Rapid spam filtering system https://rspamd.com/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1023 lines
42 KiB

\input texinfo
@settitle "Rspamd Spam Filtering System"
@titlepage
@title Rspamd Spam Filtering System
@subtitle A User's Guide for Rspamd
@author Vsevolod Stakhov
@end titlepage
@contents
@chapter Rspamd purposes and features.
@node introduction
@section Introduction.
Rspamd filtering system is created as a replacement of popular
@code{spamassassin}
spamd and is designed to be fast, modular and easily extendable system. Rspamd
core is written in @code{C} language using event driven paradigma. Plugins for rspamd
can be written in @code{lua}. Rspamd is designed to process connections
completely asynchronous and do not block anywhere in code. Spam filtering system
contains of several processes among them are:
@itemize @bullet
@item Main process
@item Workers processes
@item Controller process
@item Other processes
@end itemize
Main process manages all other processes, accepting signals from OS (for example
SIGHUP) and spawn all types of processes if any of them die. Workers processes
do all tasks for filtering e-mail (or HTML messages in case of using rspamd as
non-MIME filter). Controller process is designed to manage rspamd itself (for
example get statistics or learning rspamd). Other processes can do different
jobs among them now are implemented @code{LMTP} worker that implements
@code{LMTP} protocol for filtering mail and fuzzy hashes storage server.
@node features
@section Features.
The main features of rspamd are:
@itemize @bullet
@item Completely asynchronous filtering that allows a big number of simultenious
connections.
@item Easily extendable architecture that can be extended by plugins written in
@code{lua} and by dynamicaly loaded plugins written in @code{c}.
@item Ability to work in cluster: rspamd is able to perform statfiles
synchronization, dynamic load of lists via HTTP, to use distributed fuzzy hashes
storage.
@item Advanced statistics: rspamd now is shipped with winnow-osb classifier that
provides more accurate statistics than traditional bayesian algorithms based on
single words.
@item Internal optimizer: rspamd first of all try to check rules that were met
more often, so for huge spam storms it works very fast as it just checks only
that rules that @emph{can} happen and skip all others.
@item Ability to manage the whole cluster by using controller process.
@item Compatibility with existing @code{spamassassin} SPAMC protocol.
@item Extended @code{RSPAMC} protocol that allows to pass many additional data
from SMTP dialog to rspamd filter.
@item Internal support of IMAP in rspamc client for automated learning.
@item Internal support of many anti-spam technologies, among them are
@code{SPF} and @code{SURBL}.
@item Active support and development of new features.
@end itemize
@chapter Installation of rspamd.
@node obtaining
@section Obtaining of rspamd.
The main rspamd site is @url{http://rspamd.sourceforge.net/, sourceforge}. Here
you can obtain source code package as well as pre-packed packages for different
operating systems and architectures. Also, you can use SCM
@url{http://mercurial.selenic.com, mercurial} for accessing rspamd development
repository that can be found here:
@url{http://rspamd.hg.sourceforge.net:8000/hgroot/rspamd/rspamd}. Rspamd is
shipped with all modules and sample config by default. But there are some
requirements for building and running rspamd.
@node requirements
@section Requirements.
For building rspamd from sources you need @code{CMake} system. CMake is very
nice source building system and I decided to use it instead of GNU autotools.
CMake can be obtained here: @url{http://cmake.org}. Also rspamd uses gmime and
glib for MIME parsing and many other purposes (note that you are NOT required
to install any GUI libraries - nor glib, nor gmime are GUI libraries). Gmime
and glib can be obtained from gnome site: @url{http://ftp.gnome.org/}. For
plugins and configuration system you also need lua language interpreter and
libraries. They can be easily obtained from @url{http://lua.org, official lua
site}. Also for rspamc client you need @code{perl} interpreter that could be
installed from @url{http://www.perl.org}.
@node building
@section Building and Installation.
Build process of rspamd is rather simple:
@itemize @bullet
@item Configure rspamd build environment, using cmake:
@example
$ cmake .
...
-- Configuring done
-- Generating done
-- Build files have been written to: /home/cebka/rspamd
@end example
@noindent
For special configuring options you can use
@example
$ ccmake .
CMAKE_BUILD_TYPE
CMAKE_INSTALL_PREFIX /usr/local
DEBUG_MODE ON
ENABLE_GPERF_TOOLS OFF
ENABLE_OPTIMIZATION OFF
ENABLE_PERL OFF
ENABLE_PROFILING OFF
ENABLE_REDIRECTOR OFF
ENABLE_STATIC OFF
@end example
@noindent
Options allows building rspamd as static module (note that in this case
dynamicaly loaded plugins are @strong{NOT} supported), linking rspamd with
google performance tools for benchmarking and include some other flags while
building.
