You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

458 lines
12 KiB

/* Copyright (c) 2000, 2010 Oracle and/or its affiliates. All rights reserved.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#ifndef GCALC_SLICESCAN_INCLUDED
#define GCALC_SLICESCAN_INCLUDED
/*
Gcalc_dyn_list class designed to manage long lists of same-size objects
with the possible efficiency.
It allocates fixed-size blocks of memory (blk_size specified at the time
of creation). When new object is added to the list, it occupies part of
this block until it's full. Then the new block is allocated.
Freed objects are chained to the m_free list, and if it's not empty, the
newly added object is taken from this list instead the block.
*/
class Gcalc_dyn_list
{
public:
class Item
{
public:
Item *next;
};
Gcalc_dyn_list(size_t blk_size, size_t sizeof_item);
~Gcalc_dyn_list();
Item *new_item()
{
Item *result;
if (m_free)
{
result= m_free;
m_free= m_free->next;
}
else
result= alloc_new_blk();
return result;
}
inline void free_item(Item *item)
{
item->next= m_free;
m_free= item;
}
inline void free_list(Item *list, Item **hook)
{
*hook= m_free;
m_free= list;
}
void free_list(Item *list)
{
Item **hook= &list;
while (*hook)
hook= &(*hook)->next;
free_list(list, hook);
}
void reset();
void cleanup();
protected:
size_t m_blk_size;
size_t m_sizeof_item;
unsigned int m_points_per_blk;
void *m_first_blk;
void **m_blk_hook;
Item *m_free;
Item *m_keep;
Item *alloc_new_blk();
void format_blk(void* block);
inline Item *ptr_add(Item *ptr, int n_items)
{
return (Item *)(((char*)ptr) + n_items * m_sizeof_item);
}
};
typedef uint gcalc_shape_info;
/*
Gcalc_heap represents the 'dynamic list' of Info objects, that
contain information about vertexes of all the shapes that take
part in some spatial calculation. Can become quite long.
After filled, the list is usually sorted and then walked through
in the slicescan algorithm.
The Gcalc_heap and the algorithm can only operate with two
kinds of shapes - polygon and polyline. So all the spatial
objects should be represented as sets of these two.
*/
class Gcalc_heap : public Gcalc_dyn_list
{
public:
class Info : public Gcalc_dyn_list::Item
{
public:
gcalc_shape_info shape;
Info *left;
Info *right;
double x,y;
inline bool is_bottom() const { return !left; }
inline Info *get_next() { return (Info *)next; }
inline const Info *get_next() const { return (const Info *)next; }
};
Gcalc_heap(size_t blk_size=8192) :
Gcalc_dyn_list(blk_size, sizeof(Info)), m_hook(&m_first), m_n_points(0) {}
Info *new_point_info(double x, double y, gcalc_shape_info shape)
{
Info *result= (Info *)new_item();
if (!result)
return NULL;
*m_hook= result;
m_hook= &result->next;
m_n_points++;
result->x= x;
result->y= y;
result->shape= shape;
return result;
}
void prepare_operation();
inline bool ready() const { return m_hook == NULL; }
Info *get_first() { return (Info *)m_first; }
const Info *get_first() const { return (const Info *)m_first; }
Gcalc_dyn_list::Item **get_last_hook() { return m_hook; }
void reset();
private:
Gcalc_dyn_list::Item *m_first;
Gcalc_dyn_list::Item **m_hook;
int m_n_points;
};
/*
the spatial object has to be represented as a set of
simple polygones and polylines to be sent to the slicescan.
Gcalc_shape_transporter class and his descendants are used to
simplify storing the information about the shape into necessary structures.
This base class only fills the Gcalc_heap with the information about
shapes and vertices.
Normally the Gcalc_shape_transporter family object is sent as a parameter
to the 'get_shapes' method of an 'spatial' object so it can pass
the spatial information about itself. The virtual methods are
treating this data in a way the caller needs.
