mirror of https://github.com/MariaDB/server
				
				
			
			You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							1219 lines
						
					
					
						
							43 KiB
						
					
					
				
			
		
		
		
			
			
			
		
		
	
	
							1219 lines
						
					
					
						
							43 KiB
						
					
					
				| /* trees.c -- output deflated data using Huffman coding | |
|  * Copyright (C) 1995-2005 Jean-loup Gailly | |
|  * For conditions of distribution and use, see copyright notice in zlib.h | |
|  */ | |
| 
 | |
| /* | |
|  *  ALGORITHM | |
|  * | |
|  *      The "deflation" process uses several Huffman trees. The more | |
|  *      common source values are represented by shorter bit sequences. | |
|  * | |
|  *      Each code tree is stored in a compressed form which is itself | |
|  * a Huffman encoding of the lengths of all the code strings (in | |
|  * ascending order by source values).  The actual code strings are | |
|  * reconstructed from the lengths in the inflate process, as described | |
|  * in the deflate specification. | |
|  * | |
|  *  REFERENCES | |
|  * | |
|  *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification". | |
|  *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc | |
|  * | |
|  *      Storer, James A. | |
|  *          Data Compression:  Methods and Theory, pp. 49-50. | |
|  *          Computer Science Press, 1988.  ISBN 0-7167-8156-5. | |
|  * | |
|  *      Sedgewick, R. | |
|  *          Algorithms, p290. | |
|  *          Addison-Wesley, 1983. ISBN 0-201-06672-6. | |
|  */ | |
| 
 | |
| /* @(#) $Id$ */ | |
| 
 | |
| /* #define GEN_TREES_H */ | |
| 
 | |
| #include "deflate.h" | |
|  | |
| #ifdef DEBUG | |
| #  include <ctype.h> | |
| #endif | |
|  | |
| /* =========================================================================== | |
|  * Constants | |
|  */ | |
| 
 | |
| #define MAX_BL_BITS 7 | |
| /* Bit length codes must not exceed MAX_BL_BITS bits */ | |
| 
 | |
| #define END_BLOCK 256 | |
| /* end of block literal code */ | |
| 
 | |
| #define REP_3_6      16 | |
| /* repeat previous bit length 3-6 times (2 bits of repeat count) */ | |
| 
 | |
| #define REPZ_3_10    17 | |
| /* repeat a zero length 3-10 times  (3 bits of repeat count) */ | |
| 
 | |
| #define REPZ_11_138  18 | |
| /* repeat a zero length 11-138 times  (7 bits of repeat count) */ | |
| 
 | |
| local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */ | |
|    = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0}; | |
| 
 | |
| local const int extra_dbits[D_CODES] /* extra bits for each distance code */ | |
|    = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13}; | |
| 
 | |
| local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */ | |
|    = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7}; | |
| 
 | |
| local const uch bl_order[BL_CODES] | |
|    = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15}; | |
| /* The lengths of the bit length codes are sent in order of decreasing | |
|  * probability, to avoid transmitting the lengths for unused bit length codes. | |
|  */ | |
| 
 | |
| #define Buf_size (8 * 2*sizeof(char)) | |
| /* Number of bits used within bi_buf. (bi_buf might be implemented on | |
|  * more than 16 bits on some systems.) | |
|  */ | |
| 
 | |
| /* =========================================================================== | |
|  * Local data. These are initialized only once. | |
|  */ | |
| 
 | |
| #define DIST_CODE_LEN  512 /* see definition of array dist_code below */ | |
|  | |
| #if defined(GEN_TREES_H) || !defined(STDC) | |
| /* non ANSI compilers may not accept trees.h */ | |
| 
 | |
| local ct_data static_ltree[L_CODES+2]; | |
| /* The static literal tree. Since the bit lengths are imposed, there is no | |
|  * need for the L_CODES extra codes used during heap construction. However | |
|  * The codes 286 and 287 are needed to build a canonical tree (see _tr_init | |
|  * below). | |
|  */ | |
| 
 | |
| local ct_data static_dtree[D_CODES]; | |
| /* The static distance tree. (Actually a trivial tree since all codes use | |
|  * 5 bits.) | |
|  */ | |
| 
 | |
| uch _dist_code[DIST_CODE_LEN]; | |
| /* Distance codes. The first 256 values correspond to the distances | |
|  * 3 .. 258, the last 256 values correspond to the top 8 bits of | |
|  * the 15 bit distances. | |
|  */ | |
| 
 | |
| uch _length_code[MAX_MATCH-MIN_MATCH+1]; | |
| /* length code for each normalized match length (0 == MIN_MATCH) */ | |
| 
 | |
| local int base_length[LENGTH_CODES]; | |
| /* First normalized length for each code (0 = MIN_MATCH) */ | |
| 
 | |
| local int base_dist[D_CODES]; | |
| /* First normalized distance for each code (0 = distance of 1) */ | |
| 
 | |
| #else | |
| #  include "trees.h" | |
| #endif /* GEN_TREES_H */ | |
|  | |
| struct static_tree_desc_s { | |
|     const ct_data *static_tree;  /* static tree or NULL */ | |
|     const intf *extra_bits;      /* extra bits for each code or NULL */ | |
|     int     extra_base;          /* base index for extra_bits */ | |
|     int     elems;               /* max number of elements in the tree */ | |
|     int     max_length;          /* max bit length for the codes */ | |
| }; | |
| 
 | |
| local static_tree_desc  static_l_desc = | |
| {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS}; | |
| 
 | |
| local static_tree_desc  static_d_desc = | |
| {static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS}; | |
| 
 | |
| local static_tree_desc  static_bl_desc = | |
| {(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS}; | |
| 
 | |
| /* =========================================================================== | |
|  * Local (static) routines in this file. | |
|  */ | |
| 
 | |
| local void tr_static_init OF((void)); | |
| local void init_block     OF((deflate_state *s)); | |
| local void pqdownheap     OF((deflate_state *s, ct_data *tree, int k)); | |
| local void gen_bitlen     OF((deflate_state *s, tree_desc *desc)); | |
| local void gen_codes      OF((ct_data *tree, int max_code, ushf *bl_count)); | |
| local void build_tree     OF((deflate_state *s, tree_desc *desc)); | |
| local void scan_tree      OF((deflate_state *s, ct_data *tree, int max_code)); | |
| local void send_tree      OF((deflate_state *s, ct_data *tree, int max_code)); | |
| local int  build_bl_tree  OF((deflate_state *s)); | |
| local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes, | |
|                               int blcodes)); | |
