 MDEV-11799 Doublewrite recovery can corrupt data pages
The purpose of the InnoDB doublewrite buffer is to make InnoDB
tolerant against cases where the server was killed in the middle
of a page write. (In Linux, killing a process may interrupt a
write system call, typically on a 4096-byte boundary.)
There may exist multiple copies of a page number in the doublewrite
buffer. Recovery should choose the latest valid copy of the page.
By design, the FIL_PAGE_LSN must not precede the latest checkpoint LSN
nor be later than the end of the recovered log.
For page_compressed and encrypted pages, we were missing proper
consistency checks. In the 10.4 data set generated for in MDEV-23231,
the data file contained a valid page_compressed page, and an
identical copy of that page was also present in the doublewrite
buffer. But, recovery would incorrectly consider the page invalid
and restore an uncompressed copy of the same page that had been
written before the log checkpoint. (In fact, no redo log was to
be applied to that page.)
buf_dblwr_process(): Validate the FIL_PAGE_LSN in the doublewrite
buffer pages, and always skip page 0, because those pages should
have been recovered by Datafile::restore_from_doublewrite() if
necessary.
Datafile::restore_from_doublewrite(): Choose the latest applicable
page from the doublewrite buffer.
recv_dblwr_t::find_page(): Also validate encrypted or
page_compressed pages.
recv_dblwr_t::validate_page(): New function to validate a page,
either a copy in a data file or in the doublewrite buffer.
Also validate encrypted or page_compressed pages.
This is joint work with Thirunarayanan Balathandayuthapani.
5 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-27058: Reduce the size of buf_block_t and buf_page_t
buf_page_t::frame: Moved from buf_block_t::frame.
All 'thin' buf_page_t describing compressed-only ROW_FORMAT=COMPRESSED
pages will have frame=nullptr, while all 'fat' buf_block_t
will have a non-null frame pointing to aligned innodb_page_size bytes.
This eliminates the need for separate states for
BUF_BLOCK_FILE_PAGE and BUF_BLOCK_ZIP_PAGE.
buf_page_t::lock: Moved from buf_block_t::lock. That is, all block
descriptors will have a page latch. The IO_PIN state that was used
for discarding or creating the uncompressed page frame of a
ROW_FORMAT=COMPRESSED block is replaced by a combination of read-fix
and page X-latch.
page_zip_des_t::fix: Replaces state_, buf_fix_count_, io_fix_, status
of buf_page_t with a single std::atomic<uint32_t>. All modifications
will use store(), fetch_add(), fetch_sub(). This space was previously
wasted to alignment on 64-bit systems. We will use the following encoding
that combines a state (partly read-fix or write-fix) and a buffer-fix
count:
buf_page_t::NOT_USED=0 (previously BUF_BLOCK_NOT_USED)
buf_page_t::MEMORY=1 (previously BUF_BLOCK_MEMORY)
buf_page_t::REMOVE_HASH=2 (previously BUF_BLOCK_REMOVE_HASH)
buf_page_t::FREED=3 + fix: pages marked as freed in the file
buf_page_t::UNFIXED=1U<<29 + fix: normal pages
buf_page_t::IBUF_EXIST=2U<<29 + fix: normal pages; may need ibuf merge
buf_page_t::REINIT=3U<<29 + fix: reinitialized pages (skip doublewrite)
buf_page_t::READ_FIX=4U<<29 + fix: read-fixed pages (also X-latched)
buf_page_t::WRITE_FIX=5U<<29 + fix: write-fixed pages (also U-latched)
buf_page_t::WRITE_FIX_IBUF=6U<<29 + fix: write-fixed; may have ibuf
buf_page_t::WRITE_FIX_REINIT=7U<<29 + fix: write-fixed (no doublewrite)
buf_page_t::write_complete(): Change WRITE_FIX or WRITE_FIX_REINIT to
UNFIXED, and WRITE_FIX_IBUF to IBUF_EXIST, before releasing the U-latch.
buf_page_t::read_complete(): Renamed from buf_page_read_complete().
Change READ_FIX to UNFIXED or IBUF_EXIST, before releasing the X-latch.
buf_page_t::can_relocate(): If the page latch is being held or waited for,
or the block is buffer-fixed or io-fixed, return false. (The condition
on the page latch is new.)
Outside buf_page_get_gen(), buf_page_get_low() and buf_page_free(), we
will acquire the page latch before fix(), and unfix() before unlocking.
buf_page_t::flush(): Replaces buf_flush_page(). Optimize the
handling of FREED pages.
buf_pool_t::release_freed_page(): Assume that buf_pool.mutex is held
by the caller.
buf_page_t::is_read_fixed(), buf_page_t::is_write_fixed(): New predicates.
buf_page_get_low(): Ignore guesses that are read-fixed because they
may not yet be registered in buf_pool.page_hash and buf_pool.LRU.
buf_page_optimistic_get(): Acquire latch before buffer-fixing.
buf_page_make_young(): Leave read-fixed blocks alone, because they
might not be registered in buf_pool.LRU yet.
recv_sys_t::recover_deferred(), recv_sys_t::recover_low():
Possibly fix MDEV-26326, by holding a page X-latch instead of
only buffer-fixing the page.
4 years ago  MDEV-15053 Reduce buf_pool_t::mutex contention
User-visible changes: The INFORMATION_SCHEMA views INNODB_BUFFER_PAGE
and INNODB_BUFFER_PAGE_LRU will report a dummy value FLUSH_TYPE=0
and will no longer report the PAGE_STATE value READY_FOR_USE.
We will remove some fields from buf_page_t and move much code to
member functions of buf_pool_t and buf_page_t, so that the access
rules of data members can be enforced consistently.
Evicting or adding pages in buf_pool.LRU will remain covered by
buf_pool.mutex.
Evicting or adding pages in buf_pool.page_hash will remain
covered by both buf_pool.mutex and the buf_pool.page_hash X-latch.
After this fix, buf_pool.page_hash lookups can entirely
avoid acquiring buf_pool.mutex, only relying on
buf_pool.hash_lock_get() S-latch.
Similarly, buf_flush_check_neighbors() can will rely solely on
buf_pool.mutex, no buf_pool.page_hash latch at all.
The buf_pool.mutex is rather contended in I/O heavy benchmarks,
especially when the workload does not fit in the buffer pool.
The first attempt to alleviate the contention was the
buf_pool_t::mutex split in
commit 4ed7082eefe56b3e97e0edefb3df76dd7ef5e858
which introduced buf_block_t::mutex, which we are now removing.
Later, multiple instances of buf_pool_t were introduced
in commit c18084f71b02ea707c6461353e6cfc15d7553bc6
and recently removed by us in
commit 1a6f708ec594ac0ae2dd30db926ab07b100fa24b (MDEV-15058).
UNIV_BUF_DEBUG: Remove. This option to enable some buffer pool
related debugging in otherwise non-debug builds has not been used
for years. Instead, we have been using UNIV_DEBUG, which is enabled
in CMAKE_BUILD_TYPE=Debug.
buf_block_t::mutex, buf_pool_t::zip_mutex: Remove. We can mainly rely on
std::atomic and the buf_pool.page_hash latches, and in some cases
depend on buf_pool.mutex or buf_pool.flush_list_mutex just like before.
We must always release buf_block_t::lock before invoking
unfix() or io_unfix(), to prevent a glitch where a block that was
added to the buf_pool.free list would apper X-latched. See
commit c5883debd6ef440a037011c11873b396923e93c5 how this glitch
was finally caught in a debug environment.
We move some buf_pool_t::page_hash specific code from the
ha and hash modules to buf_pool, for improved readability.
buf_pool_t::close(): Assert that all blocks are clean, except
on aborted startup or crash-like shutdown.
buf_pool_t::validate(): No longer attempt to validate
n_flush[] against the number of BUF_IO_WRITE fixed blocks,
because buf_page_t::flush_type no longer exists.
buf_pool_t::watch_set(): Replaces buf_pool_watch_set().
Reduce mutex contention by separating the buf_pool.watch[]
allocation and the insert into buf_pool.page_hash.
buf_pool_t::page_hash_lock<bool exclusive>(): Acquire a
buf_pool.page_hash latch.
Replaces and extends buf_page_hash_lock_s_confirm()
and buf_page_hash_lock_x_confirm().
buf_pool_t::READ_AHEAD_PAGES: Renamed from BUF_READ_AHEAD_PAGES.
buf_pool_t::curr_size, old_size, read_ahead_area, n_pend_reads:
Use Atomic_counter.
buf_pool_t::running_out(): Replaces buf_LRU_buf_pool_running_out().
buf_pool_t::LRU_remove(): Remove a block from the LRU list
and return its predecessor. Incorporates buf_LRU_adjust_hp(),
which was removed.
buf_page_get_gen(): Remove a redundant call of fsp_is_system_temporary(),
for mode == BUF_GET_IF_IN_POOL_OR_WATCH, which is only used by
BTR_DELETE_OP (purge), which is never invoked on temporary tables.
buf_free_from_unzip_LRU_list_batch(): Avoid redundant assignments.
buf_LRU_free_from_unzip_LRU_list(): Simplify the loop condition.
buf_LRU_free_page(): Clarify the function comment.
buf_flush_check_neighbor(), buf_flush_check_neighbors():
Rewrite the construction of the page hash range. We will hold
the buf_pool.mutex for up to buf_pool.read_ahead_area (at most 64)
consecutive lookups of buf_pool.page_hash.
buf_flush_page_and_try_neighbors(): Remove.
Merge to its only callers, and remove redundant operations in
buf_flush_LRU_list_batch().
buf_read_ahead_random(), buf_read_ahead_linear(): Rewrite.
Do not acquire buf_pool.mutex, and iterate directly with page_id_t.
ut_2_power_up(): Remove. my_round_up_to_next_power() is inlined
and avoids any loops.
fil_page_get_prev(), fil_page_get_next(), fil_addr_is_null(): Remove.
buf_flush_page(): Add a fil_space_t* parameter. Minimize the
buf_pool.mutex hold time. buf_pool.n_flush[] is no longer updated
atomically with the io_fix, and we will protect most buf_block_t
fields with buf_block_t::lock. The function
buf_flush_write_block_low() is removed and merged here.
buf_page_init_for_read(): Use static linkage. Initialize the newly
allocated block and acquire the exclusive buf_block_t::lock while not
holding any mutex.
IORequest::IORequest(): Remove the body. We only need to invoke
set_punch_hole() in buf_flush_page() and nowhere else.
buf_page_t::flush_type: Remove. Replaced by IORequest::flush_type.
This field is only used during a fil_io() call.
That function already takes IORequest as a parameter, so we had
better introduce for the rarely changing field.
buf_block_t::init(): Replaces buf_page_init().
buf_page_t::init(): Replaces buf_page_init_low().
buf_block_t::initialise(): Initialise many fields, but
keep the buf_page_t::state(). Both buf_pool_t::validate() and
buf_page_optimistic_get() requires that buf_page_t::in_file()
be protected atomically with buf_page_t::in_page_hash
and buf_page_t::in_LRU_list.
buf_page_optimistic_get(): Now that buf_block_t::mutex
no longer exists, we must check buf_page_t::io_fix()
after acquiring the buf_pool.page_hash lock, to detect
whether buf_page_init_for_read() has been initiated.
We will also check the io_fix() before acquiring hash_lock
in order to avoid unnecessary computation.
The field buf_block_t::modify_clock (protected by buf_block_t::lock)
allows buf_page_optimistic_get() to validate the block.
buf_page_t::real_size: Remove. It was only used while flushing
pages of page_compressed tables.
buf_page_encrypt(): Add an output parameter that allows us ot eliminate
buf_page_t::real_size. Replace a condition with debug assertion.
buf_page_should_punch_hole(): Remove.
buf_dblwr_t::add_to_batch(): Replaces buf_dblwr_add_to_batch().
Add the parameter size (to replace buf_page_t::real_size).
buf_dblwr_t::write_single_page(): Replaces buf_dblwr_write_single_page().
Add the parameter size (to replace buf_page_t::real_size).
fil_system_t::detach(): Replaces fil_space_detach().
Ensure that fil_validate() will not be violated even if
fil_system.mutex is released and reacquired.
fil_node_t::complete_io(): Renamed from fil_node_complete_io().
fil_node_t::close_to_free(): Replaces fil_node_close_to_free().
Avoid invoking fil_node_t::close() because fil_system.n_open
has already been decremented in fil_space_t::detach().
BUF_BLOCK_READY_FOR_USE: Remove. Directly use BUF_BLOCK_MEMORY.
BUF_BLOCK_ZIP_DIRTY: Remove. Directly use BUF_BLOCK_ZIP_PAGE,
and distinguish dirty pages by buf_page_t::oldest_modification().
BUF_BLOCK_POOL_WATCH: Remove. Use BUF_BLOCK_NOT_USED instead.
This state was only being used for buf_page_t that are in
buf_pool.watch.
buf_pool_t::watch[]: Remove pointer indirection.
buf_page_t::in_flush_list: Remove. It was set if and only if
buf_page_t::oldest_modification() is nonzero.
buf_page_decrypt_after_read(), buf_corrupt_page_release(),
buf_page_check_corrupt(): Change the const fil_space_t* parameter
to const fil_node_t& so that we can report the correct file name.
buf_page_monitor(): Declare as an ATTRIBUTE_COLD global function.
buf_page_io_complete(): Split to buf_page_read_complete() and
buf_page_write_complete().
buf_dblwr_t::in_use: Remove.
buf_dblwr_t::buf_block_array: Add IORequest::flush_t.
buf_dblwr_sync_datafiles(): Remove. It was a useless wrapper of
os_aio_wait_until_no_pending_writes().
buf_flush_write_complete(): Declare static, not global.
Add the parameter IORequest::flush_t.
buf_flush_freed_page(): Simplify the code.
recv_sys_t::flush_lru: Renamed from flush_type and changed to bool.
fil_read(), fil_write(): Replaced with direct use of fil_io().
fil_buffering_disabled(): Remove. Check srv_file_flush_method directly.
fil_mutex_enter_and_prepare_for_io(): Return the resolved
fil_space_t* to avoid a duplicated lookup in the caller.
fil_report_invalid_page_access(): Clean up the parameters.
fil_io(): Return fil_io_t, which comprises fil_node_t and error code.
Always invoke fil_space_t::acquire_for_io() and let either the
sync=true caller or fil_aio_callback() invoke
fil_space_t::release_for_io().
fil_aio_callback(): Rewrite to replace buf_page_io_complete().
fil_check_pending_operations(): Remove a parameter, and remove some
redundant lookups.
fil_node_close_to_free(): Wait for n_pending==0. Because we no longer
do an extra lookup of the tablespace between fil_io() and the
completion of the operation, we must give fil_node_t::complete_io() a
chance to decrement the counter.
fil_close_tablespace(): Remove unused parameter trx, and document
that this is only invoked during the error handling of IMPORT TABLESPACE.
row_import_discard_changes(): Merged with the only caller,
row_import_cleanup(). Do not lock up the data dictionary while
invoking fil_close_tablespace().
logs_empty_and_mark_files_at_shutdown(): Do not invoke
fil_close_all_files(), to avoid a !needs_flush assertion failure
on fil_node_t::close().
innodb_shutdown(): Invoke os_aio_free() before fil_close_all_files().
fil_close_all_files(): Invoke fil_flush_file_spaces()
to ensure proper durability.
thread_pool::unbind(): Fix a crash that would occur on Windows
after srv_thread_pool->disable_aio() and os_file_close().
This fix was submitted by Vladislav Vaintroub.
Thanks to Matthias Leich and Axel Schwenke for extensive testing,
Vladislav Vaintroub for helpful comments, and Eugene Kosov for a review.
6 years ago  MDEV-27058: Reduce the size of buf_block_t and buf_page_t
buf_page_t::frame: Moved from buf_block_t::frame.
All 'thin' buf_page_t describing compressed-only ROW_FORMAT=COMPRESSED
pages will have frame=nullptr, while all 'fat' buf_block_t
will have a non-null frame pointing to aligned innodb_page_size bytes.
This eliminates the need for separate states for
BUF_BLOCK_FILE_PAGE and BUF_BLOCK_ZIP_PAGE.
buf_page_t::lock: Moved from buf_block_t::lock. That is, all block
descriptors will have a page latch. The IO_PIN state that was used
for discarding or creating the uncompressed page frame of a
ROW_FORMAT=COMPRESSED block is replaced by a combination of read-fix
and page X-latch.
page_zip_des_t::fix: Replaces state_, buf_fix_count_, io_fix_, status
of buf_page_t with a single std::atomic<uint32_t>. All modifications
will use store(), fetch_add(), fetch_sub(). This space was previously
wasted to alignment on 64-bit systems. We will use the following encoding
that combines a state (partly read-fix or write-fix) and a buffer-fix
count:
buf_page_t::NOT_USED=0 (previously BUF_BLOCK_NOT_USED)
buf_page_t::MEMORY=1 (previously BUF_BLOCK_MEMORY)
buf_page_t::REMOVE_HASH=2 (previously BUF_BLOCK_REMOVE_HASH)
buf_page_t::FREED=3 + fix: pages marked as freed in the file
buf_page_t::UNFIXED=1U<<29 + fix: normal pages
buf_page_t::IBUF_EXIST=2U<<29 + fix: normal pages; may need ibuf merge
buf_page_t::REINIT=3U<<29 + fix: reinitialized pages (skip doublewrite)
buf_page_t::READ_FIX=4U<<29 + fix: read-fixed pages (also X-latched)
buf_page_t::WRITE_FIX=5U<<29 + fix: write-fixed pages (also U-latched)
buf_page_t::WRITE_FIX_IBUF=6U<<29 + fix: write-fixed; may have ibuf
buf_page_t::WRITE_FIX_REINIT=7U<<29 + fix: write-fixed (no doublewrite)
buf_page_t::write_complete(): Change WRITE_FIX or WRITE_FIX_REINIT to
UNFIXED, and WRITE_FIX_IBUF to IBUF_EXIST, before releasing the U-latch.
buf_page_t::read_complete(): Renamed from buf_page_read_complete().
Change READ_FIX to UNFIXED or IBUF_EXIST, before releasing the X-latch.
buf_page_t::can_relocate(): If the page latch is being held or waited for,
or the block is buffer-fixed or io-fixed, return false. (The condition
on the page latch is new.)
Outside buf_page_get_gen(), buf_page_get_low() and buf_page_free(), we
will acquire the page latch before fix(), and unfix() before unlocking.
buf_page_t::flush(): Replaces buf_flush_page(). Optimize the
handling of FREED pages.
buf_pool_t::release_freed_page(): Assume that buf_pool.mutex is held
by the caller.
buf_page_t::is_read_fixed(), buf_page_t::is_write_fixed(): New predicates.
buf_page_get_low(): Ignore guesses that are read-fixed because they
may not yet be registered in buf_pool.page_hash and buf_pool.LRU.
buf_page_optimistic_get(): Acquire latch before buffer-fixing.
buf_page_make_young(): Leave read-fixed blocks alone, because they
might not be registered in buf_pool.LRU yet.
recv_sys_t::recover_deferred(), recv_sys_t::recover_low():
Possibly fix MDEV-26326, by holding a page X-latch instead of
only buffer-fixing the page.
4 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-27058: Reduce the size of buf_block_t and buf_page_t
buf_page_t::frame: Moved from buf_block_t::frame.
All 'thin' buf_page_t describing compressed-only ROW_FORMAT=COMPRESSED
pages will have frame=nullptr, while all 'fat' buf_block_t
will have a non-null frame pointing to aligned innodb_page_size bytes.
