = LT_UNDEFINED; }
m_SolderMask = new ZONE( this ); m_SolderMask->SetLayerSet( LSET().set( F_Mask ).set( B_Mask ) ); m_SolderMask->SetOutline( new SHAPE_POLY_SET() ); int infinity = ( std::numeric_limits<int>::max() / 2 ) - Millimeter2iu( 1 ); m_SolderMask->Outline()->NewOutline(); m_SolderMask->Outline()->Append( VECTOR2I( -infinity, -infinity ) ); m_SolderMask->Outline()->Append( VECTOR2I( -infinity, +infinity ) ); m_SolderMask->Outline()->Append( VECTOR2I( +infinity, +infinity ) ); m_SolderMask->Outline()->Append( VECTOR2I( +infinity, -infinity ) ); m_SolderMask->SetMinThickness( 0 );
BOARD_DESIGN_SETTINGS& bds = GetDesignSettings();
// Initialize default netclass.
NETCLASS* defaultClass = bds.GetDefault(); defaultClass->SetDescription( _( "This is the default net class." ) );
bds.UseCustomTrackViaSize( false );
// Initialize ratsnest
m_connectivity.reset( new CONNECTIVITY_DATA() );
// Set flag bits on these that will only be cleared if these are loaded from a legacy file
m_LegacyVisibleLayers.reset().set( Rescue ); m_LegacyVisibleItems.reset().set( GAL_LAYER_INDEX( GAL_LAYER_ID_BITMASK_END ) ); }
BOARD::~BOARD() { // Clean up the owned elements
DeleteMARKERs();
for( ZONE* zone : m_zones ) delete zone;
m_zones.clear();
delete m_SolderMask;
for( FOOTPRINT* footprint : m_footprints ) delete footprint;
m_footprints.clear();
for( PCB_TRACK* t : m_tracks ) delete t;
m_tracks.clear();
for( BOARD_ITEM* d : m_drawings ) delete d;
m_drawings.clear();
for( PCB_GROUP* g : m_groups ) delete g;
m_groups.clear(); }
void BOARD::BuildConnectivity( PROGRESS_REPORTER* aReporter ) { GetConnectivity()->Build( this, aReporter ); }
void BOARD::SetProject( PROJECT* aProject ) { if( m_project ) ClearProject();
m_project = aProject;
if( aProject ) { PROJECT_FILE& project = aProject->GetProjectFile();
// Link the design settings object to the project file
project.m_BoardSettings = &GetDesignSettings();
// Set parent, which also will load the values from JSON stored in the project if we don't
// have legacy design settings loaded already
project.m_BoardSettings->SetParent( &project, !m_LegacyDesignSettingsLoaded );
// The DesignSettings' netclasses pointer will be pointing to its internal netclasses
// list at this point. If we loaded anything into it from a legacy board file then we
// want to transfer it over to the project netclasses list.
if( m_LegacyNetclassesLoaded ) project.NetSettings().m_NetClasses = GetDesignSettings().GetNetClasses();
// Now update the DesignSettings' netclass pointer to point into the project.
GetDesignSettings().SetNetClasses( &project.NetSettings().m_NetClasses ); } }
void BOARD::ClearProject() { if( !m_project ) return;
PROJECT_FILE& project = m_project->GetProjectFile();
// Owned by the BOARD
if( project.m_BoardSettings ) { project.ReleaseNestedSettings( project.m_BoardSettings ); project.m_BoardSettings = nullptr; }
GetDesignSettings().SetParent( nullptr ); m_project = nullptr; }
void BOARD::IncrementTimeStamp() { m_timeStamp++;
{ std::unique_lock<std::mutex> cacheLock( m_CachesMutex ); m_InsideAreaCache.clear(); m_InsideCourtyardCache.clear(); m_InsideFCourtyardCache.clear(); m_InsideBCourtyardCache.clear(); m_LayerExpressionCache.clear();
m_DRCMaxClearance = 0; m_DRCMaxPhysicalClearance = 0; m_DRCZones.clear(); m_DRCCopperZones.clear(); m_CopperZoneRTreeCache.clear(); m_CopperItemRTreeCache = std::make_unique<DRC_RTREE>(); } }
std::vector<PCB_MARKER*> BOARD::ResolveDRCExclusions() { std::shared_ptr<CONNECTIVITY_DATA> conn = GetConnectivity();
auto setExcluded = [&conn]( PCB_MARKER* aMarker ) { if( aMarker->GetMarkerType() == MARKER_BASE::MARKER_RATSNEST ) { const std::shared_ptr<RC_ITEM>& rcItem = aMarker->GetRCItem(); conn->AddExclusion( rcItem->GetMainItemID(), rcItem->GetAuxItemID() ); }
aMarker->SetExcluded( true ); };
for( PCB_MARKER* marker : GetBoard()->Markers() ) { auto i = m_designSettings->m_DrcExclusions.find( marker->Serialize() );
if( i != m_designSettings->m_DrcExclusions.end() ) { setExcluded( marker ); m_designSettings->m_DrcExclusions.erase( i ); } }
std::vector<PCB_MARKER*> newMarkers;
for( const wxString& exclusionData : m_designSettings->m_DrcExclusions ) { PCB_MARKER* marker = PCB_MARKER::Deserialize( exclusionData );
if( marker ) { setExcluded( marker ); newMarkers.push_back( marker ); } }
m_designSettings->m_DrcExclusions.clear();
return newMarkers; }
bool BOARD::ResolveTextVar( wxString* token, int aDepth ) const { if( GetTitleBlock().TextVarResolver( token, m_project ) ) { return true; } else if( m_properties.count( *token ) ) { *token = m_properties.at( *token ); return true; }
return false; }
VECTOR2I BOARD::GetPosition() const { return ZeroOffset; }
void BOARD::SetPosition( const VECTOR2I& aPos ) { wxLogWarning( wxT( "This should not be called on the BOARD object") ); }
void BOARD::Move( const VECTOR2I& aMoveVector ) // overload
{ // @todo : anything like this elsewhere? maybe put into GENERAL_COLLECTOR class.
static const KICAD_T top_level_board_stuff[] = { PCB_MARKER_T, PCB_TEXT_T, PCB_TEXTBOX_T, PCB_SHAPE_T, PCB_DIM_ALIGNED_T, PCB_DIM_ORTHOGONAL_T, PCB_DIM_CENTER_T, PCB_DIM_RADIAL_T, PCB_DIM_LEADER_T, PCB_TARGET_T, PCB_VIA_T, PCB_TRACE_T, PCB_ARC_T, PCB_FOOTPRINT_T, PCB_ZONE_T, EOT };
INSPECTOR_FUNC inspector = [&] ( EDA_ITEM* item, void* testData ) { BOARD_ITEM* brd_item = (BOARD_ITEM*) item;
// aMoveVector was snapshotted, don't need "data".
brd_item->Move( aMoveVector );
return SEARCH_RESULT::CONTINUE; };
Visit( inspector, nullptr, top_level_board_stuff ); }
TRACKS BOARD::TracksInNet( int aNetCode ) { TRACKS ret;
INSPECTOR_FUNC inspector = [aNetCode, &ret]( EDA_ITEM* item, void* testData ) { PCB_TRACK* t = static_cast<PCB_TRACK*>( item );
if( t->GetNetCode() == aNetCode ) ret.push_back( t );
return SEARCH_RESULT::CONTINUE; };
// visit this BOARD's PCB_TRACKs and PCB_VIAs with above TRACK INSPECTOR which
// appends all in aNetCode to ret.