| local void compress_block OF((deflate_state *s, ct_data *ltree, | |
|                               ct_data *dtree)); | |
| local void set_data_type  OF((deflate_state *s)); | |
| local unsigned bi_reverse OF((unsigned value, int length)); | |
| local void bi_windup      OF((deflate_state *s)); | |
| local void bi_flush       OF((deflate_state *s)); | |
| local void copy_block     OF((deflate_state *s, charf *buf, unsigned len, | |
|                               int header)); | |
| 
 | |
| #ifdef GEN_TREES_H | |
| local void gen_trees_header OF((void)); | |
| #endif | |
|  | |
| #ifndef DEBUG | |
| #  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len) | |
|    /* Send a code of the given tree. c and tree must not have side effects */ | |
| 
 | |
| #else /* DEBUG */ | |
| #  define send_code(s, c, tree) \ | |
|      { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \ | |
|        send_bits(s, tree[c].Code, tree[c].Len); } | |
| #endif | |
|  | |
| /* =========================================================================== | |
|  * Output a short LSB first on the stream. | |
|  * IN assertion: there is enough room in pendingBuf. | |
|  */ | |
| #define put_short(s, w) { \ | |
|     put_byte(s, (uch)((w) & 0xff)); \ | |
|     put_byte(s, (uch)((ush)(w) >> 8)); \ | |
| } | |
|  | |
| /* =========================================================================== | |
|  * Send a value on a given number of bits. | |
|  * IN assertion: length <= 16 and value fits in length bits. | |
|  */ | |
| #ifdef DEBUG | |
| local void send_bits      OF((deflate_state *s, int value, int length)); | |
| 
 | |
| local void send_bits(s, value, length) | |
|     deflate_state *s; | |
|     int value;  /* value to send */ | |
|     int length; /* number of bits */ | |
| { | |
|     Tracevv((stderr," l %2d v %4x ", length, value)); | |
|     Assert(length > 0 && length <= 15, "invalid length"); | |
|     s->bits_sent += (ulg)length; | |
| 
 | |
|     /* If not enough room in bi_buf, use (valid) bits from bi_buf and | |
|      * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid)) | |
|      * unused bits in value. | |
|      */ | |
|     if (s->bi_valid > (int)Buf_size - length) { | |
|         s->bi_buf |= (value << s->bi_valid); | |
|         put_short(s, s->bi_buf); | |
|         s->bi_buf = (ush)value >> (Buf_size - s->bi_valid); | |
|         s->bi_valid += length - Buf_size; | |
|     } else { | |
|         s->bi_buf |= value << s->bi_valid; | |
|         s->bi_valid += length; | |
|     } | |
| } | |
| #else /* !DEBUG */ | |
|  | |
| #define send_bits(s, value, length) \ | |
| { int len = length;\ | |
|   if (s->bi_valid > (int)Buf_size - len) {\ | |
|     int val = value;\ | |
|     s->bi_buf |= (val << s->bi_valid);\ | |
|     put_short(s, s->bi_buf);\ | |
|     s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\ | |
|     s->bi_valid += len - Buf_size;\ | |
|   } else {\ | |
|     s->bi_buf |= (value) << s->bi_valid;\ | |
|     s->bi_valid += len;\ | |
|   }\ | |
| } | |
| #endif /* DEBUG */ | |
|  | |
| 
 | |
| /* the arguments must not have side effects */ | |
| 
 | |
| /* =========================================================================== | |
|  * Initialize the various 'constant' tables. | |
|  */ | |
| local void tr_static_init() | |
| { | |
| #if defined(GEN_TREES_H) || !defined(STDC) | |
|     static int static_init_done = 0; | |
|     int n;        /* iterates over tree elements */ | |
|     int bits;     /* bit counter */ | |
|     int length;   /* length value */ | |
|     int code;     /* code value */ | |
|     int dist;     /* distance index */ | |
|     ush bl_count[MAX_BITS+1]; | |
|     /* number of codes at each bit length for an optimal tree */ | |
| 
 | |
|     if (static_init_done) return; | |
| 
 | |
|     /* For some embedded targets, global variables are not initialized: */ | |
|     static_l_desc.static_tree = static_ltree; | |
|     static_l_desc.extra_bits = extra_lbits; | |
|     static_d_desc.static_tree = static_dtree; | |
|     static_d_desc.extra_bits = extra_dbits; | |
|     static_bl_desc.extra_bits = extra_blbits; | |
| 
 | |
|     /* Initialize the mapping length (0..255) -> length code (0..28) */ | |
|     length = 0; | |
|     for (code = 0; code < LENGTH_CODES-1; code++) { | |
|         base_length[code] = length; | |
|         for (n = 0; n < (1<<extra_lbits[code]); n++) { | |
|             _length_code[length++] = (uch)code; | |
|         } | |
|     } | |
|     Assert (length == 256, "tr_static_init: length != 256"); | |
|     /* Note that the length 255 (match length 258) can be represented | |
|      * in two different ways: code 284 + 5 bits or code 285, so we | |
|      * overwrite length_code[255] to use the best encoding: | |
|      */ | |
|     _length_code[length-1] = (uch)code; | |
| 
 | |
|     /* Initialize the mapping dist (0..32K) -> dist code (0..29) */ | |
|     dist = 0; | |
|     for (code = 0 ; code < 16; code++) { | |
|         base_dist[code] = dist; | |
|         for (n = 0; n < (1<<extra_dbits[code]); n++) { | |
|             _dist_code[dist++] = (uch)code; | |
|         } | |
|     } | |
|     Assert (dist == 256, "tr_static_init: dist != 256"); | |
|     dist >>= 7; /* from now on, all distances are divided by 128 */ | |
|     for ( ; code < D_CODES; code++) { | |
|         base_dist[code] = dist << 7; | |
|         for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) { | |
|             _dist_code[256 + dist++] = (uch)code; | |
|         } | |
|     } | |
|     Assert (dist == 256, "tr_static_init: 256+dist != 512"); | |
| 
 | |
|     /* Construct the codes of the static literal tree */ | |
|     for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0; | |
|     n = 0; | |
|     while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++; | |
|     while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++; | |
|     while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++; | |
|     while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++; | |
|     /* Codes 286 and 287 do not exist, but we must include them in the | |
|      * tree construction to get a canonical Huffman tree (longest code | |
|      * all ones) | |
|      */ | |
|     gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count); | |
| 
 | |
|     /* The static distance tree is trivial: */ | |
|     for (n = 0; n < D_CODES; n++) { | |