This eliminates the need for separate states for
BUF_BLOCK_FILE_PAGE and BUF_BLOCK_ZIP_PAGE.
buf_page_t::lock: Moved from buf_block_t::lock. That is, all block
descriptors will have a page latch. The IO_PIN state that was used
for discarding or creating the uncompressed page frame of a
ROW_FORMAT=COMPRESSED block is replaced by a combination of read-fix
and page X-latch.
page_zip_des_t::fix: Replaces state_, buf_fix_count_, io_fix_, status
of buf_page_t with a single std::atomic<uint32_t>. All modifications
will use store(), fetch_add(), fetch_sub(). This space was previously
wasted to alignment on 64-bit systems. We will use the following encoding
that combines a state (partly read-fix or write-fix) and a buffer-fix
count:
buf_page_t::NOT_USED=0 (previously BUF_BLOCK_NOT_USED)
buf_page_t::MEMORY=1 (previously BUF_BLOCK_MEMORY)
buf_page_t::REMOVE_HASH=2 (previously BUF_BLOCK_REMOVE_HASH)
buf_page_t::FREED=3 + fix: pages marked as freed in the file
buf_page_t::UNFIXED=1U<<29 + fix: normal pages
buf_page_t::IBUF_EXIST=2U<<29 + fix: normal pages; may need ibuf merge
buf_page_t::REINIT=3U<<29 + fix: reinitialized pages (skip doublewrite)
buf_page_t::READ_FIX=4U<<29 + fix: read-fixed pages (also X-latched)
buf_page_t::WRITE_FIX=5U<<29 + fix: write-fixed pages (also U-latched)
buf_page_t::WRITE_FIX_IBUF=6U<<29 + fix: write-fixed; may have ibuf
buf_page_t::WRITE_FIX_REINIT=7U<<29 + fix: write-fixed (no doublewrite)
buf_page_t::write_complete(): Change WRITE_FIX or WRITE_FIX_REINIT to
UNFIXED, and WRITE_FIX_IBUF to IBUF_EXIST, before releasing the U-latch.
buf_page_t::read_complete(): Renamed from buf_page_read_complete().
Change READ_FIX to UNFIXED or IBUF_EXIST, before releasing the X-latch.
buf_page_t::can_relocate(): If the page latch is being held or waited for,
or the block is buffer-fixed or io-fixed, return false. (The condition
on the page latch is new.)
Outside buf_page_get_gen(), buf_page_get_low() and buf_page_free(), we
will acquire the page latch before fix(), and unfix() before unlocking.
buf_page_t::flush(): Replaces buf_flush_page(). Optimize the
handling of FREED pages.
buf_pool_t::release_freed_page(): Assume that buf_pool.mutex is held
by the caller.
buf_page_t::is_read_fixed(), buf_page_t::is_write_fixed(): New predicates.
buf_page_get_low(): Ignore guesses that are read-fixed because they
may not yet be registered in buf_pool.page_hash and buf_pool.LRU.
buf_page_optimistic_get(): Acquire latch before buffer-fixing.
buf_page_make_young(): Leave read-fixed blocks alone, because they
might not be registered in buf_pool.LRU yet.
recv_sys_t::recover_deferred(), recv_sys_t::recover_low():
Possibly fix MDEV-26326, by holding a page X-latch instead of
only buffer-fixing the page.
4 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-15053 Reduce buf_pool_t::mutex contention
User-visible changes: The INFORMATION_SCHEMA views INNODB_BUFFER_PAGE
and INNODB_BUFFER_PAGE_LRU will report a dummy value FLUSH_TYPE=0
and will no longer report the PAGE_STATE value READY_FOR_USE.
We will remove some fields from buf_page_t and move much code to
member functions of buf_pool_t and buf_page_t, so that the access
rules of data members can be enforced consistently.
Evicting or adding pages in buf_pool.LRU will remain covered by
buf_pool.mutex.
Evicting or adding pages in buf_pool.page_hash will remain
covered by both buf_pool.mutex and the buf_pool.page_hash X-latch.
After this fix, buf_pool.page_hash lookups can entirely
avoid acquiring buf_pool.mutex, only relying on
buf_pool.hash_lock_get() S-latch.
Similarly, buf_flush_check_neighbors() can will rely solely on
buf_pool.mutex, no buf_pool.page_hash latch at all.
The buf_pool.mutex is rather contended in I/O heavy benchmarks,
especially when the workload does not fit in the buffer pool.
The first attempt to alleviate the contention was the
buf_pool_t::mutex split in
commit 4ed7082eefe56b3e97e0edefb3df76dd7ef5e858
which introduced buf_block_t::mutex, which we are now removing.
Later, multiple instances of buf_pool_t were introduced
in commit c18084f71b02ea707c6461353e6cfc15d7553bc6
and recently removed by us in
commit 1a6f708ec594ac0ae2dd30db926ab07b100fa24b (MDEV-15058).
UNIV_BUF_DEBUG: Remove. This option to enable some buffer pool
related debugging in otherwise non-debug builds has not been used
for years. Instead, we have been using UNIV_DEBUG, which is enabled
in CMAKE_BUILD_TYPE=Debug.
buf_block_t::mutex, buf_pool_t::zip_mutex: Remove. We can mainly rely on
std::atomic and the buf_pool.page_hash latches, and in some cases
depend on buf_pool.mutex or buf_pool.flush_list_mutex just like before.
We must always release buf_block_t::lock before invoking
unfix() or io_unfix(), to prevent a glitch where a block that was
added to the buf_pool.free list would apper X-latched. See
commit c5883debd6ef440a037011c11873b396923e93c5 how this glitch
was finally caught in a debug environment.
We move some buf_pool_t::page_hash specific code from the
ha and hash modules to buf_pool, for improved readability.
buf_pool_t::close(): Assert that all blocks are clean, except
on aborted startup or crash-like shutdown.
buf_pool_t::validate(): No longer attempt to validate
n_flush[] against the number of BUF_IO_WRITE fixed blocks,
because buf_page_t::flush_type no longer exists.
buf_pool_t::watch_set(): Replaces buf_pool_watch_set().
Reduce mutex contention by separating the buf_pool.watch[]
allocation and the insert into buf_pool.page_hash.
buf_pool_t::page_hash_lock<bool exclusive>(): Acquire a
buf_pool.page_hash latch.
Replaces and extends buf_page_hash_lock_s_confirm()
and buf_page_hash_lock_x_confirm().
buf_pool_t::READ_AHEAD_PAGES: Renamed from BUF_READ_AHEAD_PAGES.
buf_pool_t::curr_size, old_size, read_ahead_area, n_pend_reads:
Use Atomic_counter.
buf_pool_t::running_out(): Replaces buf_LRU_buf_pool_running_out().
buf_pool_t::LRU_remove(): Remove a block from the LRU list
and return its predecessor. Incorporates buf_LRU_adjust_hp(),
which was removed.
buf_page_get_gen(): Remove a redundant call of fsp_is_system_temporary(),
for mode == BUF_GET_IF_IN_POOL_OR_WATCH, which is only used by
BTR_DELETE_OP (purge), which is never invoked on temporary tables.
buf_free_from_unzip_LRU_list_batch(): Avoid redundant assignments.
buf_LRU_free_from_unzip_LRU_list(): Simplify the loop condition.
buf_LRU_free_page(): Clarify the function comment.
buf_flush_check_neighbor(), buf_flush_check_neighbors():
Rewrite the construction of the page hash range. We will hold
the buf_pool.mutex for up to buf_pool.read_ahead_area (at most 64)
consecutive lookups of buf_pool.page_hash.
buf_flush_page_and_try_neighbors(): Remove.
Merge to its only callers, and remove redundant operations in
buf_flush_LRU_list_batch().
buf_read_ahead_random(), buf_read_ahead_linear(): Rewrite.
Do not acquire buf_pool.mutex, and iterate directly with page_id_t.
ut_2_power_up(): Remove. my_round_up_to_next_power() is inlined
and avoids any loops.
fil_page_get_prev(), fil_page_get_next(), fil_addr_is_null(): Remove.
buf_flush_page(): Add a fil_space_t* parameter. Minimize the
buf_pool.mutex hold time. buf_pool.n_flush[] is no longer updated
atomically with the io_fix, and we will protect most buf_block_t
fields with buf_block_t::lock. The function
buf_flush_write_block_low() is removed and merged here.
buf_page_init_for_read(): Use static linkage. Initialize the newly
allocated block and acquire the exclusive buf_block_t::lock while not
holding any mutex.
IORequest::IORequest(): Remove the body. We only need to invoke
set_punch_hole() in buf_flush_page() and nowhere else.
buf_page_t::flush_type: Remove. Replaced by IORequest::flush_type.
This field is only used during a fil_io() call.
That function already takes IORequest as a parameter, so we had
better introduce for the rarely changing field.
buf_block_t::init(): Replaces buf_page_init().
buf_page_t::init(): Replaces buf_page_init_low().
buf_block_t::initialise(): Initialise many fields, but
keep the buf_page_t::state(). Both buf_pool_t::validate() and
buf_page_optimistic_get() requires that buf_page_t::in_file()
be protected atomically with buf_page_t::in_page_hash
and buf_page_t::in_LRU_list.
buf_page_optimistic_get(): Now that buf_block_t::mutex
no longer exists, we must check buf_page_t::io_fix()
after acquiring the buf_pool.page_hash lock, to detect
whether buf_page_init_for_read() has been initiated.
We will also check the io_fix() before acquiring hash_lock
in order to avoid unnecessary computation.
The field buf_block_t::modify_clock (protected by buf_block_t::lock)
allows buf_page_optimistic_get() to validate the block.
buf_page_t::real_size: Remove. It was only used while flushing
pages of page_compressed tables.
buf_page_encrypt(): Add an output parameter that allows us ot eliminate
buf_page_t::real_size. Replace a condition with debug assertion.
buf_page_should_punch_hole(): Remove.
buf_dblwr_t::add_to_batch(): Replaces buf_dblwr_add_to_batch().
Add the parameter size (to replace buf_page_t::real_size).
buf_dblwr_t::write_single_page(): Replaces buf_dblwr_write_single_page().
Add the parameter size (to replace buf_page_t::real_size).
fil_system_t::detach(): Replaces fil_space_detach().
Ensure that fil_validate() will not be violated even if
fil_system.mutex is released and reacquired.
fil_node_t::complete_io(): Renamed from fil_node_complete_io().
fil_node_t::close_to_free(): Replaces fil_node_close_to_free().
Avoid invoking fil_node_t::close() because fil_system.n_open
has already been decremented in fil_space_t::detach().
BUF_BLOCK_READY_FOR_USE: Remove. Directly use BUF_BLOCK_MEMORY.
BUF_BLOCK_ZIP_DIRTY: Remove. Directly use BUF_BLOCK_ZIP_PAGE,
and distinguish dirty pages by buf_page_t::oldest_modification().
BUF_BLOCK_POOL_WATCH: Remove. Use BUF_BLOCK_NOT_USED instead.
This state was only being used for buf_page_t that are in
buf_pool.watch.
buf_pool_t::watch[]: Remove pointer indirection.
buf_page_t::in_flush_list: Remove. It was set if and only if
buf_page_t::oldest_modification() is nonzero.
buf_page_decrypt_after_read(), buf_corrupt_page_release(),
buf_page_check_corrupt(): Change the const fil_space_t* parameter
to const fil_node_t& so that we can report the correct file name.
buf_page_monitor(): Declare as an ATTRIBUTE_COLD global function.
buf_page_io_complete(): Split to buf_page_read_complete() and
buf_page_write_complete().
buf_dblwr_t::in_use: Remove.
buf_dblwr_t::buf_block_array: Add IORequest::flush_t.
buf_dblwr_sync_datafiles(): Remove. It was a useless wrapper of
os_aio_wait_until_no_pending_writes().
buf_flush_write_complete(): Declare static, not global.
Add the parameter IORequest::flush_t.
buf_flush_freed_page(): Simplify the code.
recv_sys_t::flush_lru: Renamed from flush_type and changed to bool.
fil_read(), fil_write(): Replaced with direct use of fil_io().
fil_buffering_disabled(): Remove. Check srv_file_flush_method directly.
fil_mutex_enter_and_prepare_for_io(): Return the resolved
fil_space_t* to avoid a duplicated lookup in the caller.
fil_report_invalid_page_access(): Clean up the parameters.
fil_io(): Return fil_io_t, which comprises fil_node_t and error code.
Always invoke fil_space_t::acquire_for_io() and let either the
sync=true caller or fil_aio_callback() invoke
fil_space_t::release_for_io().
fil_aio_callback(): Rewrite to replace buf_page_io_complete().
fil_check_pending_operations(): Remove a parameter, and remove some
redundant lookups.
fil_node_close_to_free(): Wait for n_pending==0. Because we no longer
do an extra lookup of the tablespace between fil_io() and the
completion of the operation, we must give fil_node_t::complete_io() a
chance to decrement the counter.
fil_close_tablespace(): Remove unused parameter trx, and document
that this is only invoked during the error handling of IMPORT TABLESPACE.
row_import_discard_changes(): Merged with the only caller,
row_import_cleanup(). Do not lock up the data dictionary while
invoking fil_close_tablespace().
logs_empty_and_mark_files_at_shutdown(): Do not invoke
fil_close_all_files(), to avoid a !needs_flush assertion failure
on fil_node_t::close().
innodb_shutdown(): Invoke os_aio_free() before fil_close_all_files().
fil_close_all_files(): Invoke fil_flush_file_spaces()
to ensure proper durability.
thread_pool::unbind(): Fix a crash that would occur on Windows
after srv_thread_pool->disable_aio() and os_file_close().
This fix was submitted by Vladislav Vaintroub.
Thanks to Matthias Leich and Axel Schwenke for extensive testing,
Vladislav Vaintroub for helpful comments, and Eugene Kosov for a review.
6 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-15053 Reduce buf_pool_t::mutex contention
User-visible changes: The INFORMATION_SCHEMA views INNODB_BUFFER_PAGE
and INNODB_BUFFER_PAGE_LRU will report a dummy value FLUSH_TYPE=0
and will no longer report the PAGE_STATE value READY_FOR_USE.
We will remove some fields from buf_page_t and move much code to
member functions of buf_pool_t and buf_page_t, so that the access
rules of data members can be enforced consistently.
Evicting or adding pages in buf_pool.LRU will remain covered by
buf_pool.mutex.
Evicting or adding pages in buf_pool.page_hash will remain
covered by both buf_pool.mutex and the buf_pool.page_hash X-latch.
After this fix, buf_pool.page_hash lookups can entirely
avoid acquiring buf_pool.mutex, only relying on
buf_pool.hash_lock_get() S-latch.
Similarly, buf_flush_check_neighbors() can will rely solely on
buf_pool.mutex, no buf_pool.page_hash latch at all.
The buf_pool.mutex is rather contended in I/O heavy benchmarks,
especially when the workload does not fit in the buffer pool.
The first attempt to alleviate the contention was the
buf_pool_t::mutex split in
commit 4ed7082eefe56b3e97e0edefb3df76dd7ef5e858
which introduced buf_block_t::mutex, which we are now removing.
Later, multiple instances of buf_pool_t were introduced
in commit c18084f71b02ea707c6461353e6cfc15d7553bc6
and recently removed by us in
commit 1a6f708ec594ac0ae2dd30db926ab07b100fa24b (MDEV-15058).
UNIV_BUF_DEBUG: Remove. This option to enable some buffer pool
related debugging in otherwise non-debug builds has not been used
for years. Instead, we have been using UNIV_DEBUG, which is enabled
in CMAKE_BUILD_TYPE=Debug.
buf_block_t::mutex, buf_pool_t::zip_mutex: Remove. We can mainly rely on
std::atomic and the buf_pool.page_hash latches, and in some cases
depend on buf_pool.mutex or buf_pool.flush_list_mutex just like before.
We must always release buf_block_t::lock before invoking
unfix() or io_unfix(), to prevent a glitch where a block that was
added to the buf_pool.free list would apper X-latched. See
commit c5883debd6ef440a037011c11873b396923e93c5 how this glitch
was finally caught in a debug environment.
We move some buf_pool_t::page_hash specific code from the
ha and hash modules to buf_pool, for improved readability.
buf_pool_t::close(): Assert that all blocks are clean, except
on aborted startup or crash-like shutdown.
buf_pool_t::validate(): No longer attempt to validate
n_flush[] against the number of BUF_IO_WRITE fixed blocks,
because buf_page_t::flush_type no longer exists.
buf_pool_t::watch_set(): Replaces buf_pool_watch_set().
Reduce mutex contention by separating the buf_pool.watch[]
allocation and the insert into buf_pool.page_hash.
buf_pool_t::page_hash_lock<bool exclusive>(): Acquire a
buf_pool.page_hash latch.
Replaces and extends buf_page_hash_lock_s_confirm()
and buf_page_hash_lock_x_confirm().
buf_pool_t::READ_AHEAD_PAGES: Renamed from BUF_READ_AHEAD_PAGES.
buf_pool_t::curr_size, old_size, read_ahead_area, n_pend_reads:
Use Atomic_counter.
buf_pool_t::running_out(): Replaces buf_LRU_buf_pool_running_out().
buf_pool_t::LRU_remove(): Remove a block from the LRU list
and return its predecessor. Incorporates buf_LRU_adjust_hp(),
which was removed.
buf_page_get_gen(): Remove a redundant call of fsp_is_system_temporary(),
for mode == BUF_GET_IF_IN_POOL_OR_WATCH, which is only used by
BTR_DELETE_OP (purge), which is never invoked on temporary tables.
buf_free_from_unzip_LRU_list_batch(): Avoid redundant assignments.
buf_LRU_free_from_unzip_LRU_list(): Simplify the loop condition.
buf_LRU_free_page(): Clarify the function comment.
buf_flush_check_neighbor(), buf_flush_check_neighbors():
Rewrite the construction of the page hash range. We will hold
the buf_pool.mutex for up to buf_pool.read_ahead_area (at most 64)
consecutive lookups of buf_pool.page_hash.
buf_flush_page_and_try_neighbors(): Remove.
Merge to its only callers, and remove redundant operations in
buf_flush_LRU_list_batch().
buf_read_ahead_random(), buf_read_ahead_linear(): Rewrite.
Do not acquire buf_pool.mutex, and iterate directly with page_id_t.
ut_2_power_up(): Remove. my_round_up_to_next_power() is inlined
and avoids any loops.
fil_page_get_prev(), fil_page_get_next(), fil_addr_is_null(): Remove.
buf_flush_page(): Add a fil_space_t* parameter. Minimize the
buf_pool.mutex hold time. buf_pool.n_flush[] is no longer updated
atomically with the io_fix, and we will protect most buf_block_t
fields with buf_block_t::lock. The function
buf_flush_write_block_low() is removed and merged here.
buf_page_init_for_read(): Use static linkage. Initialize the newly
allocated block and acquire the exclusive buf_block_t::lock while not
holding any mutex.
IORequest::IORequest(): Remove the body. We only need to invoke
set_punch_hole() in buf_flush_page() and nowhere else.
buf_page_t::flush_type: Remove. Replaced by IORequest::flush_type.
This field is only used during a fil_io() call.
That function already takes IORequest as a parameter, so we had
better introduce for the rarely changing field.
buf_block_t::init(): Replaces buf_page_init().
buf_page_t::init(): Replaces buf_page_init_low().
buf_block_t::initialise(): Initialise many fields, but
keep the buf_page_t::state(). Both buf_pool_t::validate() and
buf_page_optimistic_get() requires that buf_page_t::in_file()
be protected atomically with buf_page_t::in_page_hash
and buf_page_t::in_LRU_list.
buf_page_optimistic_get(): Now that buf_block_t::mutex
no longer exists, we must check buf_page_t::io_fix()
after acquiring the buf_pool.page_hash lock, to detect
whether buf_page_init_for_read() has been initiated.