@item Build rspamd sources:
@example
$ make
[ 6%] Built target rspamd_lua
[ 11%] Built target rspamd_json
[ 12%] Built target rspamd_evdns
[ 12%] Built target perlmodule
[ 58%] Built target rspamd
[ 76%] Built target test/rspamd-test
[ 85%] Built target utils/expression-parser
[ 94%] Built target utils/url-extracter
[ 97%] Built target rspamd_ipmark
[100%] Built target rspamd_regmark
@end example
@noindent
@item Install rspamd (as superuser):
@example
# make install
Install the project...
...
@end example
@noindent
@end itemize
After installation you would have several new files installed:
@itemize @bullet
@item Binaries:
@itemize @bullet
@item PREFIX/bin/rspamd - main rspamd executable
@item PREFIX/bin/rspamc - rspamd client program
@end itemize
@item Sample configuration files and rules:
@itemize @bullet
@item PREFIX/etc/rspamd.xml.sample - sample main config file
@item PREFIX/etc/rspamd/lua/*.lua - rspamd rules
@end itemize
@item Lua plugins:
@itemize @bullet
@item PREFIX/etc/rspamd/plugins/lua/*.lua - lua plugins
@end itemize
@end itemize
For @code{FreeBSD} system there also would be start script for running rspamd in
@emph{PREFIX/etc/rc.d/rspamd.sh}.
@node running
@section Running rspamd.
Rspamd can be started by running main rspamd executable -
@code{PREFIX/bin/rspamd}. There are several command-line options that can be
passed to rspamd. All of them can be displayed by passing --help argument:
@example
$ rspamd --help
Usage:
rspamd [OPTION...] - run rspamd daemon
Summary:
Rspamd daemon version 0.3.0
Help Options:
-?, --help Show help options
Application Options:
-t, --config-test Do config test and exit
-f, --no-fork Do not daemonize main process
-c, --config Specify config file
-u, --user User to run rspamd as
-g, --group Group to run rspamd as
-p, --pid Path to pidfile
-V, --dump-vars Print all rspamd variables and exit
-C, --dump-cache Dump symbols cache stats and exit
-X, --convert-config Convert old style of config to xml one
@end example
@noindent
All options are optional: by default rspamd would try to read
@code{PREFIX/etc/rspamd.xml} config file and run as daemon. Also there is test
mode that can be turned on by passing @option{-t} argument. In test mode rspamd
would read config file and checks its syntax, if config file is OK, then exit
code is zero and non zero otherwise. Test mode is useful for testing new config
file without restarting of rspamd. With @option{-C} and @option{-V} arguments it is
possible to dump variables or symbols cache data. The last ability can be used
for determining which symbols are most often, which are most slow and to watch
to real order of rules inside rspamd. @option{-X} option can be used to convert
old style (pre 0.3.0) config to xml one:
@example
$ rspamd -c ./rspamd.conf -X ./rspamd.xml
@end example
@noindent
After this command new xml config would be dumped to rspamd.xml file.
@node signals
@section Managing rspamd with signals.
First of all it is important to note that all user's signals should be sent to
rspamd main process and not to its children (as for child processes these
signals may have other meanings). To determine which process is main you can use
two ways:
@itemize @bullet
@item by reading pidfile:
@example
$ cat pidfile
@end example
@noindent
@item by getting process info:
@example
$ ps auxwww | grep rspamd
nobody 28378 0.0 0.2 49744 9424 rspamd: main process (rspamd)
nobody 64082 0.0 0.2 50784 9520 rspamd: worker process (rspamd)
nobody 64083 0.0 0.3 51792 11036 rspamd: worker process (rspamd)
nobody 64084 0.0 2.7 158288 114200 rspamd: controller process (rspamd)
nobody 64085 0.0 1.8 116304 75228 rspamd: fuzzy storage (rspamd)
$ ps auxwww | grep rspamd | grep main
nobody 28378 0.0 0.2 49744 9424 rspamd: main process (rspamd)
@end example
@noindent
@end itemize
After getting pid of main process it is possible to manage rspamd with signals:
@itemize @bullet
@item SIGHUP - restart rspamd: reread config file, start new workers (as well as
controller and other processes), stop accepting connections by old workers,
reopen all log files. Note that old workers would be terminated after one minute
that should allow to process all pending requests. All new requests to rspamd
would be processed by newly started workers.
@item SIGTERM - terminate rspamd system.
@end itemize
These signals may be used in start scripts as it is done in @code{FreeBSD} start
script. Restarting of rspamd is doing rather softly: no connections would be
dropped and if new config is syntaxically incorrect old config would be used.
@chapter Configuring of rspamd.
@node principles
@section Principles of work.