|         static_dtree[n].Len = 5; | |
|         static_dtree[n].Code = bi_reverse((unsigned)n, 5); | |
|     } | |
|     static_init_done = 1; | |
| 
 | |
| #  ifdef GEN_TREES_H | |
|     gen_trees_header(); | |
| #  endif | |
| #endif /* defined(GEN_TREES_H) || !defined(STDC) */ | |
| } | |
| 
 | |
| /* =========================================================================== | |
|  * Genererate the file trees.h describing the static trees. | |
|  */ | |
| #ifdef GEN_TREES_H | |
| #  ifndef DEBUG | |
| #    include <stdio.h> | |
| #  endif | |
|  | |
| #  define SEPARATOR(i, last, width) \ | |
|       ((i) == (last)? "\n};\n\n" :    \ | |
|        ((i) % (width) == (width)-1 ? ",\n" : ", ")) | |
|  | |
| void gen_trees_header() | |
| { | |
|     FILE *header = fopen("trees.h", "w"); | |
|     int i; | |
| 
 | |
|     Assert (header != NULL, "Can't open trees.h"); | |
|     fprintf(header, | |
|             "/* header created automatically with -DGEN_TREES_H */\n\n"); | |
| 
 | |
|     fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n"); | |
|     for (i = 0; i < L_CODES+2; i++) { | |
|         fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code, | |
|                 static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5)); | |
|     } | |
| 
 | |
|     fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n"); | |
|     for (i = 0; i < D_CODES; i++) { | |
|         fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code, | |
|                 static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5)); | |
|     } | |
| 
 | |
|     fprintf(header, "const uch _dist_code[DIST_CODE_LEN] = {\n"); | |
|     for (i = 0; i < DIST_CODE_LEN; i++) { | |
|         fprintf(header, "%2u%s", _dist_code[i], | |
|                 SEPARATOR(i, DIST_CODE_LEN-1, 20)); | |
|     } | |
| 
 | |
|     fprintf(header, "const uch _length_code[MAX_MATCH-MIN_MATCH+1]= {\n"); | |
|     for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) { | |
|         fprintf(header, "%2u%s", _length_code[i], | |
|                 SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20)); | |
|     } | |
| 
 | |
|     fprintf(header, "local const int base_length[LENGTH_CODES] = {\n"); | |
|     for (i = 0; i < LENGTH_CODES; i++) { | |
|         fprintf(header, "%1u%s", base_length[i], | |
|                 SEPARATOR(i, LENGTH_CODES-1, 20)); | |
|     } | |
| 
 | |
|     fprintf(header, "local const int base_dist[D_CODES] = {\n"); | |
|     for (i = 0; i < D_CODES; i++) { | |
|         fprintf(header, "%5u%s", base_dist[i], | |
|                 SEPARATOR(i, D_CODES-1, 10)); | |
|     } | |
| 
 | |
|     fclose(header); | |
| } | |
| #endif /* GEN_TREES_H */ | |
|  | |
| /* =========================================================================== | |
|  * Initialize the tree data structures for a new zlib stream. | |
|  */ | |
| void _tr_init(s) | |
|     deflate_state *s; | |
| { | |
|     tr_static_init(); | |
| 
 | |
|     s->l_desc.dyn_tree = s->dyn_ltree; | |
|     s->l_desc.stat_desc = &static_l_desc; | |
| 
 | |
|     s->d_desc.dyn_tree = s->dyn_dtree; | |
|     s->d_desc.stat_desc = &static_d_desc; | |
| 
 | |
|     s->bl_desc.dyn_tree = s->bl_tree; | |
|     s->bl_desc.stat_desc = &static_bl_desc; | |
| 
 | |
|     s->bi_buf = 0; | |
|     s->bi_valid = 0; | |
|     s->last_eob_len = 8; /* enough lookahead for inflate */ | |
| #ifdef DEBUG | |
|     s->compressed_len = 0L; | |
|     s->bits_sent = 0L; | |
| #endif | |
|  | |
|     /* Initialize the first block of the first file: */ | |
|     init_block(s); | |
| } | |
| 
 | |
| /* =========================================================================== | |
|  * Initialize a new block. | |
|  */ | |
| local void init_block(s) | |
|     deflate_state *s; | |
| { | |
|     int n; /* iterates over tree elements */ | |
| 
 | |
|     /* Initialize the trees. */ | |
|     for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0; | |
|     for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0; | |
|     for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0; | |
| 
 | |
|     s->dyn_ltree[END_BLOCK].Freq = 1; | |
|     s->opt_len = s->static_len = 0L; | |
|     s->last_lit = s->matches = 0; | |
| } | |
| 
 | |
| #define SMALLEST 1 | |
| /* Index within the heap array of least frequent node in the Huffman tree */ | |
| 
 | |
| 
 | |
| /* =========================================================================== | |
|  * Remove the smallest element from the heap and recreate the heap with | |
|  * one less element. Updates heap and heap_len. | |
|  */ | |
| #define pqremove(s, tree, top) \ | |
| {\ | |
|     top = s->heap[SMALLEST]; \ | |
|     s->heap[SMALLEST] = s->heap[s->heap_len--]; \ | |
|     pqdownheap(s, tree, SMALLEST); \ | |
| } | |
|  | |
| /* =========================================================================== | |
|  * Compares to subtrees, using the tree depth as tie breaker when | |
|  * the subtrees have equal frequency. This minimizes the worst case length. | |
|  */ | |
| #define smaller(tree, n, m, depth) \ | |
|    (tree[n].Freq < tree[m].Freq || \ | |
|    (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m])) | |
|  | |
| /* =========================================================================== | |
|  * Restore the heap property by moving down the tree starting at node k, | |
|  * exchanging a node with the smallest of its two sons if necessary, stopping | |
|  * when the heap property is re-established (each father smaller than its | |
|  * two sons). | |
|  */ | |
| local void pqdownheap(s, tree, k) | |
|     deflate_state *s; | |
|     ct_data *tree;  /* the tree to restore */ | |
|     int k;               /* node to move down */ | |
| { | |
|     int v = s->heap[k]; | |
|     int j = k << 1;  /* left son of k */ | |
|     while (j <= s->heap_len) { | |
|         /* Set j to the smallest of the two sons: */ | |
|         if (j < s->heap_len && | |
|             smaller(tree, s->heap[j+1], s->heap[j], s->depth)) { | |
|             j++; | |
|         } | |
|         /* Exit if v is smaller than both sons */ | |
|         if (smaller(tree, v, s->heap[j], s->depth)) break; | |
| 
 | |
|         /* Exchange v with the smallest son */ | |
|         s->heap[k] = s->heap[j];  k = j; | |
| 
 | |
|         /* And continue down the tree, setting j to the left son of k */ | |
|         j <<= 1; | |
|     } | |
|     s->heap[k] = v; | |
| } | |
| 