We will also check the io_fix() before acquiring hash_lock
in order to avoid unnecessary computation.
The field buf_block_t::modify_clock (protected by buf_block_t::lock)
allows buf_page_optimistic_get() to validate the block.
buf_page_t::real_size: Remove. It was only used while flushing
pages of page_compressed tables.
buf_page_encrypt(): Add an output parameter that allows us ot eliminate
buf_page_t::real_size. Replace a condition with debug assertion.
buf_page_should_punch_hole(): Remove.
buf_dblwr_t::add_to_batch(): Replaces buf_dblwr_add_to_batch().
Add the parameter size (to replace buf_page_t::real_size).
buf_dblwr_t::write_single_page(): Replaces buf_dblwr_write_single_page().
Add the parameter size (to replace buf_page_t::real_size).
fil_system_t::detach(): Replaces fil_space_detach().
Ensure that fil_validate() will not be violated even if
fil_system.mutex is released and reacquired.
fil_node_t::complete_io(): Renamed from fil_node_complete_io().
fil_node_t::close_to_free(): Replaces fil_node_close_to_free().
Avoid invoking fil_node_t::close() because fil_system.n_open
has already been decremented in fil_space_t::detach().
BUF_BLOCK_READY_FOR_USE: Remove. Directly use BUF_BLOCK_MEMORY.
BUF_BLOCK_ZIP_DIRTY: Remove. Directly use BUF_BLOCK_ZIP_PAGE,
and distinguish dirty pages by buf_page_t::oldest_modification().
BUF_BLOCK_POOL_WATCH: Remove. Use BUF_BLOCK_NOT_USED instead.
This state was only being used for buf_page_t that are in
buf_pool.watch.
buf_pool_t::watch[]: Remove pointer indirection.
buf_page_t::in_flush_list: Remove. It was set if and only if
buf_page_t::oldest_modification() is nonzero.
buf_page_decrypt_after_read(), buf_corrupt_page_release(),
buf_page_check_corrupt(): Change the const fil_space_t* parameter
to const fil_node_t& so that we can report the correct file name.
buf_page_monitor(): Declare as an ATTRIBUTE_COLD global function.
buf_page_io_complete(): Split to buf_page_read_complete() and
buf_page_write_complete().
buf_dblwr_t::in_use: Remove.
buf_dblwr_t::buf_block_array: Add IORequest::flush_t.
buf_dblwr_sync_datafiles(): Remove. It was a useless wrapper of
os_aio_wait_until_no_pending_writes().
buf_flush_write_complete(): Declare static, not global.
Add the parameter IORequest::flush_t.
buf_flush_freed_page(): Simplify the code.
recv_sys_t::flush_lru: Renamed from flush_type and changed to bool.
fil_read(), fil_write(): Replaced with direct use of fil_io().
fil_buffering_disabled(): Remove. Check srv_file_flush_method directly.
fil_mutex_enter_and_prepare_for_io(): Return the resolved
fil_space_t* to avoid a duplicated lookup in the caller.
fil_report_invalid_page_access(): Clean up the parameters.
fil_io(): Return fil_io_t, which comprises fil_node_t and error code.
Always invoke fil_space_t::acquire_for_io() and let either the
sync=true caller or fil_aio_callback() invoke
fil_space_t::release_for_io().
fil_aio_callback(): Rewrite to replace buf_page_io_complete().
fil_check_pending_operations(): Remove a parameter, and remove some
redundant lookups.
fil_node_close_to_free(): Wait for n_pending==0. Because we no longer
do an extra lookup of the tablespace between fil_io() and the
completion of the operation, we must give fil_node_t::complete_io() a
chance to decrement the counter.
fil_close_tablespace(): Remove unused parameter trx, and document
that this is only invoked during the error handling of IMPORT TABLESPACE.
row_import_discard_changes(): Merged with the only caller,
row_import_cleanup(). Do not lock up the data dictionary while
invoking fil_close_tablespace().
logs_empty_and_mark_files_at_shutdown(): Do not invoke
fil_close_all_files(), to avoid a !needs_flush assertion failure
on fil_node_t::close().
innodb_shutdown(): Invoke os_aio_free() before fil_close_all_files().
fil_close_all_files(): Invoke fil_flush_file_spaces()
to ensure proper durability.
thread_pool::unbind(): Fix a crash that would occur on Windows
after srv_thread_pool->disable_aio() and os_file_close().
This fix was submitted by Vladislav Vaintroub.
Thanks to Matthias Leich and Axel Schwenke for extensive testing,
Vladislav Vaintroub for helpful comments, and Eugene Kosov for a review.
6 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-15053 Reduce buf_pool_t::mutex contention
User-visible changes: The INFORMATION_SCHEMA views INNODB_BUFFER_PAGE
and INNODB_BUFFER_PAGE_LRU will report a dummy value FLUSH_TYPE=0
and will no longer report the PAGE_STATE value READY_FOR_USE.
We will remove some fields from buf_page_t and move much code to
member functions of buf_pool_t and buf_page_t, so that the access
rules of data members can be enforced consistently.
Evicting or adding pages in buf_pool.LRU will remain covered by
buf_pool.mutex.
Evicting or adding pages in buf_pool.page_hash will remain
covered by both buf_pool.mutex and the buf_pool.page_hash X-latch.
After this fix, buf_pool.page_hash lookups can entirely
avoid acquiring buf_pool.mutex, only relying on
buf_pool.hash_lock_get() S-latch.
Similarly, buf_flush_check_neighbors() can will rely solely on
buf_pool.mutex, no buf_pool.page_hash latch at all.
The buf_pool.mutex is rather contended in I/O heavy benchmarks,
especially when the workload does not fit in the buffer pool.
The first attempt to alleviate the contention was the
buf_pool_t::mutex split in
commit 4ed7082eefe56b3e97e0edefb3df76dd7ef5e858
which introduced buf_block_t::mutex, which we are now removing.
Later, multiple instances of buf_pool_t were introduced
in commit c18084f71b02ea707c6461353e6cfc15d7553bc6
and recently removed by us in
commit 1a6f708ec594ac0ae2dd30db926ab07b100fa24b (MDEV-15058).
UNIV_BUF_DEBUG: Remove. This option to enable some buffer pool
related debugging in otherwise non-debug builds has not been used
for years. Instead, we have been using UNIV_DEBUG, which is enabled
in CMAKE_BUILD_TYPE=Debug.
buf_block_t::mutex, buf_pool_t::zip_mutex: Remove. We can mainly rely on
std::atomic and the buf_pool.page_hash latches, and in some cases
depend on buf_pool.mutex or buf_pool.flush_list_mutex just like before.
We must always release buf_block_t::lock before invoking
unfix() or io_unfix(), to prevent a glitch where a block that was
added to the buf_pool.free list would apper X-latched. See
commit c5883debd6ef440a037011c11873b396923e93c5 how this glitch
was finally caught in a debug environment.
We move some buf_pool_t::page_hash specific code from the
ha and hash modules to buf_pool, for improved readability.
buf_pool_t::close(): Assert that all blocks are clean, except
on aborted startup or crash-like shutdown.
buf_pool_t::validate(): No longer attempt to validate
n_flush[] against the number of BUF_IO_WRITE fixed blocks,
because buf_page_t::flush_type no longer exists.
buf_pool_t::watch_set(): Replaces buf_pool_watch_set().
Reduce mutex contention by separating the buf_pool.watch[]
allocation and the insert into buf_pool.page_hash.
buf_pool_t::page_hash_lock<bool exclusive>(): Acquire a
buf_pool.page_hash latch.
Replaces and extends buf_page_hash_lock_s_confirm()
and buf_page_hash_lock_x_confirm().
buf_pool_t::READ_AHEAD_PAGES: Renamed from BUF_READ_AHEAD_PAGES.
buf_pool_t::curr_size, old_size, read_ahead_area, n_pend_reads:
Use Atomic_counter.
buf_pool_t::running_out(): Replaces buf_LRU_buf_pool_running_out().
buf_pool_t::LRU_remove(): Remove a block from the LRU list
and return its predecessor. Incorporates buf_LRU_adjust_hp(),
which was removed.
buf_page_get_gen(): Remove a redundant call of fsp_is_system_temporary(),
for mode == BUF_GET_IF_IN_POOL_OR_WATCH, which is only used by
BTR_DELETE_OP (purge), which is never invoked on temporary tables.
buf_free_from_unzip_LRU_list_batch(): Avoid redundant assignments.
buf_LRU_free_from_unzip_LRU_list(): Simplify the loop condition.
buf_LRU_free_page(): Clarify the function comment.
buf_flush_check_neighbor(), buf_flush_check_neighbors():
Rewrite the construction of the page hash range. We will hold
the buf_pool.mutex for up to buf_pool.read_ahead_area (at most 64)
consecutive lookups of buf_pool.page_hash.
buf_flush_page_and_try_neighbors(): Remove.
Merge to its only callers, and remove redundant operations in
buf_flush_LRU_list_batch().
buf_read_ahead_random(), buf_read_ahead_linear(): Rewrite.
Do not acquire buf_pool.mutex, and iterate directly with page_id_t.
ut_2_power_up(): Remove. my_round_up_to_next_power() is inlined
and avoids any loops.
fil_page_get_prev(), fil_page_get_next(), fil_addr_is_null(): Remove.
buf_flush_page(): Add a fil_space_t* parameter. Minimize the
buf_pool.mutex hold time. buf_pool.n_flush[] is no longer updated
atomically with the io_fix, and we will protect most buf_block_t
fields with buf_block_t::lock. The function
buf_flush_write_block_low() is removed and merged here.
buf_page_init_for_read(): Use static linkage. Initialize the newly
allocated block and acquire the exclusive buf_block_t::lock while not
holding any mutex.
IORequest::IORequest(): Remove the body. We only need to invoke
set_punch_hole() in buf_flush_page() and nowhere else.
buf_page_t::flush_type: Remove. Replaced by IORequest::flush_type.
This field is only used during a fil_io() call.
That function already takes IORequest as a parameter, so we had
better introduce for the rarely changing field.
buf_block_t::init(): Replaces buf_page_init().
buf_page_t::init(): Replaces buf_page_init_low().
buf_block_t::initialise(): Initialise many fields, but
keep the buf_page_t::state(). Both buf_pool_t::validate() and
buf_page_optimistic_get() requires that buf_page_t::in_file()
be protected atomically with buf_page_t::in_page_hash
and buf_page_t::in_LRU_list.
buf_page_optimistic_get(): Now that buf_block_t::mutex
no longer exists, we must check buf_page_t::io_fix()
after acquiring the buf_pool.page_hash lock, to detect
whether buf_page_init_for_read() has been initiated.
We will also check the io_fix() before acquiring hash_lock
in order to avoid unnecessary computation.
The field buf_block_t::modify_clock (protected by buf_block_t::lock)
allows buf_page_optimistic_get() to validate the block.
buf_page_t::real_size: Remove. It was only used while flushing
pages of page_compressed tables.
buf_page_encrypt(): Add an output parameter that allows us ot eliminate
buf_page_t::real_size. Replace a condition with debug assertion.
buf_page_should_punch_hole(): Remove.
buf_dblwr_t::add_to_batch(): Replaces buf_dblwr_add_to_batch().
Add the parameter size (to replace buf_page_t::real_size).
buf_dblwr_t::write_single_page(): Replaces buf_dblwr_write_single_page().
Add the parameter size (to replace buf_page_t::real_size).
fil_system_t::detach(): Replaces fil_space_detach().
Ensure that fil_validate() will not be violated even if
fil_system.mutex is released and reacquired.
fil_node_t::complete_io(): Renamed from fil_node_complete_io().
fil_node_t::close_to_free(): Replaces fil_node_close_to_free().
Avoid invoking fil_node_t::close() because fil_system.n_open
has already been decremented in fil_space_t::detach().
BUF_BLOCK_READY_FOR_USE: Remove. Directly use BUF_BLOCK_MEMORY.
BUF_BLOCK_ZIP_DIRTY: Remove. Directly use BUF_BLOCK_ZIP_PAGE,
and distinguish dirty pages by buf_page_t::oldest_modification().
BUF_BLOCK_POOL_WATCH: Remove. Use BUF_BLOCK_NOT_USED instead.
This state was only being used for buf_page_t that are in
buf_pool.watch.
buf_pool_t::watch[]: Remove pointer indirection.
buf_page_t::in_flush_list: Remove. It was set if and only if
buf_page_t::oldest_modification() is nonzero.
buf_page_decrypt_after_read(), buf_corrupt_page_release(),
buf_page_check_corrupt(): Change the const fil_space_t* parameter
to const fil_node_t& so that we can report the correct file name.
buf_page_monitor(): Declare as an ATTRIBUTE_COLD global function.
buf_page_io_complete(): Split to buf_page_read_complete() and
buf_page_write_complete().
buf_dblwr_t::in_use: Remove.
buf_dblwr_t::buf_block_array: Add IORequest::flush_t.
buf_dblwr_sync_datafiles(): Remove. It was a useless wrapper of
os_aio_wait_until_no_pending_writes().
buf_flush_write_complete(): Declare static, not global.
Add the parameter IORequest::flush_t.
buf_flush_freed_page(): Simplify the code.
recv_sys_t::flush_lru: Renamed from flush_type and changed to bool.
fil_read(), fil_write(): Replaced with direct use of fil_io().
fil_buffering_disabled(): Remove. Check srv_file_flush_method directly.
fil_mutex_enter_and_prepare_for_io(): Return the resolved
fil_space_t* to avoid a duplicated lookup in the caller.
fil_report_invalid_page_access(): Clean up the parameters.
fil_io(): Return fil_io_t, which comprises fil_node_t and error code.
Always invoke fil_space_t::acquire_for_io() and let either the
sync=true caller or fil_aio_callback() invoke
fil_space_t::release_for_io().
fil_aio_callback(): Rewrite to replace buf_page_io_complete().
fil_check_pending_operations(): Remove a parameter, and remove some
redundant lookups.
fil_node_close_to_free(): Wait for n_pending==0. Because we no longer
do an extra lookup of the tablespace between fil_io() and the
completion of the operation, we must give fil_node_t::complete_io() a
chance to decrement the counter.
fil_close_tablespace(): Remove unused parameter trx, and document
that this is only invoked during the error handling of IMPORT TABLESPACE.
row_import_discard_changes(): Merged with the only caller,
row_import_cleanup(). Do not lock up the data dictionary while
invoking fil_close_tablespace().
logs_empty_and_mark_files_at_shutdown(): Do not invoke
fil_close_all_files(), to avoid a !needs_flush assertion failure
on fil_node_t::close().
innodb_shutdown(): Invoke os_aio_free() before fil_close_all_files().
fil_close_all_files(): Invoke fil_flush_file_spaces()
to ensure proper durability.
thread_pool::unbind(): Fix a crash that would occur on Windows
after srv_thread_pool->disable_aio() and os_file_close().
This fix was submitted by Vladislav Vaintroub.
Thanks to Matthias Leich and Axel Schwenke for extensive testing,
Vladislav Vaintroub for helpful comments, and Eugene Kosov for a review.
6 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-15053 Reduce buf_pool_t::mutex contention
User-visible changes: The INFORMATION_SCHEMA views INNODB_BUFFER_PAGE
and INNODB_BUFFER_PAGE_LRU will report a dummy value FLUSH_TYPE=0
and will no longer report the PAGE_STATE value READY_FOR_USE.
We will remove some fields from buf_page_t and move much code to
member functions of buf_pool_t and buf_page_t, so that the access
rules of data members can be enforced consistently.
Evicting or adding pages in buf_pool.LRU will remain covered by
buf_pool.mutex.
Evicting or adding pages in buf_pool.page_hash will remain
covered by both buf_pool.mutex and the buf_pool.page_hash X-latch.
After this fix, buf_pool.page_hash lookups can entirely
avoid acquiring buf_pool.mutex, only relying on
buf_pool.hash_lock_get() S-latch.
Similarly, buf_flush_check_neighbors() can will rely solely on
buf_pool.mutex, no buf_pool.page_hash latch at all.
The buf_pool.mutex is rather contended in I/O heavy benchmarks,
especially when the workload does not fit in the buffer pool.
The first attempt to alleviate the contention was the
buf_pool_t::mutex split in
commit 4ed7082eefe56b3e97e0edefb3df76dd7ef5e858
which introduced buf_block_t::mutex, which we are now removing.
Later, multiple instances of buf_pool_t were introduced
in commit c18084f71b02ea707c6461353e6cfc15d7553bc6
and recently removed by us in
commit 1a6f708ec594ac0ae2dd30db926ab07b100fa24b (MDEV-15058).
UNIV_BUF_DEBUG: Remove. This option to enable some buffer pool
related debugging in otherwise non-debug builds has not been used
for years. Instead, we have been using UNIV_DEBUG, which is enabled
in CMAKE_BUILD_TYPE=Debug.
buf_block_t::mutex, buf_pool_t::zip_mutex: Remove. We can mainly rely on
std::atomic and the buf_pool.page_hash latches, and in some cases
depend on buf_pool.mutex or buf_pool.flush_list_mutex just like before.
We must always release buf_block_t::lock before invoking
unfix() or io_unfix(), to prevent a glitch where a block that was
added to the buf_pool.free list would apper X-latched. See
commit c5883debd6ef440a037011c11873b396923e93c5 how this glitch
was finally caught in a debug environment.
We move some buf_pool_t::page_hash specific code from the
ha and hash modules to buf_pool, for improved readability.
buf_pool_t::close(): Assert that all blocks are clean, except
on aborted startup or crash-like shutdown.
buf_pool_t::validate(): No longer attempt to validate
n_flush[] against the number of BUF_IO_WRITE fixed blocks,
because buf_page_t::flush_type no longer exists.
buf_pool_t::watch_set(): Replaces buf_pool_watch_set().
Reduce mutex contention by separating the buf_pool.watch[]
allocation and the insert into buf_pool.page_hash.
buf_pool_t::page_hash_lock<bool exclusive>(): Acquire a
buf_pool.page_hash latch.
Replaces and extends buf_page_hash_lock_s_confirm()
and buf_page_hash_lock_x_confirm().
buf_pool_t::READ_AHEAD_PAGES: Renamed from BUF_READ_AHEAD_PAGES.
buf_pool_t::curr_size, old_size, read_ahead_area, n_pend_reads:
Use Atomic_counter.
buf_pool_t::running_out(): Replaces buf_LRU_buf_pool_running_out().
buf_pool_t::LRU_remove(): Remove a block from the LRU list
and return its predecessor. Incorporates buf_LRU_adjust_hp(),
which was removed.
buf_page_get_gen(): Remove a redundant call of fsp_is_system_temporary(),
for mode == BUF_GET_IF_IN_POOL_OR_WATCH, which is only used by
BTR_DELETE_OP (purge), which is never invoked on temporary tables.
buf_free_from_unzip_LRU_list_batch(): Avoid redundant assignments.
buf_LRU_free_from_unzip_LRU_list(): Simplify the loop condition.
buf_LRU_free_page(): Clarify the function comment.
buf_flush_check_neighbor(), buf_flush_check_neighbors():
Rewrite the construction of the page hash range. We will hold
the buf_pool.mutex for up to buf_pool.read_ahead_area (at most 64)
consecutive lookups of buf_pool.page_hash.
buf_flush_page_and_try_neighbors(): Remove.
Merge to its only callers, and remove redundant operations in
buf_flush_LRU_list_batch().
buf_read_ahead_random(), buf_read_ahead_linear(): Rewrite.