Visit( inspector, nullptr, GENERAL_COLLECTOR::Tracks );
return ret; }
bool BOARD::SetLayerDescr( PCB_LAYER_ID aIndex, const LAYER& aLayer ) { if( unsigned( aIndex ) < arrayDim( m_layers ) ) { m_layers[ aIndex ] = aLayer; return true; }
return false; }
const PCB_LAYER_ID BOARD::GetLayerID( const wxString& aLayerName ) const { // Check the BOARD physical layer names.
for( int layer = 0; layer < PCB_LAYER_ID_COUNT; ++layer ) { if ( m_layers[ layer ].m_name == aLayerName || m_layers[ layer ].m_userName == aLayerName ) return ToLAYER_ID( layer ); }
// Otherwise fall back to the system standard layer names for virtual layers.
for( int layer = 0; layer < PCB_LAYER_ID_COUNT; ++layer ) { if( GetStandardLayerName( ToLAYER_ID( layer ) ) == aLayerName ) return ToLAYER_ID( layer ); }
return UNDEFINED_LAYER; }
const wxString BOARD::GetLayerName( PCB_LAYER_ID aLayer ) const { // All layer names are stored in the BOARD.
if( IsLayerEnabled( aLayer ) ) { // Standard names were set in BOARD::BOARD() but they may be over-ridden by
// BOARD::SetLayerName(). For copper layers, return the user defined layer name,
// if it was set. Otherwise return the Standard English layer name.
if( !m_layers[aLayer].m_userName.IsEmpty() ) return m_layers[aLayer].m_userName; }
return GetStandardLayerName( aLayer ); }
bool BOARD::SetLayerName( PCB_LAYER_ID aLayer, const wxString& aLayerName ) { wxCHECK( !aLayerName.IsEmpty(), false );
// no quote chars in the name allowed
if( aLayerName.Find( wxChar( '"' ) ) != wxNOT_FOUND ) return false;
if( IsLayerEnabled( aLayer ) ) { m_layers[aLayer].m_userName = aLayerName; return true; }
return false; }
LAYER_T BOARD::GetLayerType( PCB_LAYER_ID aLayer ) const { if( !IsCopperLayer( aLayer ) ) return LT_SIGNAL;
if( IsLayerEnabled( aLayer ) ) return m_layers[aLayer].m_type;
return LT_SIGNAL; }
bool BOARD::SetLayerType( PCB_LAYER_ID aLayer, LAYER_T aLayerType ) { if( !IsCopperLayer( aLayer ) ) return false;
if( IsLayerEnabled( aLayer ) ) { m_layers[aLayer].m_type = aLayerType; return true; }
return false; }
const char* LAYER::ShowType( LAYER_T aType ) { switch( aType ) { default: case LT_SIGNAL: return "signal"; case LT_POWER: return "power"; case LT_MIXED: return "mixed"; case LT_JUMPER: return "jumper"; } }
LAYER_T LAYER::ParseType( const char* aType ) { if( strcmp( aType, "signal" ) == 0 ) return LT_SIGNAL; else if( strcmp( aType, "power" ) == 0 ) return LT_POWER; else if( strcmp( aType, "mixed" ) == 0 ) return LT_MIXED; else if( strcmp( aType, "jumper" ) == 0 ) return LT_JUMPER; else return LT_UNDEFINED; }
int BOARD::GetCopperLayerCount() const { return GetDesignSettings().GetCopperLayerCount(); }
void BOARD::SetCopperLayerCount( int aCount ) { GetDesignSettings().SetCopperLayerCount( aCount ); }
LSET BOARD::GetEnabledLayers() const { return GetDesignSettings().GetEnabledLayers(); }
bool BOARD::IsLayerVisible( PCB_LAYER_ID aLayer ) const { // If there is no project, assume layer is visible always
return GetDesignSettings().IsLayerEnabled( aLayer ) && ( !m_project || m_project->GetLocalSettings().m_VisibleLayers[aLayer] ); }
LSET BOARD::GetVisibleLayers() const { return m_project ? m_project->GetLocalSettings().m_VisibleLayers : LSET::AllLayersMask(); }
void BOARD::SetEnabledLayers( LSET aLayerSet ) { GetDesignSettings().SetEnabledLayers( aLayerSet ); }
bool BOARD::IsLayerEnabled( PCB_LAYER_ID aLayer ) const { return GetDesignSettings().IsLayerEnabled( aLayer ); }
void BOARD::SetVisibleLayers( LSET aLayerSet ) { if( m_project ) m_project->GetLocalSettings().m_VisibleLayers = aLayerSet; }
void BOARD::SetVisibleElements( const GAL_SET& aSet ) { // Call SetElementVisibility for each item
// to ensure specific calculations that can be needed by some items,
// just changing the visibility flags could be not sufficient.
for( size_t i = 0; i < aSet.size(); i++ ) SetElementVisibility( GAL_LAYER_ID_START + static_cast<int>( i ), aSet[i] ); }
void BOARD::SetVisibleAlls() { SetVisibleLayers( LSET().set() );
// Call SetElementVisibility for each item,
// to ensure specific calculations that can be needed by some items
for( GAL_LAYER_ID ii = GAL_LAYER_ID_START; ii < GAL_LAYER_ID_BITMASK_END; ++ii ) SetElementVisibility( ii, true ); }
GAL_SET BOARD::GetVisibleElements() const { return m_project ? m_project->GetLocalSettings().m_VisibleItems : GAL_SET().set(); }
bool BOARD::IsElementVisible( GAL_LAYER_ID aLayer ) const { return !m_project || m_project->GetLocalSettings().m_VisibleItems[aLayer - GAL_LAYER_ID_START]; }
void BOARD::SetElementVisibility( GAL_LAYER_ID aLayer, bool isEnabled ) { if( m_project ) m_project->GetLocalSettings().m_VisibleItems.set( aLayer - GAL_LAYER_ID_START, isEnabled );
switch( aLayer ) { case LAYER_RATSNEST: { // because we have a tool to show/hide ratsnest relative to a pad or a footprint
// so the hide/show option is a per item selection
for( PCB_TRACK* track : Tracks() ) track->SetLocalRatsnestVisible( isEnabled );
for( FOOTPRINT* footprint : Footprints() ) { for( PAD* pad : footprint->Pads() ) pad->SetLocalRatsnestVisible( isEnabled ); }
for( ZONE* zone : Zones() ) zone->SetLocalRatsnestVisible( isEnabled );
break; }
default: ; } }
bool BOARD::IsFootprintLayerVisible( PCB_LAYER_ID aLayer ) const { switch( aLayer ) { case F_Cu: return IsElementVisible( LAYER_MOD_FR ); case B_Cu: return IsElementVisible( LAYER_MOD_BK ); default: wxFAIL_MSG( wxT( "BOARD::IsModuleLayerVisible(): bad layer" ) ); return true; } }
BOARD_DESIGN_SETTINGS& BOARD::GetDesignSettings() const { return *m_designSettings; }
const ZONE_SETTINGS& BOARD::GetZoneSettings() const { return GetDesignSettings().GetDefaultZoneSettings(); }