 | |
| /* =========================================================================== | |
|  * Compute the optimal bit lengths for a tree and update the total bit length | |
|  * for the current block. | |
|  * IN assertion: the fields freq and dad are set, heap[heap_max] and | |
|  *    above are the tree nodes sorted by increasing frequency. | |
|  * OUT assertions: the field len is set to the optimal bit length, the | |
|  *     array bl_count contains the frequencies for each bit length. | |
|  *     The length opt_len is updated; static_len is also updated if stree is | |
|  *     not null. | |
|  */ | |
| local void gen_bitlen(s, desc) | |
|     deflate_state *s; | |
|     tree_desc *desc;    /* the tree descriptor */ | |
| { | |
|     ct_data *tree        = desc->dyn_tree; | |
|     int max_code         = desc->max_code; | |
|     const ct_data *stree = desc->stat_desc->static_tree; | |
|     const intf *extra    = desc->stat_desc->extra_bits; | |
|     int base             = desc->stat_desc->extra_base; | |
|     int max_length       = desc->stat_desc->max_length; | |
|     int h;              /* heap index */ | |
|     int n, m;           /* iterate over the tree elements */ | |
|     int bits;           /* bit length */ | |
|     int xbits;          /* extra bits */ | |
|     ush f;              /* frequency */ | |
|     int overflow = 0;   /* number of elements with bit length too large */ | |
| 
 | |
|     for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0; | |
| 
 | |
|     /* In a first pass, compute the optimal bit lengths (which may | |
|      * overflow in the case of the bit length tree). | |
|      */ | |
|     tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */ | |
| 
 | |
|     for (h = s->heap_max+1; h < HEAP_SIZE; h++) { | |
|         n = s->heap[h]; | |
|         bits = tree[tree[n].Dad].Len + 1; | |
|         if (bits > max_length) bits = max_length, overflow++; | |
|         tree[n].Len = (ush)bits; | |
|         /* We overwrite tree[n].Dad which is no longer needed */ | |
| 
 | |
|         if (n > max_code) continue; /* not a leaf node */ | |
| 
 | |
|         s->bl_count[bits]++; | |
|         xbits = 0; | |
|         if (n >= base) xbits = extra[n-base]; | |
|         f = tree[n].Freq; | |
|         s->opt_len += (ulg)f * (bits + xbits); | |
|         if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits); | |
|     } | |
|     if (overflow == 0) return; | |
| 
 | |
|     Trace((stderr,"\nbit length overflow\n")); | |
|     /* This happens for example on obj2 and pic of the Calgary corpus */ | |
| 
 | |
|     /* Find the first bit length which could increase: */ | |
|     do { | |
|         bits = max_length-1; | |
|         while (s->bl_count[bits] == 0) bits--; | |
|         s->bl_count[bits]--;      /* move one leaf down the tree */ | |
|         s->bl_count[bits+1] += 2; /* move one overflow item as its brother */ | |
|         s->bl_count[max_length]--; | |
|         /* The brother of the overflow item also moves one step up, | |
|          * but this does not affect bl_count[max_length] | |
|          */ | |
|         overflow -= 2; | |
|     } while (overflow > 0); | |
| 
 | |
|     /* Now recompute all bit lengths, scanning in increasing frequency. | |
|      * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all | |
|      * lengths instead of fixing only the wrong ones. This idea is taken | |
|      * from 'ar' written by Haruhiko Okumura.) | |
|      */ | |
|     for (bits = max_length; bits != 0; bits--) { | |
|         n = s->bl_count[bits]; | |
|         while (n != 0) { | |
|             m = s->heap[--h]; | |
|             if (m > max_code) continue; | |
|             if ((unsigned) tree[m].Len != (unsigned) bits) { | |
|                 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits)); | |
|                 s->opt_len += ((long)bits - (long)tree[m].Len) | |
|                               *(long)tree[m].Freq; | |
|                 tree[m].Len = (ush)bits; | |
|             } | |
|             n--; | |
|         } | |
|     } | |
| } | |
| 
 | |
| /* =========================================================================== | |
|  * Generate the codes for a given tree and bit counts (which need not be | |
|  * optimal). | |
|  * IN assertion: the array bl_count contains the bit length statistics for | |
|  * the given tree and the field len is set for all tree elements. | |
|  * OUT assertion: the field code is set for all tree elements of non | |
|  *     zero code length. | |
|  */ | |
| local void gen_codes (tree, max_code, bl_count) | |
|     ct_data *tree;             /* the tree to decorate */ | |
|     int max_code;              /* largest code with non zero frequency */ | |
|     ushf *bl_count;            /* number of codes at each bit length */ | |
| { | |
|     ush next_code[MAX_BITS+1]; /* next code value for each bit length */ | |
|     ush code = 0;              /* running code value */ | |
|     int bits;                  /* bit index */ | |
|     int n;                     /* code index */ | |
| 
 | |
|     /* The distribution counts are first used to generate the code values | |
|      * without bit reversal. | |
|      */ | |
|     for (bits = 1; bits <= MAX_BITS; bits++) { | |
|         next_code[bits] = code = (code + bl_count[bits-1]) << 1; | |
|     } | |
|     /* Check that the bit counts in bl_count are consistent. The last code | |
|      * must be all ones. | |
|      */ | |
|     Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1, | |
|             "inconsistent bit counts"); | |
|     Tracev((stderr,"\ngen_codes: max_code %d ", max_code)); | |
| 
 | |
|     for (n = 0;  n <= max_code; n++) { | |
|         int len = tree[n].Len; | |
|         if (len == 0) continue; | |
|         /* Now reverse the bits */ | |
|         tree[n].Code = bi_reverse(next_code[len]++, len); | |
| 
 | |
|         Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ", | |
|              n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1)); | |
|     } | |
| } | |
| 
 | |
| /* =========================================================================== | |
|  * Construct one Huffman tree and assigns the code bit strings and lengths. | |
|  * Update the total bit length for the current block. | |
|  * IN assertion: the field freq is set for all tree elements. | |
|  * OUT assertions: the fields len and code are set to the optimal bit length | |