We need to define several terms to explain configuration of rspamd. Rspamd
operates with @strong{rules}, each rule defines some actions that should be done with
message to obtain result. Result is called @strong{symbol} - a symbolic
representation of rule. For example, if we have a rule to check DNS record for
a url that contains in message we may insert resulting symbol if this DNS record
is found. Each symbol has several attributes:
@itemize @bullet
@item name - symbolic name of symbol (usually uppercase, e.g. MIME_HTML_ONLY)
@item weight - numeric weight of this symbol (this means how important this rule is), may
be negative
@item options - list of symbolic options that defines additional information about
processing this rule
@end itemize
Weights of symbols are called @strong{factors}. Also when symbol is inserted it
is possible to define additional multiplier to factor. This can be used for
rules that have dynamic weights, for example statistical rules (when probability
is higher weight must be higher as well).
All symbols and corresponding rules are combined in @strong{metrics}. Metric
defines a group of symbols that are designed for common purposes. Each metric
has maximum weight: if sum of all rules' results (symbols) is bigger than this
limit then this message is considered as spam in this metric. The default metric
is called @emph{default} and rules that have not explicitly specified metric
would insert their results to this default metric.
Let's impress how this technics works:
@enumerate 1
@item First of all when rspamd is running each module (lua, internal or external
dynamic module) can register symbols in any defined metric. After this process
rspamd has a cache of symbols for each metric. This cache can be saved to file
for speeding up process of optimizing order of calling of symbols.
@item Rspamd gets a message from client and parse it with mime parsing and do
other parsing jobs like extracting text parts, urls, and stripping html tags.
@item For each metric rspamd is looking to metric's cache and select rules to
check according to their order (this order depends on frequence of symbol, its
weight and execution time).
@item Rspamd calls rules of metric till the sum weight of symbols in metric is
less than its limit.
@item If sum weight of symbols is more than limit the processing of rules is
stopped and message is counted as spam in this metric.
@end enumerate
After processing rules rspamd is also does statistic check of message. Rspamd
statistic module is presented as a set of @strong{classifiers}. Each classifier
defines algorithm of statistic checks of messages. Also classifier definition
contains definition of @strong{statistic files} (or @strong{statfiles} shortly).
Each statfile contains of number of patterns that are extracted from messages.
These patterns are put into statfiles during learning process. A short example:
you define classifier that contains two statfiles: @emph{ham} and @emph{spam}.
Than you find 10000 messages that are spam and 10000 messages that contains ham.
Then you learn rspamd with these messages. After this process @emph{ham}
statfile contains patterns from ham messages and @emph{spam} statfile contains
patterns from spam messages. Then when you are checking message via this
statfiles messages that are like spam would have more probability/weight in
@emph{spam} statfile than in @emph{ham} statfile and classifier would insert
symbol of @emph{spam} statfile and would calculate how this message is like
patterns that are contained in @emph{spam} statfile. But rspamd is not limiting
you to define one classifier or two statfiles. It is possible to define a number
of classifiers and a number of statfiles inside a classifier. It can be useful
for personal statistic or for specific spam patterns. Note that each classifier
can insert only one symbol - a symbol of statfile with max weight/probability.
Also note that statfiles check is allways done after all rules. So statistic can
@strong{correct} result of rules.
Now some words about @strong{modules}. All rspamd rules are contained in
modules. Modules can be internal (like SURBL, SPF, fuzzy check, email and
others) and external written in @code{lua} language. In fact there is no differ
in the way, how rules of these modules are called:
@enumerate 1
@item Rspamd loads config and loads specified modules.
@item Rspamd calls init function for each module passing configurations
arguments.
@item Each module examines configuration arguments and register its rules (or
not register depending on configuration) in rspamd metrics (or in a single
metric).
@item During metrics process rspamd calls registered callbacks for module's
rules.
@item These rules may insert results to metric.
@end enumerate
So there is no actual difference between lua and internal modules, each are just
providing callbacks for processing messages. Also inside callback it is possible
to change state of message's processing. For example this can be done when it is
required to make DNS or other network request and to wait result. So modules can
pause message's processing while waiting for some event. This is true for lua
modules as well.
@node config structure
@section Rspamd config file structure.
Rspamd config file is placed in PREFIX/etc/rspamd.xml by default. You can
specify other location by passing @option{-c} option to rspamd. Rspamd config file
contains configuration parameters in XML format. XML was selected for rather
simple manual editing config file and for simple automatic generation as well as
for dynamic configuration. I've decided to move rules logic from XML file to
keep it small and simple. So rules are defined in @code{lua} language and rspamd
parameters are defined in xml file (rspamd.xml). Configuration rules are
included by @strong{<lua>} tag that have @strong{src} attribute that defines
relative path to lua file (relative to placement of rspamd.xml):
@example
<lua src="rspamd/lua/rspamd.lua">fake</lua>
@end example
@noindent
Note that it is not currently possible to have empty tags. I hope this
restriction would be fixed in future. Rspamd xml config consists of several
sections:
@itemize @bullet
@item Main section - section where main config parameters are placed.