void BOARD::SetZoneSettings( const ZONE_SETTINGS& aSettings ) { GetDesignSettings().SetDefaultZoneSettings( aSettings ); }
void BOARD::CacheTriangulation( PROGRESS_REPORTER* aReporter, const std::vector<ZONE*>& aZones ) { std::vector<ZONE*> zones = aZones;
if( zones.empty() ) zones = m_zones;
if( zones.empty() ) return;
if( aReporter ) aReporter->Report( _( "Tessellating copper zones..." ) );
thread_pool& tp = GetKiCadThreadPool(); std::vector<std::future<size_t>> returns;
returns.reserve( zones.size() );
auto cache_zones = [aReporter]( ZONE* aZone ) -> size_t { if( aReporter && aReporter->IsCancelled() ) return 0;
aZone->CacheTriangulation();
if( aReporter ) aReporter->AdvanceProgress();
return 1; };
for( ZONE* zone : zones ) returns.emplace_back( tp.submit( cache_zones, zone ) );
// Finalize the triangulation threads
for( auto& retval : returns ) { std::future_status status;
do { if( aReporter ) aReporter->KeepRefreshing();
status = retval.wait_for( std::chrono::milliseconds( 100 ) ); } while( status != std::future_status::ready ); } }
void BOARD::Add( BOARD_ITEM* aBoardItem, ADD_MODE aMode, bool aSkipConnectivity ) { if( aBoardItem == nullptr ) { wxFAIL_MSG( wxT( "BOARD::Add() param error: aBoardItem nullptr" ) ); return; }
switch( aBoardItem->Type() ) { case PCB_NETINFO_T: m_NetInfo.AppendNet( (NETINFO_ITEM*) aBoardItem ); break;
// this one uses a vector
case PCB_MARKER_T: m_markers.push_back( (PCB_MARKER*) aBoardItem ); break;
// this one uses a vector
case PCB_GROUP_T: m_groups.push_back( (PCB_GROUP*) aBoardItem ); break;
// this one uses a vector
case PCB_ZONE_T: m_zones.push_back( (ZONE*) aBoardItem ); break;
case PCB_TRACE_T: case PCB_VIA_T: case PCB_ARC_T:
// N.B. This inserts a small memory leak as we lose the
if( !IsCopperLayer( aBoardItem->GetLayer() ) ) { wxFAIL_MSG( wxT( "BOARD::Add() Cannot place Track on non-copper layer" ) ); return; }
if( aMode == ADD_MODE::APPEND || aMode == ADD_MODE::BULK_APPEND ) m_tracks.push_back( static_cast<PCB_TRACK*>( aBoardItem ) ); else m_tracks.push_front( static_cast<PCB_TRACK*>( aBoardItem ) );
break;
case PCB_FOOTPRINT_T: if( aMode == ADD_MODE::APPEND || aMode == ADD_MODE::BULK_APPEND ) m_footprints.push_back( static_cast<FOOTPRINT*>( aBoardItem ) ); else m_footprints.push_front( static_cast<FOOTPRINT*>( aBoardItem ) );
break;
case PCB_DIM_ALIGNED_T: case PCB_DIM_CENTER_T: case PCB_DIM_RADIAL_T: case PCB_DIM_ORTHOGONAL_T: case PCB_DIM_LEADER_T: case PCB_SHAPE_T: case PCB_TEXT_T: case PCB_TEXTBOX_T: case PCB_TARGET_T: if( aMode == ADD_MODE::APPEND || aMode == ADD_MODE::BULK_APPEND ) m_drawings.push_back( aBoardItem ); else m_drawings.push_front( aBoardItem );
break;
// other types may use linked list
default: { wxString msg; msg.Printf( wxT( "BOARD::Add() needs work: BOARD_ITEM type (%d) not handled" ), aBoardItem->Type() ); wxFAIL_MSG( msg ); return; } break; }
aBoardItem->SetParent( this ); aBoardItem->ClearEditFlags();
if( !aSkipConnectivity ) m_connectivity->Add( aBoardItem );
if( aMode != ADD_MODE::BULK_INSERT && aMode != ADD_MODE::BULK_APPEND ) { InvokeListeners( &BOARD_LISTENER::OnBoardItemAdded, *this, aBoardItem ); } }
void BOARD::FinalizeBulkAdd( std::vector<BOARD_ITEM*>& aNewItems ) { InvokeListeners( &BOARD_LISTENER::OnBoardItemsAdded, *this, aNewItems ); }
void BOARD::FinalizeBulkRemove( std::vector<BOARD_ITEM*>& aRemovedItems ) { InvokeListeners( &BOARD_LISTENER::OnBoardItemsRemoved, *this, aRemovedItems ); }
void BOARD::Remove( BOARD_ITEM* aBoardItem, REMOVE_MODE aRemoveMode ) { // find these calls and fix them! Don't send me no stinking' nullptr.
wxASSERT( aBoardItem );
switch( aBoardItem->Type() ) { case PCB_NETINFO_T: { NETINFO_ITEM* item = static_cast<NETINFO_ITEM*>( aBoardItem ); NETINFO_ITEM* unconnected = m_NetInfo.GetNetItem( NETINFO_LIST::UNCONNECTED );
for( FOOTPRINT* fp : m_footprints ) { for( PAD* pad : fp->Pads() ) { if( pad->GetNet() == item ) pad->SetNet( unconnected ); } }
for( ZONE* zone : m_zones ) { if( zone->GetNet() == item ) zone->SetNet( unconnected ); }
for( PCB_TRACK* track : m_tracks ) { if( track->GetNet() == item ) track->SetNet( unconnected ); }
m_NetInfo.RemoveNet( item ); break; }
case PCB_MARKER_T: alg::delete_matching( m_markers, aBoardItem ); break;
case PCB_GROUP_T: alg::delete_matching( m_groups, aBoardItem ); break;
case PCB_ZONE_T: alg::delete_matching( m_zones, aBoardItem ); break;
case PCB_FOOTPRINT_T: alg::delete_matching( m_footprints, aBoardItem ); break;
case PCB_TRACE_T: case PCB_ARC_T: case PCB_VIA_T: alg::delete_matching( m_tracks, aBoardItem ); break;
case PCB_DIM_ALIGNED_T: case PCB_DIM_CENTER_T: case PCB_DIM_RADIAL_T: case PCB_DIM_ORTHOGONAL_T: case PCB_DIM_LEADER_T: case PCB_SHAPE_T: case PCB_TEXT_T: case PCB_TEXTBOX_T: case PCB_TARGET_T: alg::delete_matching( m_drawings, aBoardItem ); break;
// other types may use linked list
default: wxFAIL_MSG( wxT( "BOARD::Remove() needs more ::Type() support" ) ); }
aBoardItem->SetFlags( STRUCT_DELETED );
PCB_GROUP* parentGroup = aBoardItem->GetParentGroup();
if( parentGroup && !( parentGroup->GetFlags() & STRUCT_DELETED ) ) parentGroup->RemoveItem( aBoardItem );
m_connectivity->Remove( aBoardItem );
if( aRemoveMode != REMOVE_MODE::BULK ) InvokeListeners( &BOARD_LISTENER::OnBoardItemRemoved, *this, aBoardItem ); }
wxString BOARD::GetSelectMenuText( EDA_UNITS aUnits ) const { return wxString::Format( _( "PCB" ) ); }
void BOARD::DeleteMARKERs() { // the vector does not know how to delete the PCB_MARKER, it holds pointers
for( PCB_MARKER* marker : m_markers ) delete marker;
m_markers.clear(); }
void BOARD::DeleteMARKERs( bool aWarningsAndErrors, bool aExclusions ) { // Deleting lots of items from a vector can be very slow. Copy remaining items instead.