Do not acquire buf_pool.mutex, and iterate directly with page_id_t.
ut_2_power_up(): Remove. my_round_up_to_next_power() is inlined
and avoids any loops.
fil_page_get_prev(), fil_page_get_next(), fil_addr_is_null(): Remove.
buf_flush_page(): Add a fil_space_t* parameter. Minimize the
buf_pool.mutex hold time. buf_pool.n_flush[] is no longer updated
atomically with the io_fix, and we will protect most buf_block_t
fields with buf_block_t::lock. The function
buf_flush_write_block_low() is removed and merged here.
buf_page_init_for_read(): Use static linkage. Initialize the newly
allocated block and acquire the exclusive buf_block_t::lock while not
holding any mutex.
IORequest::IORequest(): Remove the body. We only need to invoke
set_punch_hole() in buf_flush_page() and nowhere else.
buf_page_t::flush_type: Remove. Replaced by IORequest::flush_type.
This field is only used during a fil_io() call.
That function already takes IORequest as a parameter, so we had
better introduce for the rarely changing field.
buf_block_t::init(): Replaces buf_page_init().
buf_page_t::init(): Replaces buf_page_init_low().
buf_block_t::initialise(): Initialise many fields, but
keep the buf_page_t::state(). Both buf_pool_t::validate() and
buf_page_optimistic_get() requires that buf_page_t::in_file()
be protected atomically with buf_page_t::in_page_hash
and buf_page_t::in_LRU_list.
buf_page_optimistic_get(): Now that buf_block_t::mutex
no longer exists, we must check buf_page_t::io_fix()
after acquiring the buf_pool.page_hash lock, to detect
whether buf_page_init_for_read() has been initiated.
We will also check the io_fix() before acquiring hash_lock
in order to avoid unnecessary computation.
The field buf_block_t::modify_clock (protected by buf_block_t::lock)
allows buf_page_optimistic_get() to validate the block.
buf_page_t::real_size: Remove. It was only used while flushing
pages of page_compressed tables.
buf_page_encrypt(): Add an output parameter that allows us ot eliminate
buf_page_t::real_size. Replace a condition with debug assertion.
buf_page_should_punch_hole(): Remove.
buf_dblwr_t::add_to_batch(): Replaces buf_dblwr_add_to_batch().
Add the parameter size (to replace buf_page_t::real_size).
buf_dblwr_t::write_single_page(): Replaces buf_dblwr_write_single_page().
Add the parameter size (to replace buf_page_t::real_size).
fil_system_t::detach(): Replaces fil_space_detach().
Ensure that fil_validate() will not be violated even if
fil_system.mutex is released and reacquired.
fil_node_t::complete_io(): Renamed from fil_node_complete_io().
fil_node_t::close_to_free(): Replaces fil_node_close_to_free().
Avoid invoking fil_node_t::close() because fil_system.n_open
has already been decremented in fil_space_t::detach().
BUF_BLOCK_READY_FOR_USE: Remove. Directly use BUF_BLOCK_MEMORY.
BUF_BLOCK_ZIP_DIRTY: Remove. Directly use BUF_BLOCK_ZIP_PAGE,
and distinguish dirty pages by buf_page_t::oldest_modification().
BUF_BLOCK_POOL_WATCH: Remove. Use BUF_BLOCK_NOT_USED instead.
This state was only being used for buf_page_t that are in
buf_pool.watch.
buf_pool_t::watch[]: Remove pointer indirection.
buf_page_t::in_flush_list: Remove. It was set if and only if
buf_page_t::oldest_modification() is nonzero.
buf_page_decrypt_after_read(), buf_corrupt_page_release(),
buf_page_check_corrupt(): Change the const fil_space_t* parameter
to const fil_node_t& so that we can report the correct file name.
buf_page_monitor(): Declare as an ATTRIBUTE_COLD global function.
buf_page_io_complete(): Split to buf_page_read_complete() and
buf_page_write_complete().
buf_dblwr_t::in_use: Remove.
buf_dblwr_t::buf_block_array: Add IORequest::flush_t.
buf_dblwr_sync_datafiles(): Remove. It was a useless wrapper of
os_aio_wait_until_no_pending_writes().
buf_flush_write_complete(): Declare static, not global.
Add the parameter IORequest::flush_t.
buf_flush_freed_page(): Simplify the code.
recv_sys_t::flush_lru: Renamed from flush_type and changed to bool.
fil_read(), fil_write(): Replaced with direct use of fil_io().
fil_buffering_disabled(): Remove. Check srv_file_flush_method directly.
fil_mutex_enter_and_prepare_for_io(): Return the resolved
fil_space_t* to avoid a duplicated lookup in the caller.
fil_report_invalid_page_access(): Clean up the parameters.
fil_io(): Return fil_io_t, which comprises fil_node_t and error code.
Always invoke fil_space_t::acquire_for_io() and let either the
sync=true caller or fil_aio_callback() invoke
fil_space_t::release_for_io().
fil_aio_callback(): Rewrite to replace buf_page_io_complete().
fil_check_pending_operations(): Remove a parameter, and remove some
redundant lookups.
fil_node_close_to_free(): Wait for n_pending==0. Because we no longer
do an extra lookup of the tablespace between fil_io() and the
completion of the operation, we must give fil_node_t::complete_io() a
chance to decrement the counter.
fil_close_tablespace(): Remove unused parameter trx, and document
that this is only invoked during the error handling of IMPORT TABLESPACE.
row_import_discard_changes(): Merged with the only caller,
row_import_cleanup(). Do not lock up the data dictionary while
invoking fil_close_tablespace().
logs_empty_and_mark_files_at_shutdown(): Do not invoke
fil_close_all_files(), to avoid a !needs_flush assertion failure
on fil_node_t::close().
innodb_shutdown(): Invoke os_aio_free() before fil_close_all_files().
fil_close_all_files(): Invoke fil_flush_file_spaces()
to ensure proper durability.
thread_pool::unbind(): Fix a crash that would occur on Windows
after srv_thread_pool->disable_aio() and os_file_close().
This fix was submitted by Vladislav Vaintroub.
Thanks to Matthias Leich and Axel Schwenke for extensive testing,
Vladislav Vaintroub for helpful comments, and Eugene Kosov for a review.
6 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-15053 Reduce buf_pool_t::mutex contention
User-visible changes: The INFORMATION_SCHEMA views INNODB_BUFFER_PAGE
and INNODB_BUFFER_PAGE_LRU will report a dummy value FLUSH_TYPE=0
and will no longer report the PAGE_STATE value READY_FOR_USE.
We will remove some fields from buf_page_t and move much code to
member functions of buf_pool_t and buf_page_t, so that the access
rules of data members can be enforced consistently.
Evicting or adding pages in buf_pool.LRU will remain covered by
buf_pool.mutex.
Evicting or adding pages in buf_pool.page_hash will remain
covered by both buf_pool.mutex and the buf_pool.page_hash X-latch.
After this fix, buf_pool.page_hash lookups can entirely
avoid acquiring buf_pool.mutex, only relying on
buf_pool.hash_lock_get() S-latch.
Similarly, buf_flush_check_neighbors() can will rely solely on
buf_pool.mutex, no buf_pool.page_hash latch at all.
The buf_pool.mutex is rather contended in I/O heavy benchmarks,
especially when the workload does not fit in the buffer pool.
The first attempt to alleviate the contention was the
buf_pool_t::mutex split in
commit 4ed7082eefe56b3e97e0edefb3df76dd7ef5e858
which introduced buf_block_t::mutex, which we are now removing.
Later, multiple instances of buf_pool_t were introduced
in commit c18084f71b02ea707c6461353e6cfc15d7553bc6
and recently removed by us in
commit 1a6f708ec594ac0ae2dd30db926ab07b100fa24b (MDEV-15058).
UNIV_BUF_DEBUG: Remove. This option to enable some buffer pool
related debugging in otherwise non-debug builds has not been used
for years. Instead, we have been using UNIV_DEBUG, which is enabled
in CMAKE_BUILD_TYPE=Debug.
buf_block_t::mutex, buf_pool_t::zip_mutex: Remove. We can mainly rely on
std::atomic and the buf_pool.page_hash latches, and in some cases
depend on buf_pool.mutex or buf_pool.flush_list_mutex just like before.
We must always release buf_block_t::lock before invoking
unfix() or io_unfix(), to prevent a glitch where a block that was
added to the buf_pool.free list would apper X-latched. See
commit c5883debd6ef440a037011c11873b396923e93c5 how this glitch
was finally caught in a debug environment.
We move some buf_pool_t::page_hash specific code from the
ha and hash modules to buf_pool, for improved readability.
buf_pool_t::close(): Assert that all blocks are clean, except
on aborted startup or crash-like shutdown.
buf_pool_t::validate(): No longer attempt to validate
n_flush[] against the number of BUF_IO_WRITE fixed blocks,
because buf_page_t::flush_type no longer exists.
buf_pool_t::watch_set(): Replaces buf_pool_watch_set().
Reduce mutex contention by separating the buf_pool.watch[]
allocation and the insert into buf_pool.page_hash.
buf_pool_t::page_hash_lock<bool exclusive>(): Acquire a
buf_pool.page_hash latch.
Replaces and extends buf_page_hash_lock_s_confirm()
and buf_page_hash_lock_x_confirm().
buf_pool_t::READ_AHEAD_PAGES: Renamed from BUF_READ_AHEAD_PAGES.
buf_pool_t::curr_size, old_size, read_ahead_area, n_pend_reads:
Use Atomic_counter.
buf_pool_t::running_out(): Replaces buf_LRU_buf_pool_running_out().
buf_pool_t::LRU_remove(): Remove a block from the LRU list
and return its predecessor. Incorporates buf_LRU_adjust_hp(),
which was removed.
buf_page_get_gen(): Remove a redundant call of fsp_is_system_temporary(),
for mode == BUF_GET_IF_IN_POOL_OR_WATCH, which is only used by
BTR_DELETE_OP (purge), which is never invoked on temporary tables.
buf_free_from_unzip_LRU_list_batch(): Avoid redundant assignments.
buf_LRU_free_from_unzip_LRU_list(): Simplify the loop condition.
buf_LRU_free_page(): Clarify the function comment.
buf_flush_check_neighbor(), buf_flush_check_neighbors():
Rewrite the construction of the page hash range. We will hold
the buf_pool.mutex for up to buf_pool.read_ahead_area (at most 64)
consecutive lookups of buf_pool.page_hash.
buf_flush_page_and_try_neighbors(): Remove.
Merge to its only callers, and remove redundant operations in
buf_flush_LRU_list_batch().
buf_read_ahead_random(), buf_read_ahead_linear(): Rewrite.
Do not acquire buf_pool.mutex, and iterate directly with page_id_t.
ut_2_power_up(): Remove. my_round_up_to_next_power() is inlined
and avoids any loops.
fil_page_get_prev(), fil_page_get_next(), fil_addr_is_null(): Remove.
buf_flush_page(): Add a fil_space_t* parameter. Minimize the
buf_pool.mutex hold time. buf_pool.n_flush[] is no longer updated
atomically with the io_fix, and we will protect most buf_block_t
fields with buf_block_t::lock. The function
buf_flush_write_block_low() is removed and merged here.
buf_page_init_for_read(): Use static linkage. Initialize the newly
allocated block and acquire the exclusive buf_block_t::lock while not
holding any mutex.
IORequest::IORequest(): Remove the body. We only need to invoke
set_punch_hole() in buf_flush_page() and nowhere else.
buf_page_t::flush_type: Remove. Replaced by IORequest::flush_type.
This field is only used during a fil_io() call.
That function already takes IORequest as a parameter, so we had
better introduce for the rarely changing field.
buf_block_t::init(): Replaces buf_page_init().
buf_page_t::init(): Replaces buf_page_init_low().
buf_block_t::initialise(): Initialise many fields, but
keep the buf_page_t::state(). Both buf_pool_t::validate() and
buf_page_optimistic_get() requires that buf_page_t::in_file()
be protected atomically with buf_page_t::in_page_hash
and buf_page_t::in_LRU_list.
buf_page_optimistic_get(): Now that buf_block_t::mutex
no longer exists, we must check buf_page_t::io_fix()
after acquiring the buf_pool.page_hash lock, to detect
whether buf_page_init_for_read() has been initiated.
We will also check the io_fix() before acquiring hash_lock
in order to avoid unnecessary computation.
The field buf_block_t::modify_clock (protected by buf_block_t::lock)
allows buf_page_optimistic_get() to validate the block.
buf_page_t::real_size: Remove. It was only used while flushing
pages of page_compressed tables.
buf_page_encrypt(): Add an output parameter that allows us ot eliminate
buf_page_t::real_size. Replace a condition with debug assertion.
buf_page_should_punch_hole(): Remove.
buf_dblwr_t::add_to_batch(): Replaces buf_dblwr_add_to_batch().
Add the parameter size (to replace buf_page_t::real_size).
buf_dblwr_t::write_single_page(): Replaces buf_dblwr_write_single_page().
Add the parameter size (to replace buf_page_t::real_size).
fil_system_t::detach(): Replaces fil_space_detach().
Ensure that fil_validate() will not be violated even if
fil_system.mutex is released and reacquired.
fil_node_t::complete_io(): Renamed from fil_node_complete_io().
fil_node_t::close_to_free(): Replaces fil_node_close_to_free().
Avoid invoking fil_node_t::close() because fil_system.n_open
has already been decremented in fil_space_t::detach().
BUF_BLOCK_READY_FOR_USE: Remove. Directly use BUF_BLOCK_MEMORY.
BUF_BLOCK_ZIP_DIRTY: Remove. Directly use BUF_BLOCK_ZIP_PAGE,
and distinguish dirty pages by buf_page_t::oldest_modification().
BUF_BLOCK_POOL_WATCH: Remove. Use BUF_BLOCK_NOT_USED instead.
This state was only being used for buf_page_t that are in
buf_pool.watch.
buf_pool_t::watch[]: Remove pointer indirection.
buf_page_t::in_flush_list: Remove. It was set if and only if
buf_page_t::oldest_modification() is nonzero.
buf_page_decrypt_after_read(), buf_corrupt_page_release(),
buf_page_check_corrupt(): Change the const fil_space_t* parameter
to const fil_node_t& so that we can report the correct file name.
buf_page_monitor(): Declare as an ATTRIBUTE_COLD global function.
buf_page_io_complete(): Split to buf_page_read_complete() and
buf_page_write_complete().
buf_dblwr_t::in_use: Remove.
buf_dblwr_t::buf_block_array: Add IORequest::flush_t.
buf_dblwr_sync_datafiles(): Remove. It was a useless wrapper of
os_aio_wait_until_no_pending_writes().
buf_flush_write_complete(): Declare static, not global.
Add the parameter IORequest::flush_t.
buf_flush_freed_page(): Simplify the code.
recv_sys_t::flush_lru: Renamed from flush_type and changed to bool.
fil_read(), fil_write(): Replaced with direct use of fil_io().
fil_buffering_disabled(): Remove. Check srv_file_flush_method directly.
fil_mutex_enter_and_prepare_for_io(): Return the resolved
fil_space_t* to avoid a duplicated lookup in the caller.
fil_report_invalid_page_access(): Clean up the parameters.
fil_io(): Return fil_io_t, which comprises fil_node_t and error code.
Always invoke fil_space_t::acquire_for_io() and let either the
sync=true caller or fil_aio_callback() invoke
fil_space_t::release_for_io().
fil_aio_callback(): Rewrite to replace buf_page_io_complete().
fil_check_pending_operations(): Remove a parameter, and remove some
redundant lookups.
fil_node_close_to_free(): Wait for n_pending==0. Because we no longer
do an extra lookup of the tablespace between fil_io() and the
completion of the operation, we must give fil_node_t::complete_io() a
chance to decrement the counter.
fil_close_tablespace(): Remove unused parameter trx, and document
that this is only invoked during the error handling of IMPORT TABLESPACE.
row_import_discard_changes(): Merged with the only caller,
row_import_cleanup(). Do not lock up the data dictionary while
invoking fil_close_tablespace().
logs_empty_and_mark_files_at_shutdown(): Do not invoke
fil_close_all_files(), to avoid a !needs_flush assertion failure
on fil_node_t::close().
innodb_shutdown(): Invoke os_aio_free() before fil_close_all_files().
fil_close_all_files(): Invoke fil_flush_file_spaces()
to ensure proper durability.
thread_pool::unbind(): Fix a crash that would occur on Windows
after srv_thread_pool->disable_aio() and os_file_close().
This fix was submitted by Vladislav Vaintroub.
Thanks to Matthias Leich and Axel Schwenke for extensive testing,
Vladislav Vaintroub for helpful comments, and Eugene Kosov for a review.
6 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-15053 Reduce buf_pool_t::mutex contention
User-visible changes: The INFORMATION_SCHEMA views INNODB_BUFFER_PAGE
and INNODB_BUFFER_PAGE_LRU will report a dummy value FLUSH_TYPE=0
and will no longer report the PAGE_STATE value READY_FOR_USE.
We will remove some fields from buf_page_t and move much code to
member functions of buf_pool_t and buf_page_t, so that the access
rules of data members can be enforced consistently.
Evicting or adding pages in buf_pool.LRU will remain covered by
buf_pool.mutex.
Evicting or adding pages in buf_pool.page_hash will remain
covered by both buf_pool.mutex and the buf_pool.page_hash X-latch.
After this fix, buf_pool.page_hash lookups can entirely
avoid acquiring buf_pool.mutex, only relying on
buf_pool.hash_lock_get() S-latch.
Similarly, buf_flush_check_neighbors() can will rely solely on
buf_pool.mutex, no buf_pool.page_hash latch at all.
The buf_pool.mutex is rather contended in I/O heavy benchmarks,
especially when the workload does not fit in the buffer pool.
The first attempt to alleviate the contention was the
buf_pool_t::mutex split in
commit 4ed7082eefe56b3e97e0edefb3df76dd7ef5e858
which introduced buf_block_t::mutex, which we are now removing.
Later, multiple instances of buf_pool_t were introduced
in commit c18084f71b02ea707c6461353e6cfc15d7553bc6
and recently removed by us in
commit 1a6f708ec594ac0ae2dd30db926ab07b100fa24b (MDEV-15058).
UNIV_BUF_DEBUG: Remove. This option to enable some buffer pool
related debugging in otherwise non-debug builds has not been used
for years. Instead, we have been using UNIV_DEBUG, which is enabled
in CMAKE_BUILD_TYPE=Debug.
buf_block_t::mutex, buf_pool_t::zip_mutex: Remove. We can mainly rely on
std::atomic and the buf_pool.page_hash latches, and in some cases
depend on buf_pool.mutex or buf_pool.flush_list_mutex just like before.
We must always release buf_block_t::lock before invoking
unfix() or io_unfix(), to prevent a glitch where a block that was
added to the buf_pool.free list would apper X-latched. See
commit c5883debd6ef440a037011c11873b396923e93c5 how this glitch
was finally caught in a debug environment.
We move some buf_pool_t::page_hash specific code from the
ha and hash modules to buf_pool, for improved readability.
buf_pool_t::close(): Assert that all blocks are clean, except
on aborted startup or crash-like shutdown.
buf_pool_t::validate(): No longer attempt to validate
n_flush[] against the number of BUF_IO_WRITE fixed blocks,
because buf_page_t::flush_type no longer exists.
buf_pool_t::watch_set(): Replaces buf_pool_watch_set().
Reduce mutex contention by separating the buf_pool.watch[]
allocation and the insert into buf_pool.page_hash.
buf_pool_t::page_hash_lock<bool exclusive>(): Acquire a
buf_pool.page_hash latch.