@item Workers section - section where workers are described.
@item Classifiers section - section where you define your classify logic
@item Modules section - a set of sections that describes module's rules (in fact
these rules should be in lua code)
@item Factors section - a section where you can set numeric values for symbols
@item Logging section - a section that describes rspamd logging
@item Views section - a section that defines rspamd views
@end itemize
So common structure of rspamd.xml can be described this way:
@example
<? xml version="1.0" encoding="utf-8" ?>
<rspamd>
<!-- Main section directives -->
...
<!-- Workers directives -->
<worker>
...
</worker>
...
<!-- Classifiers directives -->
<classifier>
...
</classifier>
...
<!-- Factors -->
<factors>
<factor name="MIME_HTML_ONLY>1.1</factor>
...
</factors>
<!-- Logging section -->
<logging>
<type>console</type>
<level>info</level>
...
</logging>
<!-- Views section -->
<view>
...
</view>
...
<!-- Modules settings -->
<module name="regexp">
<option name="test">test</option>
...
</module>
...
</rspamd>
@end example
Each of these sections would be described further in details.
@section Rspamd configuration atoms.
@node config atoms
There are several primitive types of rspamd configuration parameters:
@itemize @bullet
@item String - common string that defines option.
@item Number - integer or fractional number (e.g.: 10 or -1.5).
@item Time - ammount of time in milliseconds, may has suffixes:
@itemize @bullet
@item @emph{s} - for seconds (e.g. @emph{10s});
@item @emph{m} - for minutes (e.g. @emph{10m});
@item @emph{h} - for hours (e.g. @emph{10h});
@item @emph{d} - for days (e.g. @emph{10d});
@end itemize
@item Size - like number numerci reprezentation of size, but may have a suffix:
@itemize @bullet
@item @emph{k} - 'kilo' - number * 1024 (e.g. @emph{10k});
@item @emph{m} - 'mega' - number * 1024 * 1024 (e.g. @emph{10m});
@item @emph{g} - 'giga' - number * 1024 * 1024 * 1024 (e.g. @emph{1g});
@end itemize
@noindent
Size atoms are used for memory limits for example.
@item Lists - path to dynamic rspamd list (e.g. @emph{http://some.host/some/path}).
@end itemize
While practically all atoms are rather trivial to understand rspamd lists may
cause some confusion. Lists are widely used in rspamd for getting data that can
be often changed for example white or black lists, lists of ip addresses, lists
of domains. So for such purposes it is possible to use files that can be get
either from local filesystem (e.g. @code{file:///var/run/rspamd/whitelsist}) or
by HTTP (e.g. @code{http://some.host/some/path/list.txt}). Rspamd constantly
looks for changes in this files, if using HTTP it also set
@emph{If-Modified-Since} header and check for @emph{Not modified} reply. So it
causes no overhead when lists are not modified and may allow to store huge lists
and to distribute them over HTTP. Monitoring of lists is done with some random
delay (jitter), so if you have many rspamd servers in cluster that are
monitoring a single list they would come to check or download it in slightly different
time. The two most common list formats are @emph{IP list} and @emph{domains
list}. IP list contains of ip addresses in dot notation (e.g.
@code{192.168.1.1}) or ip/network pairs in CIDR notation (e.g.
@code{172.16.0.0/16}). Items in lists are separated by newline symbol. Lines
that begin with @emph{#} symbol are considered as comments and are ignored while
parsing. Domains list is very like ip list with difference that it contains
domain names.
@section Main rspamd configuration section.
Main rspamd configurtion section contains several definitions that determine
main parameters of rspamd for example path to pidfile, temporary directory, lua
includes, several limits e.t.c. Here is list of this directives explained:
@multitable @columnfractions .2 .8
@headitem Tag @tab Mean
@item @var{<tempdir>}
@tab Defines temporary directory for rspamd. Default is to use @env{TEMP}
environment variable or @code{/tmp}.
@item @var{<pidfile>}
@tab Path to rspamd pidfile. Here would be stored a pid of main process.
Pidfile is used to manage rspamd from start scripts.
@item @var{<statfile_pool_size>}
@tab Limit of statfile pool size: a total number of bytes that can be used for
mapping statistic files. Rspamd is using LRU system and would unmap the most
unused statfile when this limit would be reached. The common sense is to set
this variable equal to total size of all statfiles, but it can be less than this
in case of dynamic statfiles (for per-user statistic).
@item @var{<filters>}
@tab List of enabled internal filters. Items in this list can be separated by
spaces, semicolons or commas. If internal filter is not specified in this line
it would not be loaded or enabled.
@item @var{<raw_mode>}
@tab Boolean flag that specify whether rspamd should try to convert all
messages to UTF8 or not. If @var{raw_mode} is enabled all messages are
processed @emph{as is} and are not converted. Raw mode is faster than utf mode
but it may confuse statistics and regular expressions.