MARKERS remaining;
for( PCB_MARKER* marker : m_markers ) { if( ( marker->GetSeverity() == RPT_SEVERITY_EXCLUSION && aExclusions ) || ( marker->GetSeverity() != RPT_SEVERITY_EXCLUSION && aWarningsAndErrors ) ) { delete marker; } else { remaining.push_back( marker ); } }
m_markers = remaining; }
void BOARD::DeleteAllFootprints() { for( FOOTPRINT* footprint : m_footprints ) delete footprint;
m_footprints.clear(); }
BOARD_ITEM* BOARD::GetItem( const KIID& aID ) const { if( aID == niluuid ) return nullptr;
for( PCB_TRACK* track : Tracks() ) { if( track->m_Uuid == aID ) return track; }
for( FOOTPRINT* footprint : Footprints() ) { if( footprint->m_Uuid == aID ) return footprint;
for( PAD* pad : footprint->Pads() ) { if( pad->m_Uuid == aID ) return pad; }
if( footprint->Reference().m_Uuid == aID ) return &footprint->Reference();
if( footprint->Value().m_Uuid == aID ) return &footprint->Value();
for( BOARD_ITEM* drawing : footprint->GraphicalItems() ) { if( drawing->m_Uuid == aID ) return drawing; }
for( BOARD_ITEM* zone : footprint->Zones() ) { if( zone->m_Uuid == aID ) return zone; }
for( PCB_GROUP* group : footprint->Groups() ) { if( group->m_Uuid == aID ) return group; } }
for( ZONE* zone : Zones() ) { if( zone->m_Uuid == aID ) return zone; }
for( BOARD_ITEM* drawing : Drawings() ) { if( drawing->m_Uuid == aID ) return drawing; }
for( PCB_MARKER* marker : m_markers ) { if( marker->m_Uuid == aID ) return marker; }
for( PCB_GROUP* group : m_groups ) { if( group->m_Uuid == aID ) return group; }
if( m_Uuid == aID ) return const_cast<BOARD*>( this );
// Not found; weak reference has been deleted.
return DELETED_BOARD_ITEM::GetInstance(); }
void BOARD::FillItemMap( std::map<KIID, EDA_ITEM*>& aMap ) { // the board itself
aMap[ m_Uuid ] = this;
for( PCB_TRACK* track : Tracks() ) aMap[ track->m_Uuid ] = track;
for( FOOTPRINT* footprint : Footprints() ) { aMap[ footprint->m_Uuid ] = footprint;
for( PAD* pad : footprint->Pads() ) aMap[ pad->m_Uuid ] = pad;
aMap[ footprint->Reference().m_Uuid ] = &footprint->Reference(); aMap[ footprint->Value().m_Uuid ] = &footprint->Value();
for( BOARD_ITEM* drawing : footprint->GraphicalItems() ) aMap[ drawing->m_Uuid ] = drawing; }
for( ZONE* zone : Zones() ) aMap[ zone->m_Uuid ] = zone;
for( BOARD_ITEM* drawing : Drawings() ) aMap[ drawing->m_Uuid ] = drawing;
for( PCB_MARKER* marker : m_markers ) aMap[ marker->m_Uuid ] = marker;
for( PCB_GROUP* group : m_groups ) aMap[ group->m_Uuid ] = group; }
wxString BOARD::ConvertCrossReferencesToKIIDs( const wxString& aSource ) const { wxString newbuf; size_t sourceLen = aSource.length();
for( size_t i = 0; i < sourceLen; ++i ) { if( aSource[i] == '$' && i + 1 < sourceLen && aSource[i+1] == '{' ) { wxString token; bool isCrossRef = false;
for( i = i + 2; i < sourceLen; ++i ) { if( aSource[i] == '}' ) break;
if( aSource[i] == ':' ) isCrossRef = true;
token.append( aSource[i] ); }
if( isCrossRef ) { wxString remainder; wxString ref = token.BeforeFirst( ':', &remainder );
for( const FOOTPRINT* footprint : Footprints() ) { if( footprint->GetReference().CmpNoCase( ref ) == 0 ) { wxString test( remainder );
if( footprint->ResolveTextVar( &test ) ) token = footprint->m_Uuid.AsString() + wxT( ":" ) + remainder;
break; } } }
newbuf.append( wxT( "${" ) + token + wxT( "}" ) ); } else { newbuf.append( aSource[i] ); } }
return newbuf; }
wxString BOARD::ConvertKIIDsToCrossReferences( const wxString& aSource ) const { wxString newbuf; size_t sourceLen = aSource.length();
for( size_t i = 0; i < sourceLen; ++i ) { if( aSource[i] == '$' && i + 1 < sourceLen && aSource[i+1] == '{' ) { wxString token; bool isCrossRef = false;
for( i = i + 2; i < sourceLen; ++i ) { if( aSource[i] == '}' ) break;
if( aSource[i] == ':' ) isCrossRef = true;
token.append( aSource[i] ); }
if( isCrossRef ) { wxString remainder; wxString ref = token.BeforeFirst( ':', &remainder ); BOARD_ITEM* refItem = GetItem( KIID( ref ) );
if( refItem && refItem->Type() == PCB_FOOTPRINT_T ) { token = static_cast<FOOTPRINT*>( refItem )->GetReference() + wxT( ":" ) + remainder; } }
newbuf.append( wxT( "${" ) + token + wxT( "}" ) ); } else { newbuf.append( aSource[i] ); } }
return newbuf; }
unsigned BOARD::GetNodesCount( int aNet ) const { unsigned retval = 0;
for( FOOTPRINT* footprint : Footprints() ) { for( PAD* pad : footprint->Pads() ) { if( ( aNet == -1 && pad->GetNetCode() > 0 ) || aNet == pad->GetNetCode() ) retval++; } }
return retval; }
unsigned BOARD::GetUnconnectedNetCount() const { return m_connectivity->GetUnconnectedCount(); }
EDA_RECT BOARD::ComputeBoundingBox( bool aBoardEdgesOnly ) const { EDA_RECT area; LSET visible = GetVisibleLayers(); bool showInvisibleText = IsElementVisible( LAYER_MOD_TEXT_INVISIBLE ) && PgmOrNull() && !PgmOrNull()->m_Printing;
if( aBoardEdgesOnly ) visible.set( Edge_Cuts );
// Check shapes, dimensions, texts, and fiducials
for( BOARD_ITEM* item : m_drawings ) { if( aBoardEdgesOnly && ( item->GetLayer() != Edge_Cuts || item->Type() != PCB_SHAPE_T ) ) continue;
if( ( item->GetLayerSet() & visible ).any() ) area.Merge( item->GetBoundingBox() ); }
// Check footprints
for( FOOTPRINT* footprint : m_footprints ) { if( !( footprint->GetLayerSet() & visible ).any() ) continue;
if( aBoardEdgesOnly ) { for( const BOARD_ITEM* edge : footprint->GraphicalItems() ) { if( edge->GetLayer() == Edge_Cuts && edge->Type() == PCB_FP_SHAPE_T ) area.Merge( edge->GetBoundingBox() ); } } else { area.Merge( footprint->GetBoundingBox( true, showInvisibleText ) ); } }
if( !aBoardEdgesOnly ) { // Check tracks
for( PCB_TRACK* track : m_tracks ) { if( ( track->GetLayerSet() & visible ).any() ) area.Merge( track->GetBoundingBox() ); }
// Check zones
for( ZONE* aZone : m_zones ) { if( ( aZone->GetLayerSet() & visible ).any() ) area.Merge( aZone->GetBoundingBox() ); } }
return area; }
void BOARD::GetMsgPanelInfo( EDA_DRAW_FRAME* aFrame, std::vector<MSG_PANEL_ITEM>& aList ) { int padCount = 0; int viaCount = 0; int trackSegmentCount = 0; std::set<int> netCodes; int unconnected = GetConnectivity()->GetUnconnectedCount();
for( PCB_TRACK* item : m_tracks ) { if( item->Type() == PCB_VIA_T ) viaCount++; else trackSegmentCount++;
if( item->GetNetCode() > 0 ) netCodes.insert( item->GetNetCode() ); }
for( FOOTPRINT* footprint : Footprints() ) { for( PAD* pad : footprint->Pads() ) { padCount++;
if( pad->GetNetCode() > 0 ) netCodes.insert( pad->GetNetCode() ); } }
aList.emplace_back( _( "Pads" ), wxString::Format( wxT( "%d" ), padCount ) ); aList.emplace_back( _( "Vias" ), wxString::Format( wxT( "%d" ), viaCount ) ); aList.emplace_back( _( "Track Segments" ), wxString::Format( wxT( "%d" ), trackSegmentCount ) ); aList.emplace_back( _( "Nets" ), wxString::Format( wxT( "%d" ), (int) netCodes.size() ) ); aList.emplace_back( _( "Unrouted" ), wxString::Format( wxT( "%d" ), unconnected ) ); }
SEARCH_RESULT BOARD::Visit( INSPECTOR inspector, void* testData, const KICAD_T scanTypes[] ) { KICAD_T stype; SEARCH_RESULT result = SEARCH_RESULT::CONTINUE; const KICAD_T* p = scanTypes; bool done = false;
#if 0 && defined(DEBUG)
std::cout << GetClass().mb_str() << ' '; #endif
while( !done ) { stype = *p;
switch( stype ) { case PCB_T: result = inspector( this, testData ); // inspect me
// skip over any types handled in the above call.