|  *     and corresponding code. The length opt_len is updated; static_len is | |
|  *     also updated if stree is not null. The field max_code is set. | |
|  */ | |
| local void build_tree(s, desc) | |
|     deflate_state *s; | |
|     tree_desc *desc; /* the tree descriptor */ | |
| { | |
|     ct_data *tree         = desc->dyn_tree; | |
|     const ct_data *stree  = desc->stat_desc->static_tree; | |
|     int elems             = desc->stat_desc->elems; | |
|     int n, m;          /* iterate over heap elements */ | |
|     int max_code = -1; /* largest code with non zero frequency */ | |
|     int node;          /* new node being created */ | |
| 
 | |
|     /* Construct the initial heap, with least frequent element in | |
|      * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1]. | |
|      * heap[0] is not used. | |
|      */ | |
|     s->heap_len = 0, s->heap_max = HEAP_SIZE; | |
| 
 | |
|     for (n = 0; n < elems; n++) { | |
|         if (tree[n].Freq != 0) { | |
|             s->heap[++(s->heap_len)] = max_code = n; | |
|             s->depth[n] = 0; | |
|         } else { | |
|             tree[n].Len = 0; | |
|         } | |
|     } | |
| 
 | |
|     /* The pkzip format requires that at least one distance code exists, | |
|      * and that at least one bit should be sent even if there is only one | |
|      * possible code. So to avoid special checks later on we force at least | |
|      * two codes of non zero frequency. | |
|      */ | |
|     while (s->heap_len < 2) { | |
|         node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0); | |
|         tree[node].Freq = 1; | |
|         s->depth[node] = 0; | |
|         s->opt_len--; if (stree) s->static_len -= stree[node].Len; | |
|         /* node is 0 or 1 so it does not have extra bits */ | |
|     } | |
|     desc->max_code = max_code; | |
| 
 | |
|     /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree, | |
|      * establish sub-heaps of increasing lengths: | |
|      */ | |
|     for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n); | |
| 
 | |
|     /* Construct the Huffman tree by repeatedly combining the least two | |
|      * frequent nodes. | |
|      */ | |
|     node = elems;              /* next internal node of the tree */ | |
|     do { | |
|         pqremove(s, tree, n);  /* n = node of least frequency */ | |
|         m = s->heap[SMALLEST]; /* m = node of next least frequency */ | |
| 
 | |
|         s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */ | |
|         s->heap[--(s->heap_max)] = m; | |
| 
 | |
|         /* Create a new node father of n and m */ | |
|         tree[node].Freq = tree[n].Freq + tree[m].Freq; | |
|         s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ? | |
|                                 s->depth[n] : s->depth[m]) + 1); | |
|         tree[n].Dad = tree[m].Dad = (ush)node; | |
| #ifdef DUMP_BL_TREE | |
|         if (tree == s->bl_tree) { | |
|             fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)", | |
|                     node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq); | |
|         } | |
| #endif | |
|         /* and insert the new node in the heap */ | |
|         s->heap[SMALLEST] = node++; | |
|         pqdownheap(s, tree, SMALLEST); | |
| 
 | |
|     } while (s->heap_len >= 2); | |
| 
 | |
|     s->heap[--(s->heap_max)] = s->heap[SMALLEST]; | |
| 
 | |
|     /* At this point, the fields freq and dad are set. We can now | |
|      * generate the bit lengths. | |
|      */ | |
|     gen_bitlen(s, (tree_desc *)desc); | |
| 
 | |
|     /* The field len is now set, we can generate the bit codes */ | |
|     gen_codes ((ct_data *)tree, max_code, s->bl_count); | |
| } | |
| 
 | |
| /* =========================================================================== | |
|  * Scan a literal or distance tree to determine the frequencies of the codes | |
|  * in the bit length tree. | |
|  */ | |
| local void scan_tree (s, tree, max_code) | |
|     deflate_state *s; | |
|     ct_data *tree;   /* the tree to be scanned */ | |
|     int max_code;    /* and its largest code of non zero frequency */ | |
| { | |
|     int n;                     /* iterates over all tree elements */ | |
|     int prevlen = -1;          /* last emitted length */ | |
|     int curlen;                /* length of current code */ | |
|     int nextlen = tree[0].Len; /* length of next code */ | |
|     int count = 0;             /* repeat count of the current code */ | |
|     int max_count = 7;         /* max repeat count */ | |
|     int min_count = 4;         /* min repeat count */ | |
| 
 | |
|     if (nextlen == 0) max_count = 138, min_count = 3; | |
|     tree[max_code+1].Len = (ush)0xffff; /* guard */ | |
| 
 | |
|     for (n = 0; n <= max_code; n++) { | |
|         curlen = nextlen; nextlen = tree[n+1].Len; | |
|         if (++count < max_count && curlen == nextlen) { | |
|             continue; | |
|         } else if (count < min_count) { | |
|             s->bl_tree[curlen].Freq += count; | |
|         } else if (curlen != 0) { | |
|             if (curlen != prevlen) s->bl_tree[curlen].Freq++; | |
|             s->bl_tree[REP_3_6].Freq++; | |
|         } else if (count <= 10) { | |
|             s->bl_tree[REPZ_3_10].Freq++; | |
|         } else { | |
|             s->bl_tree[REPZ_11_138].Freq++; | |
|         } | |
|         count = 0; prevlen = curlen; | |
|         if (nextlen == 0) { | |
|             max_count = 138, min_count = 3; | |
|         } else if (curlen == nextlen) { | |
|             max_count = 6, min_count = 3; | |
|         } else { | |
|             max_count = 7, min_count = 4; | |
|         } | |
|     } | |
| } | |
| 
 | |
| /* =========================================================================== | |
|  * Send a literal or distance tree in compressed form, using the codes in | |
|  * bl_tree. | |
|  */ | |
| local void send_tree (s, tree, max_code) | |
|     deflate_state *s; | |
|     ct_data *tree; /* the tree to be scanned */ | |
|     int max_code;       /* and its largest code of non zero frequency */ | |
| { | |
|     int n;                     /* iterates over all tree elements */ | |
|     int prevlen = -1;          /* last emitted length */ | |
|     int curlen;                /* length of current code */ | |
|     int nextlen = tree[0].Len; /* length of next code */ | |
|     int count = 0;             /* repeat count of the current code */ | |