@item @var{<lua>}
@tab Defines path to lua file that should be loaded fro configuration. Path to
this file is defined in @strong{src} attribute. Text inside tag is required but
is not parsed (this is stupid limitation of parser's design).
@end multitable
@section Rspamd logging configuration.
Rspamd has a number of logging variants. First of all there are three types of
logs that are supported by rspamd: console loggging (just output log messages to
console), file logging (output log messages to file) and logging via syslog.
Also it is possible to filter logging to specific level:
@itemize @bullet
@item error - log only critical errors
@item warning - log errors and warnings
@item info - log all non-debug messages
@item debug - log all including debug messages (huge amount of logging)
@end itemize
Also it is possible to turn on debug messages for specific ip addresses. This
ability is usefull for testing.
For each logging type there are special mandatory parameters: log facility for
syslog (read @emph{syslog (3)} manual page for details about facilities), log
file for file logging. Also file logging may be buffered for speeding up. For
reducing logging noise rspamd detects for sequential identic log messages and
replace them with total number of repeats:
@example
#81123(fuzzy): May 11 19:41:54 rspamd file_log_function: Last message repeated 155 times
#81123(fuzzy): May 11 19:41:54 rspamd process_write_command: fuzzy hash was successfully added
@end example
Here is summary of logging parameters:
@multitable @columnfractions .2 .8
@headitem Tag @tab Mean
@item @var{<type>}
@tab Defines logging type (file, console or syslog). For each type mandatory
attriute must be present:
@itemize @bullet
@item @emph{filename} - path to log file for file logging type;
@item @emph{facility} - syslog logging facility.
@end itemize
@item @var{<level>}
@tab Defines loggging level (error, warning, info or debug).
@item @var{<log_buffer>}
@tab For file and console logging defines buffer in bytes (kilo, mega or giga
bytes) that would be used for logging output.
@item @var{<log_urls>}
@tab Flag that defines whether all urls in message would be logged. Useful for
testing.
@item @var{<debug_ip>}
@tab List that contains ip addresses for which debugging would be turned on. For
more information about ip lists look at @ref{config atoms}.
@end multitable
@section Factors configuration.
Setting of rspamd factors is the main way to change rules' weights. Factors set
up weights for all rules: for those that have static weights (for example simple
regexp rules) and for those that have dynamic weights (for example statistic
rules). In all cases the base weight of rule is multiplied by factor value. For
static rules base weight is usually 1.0. So we have:
@itemize @bullet
@item @math{w_{symbol} = w_{static} * factor} - for static rules
@item @math{w_{symbol} = w_{dynamic} * factor} - for dynamic rules
@end itemize
Also there is an ability to add so called "grow factor" - additional multiplier
that would be used when we have more than one symbol in metric. So for each
added symbol this factor would increment its power. This can be written as:
@math{w_{total} = w_1 * gf ^ 0 + w_2 * gf ^ 1 + ... + w_n * gf ^ {n - 1}}
Grow multiplier is used to increment weight of rules when message got many
symbols (likely spammy). Note that only rules with positive weights would
increase grow factor, those with negative weights would just be added. Also note
that grow factor can be less than 1 but it is uncommon use (in this case we
would have weight lowering when we have many symbols for this message). Factors
can be set up with config section @emph{factors}:
@example
<factors>
<factor name="MIME_HTML_ONLY">0.1</factor>
<grow_factor>1.1</grow_factor>
</factors>
@end example
Note that you basically need to add factor when you add additional rules. The
decision of weight of newly added rule basically depends on its importance. For
example you are absolutely sure that some rule would add a symbol on only spam
messages, so you can increase weight of such rule so it would filter such spam.
But if you increase weight of rules you should be more or less sure that it
would not increase false positive errors rate to unacceptable level (false
positive errors are errors when good mail is treated as spam). Rspamd comes with
a set of default rules and default weights of that rules are placed in
rspamd.xml.sample. In most cases it is reasonable to change them for your mail
system, for example increase weights of some rules or decrease for others. Also
note that default grow factor is 1.0 that means that weights of rules do not
depend on count of added symbols. For some situations it useful to set grow
factor to value more than 1.0. Also by modifying factors it is possible to
manage static multiplier for dynamic rules.
@section Workers configuration.
Workers are rspamd processes that are doing specific jobs. Now are supported 4
types of workers:
@enumerate 1
@item Normal worker - a typical worker that process messages.
@item Controller worker - a worker that manages rspamd, get statistics and do
learning tasks.
@item Fuzzy storage worker - a worker that contains a collection of fuzzy
hashes.
@item LMTP worker - experimental worker that acts as LMTP server.