++p; break;
/*
* Instances of the requested KICAD_T live in a list, either one that I manage, or one * that my footprints manage. If it's a type managed by class FOOTPRINT, then simply * pass it on to each footprint's Visit() function via IterateForward( m_footprints, ... ). */
case PCB_FOOTPRINT_T: case PCB_PAD_T: case PCB_FP_TEXT_T: case PCB_FP_TEXTBOX_T: case PCB_FP_SHAPE_T: case PCB_FP_DIM_ALIGNED_T: case PCB_FP_DIM_LEADER_T: case PCB_FP_DIM_CENTER_T: case PCB_FP_DIM_RADIAL_T: case PCB_FP_DIM_ORTHOGONAL_T: case PCB_FP_ZONE_T:
// this calls FOOTPRINT::Visit() on each footprint.
result = IterateForward<FOOTPRINT*>( m_footprints, inspector, testData, p );
// skip over any types handled in the above call.
for( ; ; ) { switch( stype = *++p ) { case PCB_FOOTPRINT_T: case PCB_PAD_T: case PCB_FP_TEXT_T: case PCB_FP_TEXTBOX_T: case PCB_FP_SHAPE_T: case PCB_FP_DIM_ALIGNED_T: case PCB_FP_DIM_LEADER_T: case PCB_FP_DIM_CENTER_T: case PCB_FP_DIM_RADIAL_T: case PCB_FP_DIM_ORTHOGONAL_T: case PCB_FP_ZONE_T: continue;
default: ; }
break; }
break;
case PCB_SHAPE_T: case PCB_TEXT_T: case PCB_TEXTBOX_T: case PCB_DIM_ALIGNED_T: case PCB_DIM_CENTER_T: case PCB_DIM_RADIAL_T: case PCB_DIM_ORTHOGONAL_T: case PCB_DIM_LEADER_T: case PCB_TARGET_T: result = IterateForward<BOARD_ITEM*>( m_drawings, inspector, testData, p );
// skip over any types handled in the above call.
for( ; ; ) { switch( stype = *++p ) { case PCB_SHAPE_T: case PCB_TEXT_T: case PCB_TEXTBOX_T: case PCB_DIM_ALIGNED_T: case PCB_DIM_CENTER_T: case PCB_DIM_RADIAL_T: case PCB_DIM_ORTHOGONAL_T: case PCB_DIM_LEADER_T: case PCB_TARGET_T: continue;
default: ; }
break; }
break;
case PCB_VIA_T: result = IterateForward<PCB_TRACK*>( m_tracks, inspector, testData, p ); ++p; break;
case PCB_TRACE_T: case PCB_ARC_T: result = IterateForward<PCB_TRACK*>( m_tracks, inspector, testData, p ); ++p; break;
case PCB_MARKER_T: for( PCB_MARKER* marker : m_markers ) { result = marker->Visit( inspector, testData, p );
if( result == SEARCH_RESULT::QUIT ) break; }
++p; break;
case PCB_ZONE_T: for( ZONE* zone : m_zones) { result = zone->Visit( inspector, testData, p );
if( result == SEARCH_RESULT::QUIT ) break; }
++p; break;
case PCB_GROUP_T: result = IterateForward<PCB_GROUP*>( m_groups, inspector, testData, p ); ++p; break;
default: // catch EOT or ANY OTHER type here and return.
done = true; break; }
if( result == SEARCH_RESULT::QUIT ) break; }
return result; }
NETINFO_ITEM* BOARD::FindNet( int aNetcode ) const { // the first valid netcode is 1 and the last is m_NetInfo.GetCount()-1.
// zero is reserved for "no connection" and is not actually a net.
