

Assembly CodeCount™

Counting Standard

University of Southern California

Center for Systems and Software Engineering

June , 2014

Center for Systems and Software Engineering 2014

2

Revision Sheet

Date Version Revision Description Author

6/18/2014 1.0 Original Release CSSE

Center for Systems and Software Engineering 2014

3

Table of Contents

No. Contents Page No.

1.0

2.0

Introduction

Definitions

1.1 SLOC

1.2 Physical SLOC

1.3 Logical SLOC

1.4 Data declaration line

1.5 Compiler directive

1.6 Blank line

1.7 Comment line

1.8 Executable line of code

4

5

5

5

5

5

5

6

6

6

3.0 Checklist for source statement counts 7

4.0 Examples of logical SLOC counting

3.1 Example 1: PowerPC Assembly

3.2 Example 2: NASM Assembly

8

8

8

Center for Systems and Software Engineering 2014

4

1. Introduction

Unlike high-level languages, assembly languages exist in many variations since they are hardware (architecture)

dependent. On top of this, there can be multiple assemblers for a given hardware platform. Unfortunately, these

assemblers do not recognize the same assembly-language program on the same platform. In other words, an

assembly-language program is architecture dependent and assembler dependent. As a result, there are many

variations of assembly languages. It is infeasible to develop an assembly code counter that addresses all existing

variations. This assembly code counter aims to address the following assemblers and architectures:

 Assemblers

 NASM* MASM* GAS* SPIM (MIPS)* AIX Assembler (PowerPC)

Architectures x86 x86 x86,

Motorola,

PowerPC

MIPS32 PowerPC,

POWER Family (POWER 2,

3, 4, 5, PPC970)

*NASM, MASM, and GAS stand for Netwide Assembler, Microsoft Assembler, and GNU Assembler, respectively. SPIM is a

reversal of the letters “MIPS”. SPIM is a simulator designed to run MIPS32 programs.

This code counter supports the following file extensions: *.asm, *.s, and *.asm.pcc.

Center for Systems and Software Engineering 2014

5

2. Definitions

2.1. SLOC – Source Lines of Code is a unit used to measure the size of software program. SLOC counts the

program source code based on a certain set of rules. SLOC is a key input for estimating project effort and is

also used to calculate productivity and other measurements.

2.2. Physical SLOC – One physical SLOC is corresponding to one line starting with the first character and ending

by a carriage return or an end-of-file marker of the same line, and which excludes the blank and comment

line.

2.3. Logical SLOC – Lines of code intended to measure “statements”, which normally terminate by a semicolon

(C/C++, Java, C#) or a carriage return (VB, Assembly), etc. Logical SLOC are not sensitive to format and style

conventions, but they are language-dependent.

2.4. Data declaration line or data line – A line that contains declaration of data and used by an assembler or

compiler to interpret other elements of the program. A typical assembly program has two sections or

segments, namely the data section and the text (code) section. Lines of codes under the data section are

considered data lines. Lines of code under the text section are considered executable lines.

The following table lists the assembly keywords that denote the beginning of a data section for Netwide

Assembler (NASM), Microsoft Assembler (MASM), GNU Assembler (GAS), MIPS assembler (SPIM), and

PowerPC assembler (AIX):

NASM MASM GAS MIPS PowerPC

section .data .data .data .data .data

section .bss .const .bss .rdata .bss

 .section name, “d” .sdata .csect[RW]

 .section name, “b” .bss .csect[TC0]

 .sbss .csect[TC]

 .lit .csect[TD]

 .csect[UA]

 .csect[DS]

 .csect[BS]

 .csect[UC]

 .csect[ER]

 .csect[SD]

 .csect[LD]

 .csect[CM]

Table 1 Data Declaration Types

2.5. Compiler Directives – A statement that tells the compiler how to compile a program, but not what to

compile. Assembly program does not contain any compiler directives.

Center for Systems and Software Engineering 2014

6

2.6. Blank Line – A physical line of code, which contains any number of white space characters (spaces, tabs,

form feed, carriage return, line feed, or their derivatives).

2.7. Comment Line – A comment is defined as a string of zero or more characters that follow language-specific

comment delimiter.

Assembly comment delimiters are “#”, “;”, “|”, and “/*” and are dependent on each assembler. A whole

comment line may span one line and does not contain any compliable source code. An embedded comment

can co-exist with compliable source code on the same physical line. Banners and empty comments are

treated as types of comments.

2.8. Executable Line of code – A line that contains software instruction executed during runtime and on which a

breakpoint can be set in a debugging tool. An instruction can be stated in a simple or compound form.

• An executable line of code may contain the following program control statements:

� Compare statements (cmp)

� Jump statements (jp, exit)

� Expression statements (assignment statements, operations, system call, etc.)