@end enumerate
These types of workers has some common parameters:
@multitable @columnfractions .2 .8
@headitem Parameter @tab Mean
@item @emph{<type>}
@tab Type of worker (normal, controller, lmtp or fuzzy)
@item @emph{<bind_socket>}
@tab Socket credits to bind this worker to. Inet and unix sockets are supported:
@example
<bind_socket>localhost:11333</bind_socket>
<bind_socket>/var/run/rspamd.sock</bind_socket>
@end example
@noindent
Also for inet sockets you may specify @code{*} as address to bind to all
available inet interfaces:
@example
<bind_socket>*:11333</bind_socket>
@end example
@noindent
@item @emph{<count>}
@tab Number of worker processes of this type. By default this number is
equialent to number of logical processors in system.
@item @emph{<maxfiles>}
@tab Maximum number of file descriptors available to this worker process.
@item @emph{<maxcore>}
@tab Maximum size of core file that would be dumped in cause of critical errors
(in mega/kilo/giga bytes).
@end multitable
Also each of workers types can have specific parameters:
@itemize @bullet
@item Normal worker:
@itemize @bullet
@item @var{<custom_filters>} - path to dynamically loaded plugins that would do real
check of incoming messages. These modules are described further.
@item @var{<mime>} - if this parameter is "no" than this worker assumes that incoming
messages are in non-mime format (e.g. forum's messages) and standart mime
headers are added to them.
@end itemize
@item Controller worker:
@itemize @bullet
@item @var{<password>} - a password that would be used to access to contorller's
privilleged commands.
@end itemize
@item Fuzzy worker:
@itemize @bullet
@item @var{<hashfile>} - a path to file where fuzzy hashes would be permamently stored.
@item @var{<use_judy>} - if libJudy is present in system use it for faster storage.
@item @var{<frequent_score>} - if judy is not turned on use this score to place hashes
with score that is more than this value to special faster list (this is designed
to increase lookup speed for frequent hashes).
@item @var{<expire>} - time to expire of fuzzy hashes after their placement in storage.
@end itemize
@end itemize
These parameters can be set inside worker's definition:
@example
<worker>
<type>fuzzy</type>
<bind_socket>*:11335</bind_socket>
<count>1</count>
<maxfiles>2048</maxfiles>
<maxcore>0</maxcore>
<!-- Other params -->
<param name="use_judy">yes</param>
<param name="hashfile">/spool/rspamd/fuzzy.db</param>
<param name="expire">10d</param>
</worker>
@end example
@noindent
The purpose of each worker's type would be described later. The main parameters
that could be defined are bind sockets for workers, their count, password for
controller's commands and parameters for fuzzy storage. Default config provides
reasonable values of this parameters (except password of course), so for basic
configuration you may just replace controller's password to more secure one.
@section Classifiers configuration.
@subsection Common classifiers options.
Each classifier has mandatory option @var{type} that defines internal algorithm
that is used for classifying. Currently only @code{winnow} is supported. You can
read theoretical description of algorithm used here:
@url{http://www.siefkes.net/papers/winnow-spam.pdf}
The common classifier configuration consists of base classifier parameters and
definitions of two (or more than two) statfiles. During classify process rspamd
check each statfile in classifier and select those that has more
probability/weight than others. If all statfiles has zero weight this classifier
do not add any symbols. Among common classifiers options are:
@multitable @columnfractions .2 .8
@headitem Tag @tab Mean
@item @var{<tokenizer>}
@tab Tokenizer to extract tokens from messages. Currently only @emph{osb}
tokenizer is supported
@item @var{<metric>}
@tab Metric to which this classifier would insert symbol.
@end multitable
Also option @var{min_tokens} is supported to specify minimum number of tokens to
work with (this is usefull to avoid classifying of short messages as statistic
is practically useless for small amount of tokens). Here is example of base
classifier config:
@example
<classifier type="winnow">
<tokenizer>osb-text</tokenizer>
<metric>default</metric>
<option name="min_tokens">20</option>
<statfile>
...
</statfile>
</classifier>
@end example
@subsection Statfiles options.
The most common statfile options are @var{symbol} and @var{size}. The first one defines
which symbol would be inserted if this statfile would have maximal weight inside
classifier and size defines statfile size on disk and in memory. Note that
statfiles are mapped directly to memory and you should practically note
parameter @var{statfile_pool_size} of main section which defines maximum ammount
of memory for mapping statistic files. Also note that statistic files are
of constant size: if you defines 100 megabytes statfile it would occupy 100
megabytes of disc space and 100 megabytes of memory when it is used (mapped).
Each statfile is indexed by tokens and contains so called "token chains". This
mechanizm would be described further but note that each statfile has parameter
"free tokens" that defines how much space is available for new tokens. If
statfile has no free space the most unused tokens would be removed from
statfile.
Here is list of common options of statfiles:
@multitable @columnfractions .2 .8
@headitem Tag @tab Mean
@item @var{<symbol>}
@tab Defines symbol to insert for this statfile.