// nullptr is returned for non valid netcodes
wxASSERT( m_NetInfo.GetNetCount() > 0 );
if( aNetcode == NETINFO_LIST::UNCONNECTED && m_NetInfo.GetNetCount() == 0 ) return NETINFO_LIST::OrphanedItem(); else return m_NetInfo.GetNetItem( aNetcode ); }
NETINFO_ITEM* BOARD::FindNet( const wxString& aNetname ) const { return m_NetInfo.GetNetItem( aNetname ); }
FOOTPRINT* BOARD::FindFootprintByReference( const wxString& aReference ) const { for( FOOTPRINT* footprint : m_footprints ) { if( aReference == footprint->GetReference() ) return footprint; }
return nullptr; }
FOOTPRINT* BOARD::FindFootprintByPath( const KIID_PATH& aPath ) const { for( FOOTPRINT* footprint : m_footprints ) { if( footprint->GetPath() == aPath ) return footprint; }
return nullptr; }
std::vector<wxString> BOARD::GetNetClassAssignmentCandidates() const { std::vector<wxString> names;
for( const NETINFO_ITEM* net : m_NetInfo ) { if( !net->GetNetname().IsEmpty() ) names.emplace_back( net->GetNetname() ); }
return names; }
void BOARD::SynchronizeProperties() { if( m_project ) SetProperties( m_project->GetTextVars() ); }
void BOARD::SynchronizeNetsAndNetClasses() { if( !m_project ) return;
NET_SETTINGS* netSettings = m_project->GetProjectFile().m_NetSettings.get(); NETCLASSES& netClasses = netSettings->m_NetClasses; NETCLASSPTR defaultNetClass = netClasses.GetDefault();
for( NETINFO_ITEM* net : m_NetInfo ) { const wxString& netname = net->GetNetname(); const wxString& netclassName = netSettings->GetNetclassName( netname );
net->SetNetClass( netClasses.Find( netclassName ) ); }
BOARD_DESIGN_SETTINGS& bds = GetDesignSettings();
// Set initial values for custom track width & via size to match the default
// netclass settings
bds.UseCustomTrackViaSize( false ); bds.SetCustomTrackWidth( defaultNetClass->GetTrackWidth() ); bds.SetCustomViaSize( defaultNetClass->GetViaDiameter() ); bds.SetCustomViaDrill( defaultNetClass->GetViaDrill() ); bds.SetCustomDiffPairWidth( defaultNetClass->GetDiffPairWidth() ); bds.SetCustomDiffPairGap( defaultNetClass->GetDiffPairGap() ); bds.SetCustomDiffPairViaGap( defaultNetClass->GetDiffPairViaGap() );
InvokeListeners( &BOARD_LISTENER::OnBoardNetSettingsChanged, *this ); }
int BOARD::SetAreasNetCodesFromNetNames() { int error_count = 0;
for( ZONE* zone : Zones() ) { if( !zone->IsOnCopperLayer() ) { zone->SetNetCode( NETINFO_LIST::UNCONNECTED ); continue; }
if( zone->GetNetCode() != 0 ) // i.e. if this zone is connected to a net
{ const NETINFO_ITEM* net = zone->GetNet();
if( net ) { zone->SetNetCode( net->GetNetCode() ); } else { error_count++;
// keep Net Name and set m_NetCode to -1 : error flag.
zone->SetNetCode( -1 ); } } }
return error_count; }
PAD* BOARD::GetPad( const VECTOR2I& aPosition, LSET aLayerSet ) const { if( !aLayerSet.any() ) aLayerSet = LSET::AllCuMask();
for( FOOTPRINT* footprint : m_footprints ) { PAD* pad = nullptr;
if( footprint->HitTest( aPosition ) ) pad = footprint->GetPad( aPosition, aLayerSet );
if( pad ) return pad; }
return nullptr; }
PAD* BOARD::GetPad( const PCB_TRACK* aTrace, ENDPOINT_T aEndPoint ) const { const VECTOR2I& aPosition = aTrace->GetEndPoint( aEndPoint );
LSET lset( aTrace->GetLayer() );
return GetPad( aPosition, lset ); }
PAD* BOARD::GetPadFast( const VECTOR2I& aPosition, LSET aLayerSet ) const { for( FOOTPRINT* footprint : Footprints() ) { for( PAD* pad : footprint->Pads() ) { if( pad->GetPosition() != aPosition ) continue;
// Pad found, it must be on the correct layer
if( ( pad->GetLayerSet() & aLayerSet ).any() ) return pad; } }
return nullptr; }
PAD* BOARD::GetPad( std::vector<PAD*>& aPadList, const VECTOR2I& aPosition, LSET aLayerSet ) const { // Search aPadList for aPosition
// aPadList is sorted by X then Y values, and a fast binary search is used
int idxmax = aPadList.size() - 1;
int delta = aPadList.size();
int idx = 0; // Starting index is the beginning of list
while( delta ) { // Calculate half size of remaining interval to test.
// Ensure the computed value is not truncated (too small)
if( (delta & 1) && ( delta > 1 ) ) delta++;
delta /= 2;
PAD* pad = aPadList[idx];
if( pad->GetPosition() == aPosition ) // candidate found
{ // The pad must match the layer mask:
if( ( aLayerSet & pad->GetLayerSet() ).any() ) return pad;
// More than one pad can be at aPosition
// search for a pad at aPosition that matched this mask
// search next
for( int ii = idx+1; ii <= idxmax; ii++ ) { pad = aPadList[ii];
if( pad->GetPosition() != aPosition ) break;
if( ( aLayerSet & pad->GetLayerSet() ).any() ) return pad; } // search previous
for( int ii = idx - 1 ;ii >=0; ii-- ) { pad = aPadList[ii];
if( pad->GetPosition() != aPosition ) break;
if( ( aLayerSet & pad->GetLayerSet() ).any() ) return pad; }
// Not found:
return nullptr; }
if( pad->GetPosition().x == aPosition.x ) // Must search considering Y coordinate
{ if( pad->GetPosition().y < aPosition.y ) // Must search after this item
{ idx += delta;
if( idx > idxmax ) idx = idxmax; } else // Must search before this item
{ idx -= delta;
if( idx < 0 ) idx = 0; } } else if( pad->GetPosition().x < aPosition.x ) // Must search after this item
{ idx += delta;
if( idx > idxmax ) idx = idxmax; } else // Must search before this item
{ idx -= delta;
if( idx < 0 ) idx = 0; } }
return nullptr; }
/**
* Used by #GetSortedPadListByXCoord to sort a pad list by X coordinate value. * * This function is used to build ordered pads lists */ bool sortPadsByXthenYCoord( PAD* const & aLH, PAD* const & aRH ) { if( aLH->GetPosition().x == aRH->GetPosition().x ) return aLH->GetPosition().y < aRH->GetPosition().y;
return aLH->GetPosition().x < aRH->GetPosition().x; }
void BOARD::GetSortedPadListByXthenYCoord( std::vector<PAD*>& aVector, int aNetCode ) const { for( FOOTPRINT* footprint : Footprints() ) { for( PAD* pad : footprint->Pads( ) ) { if( aNetCode < 0 || pad->GetNetCode() == aNetCode ) aVector.push_back( pad ); } }
std::sort( aVector.begin(), aVector.end(), sortPadsByXthenYCoord ); }
void BOARD::PadDelete( PAD* aPad ) { GetConnectivity()->Remove( aPad );
InvokeListeners( &BOARD_LISTENER::OnBoardItemRemoved, *this, aPad );
aPad->DeleteStructure(); }
std::tuple<int, double, double> BOARD::GetTrackLength( const PCB_TRACK& aTrack ) const { int count = 0; double length = 0.0; double package_length = 0.0;
auto connectivity = GetBoard()->GetConnectivity(); BOARD_STACKUP& stackup = GetDesignSettings().GetStackupDescriptor(); bool useHeight = GetDesignSettings().m_UseHeightForLengthCalcs;
for( BOARD_CONNECTED_ITEM* item : connectivity->GetConnectedItems( static_cast<const BOARD_CONNECTED_ITEM*>( &aTrack ), { PCB_TRACE_T, PCB_ARC_T, PCB_VIA_T, PCB_PAD_T } ) ) { count++;
if( PCB_TRACK* track = dynamic_cast<PCB_TRACK*>( item ) ) { if( track->Type() == PCB_VIA_T && useHeight ) { PCB_VIA* via = static_cast<PCB_VIA*>( track ); length += stackup.GetLayerDistance( via->TopLayer(), via->BottomLayer() ); continue; } else if( track->Type() == PCB_ARC_T ) { // Note: we don't apply the clip-to-pad optimization if an arc ends in a pad
// Room for future improvement.