|     int max_count = 7;         /* max repeat count */ | |
|     int min_count = 4;         /* min repeat count */ | |
| 
 | |
|     /* tree[max_code+1].Len = -1; */  /* guard already set */ | |
|     if (nextlen == 0) max_count = 138, min_count = 3; | |
| 
 | |
|     for (n = 0; n <= max_code; n++) { | |
|         curlen = nextlen; nextlen = tree[n+1].Len; | |
|         if (++count < max_count && curlen == nextlen) { | |
|             continue; | |
|         } else if (count < min_count) { | |
|             do { send_code(s, curlen, s->bl_tree); } while (--count != 0); | |
| 
 | |
|         } else if (curlen != 0) { | |
|             if (curlen != prevlen) { | |
|                 send_code(s, curlen, s->bl_tree); count--; | |
|             } | |
|             Assert(count >= 3 && count <= 6, " 3_6?"); | |
|             send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2); | |
| 
 | |
|         } else if (count <= 10) { | |
|             send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3); | |
| 
 | |
|         } else { | |
|             send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7); | |
|         } | |
|         count = 0; prevlen = curlen; | |
|         if (nextlen == 0) { | |
|             max_count = 138, min_count = 3; | |
|         } else if (curlen == nextlen) { | |
|             max_count = 6, min_count = 3; | |
|         } else { | |
|             max_count = 7, min_count = 4; | |
|         } | |
|     } | |
| } | |
| 
 | |
| /* =========================================================================== | |
|  * Construct the Huffman tree for the bit lengths and return the index in | |
|  * bl_order of the last bit length code to send. | |
|  */ | |
| local int build_bl_tree(s) | |
|     deflate_state *s; | |
| { | |
|     int max_blindex;  /* index of last bit length code of non zero freq */ | |
| 
 | |
|     /* Determine the bit length frequencies for literal and distance trees */ | |
|     scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code); | |
|     scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code); | |
| 
 | |
|     /* Build the bit length tree: */ | |
|     build_tree(s, (tree_desc *)(&(s->bl_desc))); | |
|     /* opt_len now includes the length of the tree representations, except | |
|      * the lengths of the bit lengths codes and the 5+5+4 bits for the counts. | |
|      */ | |
| 
 | |
|     /* Determine the number of bit length codes to send. The pkzip format | |
|      * requires that at least 4 bit length codes be sent. (appnote.txt says | |
|      * 3 but the actual value used is 4.) | |
|      */ | |
|     for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) { | |
|         if (s->bl_tree[bl_order[max_blindex]].Len != 0) break; | |
|     } | |
|     /* Update opt_len to include the bit length tree and counts */ | |
|     s->opt_len += 3*(max_blindex+1) + 5+5+4; | |
|     Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", | |
|             s->opt_len, s->static_len)); | |
| 
 | |
|     return max_blindex; | |
| } | |
| 
 | |
| /* =========================================================================== | |
|  * Send the header for a block using dynamic Huffman trees: the counts, the | |
|  * lengths of the bit length codes, the literal tree and the distance tree. | |
|  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. | |
|  */ | |
| local void send_all_trees(s, lcodes, dcodes, blcodes) | |
|     deflate_state *s; | |
|     int lcodes, dcodes, blcodes; /* number of codes for each tree */ | |
| { | |
|     int rank;                    /* index in bl_order */ | |
| 
 | |
|     Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes"); | |
|     Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES, | |
|             "too many codes"); | |
|     Tracev((stderr, "\nbl counts: ")); | |
|     send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */ | |
|     send_bits(s, dcodes-1,   5); | |
|     send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */ | |
|     for (rank = 0; rank < blcodes; rank++) { | |
|         Tracev((stderr, "\nbl code %2d ", bl_order[rank])); | |
|         send_bits(s, s->bl_tree[bl_order[rank]].Len, 3); | |
|     } | |
|     Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent)); | |
| 
 | |
|     send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */ | |
|     Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent)); | |
| 
 | |
|     send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */ | |
|     Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent)); | |
| } | |
| 
 | |
| /* =========================================================================== | |
|  * Send a stored block | |
|  */ | |
| void _tr_stored_block(s, buf, stored_len, eof) | |
|     deflate_state *s; | |
|     charf *buf;       /* input block */ | |
|     ulg stored_len;   /* length of input block */ | |
|     int eof;          /* true if this is the last block for a file */ | |
| { | |
|     send_bits(s, (STORED_BLOCK<<1)+eof, 3);  /* send block type */ | |
| #ifdef DEBUG | |
|     s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L; | |
|     s->compressed_len += (stored_len + 4) << 3; | |
| #endif | |
|     copy_block(s, buf, (unsigned)stored_len, 1); /* with header */ | |
| } | |
| 
 | |
| /* =========================================================================== | |
|  * Send one empty static block to give enough lookahead for inflate. | |
|  * This takes 10 bits, of which 7 may remain in the bit buffer. | |
|  * The current inflate code requires 9 bits of lookahead. If the | |
|  * last two codes for the previous block (real code plus EOB) were coded | |
|  * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode | |
|  * the last real code. In this case we send two empty static blocks instead | |
|  * of one. (There are no problems if the previous block is stored or fixed.) | |
|  * To simplify the code, we assume the worst case of last real code encoded | |
|  * on one bit only. | |
|  */ | |
| void _tr_align(s) | |
|     deflate_state *s; | |
| { | |
|     send_bits(s, STATIC_TREES<<1, 3); | |
|     send_code(s, END_BLOCK, static_ltree); | |
| #ifdef DEBUG | |
|     s->compressed_len += 10L; /* 3 for block type, 7 for EOB */ | |
| #endif | |
|     bi_flush(s); | |
|     /* Of the 10 bits for the empty block, we have already sent | |
|      * (10 - bi_valid) bits. The lookahead for the last real code (before | |