@item @var{<size>}
@tab Size of this statfile in bytes (kilo/mega/giga bytes).
@item @var{<path>}
@tab Filesystem path to statistic file.
@item @var{<normalizer>}
@tab Defines weight normalization structure. Can be lua function name or
internal normalizer. Internal normalizer is defined in format:
"internal:<max_weight>" where max_weight is fractional number that limits the
maximum weight of this statfile's symbol (this is so called dynamic weight).
@item @var{<binlog>}
@tab Defines binlog affinity: master or slave. This option is used for statfiles
binary sync that would be described further.
@item @var{<binlog_master>}
@tab Defines credits of binlog master for this statfile.
@item @var{<binlog_rotate>}
@tab Defines rotate time for binlog.
@end multitable
Internal normalization of statfile weight works in this way:
@itemize @bullet
@item @math{R_{score} = 1} when @math{W_{statfile} < 1}
@item @math{R_{score} = W_statfile ^ 2} when @math{1 < W_{statfile} < max / 2}
@item @math{R_{score} = W_statfile} when @math{max / 2 < W_{statfile} < max}
@item @math{R_{score} = max} when @math{W_{statfile} > max}
@end itemize
The final result weight would be: @math{weight = R_{score} * W_{factor}}.
Here is sample classifier configuration with two statfiles that can be used for
spam/ham classifying:
@example
<factors>
<factor name="WINNOW_HAM">-1.00</factor>
<factor name="WINNOW_SPAM">1.00</factor>
...
</factors>
<!-- Classifiers section -->
<classifier type="winnow">
<tokenizer>osb-text</tokenizer>
<metric>default</metric>
<option name="min_tokens">20</option>
<statfile>
<symbol>WINNOW_HAM</symbol>
<size>100M</size>
<path>/var/run/rspamd/data.ham</path>
<normalizer>internal:3</normalizer>
</statfile>
<statfile>
<symbol>WINNOW_SPAM</symbol>
<size>100M</size>
<path>/var/run/rspamd/data.spam</path>
<normalizer>internal:3</normalizer>
</statfile>
</classifier>
<!-- End of classifiers section -->
@end example
@noindent
In this sample we define classifier that contains two statfiles:
@emph{WINNOW_SPAM} and @emph{WINNOW_HAM}. Each statfile has 100 megabytes size
(so they would occupy 200Mb while classifying). Also each statfile has maximum
weight of 3 so with such factors (-1 for WINNOW_HAM and 1 for WINNOW_SPAM) the
result weight of symbols would be 0..3 for @emph{WINNOW_SPAM} and 0..-3 for
@emph{WINNOW_HAM}.
@section Modules config.
@subsection Lua modules loading.
For loading custom lua modules you should use @emph{<modules>} section:
@example
<modules>
<module>/usr/local/etc/rspamd/plugins/lua</module>
</modules>
@end example
@noindent
Each @emph{<module>} directive defines path to lua modules. If this is a
directory so all @code{*.lua} files inside that directory would be loaded. If
this is a file it would be loaded directly.
@subsection Modules configuration.
Each module can have its own config section (this is true not only for internal
module but also for lua modules). Such section is called @emph{<module>} with
mandatory attribute @emph{"name"}. Each module can be configured by
@emph{<option>} directives. These directives must also have @emph{"name"}
attribute. So module configuration is done in @code{param = value} style:
@example
<module name="fuzzy_check">
<option name="servers">localhost:11335</option>
<option name="symbol">R_FUZZY</option>
<option name="min_length">300</option>
<option name="max_score">10</option>
<option name="metric">default</option>
</module>
@end example
@noindent
The common parameters are:
@itemize @bullet
@item symbol - symbol that this module should insert.
@item metric - a metric in which this module shoul work.
@end itemize
But each module can have its own unique parameters. So it would be discussed
furhter in detailed modules description. Also note that for internal modules you
should edit @emph{<filters>} parameter in main section: this parameter defines
which internal modules would be turned on in this configuration.
@chapter Rspamd clients interaction.
@section Introduction.
After you have basic config file you may test rspamd functionality by using
whether telnet like utility or @emph{rspamc} client. For testing newly installed
config it is possible to run config file test:
@example
$ rspamd -t
syntax OK
@end example
Rspamc utility is written in @code{perl} language and uses perl modules that are
shipped with rspamd: @emph{Mail::Rspamd::Client} for client's protocol and
@emph{Mail::Rspamd::Config} for reading and writing configuration. The
documentation for these modules can be found by commands:
@example
$ perldoc Mail::Rspamd::Client
$ perldoc Mail::Rspamd::Config
@end example
So other way to access rspamd is to use perl client API:
@example
use Mail::Rspamd::Client;
my $config = {
hosts => ['localhost:11333'],
};
my $client = new Mail::Rspamd::Client(%config);
if (! $client->ping()) {
die "Cannot ping rspamd: $client->{error}";
}
my $result = $client->check($testmsg);
if ($result->{'default'}->{isspam} eq 'True') {
# do something with spam message here
}
@end example
@section Rspamc protocol.