*/
class Gcalc_shape_transporter
{
private:
Gcalc_heap::Info *m_first;
Gcalc_heap::Info *m_prev;
int m_shape_started;
void int_complete();
protected:
Gcalc_heap *m_heap;
int int_single_point(gcalc_shape_info Info, double x, double y);
int int_add_point(gcalc_shape_info Info, double x, double y);
void int_start_line()
{
DBUG_ASSERT(!m_shape_started);
m_shape_started= 1;
m_first= m_prev= NULL;
}
void int_complete_line()
{
DBUG_ASSERT(m_shape_started== 1);
int_complete();
m_shape_started= 0;
}
void int_start_ring()
{
DBUG_ASSERT(m_shape_started== 2);
m_shape_started= 3;
m_first= m_prev= NULL;
}
void int_complete_ring()
{
DBUG_ASSERT(m_shape_started== 3);
int_complete();
m_shape_started= 2;
}
void int_start_poly()
{
DBUG_ASSERT(!m_shape_started);
m_shape_started= 2;
}
void int_complete_poly()
{
DBUG_ASSERT(m_shape_started== 2);
m_shape_started= 0;
}
bool line_started() { return m_shape_started == 1; };
public:
Gcalc_shape_transporter(Gcalc_heap *heap) :
m_shape_started(0), m_heap(heap) {}
virtual int single_point(double x, double y)=0;
virtual int start_line()=0;
virtual int complete_line()=0;
virtual int start_poly()=0;
virtual int complete_poly()=0;
virtual int start_ring()=0;
virtual int complete_ring()=0;
virtual int add_point(double x, double y)=0;
virtual int start_collection(int n_objects) { return 0; }
int start_simple_poly()
{
return start_poly() || start_ring();
}
int complete_simple_poly()
{
return complete_ring() || complete_poly();
}
virtual ~Gcalc_shape_transporter() {}
};
enum Gcalc_scan_events
{
scev_none= 0,
scev_point= 1, /* Just a new point in thread */
scev_thread= 2, /* Start of the new thread */
scev_two_threads= 4, /* A couple of new threads started */
scev_intersection= 8, /* Intersection happened */
scev_end= 16, /* Single thread finished */
scev_two_ends= 32, /* A couple of threads finished */
scev_single_point= 64 /* Got single point */
};
typedef int sc_thread_id;
/*
Gcalc_scan_iterator incapsulates the slisescan algorithm.
It takes filled Gcalc_heap as an datasource. Then can be
iterated trought the vertexes and intersection points with
the step() method. After the 'step()' one usually observes
the current 'slice' to do the necessary calculations, like
looking for intersections, calculating the area, whatever.
*/
class Gcalc_scan_iterator : public Gcalc_dyn_list
{
public:
class point : public Gcalc_dyn_list::Item
{
public:
double x;
double dx_dy;
int horiz_dir;
Gcalc_heap::Info *pi;
Gcalc_heap::Info *next_pi;
sc_thread_id thread;
const point *intersection_link;
Gcalc_scan_events event;
#ifdef TO_REMOVE
const point *event_pair;
point *next_link;
#endif /*TO_REMOVE*/
inline const point *c_get_next() const
{ return (const point *)next; }
inline bool is_bottom() const { return pi->is_bottom(); }
gcalc_shape_info get_shape() const { return pi->shape; }
inline point *get_next() { return (point *)next; }
inline const point *get_next() const { return (const point *)next; }
/* copies all but 'next' 'x' and 'precursor' */
void copy_core(point *from);
/* Compare the dx_dy parameters regarding the horiz_dir */
/* returns -1 if less, 0 if equal, 1 if bigger */
static int compare_dx_dy(int horiz_dir_a, double dx_dy_a,
int horiz_dir_b, double dx_dy_b);
int cmp_dx_dy(const point *p) const;
int simple_event() const
{
return !next ? (event & (scev_point | scev_end)) :
(!next->next && event == scev_two_ends);
}
#ifndef DBUG_OFF
void dbug_print();
#endif /*DBUG_OFF*/
};
class intersection : public Gcalc_dyn_list::Item
{
public:
sc_thread_id thread_a;
sc_thread_id thread_b;
double x;
double y;
inline intersection *get_next() { return (intersection *)next; }
};
class slice_state
{
public:
point *slice;
point *event_position;
Gcalc_dyn_list::Item **event_position_hook;
Gcalc_dyn_list::Item **event_end_hook;
double y;
slice_state() : slice(NULL) {}
void clear_event_position()
{
event_position= NULL;
event_end_hook= (Gcalc_dyn_list::Item **) &event_position;
}
};
public:
Gcalc_scan_iterator(size_t blk_size= 8192);
void init(Gcalc_heap *points); /* Iterator can be reused */
void reset();
int step()
{
DBUG_ASSERT(more_points());
return m_intersections ? intersection_scan() : normal_scan();
}
inline Gcalc_heap::Info *more_points() { return m_cur_pi; }
inline bool more_trapezoids()
{ return m_cur_pi && m_cur_pi->next; }
inline const point *get_events() const
{ return m_events; }
inline const point *get_event_position() const
{ return current_state->event_position; }
inline const point *get_event_end() const
{ return (point *) *current_state->event_end_hook; }
inline const point *get_b_slice() const { return current_state->slice; }
inline const point *get_t_slice() const { return next_state->slice; }
inline double get_h() const { return current_state->y - next_state->y; }
inline double get_y() const { return current_state->y; }
private:
Gcalc_heap::Info *m_cur_pi;
slice_state state0, state1, state_s;
slice_state *current_state;
slice_state *next_state;
slice_state *saved_state;
intersection *m_intersections;
int m_n_intersections;
intersection *m_cur_intersection;
bool m_next_is_top_point;
sc_thread_id m_cur_thread;
point *m_events;
int normal_scan();
int intersection_scan();
void sort_intersections();
int handle_intersections();
int insert_top_point();
int add_intersection(const point *a, const point *b,
Gcalc_dyn_list::Item ***p_hook);
int find_intersections();
intersection *new_intersection()
{
return (intersection *)new_item();
}
point *new_slice_point()
{
return (point *)new_item();
}
point *new_slice(point *example);
int arrange_event();
void mark_event_position1(point *ep, Gcalc_dyn_list::Item **ep_hook);
};
/*
Gcalc_trapezoid_iterator simplifies the calculations on
the current slice of the Gcalc_scan_iterator.
One can walk through the trapezoids formed between
previous and current slices.
*/
class Gcalc_trapezoid_iterator
{
protected:
const Gcalc_scan_iterator::point *sp0;
const Gcalc_scan_iterator::point *sp1;
public:
Gcalc_trapezoid_iterator(const Gcalc_scan_iterator *scan_i) :
sp0(scan_i->get_b_slice()),
sp1(scan_i->get_t_slice())
{}
inline bool more() const { return sp1 && sp1->next; }
const Gcalc_scan_iterator::point *lt() const { return sp1; }
const Gcalc_scan_iterator::point *lb() const { return sp0; }
const Gcalc_scan_iterator::point *rb() const
{
const Gcalc_scan_iterator::point *result= sp0;
while ((result= result->c_get_next())->is_bottom())
{}
return result;
}
const Gcalc_scan_iterator::point *rt() const
{ return sp1->c_get_next(); }
void operator++()
{
sp0= rb();
sp1= rt();
}
};
/*
Gcalc_point_iterator simplifies the calculations on
the current slice of the Gcalc_scan_iterator.
One can walk through the points on the current slice.
*/
class Gcalc_point_iterator
{
protected:
const Gcalc_scan_iterator::point *sp;
public:
Gcalc_point_iterator(const Gcalc_scan_iterator *scan_i):
sp(scan_i->get_b_slice())
{}
inline bool more() const { return sp != NULL; }
inline void operator++() { sp= sp->c_get_next(); }
inline const Gcalc_scan_iterator::point *point() const { return sp; }
inline const Gcalc_heap::Info *get_pi() const { return sp->pi; }
inline gcalc_shape_info get_shape() const { return sp->get_shape(); }
inline double get_x() const { return sp->x; }
inline void restart(const Gcalc_scan_iterator *scan_i)
{ sp= scan_i->get_b_slice(); }
};
#endif /*GCALC_SLICESCAN_INCLUDED*/