length += track->GetLength(); continue; }
bool inPad = false; SEG trackSeg( track->GetStart(), track->GetEnd() ); double segLen = trackSeg.Length(); double segInPadLen = 0;
for( auto pad_it : connectivity->GetConnectedPads( item ) ) { PAD* pad = static_cast<PAD*>( pad_it );
bool hitStart = pad->HitTest( track->GetStart(), track->GetWidth() / 2 ); bool hitEnd = pad->HitTest( track->GetEnd(), track->GetWidth() / 2 );
if( hitStart && hitEnd ) { inPad = true; break; } else if( hitStart || hitEnd ) { VECTOR2I loc;
// We may not collide even if we passed the bounding-box hit test
if( pad->GetEffectivePolygon()->Collide( trackSeg, 0, nullptr, &loc ) ) { // Part 1: length of the seg to the intersection with the pad poly
if( hitStart ) trackSeg.A = loc; else trackSeg.B = loc;
segLen = trackSeg.Length();
// Part 2: length from the intersection to the pad anchor
segInPadLen += ( loc - pad->GetPosition() ).EuclideanNorm(); } } }
if( !inPad ) length += segLen + segInPadLen; } else if( PAD* pad = dyn_cast<PAD*>( item ) ) { package_length += pad->GetPadToDieLength(); } }
return std::make_tuple( count, length, package_length ); }
FOOTPRINT* BOARD::GetFootprint( const VECTOR2I& aPosition, PCB_LAYER_ID aActiveLayer, bool aVisibleOnly, bool aIgnoreLocked ) const { FOOTPRINT* footprint = nullptr; FOOTPRINT* alt_footprint = nullptr; int min_dim = 0x7FFFFFFF; int alt_min_dim = 0x7FFFFFFF; bool current_layer_back = IsBackLayer( aActiveLayer );
for( FOOTPRINT* candidate : m_footprints ) { // is the ref point within the footprint's bounds?
if( !candidate->HitTest( aPosition ) ) continue;
// if caller wants to ignore locked footprints, and this one is locked, skip it.
if( aIgnoreLocked && candidate->IsLocked() ) continue;
PCB_LAYER_ID layer = candidate->GetLayer();
// Filter non visible footprints if requested
if( !aVisibleOnly || IsFootprintLayerVisible( layer ) ) { EDA_RECT bb = candidate->GetBoundingBox( false, false );
int offx = bb.GetX() + bb.GetWidth() / 2; int offy = bb.GetY() + bb.GetHeight() / 2;
// off x & offy point to the middle of the box.
int dist = ( aPosition.x - offx ) * ( aPosition.x - offx ) + ( aPosition.y - offy ) * ( aPosition.y - offy );
if( current_layer_back == IsBackLayer( layer ) ) { if( dist <= min_dim ) { // better footprint shown on the active side
footprint = candidate; min_dim = dist; } } else if( aVisibleOnly && IsFootprintLayerVisible( layer ) ) { if( dist <= alt_min_dim ) { // better footprint shown on the other side
alt_footprint = candidate; alt_min_dim = dist; } } } }
if( footprint ) return footprint;
if( alt_footprint) return alt_footprint;
return nullptr; }
std::list<ZONE*> BOARD::GetZoneList( bool aIncludeZonesInFootprints ) const { std::list<ZONE*> zones;
for( ZONE* zone : Zones() ) zones.push_back( zone );
if( aIncludeZonesInFootprints ) { for( FOOTPRINT* footprint : m_footprints ) { for( FP_ZONE* zone : footprint->Zones() ) zones.push_back( zone ); } }
return zones; }
ZONE* BOARD::AddArea( PICKED_ITEMS_LIST* aNewZonesList, int aNetcode, PCB_LAYER_ID aLayer, VECTOR2I aStartPointPosition, ZONE_BORDER_DISPLAY_STYLE aHatch ) { ZONE* new_area = new ZONE( this );
new_area->SetNetCode( aNetcode ); new_area->SetLayer( aLayer );
m_zones.push_back( new_area );
new_area->SetHatchStyle( (ZONE_BORDER_DISPLAY_STYLE) aHatch );
// Add the first corner to the new zone
new_area->AppendCorner( aStartPointPosition, -1 );
if( aNewZonesList ) { ITEM_PICKER picker( nullptr, new_area, UNDO_REDO::NEWITEM ); aNewZonesList->PushItem( picker ); }
return new_area; }
bool BOARD::GetBoardPolygonOutlines( SHAPE_POLY_SET& aOutlines, OUTLINE_ERROR_HANDLER* aErrorHandler ) { int chainingEpsilon = Millimeter2iu( 0.02 ); // max dist from one endPt to next startPt
bool success = BuildBoardPolygonOutlines( this, aOutlines, GetDesignSettings().m_MaxError, chainingEpsilon, aErrorHandler );
// Make polygon strictly simple to avoid issues (especially in 3D viewer)
aOutlines.Simplify( SHAPE_POLY_SET::PM_STRICTLY_SIMPLE );
return success; }
const std::vector<PAD*> BOARD::GetPads() const { std::vector<PAD*> allPads;
for( FOOTPRINT* footprint : Footprints() ) { for( PAD* pad : footprint->Pads() ) allPads.push_back( pad ); }
return allPads; }
const std::vector<BOARD_CONNECTED_ITEM*> BOARD::AllConnectedItems() { std::vector<BOARD_CONNECTED_ITEM*> items;
for( PCB_TRACK* track : Tracks() ) items.push_back( track );
for( FOOTPRINT* footprint : Footprints() ) { for( PAD* pad : footprint->Pads() ) items.push_back( pad ); }
for( ZONE* zone : Zones() ) items.push_back( zone );
return items; }
void BOARD::ClearAllNetCodes() { for( BOARD_CONNECTED_ITEM* item : AllConnectedItems() ) item->SetNetCode( 0 ); }
void BOARD::MapNets( const BOARD* aDestBoard ) { for( BOARD_CONNECTED_ITEM* item : AllConnectedItems() ) { NETINFO_ITEM* netInfo = aDestBoard->FindNet( item->GetNetname() );
if( netInfo ) item->SetNet( netInfo ); else item->SetNetCode( 0 ); } }
void BOARD::SanitizeNetcodes() { for ( BOARD_CONNECTED_ITEM* item : AllConnectedItems() ) { if( FindNet( item->GetNetCode() ) == nullptr ) item->SetNetCode( NETINFO_LIST::ORPHANED ); } }
void BOARD::AddListener( BOARD_LISTENER* aListener ) { if( !alg::contains( m_listeners, aListener ) ) m_listeners.push_back( aListener ); }
void BOARD::RemoveListener( BOARD_LISTENER* aListener ) { auto i = std::find( m_listeners.begin(), m_listeners.end(), aListener );
if( i != m_listeners.end() ) { std::iter_swap( i, m_listeners.end() - 1 ); m_listeners.pop_back(); } }
void BOARD::OnItemChanged( BOARD_ITEM* aItem ) { InvokeListeners( &BOARD_LISTENER::OnBoardItemChanged, *this, aItem ); }
void BOARD::OnItemsChanged( std::vector<BOARD_ITEM*>& aItems ) { InvokeListeners( &BOARD_LISTENER::OnBoardItemsChanged, *this, aItems ); }
void BOARD::ResetNetHighLight() { m_highLight.Clear(); m_highLightPrevious.Clear();
InvokeListeners( &BOARD_LISTENER::OnBoardHighlightNetChanged, *this ); }
void BOARD::SetHighLightNet( int aNetCode, bool aMulti ) { if( !m_highLight.m_netCodes.count( aNetCode ) ) { if( !aMulti ) m_highLight.m_netCodes.clear();
m_highLight.m_netCodes.insert( aNetCode ); InvokeListeners( &BOARD_LISTENER::OnBoardHighlightNetChanged, *this ); } }
void BOARD::HighLightON( bool aValue ) { if( m_highLight.m_highLightOn != aValue ) { m_highLight.m_highLightOn = aValue; InvokeListeners( &BOARD_LISTENER::OnBoardHighlightNetChanged, *this ); } }
wxString BOARD::GroupsSanityCheck( bool repair ) { if( repair ) { while( GroupsSanityCheckInternal( repair ) != wxEmptyString ) {};
return wxEmptyString; } return GroupsSanityCheckInternal( repair ); }
wxString BOARD::GroupsSanityCheckInternal( bool repair ) { // Cycle detection
//
// Each group has at most one parent group.