Replaces and extends buf_page_hash_lock_s_confirm()
and buf_page_hash_lock_x_confirm().
buf_pool_t::READ_AHEAD_PAGES: Renamed from BUF_READ_AHEAD_PAGES.
buf_pool_t::curr_size, old_size, read_ahead_area, n_pend_reads:
Use Atomic_counter.
buf_pool_t::running_out(): Replaces buf_LRU_buf_pool_running_out().
buf_pool_t::LRU_remove(): Remove a block from the LRU list
and return its predecessor. Incorporates buf_LRU_adjust_hp(),
which was removed.
buf_page_get_gen(): Remove a redundant call of fsp_is_system_temporary(),
for mode == BUF_GET_IF_IN_POOL_OR_WATCH, which is only used by
BTR_DELETE_OP (purge), which is never invoked on temporary tables.
buf_free_from_unzip_LRU_list_batch(): Avoid redundant assignments.
buf_LRU_free_from_unzip_LRU_list(): Simplify the loop condition.
buf_LRU_free_page(): Clarify the function comment.
buf_flush_check_neighbor(), buf_flush_check_neighbors():
Rewrite the construction of the page hash range. We will hold
the buf_pool.mutex for up to buf_pool.read_ahead_area (at most 64)
consecutive lookups of buf_pool.page_hash.
buf_flush_page_and_try_neighbors(): Remove.
Merge to its only callers, and remove redundant operations in
buf_flush_LRU_list_batch().
buf_read_ahead_random(), buf_read_ahead_linear(): Rewrite.
Do not acquire buf_pool.mutex, and iterate directly with page_id_t.
ut_2_power_up(): Remove. my_round_up_to_next_power() is inlined
and avoids any loops.
fil_page_get_prev(), fil_page_get_next(), fil_addr_is_null(): Remove.
buf_flush_page(): Add a fil_space_t* parameter. Minimize the
buf_pool.mutex hold time. buf_pool.n_flush[] is no longer updated
atomically with the io_fix, and we will protect most buf_block_t
fields with buf_block_t::lock. The function
buf_flush_write_block_low() is removed and merged here.
buf_page_init_for_read(): Use static linkage. Initialize the newly
allocated block and acquire the exclusive buf_block_t::lock while not
holding any mutex.
IORequest::IORequest(): Remove the body. We only need to invoke
set_punch_hole() in buf_flush_page() and nowhere else.
buf_page_t::flush_type: Remove. Replaced by IORequest::flush_type.
This field is only used during a fil_io() call.
That function already takes IORequest as a parameter, so we had
better introduce for the rarely changing field.
buf_block_t::init(): Replaces buf_page_init().
buf_page_t::init(): Replaces buf_page_init_low().
buf_block_t::initialise(): Initialise many fields, but
keep the buf_page_t::state(). Both buf_pool_t::validate() and
buf_page_optimistic_get() requires that buf_page_t::in_file()
be protected atomically with buf_page_t::in_page_hash
and buf_page_t::in_LRU_list.
buf_page_optimistic_get(): Now that buf_block_t::mutex
no longer exists, we must check buf_page_t::io_fix()
after acquiring the buf_pool.page_hash lock, to detect
whether buf_page_init_for_read() has been initiated.
We will also check the io_fix() before acquiring hash_lock
in order to avoid unnecessary computation.
The field buf_block_t::modify_clock (protected by buf_block_t::lock)
allows buf_page_optimistic_get() to validate the block.
buf_page_t::real_size: Remove. It was only used while flushing
pages of page_compressed tables.
buf_page_encrypt(): Add an output parameter that allows us ot eliminate
buf_page_t::real_size. Replace a condition with debug assertion.
buf_page_should_punch_hole(): Remove.
buf_dblwr_t::add_to_batch(): Replaces buf_dblwr_add_to_batch().
Add the parameter size (to replace buf_page_t::real_size).
buf_dblwr_t::write_single_page(): Replaces buf_dblwr_write_single_page().
Add the parameter size (to replace buf_page_t::real_size).
fil_system_t::detach(): Replaces fil_space_detach().
Ensure that fil_validate() will not be violated even if
fil_system.mutex is released and reacquired.
fil_node_t::complete_io(): Renamed from fil_node_complete_io().
fil_node_t::close_to_free(): Replaces fil_node_close_to_free().
Avoid invoking fil_node_t::close() because fil_system.n_open
has already been decremented in fil_space_t::detach().
BUF_BLOCK_READY_FOR_USE: Remove. Directly use BUF_BLOCK_MEMORY.
BUF_BLOCK_ZIP_DIRTY: Remove. Directly use BUF_BLOCK_ZIP_PAGE,
and distinguish dirty pages by buf_page_t::oldest_modification().
BUF_BLOCK_POOL_WATCH: Remove. Use BUF_BLOCK_NOT_USED instead.
This state was only being used for buf_page_t that are in
buf_pool.watch.
buf_pool_t::watch[]: Remove pointer indirection.
buf_page_t::in_flush_list: Remove. It was set if and only if
buf_page_t::oldest_modification() is nonzero.
buf_page_decrypt_after_read(), buf_corrupt_page_release(),
buf_page_check_corrupt(): Change the const fil_space_t* parameter
to const fil_node_t& so that we can report the correct file name.
buf_page_monitor(): Declare as an ATTRIBUTE_COLD global function.
buf_page_io_complete(): Split to buf_page_read_complete() and
buf_page_write_complete().
buf_dblwr_t::in_use: Remove.
buf_dblwr_t::buf_block_array: Add IORequest::flush_t.
buf_dblwr_sync_datafiles(): Remove. It was a useless wrapper of
os_aio_wait_until_no_pending_writes().
buf_flush_write_complete(): Declare static, not global.
Add the parameter IORequest::flush_t.
buf_flush_freed_page(): Simplify the code.
recv_sys_t::flush_lru: Renamed from flush_type and changed to bool.
fil_read(), fil_write(): Replaced with direct use of fil_io().
fil_buffering_disabled(): Remove. Check srv_file_flush_method directly.
fil_mutex_enter_and_prepare_for_io(): Return the resolved
fil_space_t* to avoid a duplicated lookup in the caller.
fil_report_invalid_page_access(): Clean up the parameters.
fil_io(): Return fil_io_t, which comprises fil_node_t and error code.
Always invoke fil_space_t::acquire_for_io() and let either the
sync=true caller or fil_aio_callback() invoke
fil_space_t::release_for_io().
fil_aio_callback(): Rewrite to replace buf_page_io_complete().
fil_check_pending_operations(): Remove a parameter, and remove some
redundant lookups.
fil_node_close_to_free(): Wait for n_pending==0. Because we no longer
do an extra lookup of the tablespace between fil_io() and the
completion of the operation, we must give fil_node_t::complete_io() a
chance to decrement the counter.
fil_close_tablespace(): Remove unused parameter trx, and document
that this is only invoked during the error handling of IMPORT TABLESPACE.
row_import_discard_changes(): Merged with the only caller,
row_import_cleanup(). Do not lock up the data dictionary while
invoking fil_close_tablespace().
logs_empty_and_mark_files_at_shutdown(): Do not invoke
fil_close_all_files(), to avoid a !needs_flush assertion failure
on fil_node_t::close().
innodb_shutdown(): Invoke os_aio_free() before fil_close_all_files().
fil_close_all_files(): Invoke fil_flush_file_spaces()
to ensure proper durability.
thread_pool::unbind(): Fix a crash that would occur on Windows
after srv_thread_pool->disable_aio() and os_file_close().
This fix was submitted by Vladislav Vaintroub.
Thanks to Matthias Leich and Axel Schwenke for extensive testing,
Vladislav Vaintroub for helpful comments, and Eugene Kosov for a review.
6 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-15053 Reduce buf_pool_t::mutex contention
User-visible changes: The INFORMATION_SCHEMA views INNODB_BUFFER_PAGE
and INNODB_BUFFER_PAGE_LRU will report a dummy value FLUSH_TYPE=0
and will no longer report the PAGE_STATE value READY_FOR_USE.
We will remove some fields from buf_page_t and move much code to
member functions of buf_pool_t and buf_page_t, so that the access
rules of data members can be enforced consistently.
Evicting or adding pages in buf_pool.LRU will remain covered by
buf_pool.mutex.
Evicting or adding pages in buf_pool.page_hash will remain
covered by both buf_pool.mutex and the buf_pool.page_hash X-latch.
After this fix, buf_pool.page_hash lookups can entirely
avoid acquiring buf_pool.mutex, only relying on
buf_pool.hash_lock_get() S-latch.
Similarly, buf_flush_check_neighbors() can will rely solely on
buf_pool.mutex, no buf_pool.page_hash latch at all.
The buf_pool.mutex is rather contended in I/O heavy benchmarks,
especially when the workload does not fit in the buffer pool.
The first attempt to alleviate the contention was the
buf_pool_t::mutex split in
commit 4ed7082eefe56b3e97e0edefb3df76dd7ef5e858
which introduced buf_block_t::mutex, which we are now removing.
Later, multiple instances of buf_pool_t were introduced
in commit c18084f71b02ea707c6461353e6cfc15d7553bc6
and recently removed by us in
commit 1a6f708ec594ac0ae2dd30db926ab07b100fa24b (MDEV-15058).
UNIV_BUF_DEBUG: Remove. This option to enable some buffer pool
related debugging in otherwise non-debug builds has not been used
for years. Instead, we have been using UNIV_DEBUG, which is enabled
in CMAKE_BUILD_TYPE=Debug.
buf_block_t::mutex, buf_pool_t::zip_mutex: Remove. We can mainly rely on
std::atomic and the buf_pool.page_hash latches, and in some cases
depend on buf_pool.mutex or buf_pool.flush_list_mutex just like before.
We must always release buf_block_t::lock before invoking
unfix() or io_unfix(), to prevent a glitch where a block that was
added to the buf_pool.free list would apper X-latched. See
commit c5883debd6ef440a037011c11873b396923e93c5 how this glitch
was finally caught in a debug environment.
We move some buf_pool_t::page_hash specific code from the
ha and hash modules to buf_pool, for improved readability.
buf_pool_t::close(): Assert that all blocks are clean, except
on aborted startup or crash-like shutdown.
buf_pool_t::validate(): No longer attempt to validate
n_flush[] against the number of BUF_IO_WRITE fixed blocks,
because buf_page_t::flush_type no longer exists.
buf_pool_t::watch_set(): Replaces buf_pool_watch_set().
Reduce mutex contention by separating the buf_pool.watch[]
allocation and the insert into buf_pool.page_hash.
buf_pool_t::page_hash_lock<bool exclusive>(): Acquire a
buf_pool.page_hash latch.
Replaces and extends buf_page_hash_lock_s_confirm()
and buf_page_hash_lock_x_confirm().
buf_pool_t::READ_AHEAD_PAGES: Renamed from BUF_READ_AHEAD_PAGES.
buf_pool_t::curr_size, old_size, read_ahead_area, n_pend_reads:
Use Atomic_counter.
buf_pool_t::running_out(): Replaces buf_LRU_buf_pool_running_out().
buf_pool_t::LRU_remove(): Remove a block from the LRU list
and return its predecessor. Incorporates buf_LRU_adjust_hp(),
which was removed.
buf_page_get_gen(): Remove a redundant call of fsp_is_system_temporary(),
for mode == BUF_GET_IF_IN_POOL_OR_WATCH, which is only used by
BTR_DELETE_OP (purge), which is never invoked on temporary tables.
buf_free_from_unzip_LRU_list_batch(): Avoid redundant assignments.
buf_LRU_free_from_unzip_LRU_list(): Simplify the loop condition.
buf_LRU_free_page(): Clarify the function comment.
buf_flush_check_neighbor(), buf_flush_check_neighbors():
Rewrite the construction of the page hash range. We will hold
the buf_pool.mutex for up to buf_pool.read_ahead_area (at most 64)
consecutive lookups of buf_pool.page_hash.
buf_flush_page_and_try_neighbors(): Remove.
Merge to its only callers, and remove redundant operations in
buf_flush_LRU_list_batch().
buf_read_ahead_random(), buf_read_ahead_linear(): Rewrite.
Do not acquire buf_pool.mutex, and iterate directly with page_id_t.
ut_2_power_up(): Remove. my_round_up_to_next_power() is inlined
and avoids any loops.
fil_page_get_prev(), fil_page_get_next(), fil_addr_is_null(): Remove.
buf_flush_page(): Add a fil_space_t* parameter. Minimize the
buf_pool.mutex hold time. buf_pool.n_flush[] is no longer updated
atomically with the io_fix, and we will protect most buf_block_t
fields with buf_block_t::lock. The function
buf_flush_write_block_low() is removed and merged here.
buf_page_init_for_read(): Use static linkage. Initialize the newly
allocated block and acquire the exclusive buf_block_t::lock while not
holding any mutex.
IORequest::IORequest(): Remove the body. We only need to invoke
set_punch_hole() in buf_flush_page() and nowhere else.
buf_page_t::flush_type: Remove. Replaced by IORequest::flush_type.
This field is only used during a fil_io() call.
That function already takes IORequest as a parameter, so we had
better introduce for the rarely changing field.
buf_block_t::init(): Replaces buf_page_init().
buf_page_t::init(): Replaces buf_page_init_low().
buf_block_t::initialise(): Initialise many fields, but
keep the buf_page_t::state(). Both buf_pool_t::validate() and
buf_page_optimistic_get() requires that buf_page_t::in_file()
be protected atomically with buf_page_t::in_page_hash
and buf_page_t::in_LRU_list.
buf_page_optimistic_get(): Now that buf_block_t::mutex
no longer exists, we must check buf_page_t::io_fix()
after acquiring the buf_pool.page_hash lock, to detect
whether buf_page_init_for_read() has been initiated.
We will also check the io_fix() before acquiring hash_lock
in order to avoid unnecessary computation.
The field buf_block_t::modify_clock (protected by buf_block_t::lock)
allows buf_page_optimistic_get() to validate the block.
buf_page_t::real_size: Remove. It was only used while flushing
pages of page_compressed tables.
buf_page_encrypt(): Add an output parameter that allows us ot eliminate
buf_page_t::real_size. Replace a condition with debug assertion.
buf_page_should_punch_hole(): Remove.
buf_dblwr_t::add_to_batch(): Replaces buf_dblwr_add_to_batch().
Add the parameter size (to replace buf_page_t::real_size).
buf_dblwr_t::write_single_page(): Replaces buf_dblwr_write_single_page().
Add the parameter size (to replace buf_page_t::real_size).
fil_system_t::detach(): Replaces fil_space_detach().
Ensure that fil_validate() will not be violated even if
fil_system.mutex is released and reacquired.
fil_node_t::complete_io(): Renamed from fil_node_complete_io().
fil_node_t::close_to_free(): Replaces fil_node_close_to_free().
Avoid invoking fil_node_t::close() because fil_system.n_open
has already been decremented in fil_space_t::detach().
BUF_BLOCK_READY_FOR_USE: Remove. Directly use BUF_BLOCK_MEMORY.
BUF_BLOCK_ZIP_DIRTY: Remove. Directly use BUF_BLOCK_ZIP_PAGE,
and distinguish dirty pages by buf_page_t::oldest_modification().
BUF_BLOCK_POOL_WATCH: Remove. Use BUF_BLOCK_NOT_USED instead.
This state was only being used for buf_page_t that are in
buf_pool.watch.
buf_pool_t::watch[]: Remove pointer indirection.
buf_page_t::in_flush_list: Remove. It was set if and only if
buf_page_t::oldest_modification() is nonzero.
buf_page_decrypt_after_read(), buf_corrupt_page_release(),
buf_page_check_corrupt(): Change the const fil_space_t* parameter
to const fil_node_t& so that we can report the correct file name.
buf_page_monitor(): Declare as an ATTRIBUTE_COLD global function.
buf_page_io_complete(): Split to buf_page_read_complete() and
buf_page_write_complete().
buf_dblwr_t::in_use: Remove.
buf_dblwr_t::buf_block_array: Add IORequest::flush_t.
buf_dblwr_sync_datafiles(): Remove. It was a useless wrapper of
os_aio_wait_until_no_pending_writes().
buf_flush_write_complete(): Declare static, not global.
Add the parameter IORequest::flush_t.
buf_flush_freed_page(): Simplify the code.
recv_sys_t::flush_lru: Renamed from flush_type and changed to bool.
fil_read(), fil_write(): Replaced with direct use of fil_io().
fil_buffering_disabled(): Remove. Check srv_file_flush_method directly.
fil_mutex_enter_and_prepare_for_io(): Return the resolved
fil_space_t* to avoid a duplicated lookup in the caller.
fil_report_invalid_page_access(): Clean up the parameters.
fil_io(): Return fil_io_t, which comprises fil_node_t and error code.
Always invoke fil_space_t::acquire_for_io() and let either the
sync=true caller or fil_aio_callback() invoke
fil_space_t::release_for_io().
fil_aio_callback(): Rewrite to replace buf_page_io_complete().
fil_check_pending_operations(): Remove a parameter, and remove some
redundant lookups.
fil_node_close_to_free(): Wait for n_pending==0. Because we no longer
do an extra lookup of the tablespace between fil_io() and the
completion of the operation, we must give fil_node_t::complete_io() a
chance to decrement the counter.
fil_close_tablespace(): Remove unused parameter trx, and document
that this is only invoked during the error handling of IMPORT TABLESPACE.
row_import_discard_changes(): Merged with the only caller,
row_import_cleanup(). Do not lock up the data dictionary while
invoking fil_close_tablespace().
logs_empty_and_mark_files_at_shutdown(): Do not invoke
fil_close_all_files(), to avoid a !needs_flush assertion failure
on fil_node_t::close().
innodb_shutdown(): Invoke os_aio_free() before fil_close_all_files().
fil_close_all_files(): Invoke fil_flush_file_spaces()
to ensure proper durability.
thread_pool::unbind(): Fix a crash that would occur on Windows
after srv_thread_pool->disable_aio() and os_file_close().
This fix was submitted by Vladislav Vaintroub.
Thanks to Matthias Leich and Axel Schwenke for extensive testing,
Vladislav Vaintroub for helpful comments, and Eugene Kosov for a review.
6 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-21907: InnoDB: Enable -Wconversion on clang and GCC
The -Wconversion in GCC seems to be stricter than in clang.
GCC at least since version 4.4.7 issues truncation warnings for
assignments to bitfields, while clang 10 appears to only issue
warnings when the sizes in bytes rounded to the nearest integer
powers of 2 are different.
Before GCC 10.0.0, -Wconversion required more casts and would not
allow some operations, such as x<<=1 or x+=1 on a data type that
is narrower than int.
GCC 5 (but not GCC 4, GCC 6, or any later version) is complaining
about x|=y even when x and y are compatible types that are narrower
than int. Hence, we must rewrite some x|=y as
x=static_cast<byte>(x|y) or similar, or we must disable -Wconversion.
In GCC 6 and later, the warning for assigning wider to bitfields
that are narrower than 8, 16, or 32 bits can be suppressed by
applying a bitwise & with the exact bitmask of the bitfield.
For older GCC, we must disable -Wconversion for GCC 4 or 5 in such
cases.
The bitwise negation operator appears to promote short integers
to a wider type, and hence we must add explicit truncation casts
around them. Microsoft Visual C does not allow a static_cast to
truncate a constant, such as static_cast<byte>(1) truncating int.
Hence, we will use the constructor-style cast byte(~1) for such cases.
This has been tested at least with GCC 4.8.5, 5.4.0, 7.4.0, 9.2.1, 10.0.0,
clang 9.0.1, 10.0.0, and MSVC 14.22.27905 (Microsoft Visual Studio 2019)
on 64-bit and 32-bit targets (IA-32, AMD64, POWER 8, POWER 9, ARMv8).
6 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-15053 Reduce buf_pool_t::mutex contention
User-visible changes: The INFORMATION_SCHEMA views INNODB_BUFFER_PAGE
and INNODB_BUFFER_PAGE_LRU will report a dummy value FLUSH_TYPE=0
and will no longer report the PAGE_STATE value READY_FOR_USE.