|      * the EOB of the previous block) was thus at least one plus the length | |
|      * of the EOB plus what we have just sent of the empty static block. | |
|      */ | |
|     if (1 + s->last_eob_len + 10 - s->bi_valid < 9) { | |
|         send_bits(s, STATIC_TREES<<1, 3); | |
|         send_code(s, END_BLOCK, static_ltree); | |
| #ifdef DEBUG | |
|         s->compressed_len += 10L; | |
| #endif | |
|         bi_flush(s); | |
|     } | |
|     s->last_eob_len = 7; | |
| } | |
| 
 | |
| /* =========================================================================== | |
|  * Determine the best encoding for the current block: dynamic trees, static | |
|  * trees or store, and output the encoded block to the zip file. | |
|  */ | |
| void _tr_flush_block(s, buf, stored_len, eof) | |
|     deflate_state *s; | |
|     charf *buf;       /* input block, or NULL if too old */ | |
|     ulg stored_len;   /* length of input block */ | |
|     int eof;          /* true if this is the last block for a file */ | |
| { | |
|     ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */ | |
|     int max_blindex = 0;  /* index of last bit length code of non zero freq */ | |
| 
 | |
|     /* Build the Huffman trees unless a stored block is forced */ | |
|     if (s->level > 0) { | |
| 
 | |
|         /* Check if the file is binary or text */ | |
|         if (stored_len > 0 && s->strm->data_type == Z_UNKNOWN) | |
|             set_data_type(s); | |
| 
 | |
|         /* Construct the literal and distance trees */ | |
|         build_tree(s, (tree_desc *)(&(s->l_desc))); | |
|         Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len, | |
|                 s->static_len)); | |
| 
 | |
|         build_tree(s, (tree_desc *)(&(s->d_desc))); | |
|         Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len, | |
|                 s->static_len)); | |
|         /* At this point, opt_len and static_len are the total bit lengths of | |
|          * the compressed block data, excluding the tree representations. | |
|          */ | |
| 
 | |
|         /* Build the bit length tree for the above two trees, and get the index | |
|          * in bl_order of the last bit length code to send. | |
|          */ | |
|         max_blindex = build_bl_tree(s); | |
| 
 | |
|         /* Determine the best encoding. Compute the block lengths in bytes. */ | |
|         opt_lenb = (s->opt_len+3+7)>>3; | |
|         static_lenb = (s->static_len+3+7)>>3; | |
| 
 | |
|         Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ", | |
|                 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len, | |
|                 s->last_lit)); | |
| 
 | |
|         if (static_lenb <= opt_lenb) opt_lenb = static_lenb; | |
| 
 | |
|     } else { | |
|         Assert(buf != (char*)0, "lost buf"); | |
|         opt_lenb = static_lenb = stored_len + 5; /* force a stored block */ | |
|     } | |
| 
 | |
| #ifdef FORCE_STORED | |
|     if (buf != (char*)0) { /* force stored block */ | |
| #else | |
|     if (stored_len+4 <= opt_lenb && buf != (char*)0) { | |
|                        /* 4: two words for the lengths */ | |
| #endif | |
|         /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. | |
|          * Otherwise we can't have processed more than WSIZE input bytes since | |
|          * the last block flush, because compression would have been | |
|          * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to | |
|          * transform a block into a stored block. | |
|          */ | |
|         _tr_stored_block(s, buf, stored_len, eof); | |
| 
 | |
| #ifdef FORCE_STATIC | |
|     } else if (static_lenb >= 0) { /* force static trees */ | |
| #else | |
|     } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) { | |
| #endif | |
|         send_bits(s, (STATIC_TREES<<1)+eof, 3); | |
|         compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree); | |
| #ifdef DEBUG | |
|         s->compressed_len += 3 + s->static_len; | |
| #endif | |
|     } else { | |
|         send_bits(s, (DYN_TREES<<1)+eof, 3); | |
|         send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1, | |
|                        max_blindex+1); | |
|         compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree); | |
| #ifdef DEBUG | |
|         s->compressed_len += 3 + s->opt_len; | |
| #endif | |
|     } | |
|     Assert (s->compressed_len == s->bits_sent, "bad compressed size"); | |
|     /* The above check is made mod 2^32, for files larger than 512 MB | |
|      * and uLong implemented on 32 bits. | |
|      */ | |
|     init_block(s); | |
| 
 | |
|     if (eof) { | |
|         bi_windup(s); | |
| #ifdef DEBUG | |
|         s->compressed_len += 7;  /* align on byte boundary */ | |
| #endif | |
|     } | |
|     Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3, | |
|            s->compressed_len-7*eof)); | |
| } | |
| 
 | |
| /* =========================================================================== | |
|  * Save the match info and tally the frequency counts. Return true if | |
|  * the current block must be flushed. | |
|  */ | |
| int _tr_tally (s, dist, lc) | |
|     deflate_state *s; | |
|     unsigned dist;  /* distance of matched string */ | |
|     unsigned lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */ | |
| { | |
|     s->d_buf[s->last_lit] = (ush)dist; | |
|     s->l_buf[s->last_lit++] = (uch)lc; | |
|     if (dist == 0) { | |
|         /* lc is the unmatched char */ | |
|         s->dyn_ltree[lc].Freq++; | |
|     } else { | |
|         s->matches++; | |
|         /* Here, lc is the match length - MIN_MATCH */ | |
|         dist--;             /* dist = match distance - 1 */ | |
|         Assert((ush)dist < (ush)MAX_DIST(s) && | |
|                (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) && | |
|                (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match"); | |
| 
 | |
|         s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++; | |
|         s->dyn_dtree[d_code(dist)].Freq++; | |
|     } | |
| 
 | |
| #ifdef TRUNCATE_BLOCK | |
|     /* Try to guess if it is profitable to stop the current block here */ | |
|     if ((s->last_lit & 0x1fff) == 0 && s->level > 2) { | |
|         /* Compute an upper bound for the compressed length */ | |
|         ulg out_length = (ulg)s->last_lit*8L; | |
|         ulg in_length = (ulg)((long)s->strstart - s->block_start); | |