• An executable line of code may not contain the following statements:

� Data declaration (data) lines

� Whole line comments, including empty comments and banners

� Blank lines

A typical assembly program has two sections or segments, namely the data section and the text section.

Lines of codes under the text section are considered executable lines.

The following table lists the assembly keywords that denote the beginning of a text section for Netwide

Assembler (NASM), Microsoft Assembler (MASM), GNU Assembler (GAS), MIPS assembler, and PowerPC

assembler:

NASM MASM GAS MIPS PowerPC

section .text .code .text .text .text

section .txt .section .text .init

 .fini

 .ktext

Center for Systems and Software Engineering 2014

7

3. Checklist for source statement counts

PHYSICAL SLOC COUNTING RULES

MEASUREMENT UNIT
ORDER OF

PRECEDENCE
PHYSICAL SLOC COMMENTS

Executable Lines 1 One Per line Defined in 1.8

Non-executable Lines

Declaration (Data) lines 2 One per line Defined in 1.4

Comments Defined in 1.7

 On their own lines 3 Not Included (NI)

 Embedded 4 NI

 Banners 5 NI

 Empty Comments 6 NI

Blank Lines 7 NI Defined in 1.6

LOGICAL SLOC COUNTING RULES

NO. STRUCTURE
ORDER OF

PRECEDENCE
LOGICAL SLOC RULES COMMENTS

R01 Multiple statements in a single

physical line, with each

statement delimited by a

semicolon

1 Count once per semicolon,

excluding empty statement

A physical line (physical SLOC)

contains one or more logical

statements. Multiple

statements are normally

delimited by a semicolon. For

example, MIPS statements

are delimited by a semicolon.

In GAS and PowerPC,

statements are delimited by a

new-line character or a

semicolon (unless the

semicolon conflicts with the

comment character).

R02 A single statement terminated

by a new-line character or a

semicolon

2 Count once This is the case where there is

only one statement in a

physical line.

Center for Systems and Software Engineering 2014

8

4. Examples

POWERPC ASSEMBLY

E1 – Example 1: PowerPC Assembly

GENERAL EXAMPLE SPECIFIC EXAMPLE
SLOC

COUNT

SLOC

TYPE

[label:] mnemonic [operand1[,operand2…]] [# comment]

Multiple statements, each of which is on its own line

Multiple statements on a single line delimited by ;

Label on its own line

Label followed by an executable statement

Comment lines

Statement followed by an inline comment

Beginning of a data declaration section

Beginning of a text (code) section

mylabel: add 6, 4, 5

add 6, 4, 5

li 0, 1

add 6, 4, 5; li 0, 1

start_here:

 add 6, 4, 5

start_here: add 6, 4, 5

#This is a comment line

#Another line of comment

add 6, 4, 5 #My inline comment

.data #data section begins

msg:

 .string “Hello World”

.text # begin code

 addi 4, 4, msg

1

1

1

2

0

1

1

0

0

1

1

0

1

1

1

Executable

Executable

Executable

Executable

Executable

Executable

Executable

Data

Data

Executable

Executable

NETWIDE ASSEMBLY (NASM)

E2 – Example 2: NASM Assembly – A Complete “Hello World” program

GENERAL EXAMPLE SPECIFIC EXAMPLE
SLOC

COUNT

SLOC

TYPE

Comment lines begin with a

semi-colon.

; In NASM, a comment line begins with a semicolon

; hello.asm is a first program for NASM for Linux, Intel, gcc

;

0

0

0

Center for Systems and Software Engineering 2014

9

Start of a data declaration

section. Lines under this

section are data lines until

a non-data section begins.

Start of a code/exsecutable

section

; assemble: nasm -f elf -l hello.lst hello.asm

; link: gcc -o hello hello.o

; run: hello

; output is: Hello World

SECTION .data ; data section

msg: db "Hello World",10 ; the string to print, 10=cr

len: equ $-msg ; "$" means "here"

 ; len is a value, not an address

SECTION .text ; code section

global main ; make label available to linker

main: ; standard gcc entry point

 mov edx,len ; arg3, length of string to print

 mov ecx,msg ; arg2, pointer to string

 mov ebx,1 ; arg1, where to write, screen

 mov eax,4 ; write command to int 80 hex

 int 0x80 ; interrupt 80 hex, call kernel

 mov ebx,0 ; exit code, 0=normal

 mov eax,1 ; exit command to kernel

 int 0x80 ; interrupt 80 hex, call kernel

0

0

0

0

0

1

1

1

0

0

1

1

0

0

1

1

1

1

1

0

1

1

1

Data

Data

Data

Executable

Executable

Executable

Executable

Executable

Executable

Executable

Executable

Executable

Executable