We will remove some fields from buf_page_t and move much code to
member functions of buf_pool_t and buf_page_t, so that the access
rules of data members can be enforced consistently.
Evicting or adding pages in buf_pool.LRU will remain covered by
buf_pool.mutex.
Evicting or adding pages in buf_pool.page_hash will remain
covered by both buf_pool.mutex and the buf_pool.page_hash X-latch.
After this fix, buf_pool.page_hash lookups can entirely
avoid acquiring buf_pool.mutex, only relying on
buf_pool.hash_lock_get() S-latch.
Similarly, buf_flush_check_neighbors() can will rely solely on
buf_pool.mutex, no buf_pool.page_hash latch at all.
The buf_pool.mutex is rather contended in I/O heavy benchmarks,
especially when the workload does not fit in the buffer pool.
The first attempt to alleviate the contention was the
buf_pool_t::mutex split in
commit 4ed7082eefe56b3e97e0edefb3df76dd7ef5e858
which introduced buf_block_t::mutex, which we are now removing.
Later, multiple instances of buf_pool_t were introduced
in commit c18084f71b02ea707c6461353e6cfc15d7553bc6
and recently removed by us in
commit 1a6f708ec594ac0ae2dd30db926ab07b100fa24b (MDEV-15058).
UNIV_BUF_DEBUG: Remove. This option to enable some buffer pool
related debugging in otherwise non-debug builds has not been used
for years. Instead, we have been using UNIV_DEBUG, which is enabled
in CMAKE_BUILD_TYPE=Debug.
buf_block_t::mutex, buf_pool_t::zip_mutex: Remove. We can mainly rely on
std::atomic and the buf_pool.page_hash latches, and in some cases
depend on buf_pool.mutex or buf_pool.flush_list_mutex just like before.
We must always release buf_block_t::lock before invoking
unfix() or io_unfix(), to prevent a glitch where a block that was
added to the buf_pool.free list would apper X-latched. See
commit c5883debd6ef440a037011c11873b396923e93c5 how this glitch
was finally caught in a debug environment.
We move some buf_pool_t::page_hash specific code from the
ha and hash modules to buf_pool, for improved readability.
buf_pool_t::close(): Assert that all blocks are clean, except
on aborted startup or crash-like shutdown.
buf_pool_t::validate(): No longer attempt to validate
n_flush[] against the number of BUF_IO_WRITE fixed blocks,
because buf_page_t::flush_type no longer exists.
buf_pool_t::watch_set(): Replaces buf_pool_watch_set().
Reduce mutex contention by separating the buf_pool.watch[]
allocation and the insert into buf_pool.page_hash.
buf_pool_t::page_hash_lock<bool exclusive>(): Acquire a
buf_pool.page_hash latch.
Replaces and extends buf_page_hash_lock_s_confirm()
and buf_page_hash_lock_x_confirm().
buf_pool_t::READ_AHEAD_PAGES: Renamed from BUF_READ_AHEAD_PAGES.
buf_pool_t::curr_size, old_size, read_ahead_area, n_pend_reads:
Use Atomic_counter.
buf_pool_t::running_out(): Replaces buf_LRU_buf_pool_running_out().
buf_pool_t::LRU_remove(): Remove a block from the LRU list
and return its predecessor. Incorporates buf_LRU_adjust_hp(),
which was removed.
buf_page_get_gen(): Remove a redundant call of fsp_is_system_temporary(),
for mode == BUF_GET_IF_IN_POOL_OR_WATCH, which is only used by
BTR_DELETE_OP (purge), which is never invoked on temporary tables.
buf_free_from_unzip_LRU_list_batch(): Avoid redundant assignments.
buf_LRU_free_from_unzip_LRU_list(): Simplify the loop condition.
buf_LRU_free_page(): Clarify the function comment.
buf_flush_check_neighbor(), buf_flush_check_neighbors():
Rewrite the construction of the page hash range. We will hold
the buf_pool.mutex for up to buf_pool.read_ahead_area (at most 64)
consecutive lookups of buf_pool.page_hash.
buf_flush_page_and_try_neighbors(): Remove.
Merge to its only callers, and remove redundant operations in
buf_flush_LRU_list_batch().
buf_read_ahead_random(), buf_read_ahead_linear(): Rewrite.
Do not acquire buf_pool.mutex, and iterate directly with page_id_t.
ut_2_power_up(): Remove. my_round_up_to_next_power() is inlined
and avoids any loops.
fil_page_get_prev(), fil_page_get_next(), fil_addr_is_null(): Remove.
buf_flush_page(): Add a fil_space_t* parameter. Minimize the
buf_pool.mutex hold time. buf_pool.n_flush[] is no longer updated
atomically with the io_fix, and we will protect most buf_block_t
fields with buf_block_t::lock. The function
buf_flush_write_block_low() is removed and merged here.
buf_page_init_for_read(): Use static linkage. Initialize the newly
allocated block and acquire the exclusive buf_block_t::lock while not
holding any mutex.
IORequest::IORequest(): Remove the body. We only need to invoke
set_punch_hole() in buf_flush_page() and nowhere else.
buf_page_t::flush_type: Remove. Replaced by IORequest::flush_type.
This field is only used during a fil_io() call.
That function already takes IORequest as a parameter, so we had
better introduce for the rarely changing field.
buf_block_t::init(): Replaces buf_page_init().
buf_page_t::init(): Replaces buf_page_init_low().
buf_block_t::initialise(): Initialise many fields, but
keep the buf_page_t::state(). Both buf_pool_t::validate() and
buf_page_optimistic_get() requires that buf_page_t::in_file()
be protected atomically with buf_page_t::in_page_hash
and buf_page_t::in_LRU_list.
buf_page_optimistic_get(): Now that buf_block_t::mutex
no longer exists, we must check buf_page_t::io_fix()
after acquiring the buf_pool.page_hash lock, to detect
whether buf_page_init_for_read() has been initiated.
We will also check the io_fix() before acquiring hash_lock
in order to avoid unnecessary computation.
The field buf_block_t::modify_clock (protected by buf_block_t::lock)
allows buf_page_optimistic_get() to validate the block.
buf_page_t::real_size: Remove. It was only used while flushing
pages of page_compressed tables.
buf_page_encrypt(): Add an output parameter that allows us ot eliminate
buf_page_t::real_size. Replace a condition with debug assertion.
buf_page_should_punch_hole(): Remove.
buf_dblwr_t::add_to_batch(): Replaces buf_dblwr_add_to_batch().
Add the parameter size (to replace buf_page_t::real_size).
buf_dblwr_t::write_single_page(): Replaces buf_dblwr_write_single_page().
Add the parameter size (to replace buf_page_t::real_size).
fil_system_t::detach(): Replaces fil_space_detach().
Ensure that fil_validate() will not be violated even if
fil_system.mutex is released and reacquired.
fil_node_t::complete_io(): Renamed from fil_node_complete_io().
fil_node_t::close_to_free(): Replaces fil_node_close_to_free().
Avoid invoking fil_node_t::close() because fil_system.n_open
has already been decremented in fil_space_t::detach().
BUF_BLOCK_READY_FOR_USE: Remove. Directly use BUF_BLOCK_MEMORY.
BUF_BLOCK_ZIP_DIRTY: Remove. Directly use BUF_BLOCK_ZIP_PAGE,
and distinguish dirty pages by buf_page_t::oldest_modification().
BUF_BLOCK_POOL_WATCH: Remove. Use BUF_BLOCK_NOT_USED instead.
This state was only being used for buf_page_t that are in
buf_pool.watch.
buf_pool_t::watch[]: Remove pointer indirection.
buf_page_t::in_flush_list: Remove. It was set if and only if
buf_page_t::oldest_modification() is nonzero.
buf_page_decrypt_after_read(), buf_corrupt_page_release(),
buf_page_check_corrupt(): Change the const fil_space_t* parameter
to const fil_node_t& so that we can report the correct file name.
buf_page_monitor(): Declare as an ATTRIBUTE_COLD global function.
buf_page_io_complete(): Split to buf_page_read_complete() and
buf_page_write_complete().
buf_dblwr_t::in_use: Remove.
buf_dblwr_t::buf_block_array: Add IORequest::flush_t.
buf_dblwr_sync_datafiles(): Remove. It was a useless wrapper of
os_aio_wait_until_no_pending_writes().
buf_flush_write_complete(): Declare static, not global.
Add the parameter IORequest::flush_t.
buf_flush_freed_page(): Simplify the code.
recv_sys_t::flush_lru: Renamed from flush_type and changed to bool.
fil_read(), fil_write(): Replaced with direct use of fil_io().
fil_buffering_disabled(): Remove. Check srv_file_flush_method directly.
fil_mutex_enter_and_prepare_for_io(): Return the resolved
fil_space_t* to avoid a duplicated lookup in the caller.
fil_report_invalid_page_access(): Clean up the parameters.
fil_io(): Return fil_io_t, which comprises fil_node_t and error code.
Always invoke fil_space_t::acquire_for_io() and let either the
sync=true caller or fil_aio_callback() invoke
fil_space_t::release_for_io().
fil_aio_callback(): Rewrite to replace buf_page_io_complete().
fil_check_pending_operations(): Remove a parameter, and remove some
redundant lookups.
fil_node_close_to_free(): Wait for n_pending==0. Because we no longer
do an extra lookup of the tablespace between fil_io() and the
completion of the operation, we must give fil_node_t::complete_io() a
chance to decrement the counter.
fil_close_tablespace(): Remove unused parameter trx, and document
that this is only invoked during the error handling of IMPORT TABLESPACE.
row_import_discard_changes(): Merged with the only caller,
row_import_cleanup(). Do not lock up the data dictionary while
invoking fil_close_tablespace().
logs_empty_and_mark_files_at_shutdown(): Do not invoke
fil_close_all_files(), to avoid a !needs_flush assertion failure
on fil_node_t::close().
innodb_shutdown(): Invoke os_aio_free() before fil_close_all_files().
fil_close_all_files(): Invoke fil_flush_file_spaces()
to ensure proper durability.
thread_pool::unbind(): Fix a crash that would occur on Windows
after srv_thread_pool->disable_aio() and os_file_close().
This fix was submitted by Vladislav Vaintroub.
Thanks to Matthias Leich and Axel Schwenke for extensive testing,
Vladislav Vaintroub for helpful comments, and Eugene Kosov for a review.
6 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-21907: InnoDB: Enable -Wconversion on clang and GCC
The -Wconversion in GCC seems to be stricter than in clang.
GCC at least since version 4.4.7 issues truncation warnings for
assignments to bitfields, while clang 10 appears to only issue
warnings when the sizes in bytes rounded to the nearest integer
powers of 2 are different.
Before GCC 10.0.0, -Wconversion required more casts and would not
allow some operations, such as x<<=1 or x+=1 on a data type that
is narrower than int.
GCC 5 (but not GCC 4, GCC 6, or any later version) is complaining
about x|=y even when x and y are compatible types that are narrower
than int. Hence, we must rewrite some x|=y as
x=static_cast<byte>(x|y) or similar, or we must disable -Wconversion.
In GCC 6 and later, the warning for assigning wider to bitfields
that are narrower than 8, 16, or 32 bits can be suppressed by
applying a bitwise & with the exact bitmask of the bitfield.
For older GCC, we must disable -Wconversion for GCC 4 or 5 in such
cases.
The bitwise negation operator appears to promote short integers
to a wider type, and hence we must add explicit truncation casts
around them. Microsoft Visual C does not allow a static_cast to
truncate a constant, such as static_cast<byte>(1) truncating int.
Hence, we will use the constructor-style cast byte(~1) for such cases.
This has been tested at least with GCC 4.8.5, 5.4.0, 7.4.0, 9.2.1, 10.0.0,
clang 9.0.1, 10.0.0, and MSVC 14.22.27905 (Microsoft Visual Studio 2019)
on 64-bit and 32-bit targets (IA-32, AMD64, POWER 8, POWER 9, ARMv8).
6 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-12699 Improve crash recovery of corrupted data pages
InnoDB crash recovery used to read every data page for which
redo log exists. This is unnecessary for those pages that are
initialized by the redo log. If a newly created page is corrupted,
recovery could unnecessarily fail. It would suffice to reinitialize
the page based on the redo log records.
To add insult to injury, InnoDB crash recovery could hang if it
encountered a corrupted page. We will fix also that problem.
InnoDB would normally refuse to start up if it encounters a
corrupted page on recovery, but that can be overridden by
setting innodb_force_recovery=1.
Data pages are completely initialized by the records
MLOG_INIT_FILE_PAGE2 and MLOG_ZIP_PAGE_COMPRESS.
MariaDB 10.4 additionally recognizes MLOG_INIT_FREE_PAGE,
which notifies that a page has been freed and its contents
can be discarded (filled with zeroes).
The record MLOG_INDEX_LOAD notifies that redo logging has
been re-enabled after being disabled. We can avoid loading
the page if all buffered redo log records predate the
MLOG_INDEX_LOAD record.
For the internal tables of FULLTEXT INDEX, no MLOG_INDEX_LOAD
records were written before commit aa3f7a107ce3a9a7f80daf3cadd442a61c5493ab.
Hence, we will skip these optimizations for tables whose
name starts with FTS_.
This is joint work with Thirunarayanan Balathandayuthapani.
fil_space_t::enable_lsn, file_name_t::enable_lsn: The LSN of the
latest recovered MLOG_INDEX_LOAD record for a tablespace.
mlog_init: Page initialization operations discovered during
redo log scanning. FIXME: This really belongs in recv_sys->addr_hash,
and should be removed in MDEV-19176.
recv_addr_state: Add the new state RECV_WILL_NOT_READ to
indicate that according to mlog_init, the page will be
initialized based on redo log record contents.
recv_add_to_hash_table(): Set the RECV_WILL_NOT_READ state
if appropriate. For now, we do not treat MLOG_ZIP_PAGE_COMPRESS
as page initialization. This works around bugs in the crash
recovery of ROW_FORMAT=COMPRESSED tables.
recv_mark_log_index_load(): Process a MLOG_INDEX_LOAD record
by resetting the state to RECV_NOT_PROCESSED and by updating
the fil_name_t::enable_lsn.
recv_init_crash_recovery_spaces(): Copy fil_name_t::enable_lsn
to fil_space_t::enable_lsn.
recv_recover_page(): Add the parameter init_lsn, to ignore
any log records that precede the page initialization.
Add DBUG output about skipped operations.
buf_page_create(): Initialize FIL_PAGE_LSN, so that
recv_recover_page() will not wrongly skip applying
the page-initialization record due to the field containing
some newer LSN as a leftover from a different page.
Do not invoke ibuf_merge_or_delete_for_page() during
crash recovery.
recv_apply_hashed_log_recs(): Remove some unnecessary lookups.
Note if a corrupted page was found during recovery.
After invoking buf_page_create(), do invoke
ibuf_merge_or_delete_for_page() via mlog_init.ibuf_merge()
in the last recovery batch.
ibuf_merge_or_delete_for_page(): Relax a debug assertion.
innobase_start_or_create_for_mysql(): Abort startup if
a corrupted page was found during recovery. Corrupted pages
will not be flagged if innodb_force_recovery is set.
However, the recv_sys->found_corrupt_fs flag can be set
regardless of innodb_force_recovery if file names are found
to be incorrect (for example, multiple files with the same
tablespace ID).
7 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-32939 If tables are frequently created, renamed, dropped, a backup cannot be restored
During mariadb-backup --backup, a table could be renamed, created and
dropped. We could have both oldname.ibd and oldname.new, and one of
the files would be deleted before the InnoDB recovery starts. The desired
end result would be that we will recover both oldname.ibd and newname.ibd.
During normal crash recovery, at most one file operation (create, rename,
delete) may require to be replayed from the write-ahead log before the
DDL recovery starts.
deferred_spaces.create(): In mariadb-backup --prepare, try to create the
file in case it does not exist.
fil_name_process(): Display a message about not found files not only
if innodb_force_recovery is set, but also in mariadb-backup --prepare.
If we are processing a FILE_RENAME for a tablespace whose recovery is
deferred, suppress the message and adjust the file name in case
fil_ibd_load() returns FIL_LOAD_NOT_FOUND or FIL_LOAD_DEFER.
fil_ibd_load(): Remove a redundant file name comparison.
The caller already compared that the file names are different.
We used to wrongly return FIL_LOAD_OK instead of FIL_LOAD_ID_CHANGED
if only the schema name differed, such as a/t1.ibd and b/t1.ibd.
Tested by: Matthias Leich
Reviewed by: Thirunarayanan Balathandayuthapani
2 years ago  MDEV-32939 If tables are frequently created, renamed, dropped, a backup cannot be restored
During mariadb-backup --backup, a table could be renamed, created and
dropped. We could have both oldname.ibd and oldname.new, and one of
the files would be deleted before the InnoDB recovery starts. The desired
end result would be that we will recover both oldname.ibd and newname.ibd.
During normal crash recovery, at most one file operation (create, rename,
delete) may require to be replayed from the write-ahead log before the
DDL recovery starts.
deferred_spaces.create(): In mariadb-backup --prepare, try to create the
file in case it does not exist.
fil_name_process(): Display a message about not found files not only
if innodb_force_recovery is set, but also in mariadb-backup --prepare.
If we are processing a FILE_RENAME for a tablespace whose recovery is
deferred, suppress the message and adjust the file name in case
fil_ibd_load() returns FIL_LOAD_NOT_FOUND or FIL_LOAD_DEFER.
fil_ibd_load(): Remove a redundant file name comparison.
The caller already compared that the file names are different.
We used to wrongly return FIL_LOAD_OK instead of FIL_LOAD_ID_CHANGED
if only the schema name differed, such as a/t1.ibd and b/t1.ibd.
Tested by: Matthias Leich
Reviewed by: Thirunarayanan Balathandayuthapani
2 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-13542: Crashing on corrupted page is unhelpful
The approach to handling corruption that was chosen by Oracle in
commit 177d8b0c125b841c0650d27d735e3b87509dc286
is not really useful. Not only did it actually fail to prevent InnoDB
from crashing, but it is making things worse by blocking attempts to
rescue data from or rebuild a partially readable table.
We will try to prevent crashes in a different way: by propagating
errors up the call stack. We will never mark the clustered index
persistently corrupted, so that data recovery may be attempted by
reading from the table, or by rebuilding the table.
This should also fix MDEV-13680 (crash on btr_page_alloc() failure);
it was extensively tested with innodb_file_per_table=0 and a
non-autoextend system tablespace.
We should now avoid crashes in many cases, such as when a page
cannot be read or allocated, or an inconsistency is detected when
attempting to update multiple pages. We will not crash on double-free,
such as on the recovery of DDL in system tablespace in case something
was corrupted.
Crashes on corrupted data are still possible. The fault injection mechanism
that is introduced in the subsequent commit may help catch more of them.
buf_page_import_corrupt_failure: Remove the fault injection, and instead
corrupt some pages using Perl code in the tests.
btr_cur_pessimistic_insert(): Always reserve extents (except for the
change buffer), in order to prevent a subsequent allocation failure.
btr_pcur_open_at_rnd_pos(): Merged to the only caller ibuf_merge_pages().
btr_assert_not_corrupted(), btr_corruption_report(): Remove.
Similar checks are already part of btr_block_get().