|         int dcode; | |
|         for (dcode = 0; dcode < D_CODES; dcode++) { | |
|             out_length += (ulg)s->dyn_dtree[dcode].Freq * | |
|                 (5L+extra_dbits[dcode]); | |
|         } | |
|         out_length >>= 3; | |
|         Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ", | |
|                s->last_lit, in_length, out_length, | |
|                100L - out_length*100L/in_length)); | |
|         if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1; | |
|     } | |
| #endif | |
|     return (s->last_lit == s->lit_bufsize-1); | |
|     /* We avoid equality with lit_bufsize because of wraparound at 64K | |
|      * on 16 bit machines and because stored blocks are restricted to | |
|      * 64K-1 bytes. | |
|      */ | |
| } | |
| 
 | |
| /* =========================================================================== | |
|  * Send the block data compressed using the given Huffman trees | |
|  */ | |
| local void compress_block(s, ltree, dtree) | |
|     deflate_state *s; | |
|     ct_data *ltree; /* literal tree */ | |
|     ct_data *dtree; /* distance tree */ | |
| { | |
|     unsigned dist;      /* distance of matched string */ | |
|     int lc;             /* match length or unmatched char (if dist == 0) */ | |
|     unsigned lx = 0;    /* running index in l_buf */ | |
|     unsigned code;      /* the code to send */ | |
|     int extra;          /* number of extra bits to send */ | |
| 
 | |
|     if (s->last_lit != 0) do { | |
|         dist = s->d_buf[lx]; | |
|         lc = s->l_buf[lx++]; | |
|         if (dist == 0) { | |
|             send_code(s, lc, ltree); /* send a literal byte */ | |
|             Tracecv(isgraph(lc), (stderr," '%c' ", lc)); | |
|         } else { | |
|             /* Here, lc is the match length - MIN_MATCH */ | |
|             code = _length_code[lc]; | |
|             send_code(s, code+LITERALS+1, ltree); /* send the length code */ | |
|             extra = extra_lbits[code]; | |
|             if (extra != 0) { | |
|                 lc -= base_length[code]; | |
|                 send_bits(s, lc, extra);       /* send the extra length bits */ | |
|             } | |
|             dist--; /* dist is now the match distance - 1 */ | |
|             code = d_code(dist); | |
|             Assert (code < D_CODES, "bad d_code"); | |
| 
 | |
|             send_code(s, code, dtree);       /* send the distance code */ | |
|             extra = extra_dbits[code]; | |
|             if (extra != 0) { | |
|                 dist -= base_dist[code]; | |
|                 send_bits(s, dist, extra);   /* send the extra distance bits */ | |
|             } | |
|         } /* literal or match pair ? */ | |
| 
 | |
|         /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */ | |
|         Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx, | |
|                "pendingBuf overflow"); | |
| 
 | |
|     } while (lx < s->last_lit); | |
| 
 | |
|     send_code(s, END_BLOCK, ltree); | |
|     s->last_eob_len = ltree[END_BLOCK].Len; | |
| } | |
| 
 | |
| /* =========================================================================== | |
|  * Set the data type to BINARY or TEXT, using a crude approximation: | |
|  * set it to Z_TEXT if all symbols are either printable characters (33 to 255) | |
|  * or white spaces (9 to 13, or 32); or set it to Z_BINARY otherwise. | |
|  * IN assertion: the fields Freq of dyn_ltree are set. | |
|  */ | |
| local void set_data_type(s) | |
|     deflate_state *s; | |
| { | |
|     int n; | |
| 
 | |
|     for (n = 0; n < 9; n++) | |
|         if (s->dyn_ltree[n].Freq != 0) | |
|             break; | |
|     if (n == 9) | |
|         for (n = 14; n < 32; n++) | |
|             if (s->dyn_ltree[n].Freq != 0) | |
|                 break; | |
|     s->strm->data_type = (n == 32) ? Z_TEXT : Z_BINARY; | |
| } | |
| 
 | |
| /* =========================================================================== | |
|  * Reverse the first len bits of a code, using straightforward code (a faster | |
|  * method would use a table) | |
|  * IN assertion: 1 <= len <= 15 | |
|  */ | |
| local unsigned bi_reverse(code, len) | |
|     unsigned code; /* the value to invert */ | |
|     int len;       /* its bit length */ | |
| { | |
|     register unsigned res = 0; | |
|     do { | |
|         res |= code & 1; | |
|         code >>= 1, res <<= 1; | |
|     } while (--len > 0); | |
|     return res >> 1; | |
| } | |
| 
 | |
| /* =========================================================================== | |
|  * Flush the bit buffer, keeping at most 7 bits in it. | |
|  */ | |
| local void bi_flush(s) | |
|     deflate_state *s; | |
| { | |
|     if (s->bi_valid == 16) { | |
|         put_short(s, s->bi_buf); | |
|         s->bi_buf = 0; | |
|         s->bi_valid = 0; | |
|     } else if (s->bi_valid >= 8) { | |
|         put_byte(s, (Byte)s->bi_buf); | |
|         s->bi_buf >>= 8; | |
|         s->bi_valid -= 8; | |
|     } | |
| } | |
| 
 | |
| /* =========================================================================== | |
|  * Flush the bit buffer and align the output on a byte boundary | |
|  */ | |
| local void bi_windup(s) | |
|     deflate_state *s; | |
| { | |
|     if (s->bi_valid > 8) { | |
|         put_short(s, s->bi_buf); | |
|     } else if (s->bi_valid > 0) { | |
|         put_byte(s, (Byte)s->bi_buf); | |
|     } | |
|     s->bi_buf = 0; | |
|     s->bi_valid = 0; | |
| #ifdef DEBUG | |
|     s->bits_sent = (s->bits_sent+7) & ~7; | |
| #endif | |
| } | |
| 
 | |
| /* =========================================================================== | |
|  * Copy a stored block, storing first the length and its | |
|  * one's complement if requested. | |
|  */ | |
| local void copy_block(s, buf, len, header) | |
|     deflate_state *s; | |
|     charf    *buf;    /* the input data */ | |
|     unsigned len;     /* its length */ | |
|     int      header;  /* true if block header must be written */ | |
| { | |
|     bi_windup(s);        /* align on byte boundary */ | |
|     s->last_eob_len = 8; /* enough lookahead for inflate */ | |
| 
 | |
|     if (header) { | |
|         put_short(s, (ush)len); | |
|         put_short(s, (ush)~len); | |
| #ifdef DEBUG | |
|         s->bits_sent += 2*16; | |
| #endif | |
|     } | |
| #ifdef DEBUG | |
|     s->bits_sent += (ulg)len<<3; | |
| #endif | |
|     while (len--) { | |
|         put_byte(s, *buf++); | |
|     } | |
| }
 |