Rspamc protocol is an extension over traditional spamc protocol that is used by
spamassassin. This protocol looks like traditional HTTP session: first line is
method with version, headers can be passed by next lines and the message itself
is waited after empty line:
@example
<REQUEST>
SYMBOLS RSPAMC/1.1
Content-Length: 2200
<message octets>
<REPLY>
RSPAMD/1.1 0 OK
Metric: default; True; 10.40 / 10.00 / 0.00
Symbol: R_UNDISC_RCPT
Symbol: ONCE_RECEIVED
Symbol: R_MISSING_CHARSET
Urls:
@end example
@noindent
The format of method line can be presented as:
@example
<COMMAND> RSPAMC/<version>
@end example
@noindent
Version can be 1.0 and 1.1. The main difference that in 1.1 metrics output also
has @emph{reject score} - hard limit of score for metric. This would be
discussed while describing user's options. Commands are:
@multitable @columnfractions .2 .8
@headitem Command @tab Mean
@item CHECK
@tab Check a message and output results for each metric. But do not output
symbols.
@item SYMBOLS
@tab Same as @emph{CHECK} but output symbols.
@item PROCESS
@tab Same as @emph{SYMBOLS} but output also original message with inserted
X-Spam headers.
@item PING
@tab Do not do any processing, just check rspamd state:
@example
$ telnet localhost 11333
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
PING RSPAMC/1.1
RSPAMD/1.1 0 PONG
Connection closed by foreign host.
@end example
@noindent
@end multitable
After command there should be one mandatory header: @strong{Content-Length} that
defines message's length in bytes and optional headers:
@multitable @columnfractions .2 .8
@headitem Header @tab Mean
@item @var{Deliver-To:}
@tab Defines actual delivery recipient of message. Can be used for personalized
statistic and for user specific options.
@item @var{IP:}
@tab Defines IP from which this message is received.
@item @var{Helo:}
@tab Defines SMTP helo.
@item @var{From:}
@tab Defines SMTP mail from command data.
@item @var{Queue-Id:}
@tab Defines SMTP queue id for message (can be used instead of message id in
logging).
@item @var{Rcpt:}
@tab Defines SMTP recipient (it may be several @emph{Rcpt:} headers).
@item @var{Pass:}
@tab If this header has @emph{"all"} value, all filters would be checked for
this message.
@item @var{Subject:}
@tab Defines subject of message (is used for non-mime messages).
@item @var{User:}
@tab Defines SMTP user (this is currently unused in rspamd however).
@end multitable
So rspamc protocol allows to pass many data from MTA to rspamd. This is used to
increase speed of processing and for building filters (like SPF filter). Also
note that rspamd support spamassassin spamc protocol and you can even pass
rspamc headers in spamc mode, but reply of rspamd in spamc mode would be much
shorter: it would only use "default" metric and won't show additional options
for symbols. Rspamc reply looks like this:
@example
RSPAMD/1.1 0 OK
Metric: default; True; 10.40 / 10.00 / 0.00
Symbol: R_UNDISC_RCPT
Symbol: ONCE_RECEIVED
Symbol: R_MISSING_CHARSET
Urls:
@end example
@noindent
First line is method reply: @code{<PROTOCOL>/<VERSION> <ERROR_CODE> <ERROR_REPLY>}.
Error code is 0 when no error occured. After first reply line there are metrics
output. For @emph{SYMBOLS} and @emph{PROCESS} commands there are symbols lines
after each metric. And for @emph{PROCESS} command there would be original
message after all metrics results. Metric result line looks like this:
@example
Metric: <name>; <result>; <score> / <required_score> / <reject_score>
@end example
@noindent
For 1.0 version of rspamc protocol @emph{reject_score} parameter is not printed.
Symbol line looks like this:
@example
Symbol: <Name>[; param1[, param2...]]
@end example
@noindent
Some symbols can have parameters attached. It is useful for example for RBL
checks (you can insert additional data after symbol name), for statistic and
fuzzy checks. Also rspamd inserts @emph{Urls} line in which all urls that are
contained in message are printed in comma-separated list.
Note that this protocol is used for normal workers. Controller, fuzzy storage
and lmtp/smtp workers are using other protocols. For example controller's
protocol is oriented on interactive sessions: you can pass many commands to
controller before disconnecting. Fuzzy storage is using UDP for making
interaction with storage faster. LMTP/SMTP workers are using lmtp and smtp
protocols. All of these protocols would be described in further chapters about
rspamd workers.
@bye