FSEG_MAGIC_N_BYTES: Replaces FSEG_MAGIC_N_VALUE.
dict_hdr_get(), trx_rsegf_get_new(), trx_undo_page_get(),
trx_undo_page_get_s_latched(): Replaced with error-checking calls.
trx_rseg_t::get(mtr_t*): Replaces trx_rsegf_get().
trx_rseg_header_create(): Let the caller update the TRX_SYS page if needed.
trx_sys_create_sys_pages(): Merged with trx_sysf_create().
dict_check_tablespaces_and_store_max_id(): Do not access
DICT_HDR_MAX_SPACE_ID, because it was already recovered in dict_boot().
Merge dict_check_sys_tables() with this function.
dir_pathname(): Replaces os_file_make_new_pathname().
row_undo_ins_remove_sec(): Do not modify the undo page by adding
a terminating NUL byte to the record.
btr_decryption_failed(): Report decryption failures
dict_set_corrupted_by_space(), dict_set_encrypted_by_space(),
dict_set_corrupted_index_cache_only(): Remove.
dict_set_corrupted(): Remove the constant parameter dict_locked=false.
Never flag the clustered index corrupted in SYS_INDEXES, because
that would deny further access to the table. It might be possible to
repair the table by executing ALTER TABLE or OPTIMIZE TABLE, in case
no B-tree leaf page is corrupted.
dict_table_skip_corrupt_index(), dict_table_next_uncorrupted_index(),
row_purge_skip_uncommitted_virtual_index(): Remove, and refactor
the callers to read dict_index_t::type only once.
dict_table_is_corrupted(): Remove.
dict_index_t::is_btree(): Determine if the index is a valid B-tree.
BUF_GET_NO_LATCH, BUF_EVICT_IF_IN_POOL: Remove.
UNIV_BTR_DEBUG: Remove. Any inconsistency will no longer trigger
assertion failures, but error codes being returned.
buf_corrupt_page_release(): Replaced with a direct call to
buf_pool.corrupted_evict().
fil_invalid_page_access_msg(): Never crash on an invalid read;
let the caller of buf_page_get_gen() decide.
btr_pcur_t::restore_position(): Propagate failure status to the caller
by returning CORRUPTED.
opt_search_plan_for_table(): Simplify the code.
row_purge_del_mark(), row_purge_upd_exist_or_extern_func(),
row_undo_ins_remove_sec_rec(), row_undo_mod_upd_del_sec(),
row_undo_mod_del_mark_sec(): Avoid mem_heap_create()/mem_heap_free()
when no secondary indexes exist.
row_undo_mod_upd_exist_sec(): Simplify the code.
row_upd_clust_step(), dict_load_table_one(): Return DB_TABLE_CORRUPT
if the clustered index (and therefore the table) is corrupted, similar
to what we do in row_insert_for_mysql().
fut_get_ptr(): Replace with buf_page_get_gen() calls.
buf_page_get_gen(): Return nullptr and *err=DB_CORRUPTION
if the page is marked as freed. For other modes than
BUF_GET_POSSIBLY_FREED or BUF_PEEK_IF_IN_POOL this will
trigger a debug assertion failure. For BUF_GET_POSSIBLY_FREED,
we will return nullptr for freed pages, so that the callers
can be simplified. The purge of transaction history will be
a new user of BUF_GET_POSSIBLY_FREED, to avoid crashes on
corrupted data.
buf_page_get_low(): Never crash on a corrupted page, but simply
return nullptr.
fseg_page_is_allocated(): Replaces fseg_page_is_free().
fts_drop_common_tables(): Return an error if the transaction
was rolled back.
fil_space_t::set_corrupted(): Report a tablespace as corrupted if
it was not reported already.
fil_space_t::io(): Invoke fil_space_t::set_corrupted() to report
out-of-bounds page access or other errors.
Clean up mtr_t::page_lock()
buf_page_get_low(): Validate the page identifier (to check for
recently read corrupted pages) after acquiring the page latch.
buf_page_t::read_complete(): Flag uninitialized (all-zero) pages
with DB_FAIL. Return DB_PAGE_CORRUPTED on page number mismatch.
mtr_t::defer_drop_ahi(): Renamed from mtr_defer_drop_ahi().
recv_sys_t::free_corrupted_page(): Only set_corrupt_fs()
if any log records exist for the page. We do not mind if read-ahead
produces corrupted (or all-zero) pages that were not actually needed
during recovery.
recv_recover_page(): Return whether the operation succeeded.
recv_sys_t::recover_low(): Simplify the logic. Check for recovery error.
Thanks to Matthias Leich for testing this extensively and to the
authors of https://rr-project.org for making it easy to diagnose
and fix any failures that were found during the testing.
3 years ago  MDEV-13542: Crashing on corrupted page is unhelpful
The approach to handling corruption that was chosen by Oracle in
commit 177d8b0c125b841c0650d27d735e3b87509dc286
is not really useful. Not only did it actually fail to prevent InnoDB
from crashing, but it is making things worse by blocking attempts to
rescue data from or rebuild a partially readable table.
We will try to prevent crashes in a different way: by propagating
errors up the call stack. We will never mark the clustered index
persistently corrupted, so that data recovery may be attempted by
reading from the table, or by rebuilding the table.
This should also fix MDEV-13680 (crash on btr_page_alloc() failure);
it was extensively tested with innodb_file_per_table=0 and a
non-autoextend system tablespace.
We should now avoid crashes in many cases, such as when a page
cannot be read or allocated, or an inconsistency is detected when
attempting to update multiple pages. We will not crash on double-free,
such as on the recovery of DDL in system tablespace in case something
was corrupted.
Crashes on corrupted data are still possible. The fault injection mechanism
that is introduced in the subsequent commit may help catch more of them.
buf_page_import_corrupt_failure: Remove the fault injection, and instead
corrupt some pages using Perl code in the tests.
btr_cur_pessimistic_insert(): Always reserve extents (except for the
change buffer), in order to prevent a subsequent allocation failure.
btr_pcur_open_at_rnd_pos(): Merged to the only caller ibuf_merge_pages().
btr_assert_not_corrupted(), btr_corruption_report(): Remove.
Similar checks are already part of btr_block_get().
FSEG_MAGIC_N_BYTES: Replaces FSEG_MAGIC_N_VALUE.
dict_hdr_get(), trx_rsegf_get_new(), trx_undo_page_get(),
trx_undo_page_get_s_latched(): Replaced with error-checking calls.
trx_rseg_t::get(mtr_t*): Replaces trx_rsegf_get().
trx_rseg_header_create(): Let the caller update the TRX_SYS page if needed.
trx_sys_create_sys_pages(): Merged with trx_sysf_create().
dict_check_tablespaces_and_store_max_id(): Do not access
DICT_HDR_MAX_SPACE_ID, because it was already recovered in dict_boot().
Merge dict_check_sys_tables() with this function.
dir_pathname(): Replaces os_file_make_new_pathname().
row_undo_ins_remove_sec(): Do not modify the undo page by adding
a terminating NUL byte to the record.
btr_decryption_failed(): Report decryption failures
dict_set_corrupted_by_space(), dict_set_encrypted_by_space(),
dict_set_corrupted_index_cache_only(): Remove.
dict_set_corrupted(): Remove the constant parameter dict_locked=false.
Never flag the clustered index corrupted in SYS_INDEXES, because
that would deny further access to the table. It might be possible to
repair the table by executing ALTER TABLE or OPTIMIZE TABLE, in case
no B-tree leaf page is corrupted.
dict_table_skip_corrupt_index(), dict_table_next_uncorrupted_index(),
row_purge_skip_uncommitted_virtual_index(): Remove, and refactor
the callers to read dict_index_t::type only once.
dict_table_is_corrupted(): Remove.
dict_index_t::is_btree(): Determine if the index is a valid B-tree.
BUF_GET_NO_LATCH, BUF_EVICT_IF_IN_POOL: Remove.
UNIV_BTR_DEBUG: Remove. Any inconsistency will no longer trigger
assertion failures, but error codes being returned.
buf_corrupt_page_release(): Replaced with a direct call to
buf_pool.corrupted_evict().
fil_invalid_page_access_msg(): Never crash on an invalid read;
let the caller of buf_page_get_gen() decide.
btr_pcur_t::restore_position(): Propagate failure status to the caller
by returning CORRUPTED.
opt_search_plan_for_table(): Simplify the code.
row_purge_del_mark(), row_purge_upd_exist_or_extern_func(),
row_undo_ins_remove_sec_rec(), row_undo_mod_upd_del_sec(),
row_undo_mod_del_mark_sec(): Avoid mem_heap_create()/mem_heap_free()
when no secondary indexes exist.
row_undo_mod_upd_exist_sec(): Simplify the code.
row_upd_clust_step(), dict_load_table_one(): Return DB_TABLE_CORRUPT
if the clustered index (and therefore the table) is corrupted, similar
to what we do in row_insert_for_mysql().
fut_get_ptr(): Replace with buf_page_get_gen() calls.
buf_page_get_gen(): Return nullptr and *err=DB_CORRUPTION
if the page is marked as freed. For other modes than
BUF_GET_POSSIBLY_FREED or BUF_PEEK_IF_IN_POOL this will
trigger a debug assertion failure. For BUF_GET_POSSIBLY_FREED,
we will return nullptr for freed pages, so that the callers
can be simplified. The purge of transaction history will be
a new user of BUF_GET_POSSIBLY_FREED, to avoid crashes on
corrupted data.
buf_page_get_low(): Never crash on a corrupted page, but simply
return nullptr.
fseg_page_is_allocated(): Replaces fseg_page_is_free().
fts_drop_common_tables(): Return an error if the transaction
was rolled back.
fil_space_t::set_corrupted(): Report a tablespace as corrupted if
it was not reported already.
fil_space_t::io(): Invoke fil_space_t::set_corrupted() to report
out-of-bounds page access or other errors.
Clean up mtr_t::page_lock()
buf_page_get_low(): Validate the page identifier (to check for
recently read corrupted pages) after acquiring the page latch.
buf_page_t::read_complete(): Flag uninitialized (all-zero) pages
with DB_FAIL. Return DB_PAGE_CORRUPTED on page number mismatch.
mtr_t::defer_drop_ahi(): Renamed from mtr_defer_drop_ahi().
recv_sys_t::free_corrupted_page(): Only set_corrupt_fs()
if any log records exist for the page. We do not mind if read-ahead
produces corrupted (or all-zero) pages that were not actually needed
during recovery.
recv_recover_page(): Return whether the operation succeeded.
recv_sys_t::recover_low(): Simplify the logic. Check for recovery error.
Thanks to Matthias Leich for testing this extensively and to the
authors of https://rr-project.org for making it easy to diagnose
and fix any failures that were found during the testing.
3 years ago  MDEV-27058: Reduce the size of buf_block_t and buf_page_t
buf_page_t::frame: Moved from buf_block_t::frame.
All 'thin' buf_page_t describing compressed-only ROW_FORMAT=COMPRESSED
pages will have frame=nullptr, while all 'fat' buf_block_t
will have a non-null frame pointing to aligned innodb_page_size bytes.
This eliminates the need for separate states for
BUF_BLOCK_FILE_PAGE and BUF_BLOCK_ZIP_PAGE.
buf_page_t::lock: Moved from buf_block_t::lock. That is, all block
descriptors will have a page latch. The IO_PIN state that was used
for discarding or creating the uncompressed page frame of a
ROW_FORMAT=COMPRESSED block is replaced by a combination of read-fix
and page X-latch.
page_zip_des_t::fix: Replaces state_, buf_fix_count_, io_fix_, status
of buf_page_t with a single std::atomic<uint32_t>. All modifications
will use store(), fetch_add(), fetch_sub(). This space was previously
wasted to alignment on 64-bit systems. We will use the following encoding
that combines a state (partly read-fix or write-fix) and a buffer-fix
count:
buf_page_t::NOT_USED=0 (previously BUF_BLOCK_NOT_USED)
buf_page_t::MEMORY=1 (previously BUF_BLOCK_MEMORY)
buf_page_t::REMOVE_HASH=2 (previously BUF_BLOCK_REMOVE_HASH)
buf_page_t::FREED=3 + fix: pages marked as freed in the file
buf_page_t::UNFIXED=1U<<29 + fix: normal pages
buf_page_t::IBUF_EXIST=2U<<29 + fix: normal pages; may need ibuf merge
buf_page_t::REINIT=3U<<29 + fix: reinitialized pages (skip doublewrite)
buf_page_t::READ_FIX=4U<<29 + fix: read-fixed pages (also X-latched)
buf_page_t::WRITE_FIX=5U<<29 + fix: write-fixed pages (also U-latched)
buf_page_t::WRITE_FIX_IBUF=6U<<29 + fix: write-fixed; may have ibuf
buf_page_t::WRITE_FIX_REINIT=7U<<29 + fix: write-fixed (no doublewrite)
buf_page_t::write_complete(): Change WRITE_FIX or WRITE_FIX_REINIT to
UNFIXED, and WRITE_FIX_IBUF to IBUF_EXIST, before releasing the U-latch.
buf_page_t::read_complete(): Renamed from buf_page_read_complete().
Change READ_FIX to UNFIXED or IBUF_EXIST, before releasing the X-latch.
buf_page_t::can_relocate(): If the page latch is being held or waited for,
or the block is buffer-fixed or io-fixed, return false. (The condition
on the page latch is new.)
Outside buf_page_get_gen(), buf_page_get_low() and buf_page_free(), we
will acquire the page latch before fix(), and unfix() before unlocking.
buf_page_t::flush(): Replaces buf_flush_page(). Optimize the
handling of FREED pages.
buf_pool_t::release_freed_page(): Assume that buf_pool.mutex is held
by the caller.
buf_page_t::is_read_fixed(), buf_page_t::is_write_fixed(): New predicates.
buf_page_get_low(): Ignore guesses that are read-fixed because they
may not yet be registered in buf_pool.page_hash and buf_pool.LRU.
buf_page_optimistic_get(): Acquire latch before buffer-fixing.
buf_page_make_young(): Leave read-fixed blocks alone, because they
might not be registered in buf_pool.LRU yet.
recv_sys_t::recover_deferred(), recv_sys_t::recover_low():
Possibly fix MDEV-26326, by holding a page X-latch instead of
only buffer-fixing the page.
4 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-27058: Reduce the size of buf_block_t and buf_page_t
buf_page_t::frame: Moved from buf_block_t::frame.
All 'thin' buf_page_t describing compressed-only ROW_FORMAT=COMPRESSED
pages will have frame=nullptr, while all 'fat' buf_block_t
will have a non-null frame pointing to aligned innodb_page_size bytes.
This eliminates the need for separate states for
BUF_BLOCK_FILE_PAGE and BUF_BLOCK_ZIP_PAGE.
buf_page_t::lock: Moved from buf_block_t::lock. That is, all block
descriptors will have a page latch. The IO_PIN state that was used
for discarding or creating the uncompressed page frame of a
ROW_FORMAT=COMPRESSED block is replaced by a combination of read-fix
and page X-latch.
page_zip_des_t::fix: Replaces state_, buf_fix_count_, io_fix_, status
of buf_page_t with a single std::atomic<uint32_t>. All modifications
will use store(), fetch_add(), fetch_sub(). This space was previously
wasted to alignment on 64-bit systems. We will use the following encoding
that combines a state (partly read-fix or write-fix) and a buffer-fix
count:
buf_page_t::NOT_USED=0 (previously BUF_BLOCK_NOT_USED)
buf_page_t::MEMORY=1 (previously BUF_BLOCK_MEMORY)
buf_page_t::REMOVE_HASH=2 (previously BUF_BLOCK_REMOVE_HASH)
buf_page_t::FREED=3 + fix: pages marked as freed in the file
buf_page_t::UNFIXED=1U<<29 + fix: normal pages
buf_page_t::IBUF_EXIST=2U<<29 + fix: normal pages; may need ibuf merge
buf_page_t::REINIT=3U<<29 + fix: reinitialized pages (skip doublewrite)
buf_page_t::READ_FIX=4U<<29 + fix: read-fixed pages (also X-latched)
buf_page_t::WRITE_FIX=5U<<29 + fix: write-fixed pages (also U-latched)
buf_page_t::WRITE_FIX_IBUF=6U<<29 + fix: write-fixed; may have ibuf
buf_page_t::WRITE_FIX_REINIT=7U<<29 + fix: write-fixed (no doublewrite)
buf_page_t::write_complete(): Change WRITE_FIX or WRITE_FIX_REINIT to
UNFIXED, and WRITE_FIX_IBUF to IBUF_EXIST, before releasing the U-latch.
buf_page_t::read_complete(): Renamed from buf_page_read_complete().
Change READ_FIX to UNFIXED or IBUF_EXIST, before releasing the X-latch.
buf_page_t::can_relocate(): If the page latch is being held or waited for,
or the block is buffer-fixed or io-fixed, return false. (The condition
on the page latch is new.)
Outside buf_page_get_gen(), buf_page_get_low() and buf_page_free(), we
will acquire the page latch before fix(), and unfix() before unlocking.
buf_page_t::flush(): Replaces buf_flush_page(). Optimize the
handling of FREED pages.
buf_pool_t::release_freed_page(): Assume that buf_pool.mutex is held
by the caller.
buf_page_t::is_read_fixed(), buf_page_t::is_write_fixed(): New predicates.
buf_page_get_low(): Ignore guesses that are read-fixed because they
may not yet be registered in buf_pool.page_hash and buf_pool.LRU.
buf_page_optimistic_get(): Acquire latch before buffer-fixing.
buf_page_make_young(): Leave read-fixed blocks alone, because they
might not be registered in buf_pool.LRU yet.
recv_sys_t::recover_deferred(), recv_sys_t::recover_low():
Possibly fix MDEV-26326, by holding a page X-latch instead of
only buffer-fixing the page.
4 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-13564 Mariabackup does not work with TRUNCATE
Implement undo tablespace truncation via normal redo logging.
Implement TRUNCATE TABLE as a combination of RENAME to #sql-ib name,
CREATE, and DROP.
Note: Orphan #sql-ib*.ibd may be left behind if MariaDB Server 10.2
is killed before the DROP operation is committed. If MariaDB Server 10.2
is killed during TRUNCATE, it is also possible that the old table
was renamed to #sql-ib*.ibd but the data dictionary will refer to the
table using the original name.
In MariaDB Server 10.3, RENAME inside InnoDB is transactional,
and #sql-* tables will be dropped on startup. So, this new TRUNCATE
will be fully crash-safe in 10.3.
ha_mroonga::wrapper_truncate(): Pass table options to the underlying
storage engine, now that ha_innobase::truncate() will need them.
rpl_slave_state::truncate_state_table(): Before truncating
mysql.gtid_slave_pos, evict any cached table handles from
the table definition cache, so that there will be no stale
references to the old table after truncating.
== TRUNCATE TABLE ==
WL#6501 in MySQL 5.7 introduced separate log files for implementing
atomic and crash-safe TRUNCATE TABLE, instead of using the InnoDB
undo and redo log. Some convoluted logic was added to the InnoDB
crash recovery, and some extra synchronization (including a redo log
checkpoint) was introduced to make this work. This synchronization
has caused performance problems and race conditions, and the extra
log files cannot be copied or applied by external backup programs.
In order to support crash-upgrade from MariaDB 10.2, we will keep
the logic for parsing and applying the extra log files, but we will
no longer generate those files in TRUNCATE TABLE.
A prerequisite for crash-safe TRUNCATE is a crash-safe RENAME TABLE
(with full redo and undo logging and proper rollback). This will
be implemented in MDEV-14717.
ha_innobase::truncate(): Invoke RENAME, create(), delete_table().
Because RENAME cannot be fully rolled back before MariaDB 10.3
due to missing undo logging, add some explicit rename-back in
case the operation fails.
ha_innobase::delete(): Introduce a variant that takes sqlcom as
a parameter. In TRUNCATE TABLE, we do not want to touch any
FOREIGN KEY constraints.
ha_innobase::create(): Add the parameters file_per_table, trx.