// So we start at group 0 and traverse the parent chain, marking groups seen along the way.
// If we ever see a group that we've already marked, that's a cycle.
// If we reach the end of the chain, we know all groups in that chain are not part of any cycle.
//
// Algorithm below is linear in the # of groups because each group is visited only once.
// There may be extra time taken due to the container access calls and iterators.
//
// Groups we know are cycle free
std::unordered_set<PCB_GROUP*> knownCycleFreeGroups; // Groups in the current chain we're exploring.
std::unordered_set<PCB_GROUP*> currentChainGroups; // Groups we haven't checked yet.
std::unordered_set<PCB_GROUP*> toCheckGroups;
// Initialize set of groups to check that could participate in a cycle.
for( PCB_GROUP* group : Groups() ) toCheckGroups.insert( group);
while( !toCheckGroups.empty() ) { currentChainGroups.clear(); PCB_GROUP* group = *toCheckGroups.begin();
while( true ) { if( currentChainGroups.find( group ) != currentChainGroups.end() ) { if( repair ) Remove( group );
return "Cycle detected in group membership"; } else if( knownCycleFreeGroups.find( group ) != knownCycleFreeGroups.end() ) { // Parent is a group we know does not lead to a cycle
break; }
currentChainGroups.insert( group ); // We haven't visited currIdx yet, so it must be in toCheckGroups
toCheckGroups.erase( group );
group = group->GetParentGroup();
if( !group ) { // end of chain and no cycles found in this chain
break; } }
// No cycles found in chain, so add it to set of groups we know don't participate
// in a cycle.
knownCycleFreeGroups.insert( currentChainGroups.begin(), currentChainGroups.end() ); }
// Success
return ""; }
BOARD::GroupLegalOpsField BOARD::GroupLegalOps( const PCB_SELECTION& selection ) const { bool hasGroup = false; bool hasMember = false;
for( EDA_ITEM* item : selection ) { if( item->Type() == PCB_GROUP_T ) hasGroup = true;
if( static_cast<BOARD_ITEM*>( item )->GetParentGroup() ) hasMember = true; }
GroupLegalOpsField legalOps;
legalOps.create = true; legalOps.removeItems = hasMember; legalOps.ungroup = hasGroup; legalOps.enter = hasGroup && selection.Size() == 1;
return legalOps; }
bool BOARD::cmp_items::operator() ( const BOARD_ITEM* a, const BOARD_ITEM* b ) const { if( a->Type() != b->Type() ) return a->Type() < b->Type();
if( a->GetLayer() != b->GetLayer() ) return a->GetLayer() < b->GetLayer();
if( a->GetPosition().x != b->GetPosition().x ) return a->GetPosition().x < b->GetPosition().x;
if( a->GetPosition().y != b->GetPosition().y ) return a->GetPosition().y < b->GetPosition().y;
if( a->m_Uuid != b->m_Uuid ) // shopuld be always the case foer valid boards
return a->m_Uuid < b->m_Uuid;
return a < b; }
bool BOARD::cmp_drawings::operator()( const BOARD_ITEM* aFirst, const BOARD_ITEM* aSecond ) const { if( aFirst->Type() != aSecond->Type() ) return aFirst->Type() < aSecond->Type();
if( aFirst->GetLayer() != aSecond->GetLayer() ) return aFirst->GetLayer() < aSecond->GetLayer();
if( aFirst->Type() == PCB_SHAPE_T ) { const PCB_SHAPE* shape = static_cast<const PCB_SHAPE*>( aFirst ); const PCB_SHAPE* other = static_cast<const PCB_SHAPE*>( aSecond ); return shape->Compare( other ); } else if( aFirst->Type() == PCB_TEXT_T ) { const PCB_TEXT* text = static_cast<const PCB_TEXT*>( aFirst ); const PCB_TEXT* other = static_cast<const PCB_TEXT*>( aSecond ); return text->Compare( other ); } else if( aFirst->Type() == PCB_TEXTBOX_T ) { const PCB_TEXTBOX* textbox = static_cast<const PCB_TEXTBOX*>( aFirst ); const PCB_TEXTBOX* other = static_cast<const PCB_TEXTBOX*>( aSecond );
return textbox->PCB_SHAPE::Compare( other ) && textbox->EDA_TEXT::Compare( other ); }
return aFirst->m_Uuid < aSecond->m_Uuid; }
void BOARD::ConvertBrdLayerToPolygonalContours( PCB_LAYER_ID aLayer, SHAPE_POLY_SET& aOutlines ) const { int maxError = GetDesignSettings().m_MaxError;
// convert tracks and vias:
for( const PCB_TRACK* track : m_tracks ) { if( !track->IsOnLayer( aLayer ) ) continue;
track->TransformShapeWithClearanceToPolygon( aOutlines, aLayer, 0, maxError, ERROR_INSIDE ); }
// convert pads and other copper items in footprints
for( const FOOTPRINT* footprint : m_footprints ) { footprint->TransformPadsWithClearanceToPolygon( aOutlines, aLayer, 0, maxError, ERROR_INSIDE );
// Micro-wave footprints may have items on copper layers
footprint->TransformFPShapesWithClearanceToPolygon( aOutlines, aLayer, 0, maxError, ERROR_INSIDE, true, /* include text */ true /* include shapes */ );
for( const ZONE* zone : footprint->Zones() ) { if( zone->GetLayerSet().test( aLayer ) ) zone->TransformSolidAreasShapesToPolygon( aLayer, aOutlines ); } }
// convert copper zones
for( const ZONE* zone : Zones() ) { if( zone->GetLayerSet().test( aLayer ) ) zone->TransformSolidAreasShapesToPolygon( aLayer, aOutlines ); }
// convert graphic items on copper layers (texts)
for( const BOARD_ITEM* item : m_drawings ) { if( !item->IsOnLayer( aLayer ) ) continue;
switch( item->Type() ) { case PCB_SHAPE_T: { const PCB_SHAPE* shape = static_cast<const PCB_SHAPE*>( item ); shape->TransformShapeWithClearanceToPolygon( aOutlines, aLayer, 0, maxError, ERROR_INSIDE ); break; }
case PCB_TEXT_T: { const PCB_TEXT* text = static_cast<const PCB_TEXT*>( item ); text->TransformTextShapeWithClearanceToPolygon( aOutlines, aLayer, 0, maxError, ERROR_INSIDE ); break; }
case PCB_TEXTBOX_T: { const PCB_TEXTBOX* textbox = static_cast<const PCB_TEXTBOX*>( item ); textbox->TransformTextShapeWithClearanceToPolygon( aOutlines, aLayer, 0, maxError, ERROR_INSIDE ); break; }
default: break; } } }
|