In TRUNCATE, the new table must be created in the same transaction
that renames the old table.
create_table_info_t::create_table_info_t(): Add the parameters
file_per_table, trx.
row_drop_table_for_mysql(): Replace a bool parameter with sqlcom.
row_drop_table_after_create_fail(): New function, wrapping
row_drop_table_for_mysql().
dict_truncate_index_tree_in_mem(), fil_truncate_tablespace(),
fil_prepare_for_truncate(), fil_reinit_space_header_for_table(),
row_truncate_table_for_mysql(), TruncateLogger,
row_truncate_prepare(), row_truncate_rollback(),
row_truncate_complete(), row_truncate_fts(),
row_truncate_update_system_tables(),
row_truncate_foreign_key_checks(), row_truncate_sanity_checks():
Remove.
row_upd_check_references_constraints(): Remove a check for
TRUNCATE, now that the table is no longer truncated in place.
The new test innodb.truncate_foreign uses DEBUG_SYNC to cover some
race-condition like scenarios. The test innodb-innodb.truncate does
not use any synchronization.
We add a redo log subformat to indicate backup-friendly format.
MariaDB 10.4 will remove support for the old TRUNCATE logging,
so crash-upgrade from old 10.2 or 10.3 to 10.4 will involve
limitations.
== Undo tablespace truncation ==
MySQL 5.7 implements undo tablespace truncation. It is only
possible when innodb_undo_tablespaces is set to at least 2.
The logging is implemented similar to the WL#6501 TRUNCATE,
that is, using separate log files and a redo log checkpoint.
We can simply implement undo tablespace truncation within
a single mini-transaction that reinitializes the undo log
tablespace file. Unfortunately, due to the redo log format
of some operations, currently, the total redo log written by
undo tablespace truncation will be more than the combined size
of the truncated undo tablespace. It should be acceptable
to have a little more than 1 megabyte of log in a single
mini-transaction. This will be fixed in MDEV-17138 in
MariaDB Server 10.4.
recv_sys_t: Add truncated_undo_spaces[] to remember for which undo
tablespaces a MLOG_FILE_CREATE2 record was seen.
namespace undo: Remove some unnecessary declarations.
fil_space_t::is_being_truncated: Document that this flag now
only applies to undo tablespaces. Remove some references.
fil_space_t::is_stopping(): Do not refer to is_being_truncated.
This check is for tablespaces of tables. Potentially used
tablespaces are never truncated any more.
buf_dblwr_process(): Suppress the out-of-bounds warning
for undo tablespaces.
fil_truncate_log(): Write a MLOG_FILE_CREATE2 with a nonzero
page number (new size of the tablespace in pages) to inform
crash recovery that the undo tablespace size has been reduced.
fil_op_write_log(): Relax assertions, so that MLOG_FILE_CREATE2
can be written for undo tablespaces (without .ibd file suffix)
for a nonzero page number.
os_file_truncate(): Add the parameter allow_shrink=false
so that undo tablespaces can actually be shrunk using this function.
fil_name_parse(): For undo tablespace truncation,
buffer MLOG_FILE_CREATE2 in truncated_undo_spaces[].
recv_read_in_area(): Avoid reading pages for which no redo log
records remain buffered, after recv_addr_trim() removed them.
trx_rseg_header_create(): Add a FIXME comment that we could write
much less redo log.
trx_undo_truncate_tablespace(): Reinitialize the undo tablespace
in a single mini-transaction, which will be flushed to the redo log
before the file size is trimmed.
recv_addr_trim(): Discard any redo logs for pages that were
logged after the new end of a file, before the truncation LSN.
If the rec_list becomes empty, reduce n_addrs. After removing
any affected records, actually truncate the file.
recv_apply_hashed_log_recs(): Invoke recv_addr_trim() right before
applying any log records. The undo tablespace files must be open
at this point.
buf_flush_or_remove_pages(), buf_flush_dirty_pages(),
buf_LRU_flush_or_remove_pages(): Add a parameter for specifying
the number of the first page to flush or remove (default 0).
trx_purge_initiate_truncate(): Remove the log checkpoints, the
extra logging, and some unnecessary crash points. Merge the code
from trx_undo_truncate_tablespace(). First, flush all to-be-discarded
pages (beyond the new end of the file), then trim the space->size
to make the page allocation deterministic. At the only remaining
crash injection point, flush the redo log, so that the recovery
can be tested.
7 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-13564 Mariabackup does not work with TRUNCATE
Implement undo tablespace truncation via normal redo logging.
Implement TRUNCATE TABLE as a combination of RENAME to #sql-ib name,
CREATE, and DROP.
Note: Orphan #sql-ib*.ibd may be left behind if MariaDB Server 10.2
is killed before the DROP operation is committed. If MariaDB Server 10.2
is killed during TRUNCATE, it is also possible that the old table
was renamed to #sql-ib*.ibd but the data dictionary will refer to the
table using the original name.
In MariaDB Server 10.3, RENAME inside InnoDB is transactional,
and #sql-* tables will be dropped on startup. So, this new TRUNCATE
will be fully crash-safe in 10.3.
ha_mroonga::wrapper_truncate(): Pass table options to the underlying
storage engine, now that ha_innobase::truncate() will need them.
rpl_slave_state::truncate_state_table(): Before truncating
mysql.gtid_slave_pos, evict any cached table handles from
the table definition cache, so that there will be no stale
references to the old table after truncating.
== TRUNCATE TABLE ==
WL#6501 in MySQL 5.7 introduced separate log files for implementing
atomic and crash-safe TRUNCATE TABLE, instead of using the InnoDB
undo and redo log. Some convoluted logic was added to the InnoDB
crash recovery, and some extra synchronization (including a redo log
checkpoint) was introduced to make this work. This synchronization
has caused performance problems and race conditions, and the extra
log files cannot be copied or applied by external backup programs.
In order to support crash-upgrade from MariaDB 10.2, we will keep
the logic for parsing and applying the extra log files, but we will
no longer generate those files in TRUNCATE TABLE.
A prerequisite for crash-safe TRUNCATE is a crash-safe RENAME TABLE
(with full redo and undo logging and proper rollback). This will
be implemented in MDEV-14717.
ha_innobase::truncate(): Invoke RENAME, create(), delete_table().
Because RENAME cannot be fully rolled back before MariaDB 10.3
due to missing undo logging, add some explicit rename-back in
case the operation fails.
ha_innobase::delete(): Introduce a variant that takes sqlcom as
a parameter. In TRUNCATE TABLE, we do not want to touch any
FOREIGN KEY constraints.
ha_innobase::create(): Add the parameters file_per_table, trx.
In TRUNCATE, the new table must be created in the same transaction
that renames the old table.
create_table_info_t::create_table_info_t(): Add the parameters
file_per_table, trx.
row_drop_table_for_mysql(): Replace a bool parameter with sqlcom.
row_drop_table_after_create_fail(): New function, wrapping
row_drop_table_for_mysql().
dict_truncate_index_tree_in_mem(), fil_truncate_tablespace(),
fil_prepare_for_truncate(), fil_reinit_space_header_for_table(),
row_truncate_table_for_mysql(), TruncateLogger,
row_truncate_prepare(), row_truncate_rollback(),
row_truncate_complete(), row_truncate_fts(),
row_truncate_update_system_tables(),
row_truncate_foreign_key_checks(), row_truncate_sanity_checks():
Remove.
row_upd_check_references_constraints(): Remove a check for
TRUNCATE, now that the table is no longer truncated in place.
The new test innodb.truncate_foreign uses DEBUG_SYNC to cover some
race-condition like scenarios. The test innodb-innodb.truncate does
not use any synchronization.
We add a redo log subformat to indicate backup-friendly format.
MariaDB 10.4 will remove support for the old TRUNCATE logging,
so crash-upgrade from old 10.2 or 10.3 to 10.4 will involve
limitations.
== Undo tablespace truncation ==
MySQL 5.7 implements undo tablespace truncation. It is only
possible when innodb_undo_tablespaces is set to at least 2.
The logging is implemented similar to the WL#6501 TRUNCATE,
that is, using separate log files and a redo log checkpoint.
We can simply implement undo tablespace truncation within
a single mini-transaction that reinitializes the undo log
tablespace file. Unfortunately, due to the redo log format
of some operations, currently, the total redo log written by
undo tablespace truncation will be more than the combined size
of the truncated undo tablespace. It should be acceptable
to have a little more than 1 megabyte of log in a single
mini-transaction. This will be fixed in MDEV-17138 in
MariaDB Server 10.4.
recv_sys_t: Add truncated_undo_spaces[] to remember for which undo
tablespaces a MLOG_FILE_CREATE2 record was seen.
namespace undo: Remove some unnecessary declarations.
fil_space_t::is_being_truncated: Document that this flag now
only applies to undo tablespaces. Remove some references.
fil_space_t::is_stopping(): Do not refer to is_being_truncated.
This check is for tablespaces of tables. Potentially used
tablespaces are never truncated any more.
buf_dblwr_process(): Suppress the out-of-bounds warning
for undo tablespaces.
fil_truncate_log(): Write a MLOG_FILE_CREATE2 with a nonzero
page number (new size of the tablespace in pages) to inform
crash recovery that the undo tablespace size has been reduced.
fil_op_write_log(): Relax assertions, so that MLOG_FILE_CREATE2
can be written for undo tablespaces (without .ibd file suffix)
for a nonzero page number.
os_file_truncate(): Add the parameter allow_shrink=false
so that undo tablespaces can actually be shrunk using this function.
fil_name_parse(): For undo tablespace truncation,
buffer MLOG_FILE_CREATE2 in truncated_undo_spaces[].
recv_read_in_area(): Avoid reading pages for which no redo log
records remain buffered, after recv_addr_trim() removed them.
trx_rseg_header_create(): Add a FIXME comment that we could write
much less redo log.
trx_undo_truncate_tablespace(): Reinitialize the undo tablespace
in a single mini-transaction, which will be flushed to the redo log
before the file size is trimmed.
recv_addr_trim(): Discard any redo logs for pages that were
logged after the new end of a file, before the truncation LSN.
If the rec_list becomes empty, reduce n_addrs. After removing
any affected records, actually truncate the file.
recv_apply_hashed_log_recs(): Invoke recv_addr_trim() right before
applying any log records. The undo tablespace files must be open
at this point.
buf_flush_or_remove_pages(), buf_flush_dirty_pages(),
buf_LRU_flush_or_remove_pages(): Add a parameter for specifying
the number of the first page to flush or remove (default 0).
trx_purge_initiate_truncate(): Remove the log checkpoints, the
extra logging, and some unnecessary crash points. Merge the code
from trx_undo_truncate_tablespace(). First, flush all to-be-discarded
pages (beyond the new end of the file), then trim the space->size
to make the page allocation deterministic. At the only remaining
crash injection point, flush the redo log, so that the recovery
can be tested.
7 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-32939 If tables are frequently created, renamed, dropped, a backup cannot be restored
During mariadb-backup --backup, a table could be renamed, created and
dropped. We could have both oldname.ibd and oldname.new, and one of
the files would be deleted before the InnoDB recovery starts. The desired
end result would be that we will recover both oldname.ibd and newname.ibd.
During normal crash recovery, at most one file operation (create, rename,
delete) may require to be replayed from the write-ahead log before the
DDL recovery starts.
deferred_spaces.create(): In mariadb-backup --prepare, try to create the
file in case it does not exist.
fil_name_process(): Display a message about not found files not only
if innodb_force_recovery is set, but also in mariadb-backup --prepare.
If we are processing a FILE_RENAME for a tablespace whose recovery is
deferred, suppress the message and adjust the file name in case
fil_ibd_load() returns FIL_LOAD_NOT_FOUND or FIL_LOAD_DEFER.
fil_ibd_load(): Remove a redundant file name comparison.
The caller already compared that the file names are different.
We used to wrongly return FIL_LOAD_OK instead of FIL_LOAD_ID_CHANGED
if only the schema name differed, such as a/t1.ibd and b/t1.ibd.
Tested by: Matthias Leich
Reviewed by: Thirunarayanan Balathandayuthapani
2 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-32939 If tables are frequently created, renamed, dropped, a backup cannot be restored
During mariadb-backup --backup, a table could be renamed, created and
dropped. We could have both oldname.ibd and oldname.new, and one of
the files would be deleted before the InnoDB recovery starts. The desired
end result would be that we will recover both oldname.ibd and newname.ibd.
During normal crash recovery, at most one file operation (create, rename,
delete) may require to be replayed from the write-ahead log before the
DDL recovery starts.
deferred_spaces.create(): In mariadb-backup --prepare, try to create the
file in case it does not exist.
fil_name_process(): Display a message about not found files not only
if innodb_force_recovery is set, but also in mariadb-backup --prepare.
If we are processing a FILE_RENAME for a tablespace whose recovery is
deferred, suppress the message and adjust the file name in case
fil_ibd_load() returns FIL_LOAD_NOT_FOUND or FIL_LOAD_DEFER.
fil_ibd_load(): Remove a redundant file name comparison.
The caller already compared that the file names are different.
We used to wrongly return FIL_LOAD_OK instead of FIL_LOAD_ID_CHANGED
if only the schema name differed, such as a/t1.ibd and b/t1.ibd.
Tested by: Matthias Leich
Reviewed by: Thirunarayanan Balathandayuthapani
2 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-32939 If tables are frequently created, renamed, dropped, a backup cannot be restored
During mariadb-backup --backup, a table could be renamed, created and
dropped. We could have both oldname.ibd and oldname.new, and one of
the files would be deleted before the InnoDB recovery starts. The desired
end result would be that we will recover both oldname.ibd and newname.ibd.
During normal crash recovery, at most one file operation (create, rename,
delete) may require to be replayed from the write-ahead log before the
DDL recovery starts.
deferred_spaces.create(): In mariadb-backup --prepare, try to create the
file in case it does not exist.
fil_name_process(): Display a message about not found files not only
if innodb_force_recovery is set, but also in mariadb-backup --prepare.
If we are processing a FILE_RENAME for a tablespace whose recovery is
deferred, suppress the message and adjust the file name in case
fil_ibd_load() returns FIL_LOAD_NOT_FOUND or FIL_LOAD_DEFER.
fil_ibd_load(): Remove a redundant file name comparison.
The caller already compared that the file names are different.
We used to wrongly return FIL_LOAD_OK instead of FIL_LOAD_ID_CHANGED
if only the schema name differed, such as a/t1.ibd and b/t1.ibd.
Tested by: Matthias Leich
Reviewed by: Thirunarayanan Balathandayuthapani
2 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-27058: Reduce the size of buf_block_t and buf_page_t
buf_page_t::frame: Moved from buf_block_t::frame.
All 'thin' buf_page_t describing compressed-only ROW_FORMAT=COMPRESSED
pages will have frame=nullptr, while all 'fat' buf_block_t
will have a non-null frame pointing to aligned innodb_page_size bytes.
This eliminates the need for separate states for
BUF_BLOCK_FILE_PAGE and BUF_BLOCK_ZIP_PAGE.
buf_page_t::lock: Moved from buf_block_t::lock. That is, all block
descriptors will have a page latch. The IO_PIN state that was used
for discarding or creating the uncompressed page frame of a
ROW_FORMAT=COMPRESSED block is replaced by a combination of read-fix
and page X-latch.
page_zip_des_t::fix: Replaces state_, buf_fix_count_, io_fix_, status
of buf_page_t with a single std::atomic<uint32_t>. All modifications
will use store(), fetch_add(), fetch_sub(). This space was previously
wasted to alignment on 64-bit systems. We will use the following encoding
that combines a state (partly read-fix or write-fix) and a buffer-fix
count:
buf_page_t::NOT_USED=0 (previously BUF_BLOCK_NOT_USED)
buf_page_t::MEMORY=1 (previously BUF_BLOCK_MEMORY)
buf_page_t::REMOVE_HASH=2 (previously BUF_BLOCK_REMOVE_HASH)
buf_page_t::FREED=3 + fix: pages marked as freed in the file
buf_page_t::UNFIXED=1U<<29 + fix: normal pages
buf_page_t::IBUF_EXIST=2U<<29 + fix: normal pages; may need ibuf merge
buf_page_t::REINIT=3U<<29 + fix: reinitialized pages (skip doublewrite)
buf_page_t::READ_FIX=4U<<29 + fix: read-fixed pages (also X-latched)
buf_page_t::WRITE_FIX=5U<<29 + fix: write-fixed pages (also U-latched)
buf_page_t::WRITE_FIX_IBUF=6U<<29 + fix: write-fixed; may have ibuf
buf_page_t::WRITE_FIX_REINIT=7U<<29 + fix: write-fixed (no doublewrite)
buf_page_t::write_complete(): Change WRITE_FIX or WRITE_FIX_REINIT to
UNFIXED, and WRITE_FIX_IBUF to IBUF_EXIST, before releasing the U-latch.
buf_page_t::read_complete(): Renamed from buf_page_read_complete().
Change READ_FIX to UNFIXED or IBUF_EXIST, before releasing the X-latch.
buf_page_t::can_relocate(): If the page latch is being held or waited for,
or the block is buffer-fixed or io-fixed, return false. (The condition
on the page latch is new.)
Outside buf_page_get_gen(), buf_page_get_low() and buf_page_free(), we
will acquire the page latch before fix(), and unfix() before unlocking.
buf_page_t::flush(): Replaces buf_flush_page(). Optimize the
handling of FREED pages.
buf_pool_t::release_freed_page(): Assume that buf_pool.mutex is held
by the caller.
buf_page_t::is_read_fixed(), buf_page_t::is_write_fixed(): New predicates.
buf_page_get_low(): Ignore guesses that are read-fixed because they
may not yet be registered in buf_pool.page_hash and buf_pool.LRU.
buf_page_optimistic_get(): Acquire latch before buffer-fixing.
buf_page_make_young(): Leave read-fixed blocks alone, because they
might not be registered in buf_pool.LRU yet.
recv_sys_t::recover_deferred(), recv_sys_t::recover_low():
Possibly fix MDEV-26326, by holding a page X-latch instead of
only buffer-fixing the page.
4 years ago  MDEV-27058: Reduce the size of buf_block_t and buf_page_t
buf_page_t::frame: Moved from buf_block_t::frame.
All 'thin' buf_page_t describing compressed-only ROW_FORMAT=COMPRESSED
pages will have frame=nullptr, while all 'fat' buf_block_t
will have a non-null frame pointing to aligned innodb_page_size bytes.
This eliminates the need for separate states for
BUF_BLOCK_FILE_PAGE and BUF_BLOCK_ZIP_PAGE.
buf_page_t::lock: Moved from buf_block_t::lock. That is, all block
descriptors will have a page latch. The IO_PIN state that was used
for discarding or creating the uncompressed page frame of a
ROW_FORMAT=COMPRESSED block is replaced by a combination of read-fix
and page X-latch.
page_zip_des_t::fix: Replaces state_, buf_fix_count_, io_fix_, status
of buf_page_t with a single std::atomic<uint32_t>. All modifications
will use store(), fetch_add(), fetch_sub(). This space was previously
wasted to alignment on 64-bit systems. We will use the following encoding
that combines a state (partly read-fix or write-fix) and a buffer-fix
count:
buf_page_t::NOT_USED=0 (previously BUF_BLOCK_NOT_USED)
buf_page_t::MEMORY=1 (previously BUF_BLOCK_MEMORY)
buf_page_t::REMOVE_HASH=2 (previously BUF_BLOCK_REMOVE_HASH)
buf_page_t::FREED=3 + fix: pages marked as freed in the file
buf_page_t::UNFIXED=1U<<29 + fix: normal pages
buf_page_t::IBUF_EXIST=2U<<29 + fix: normal pages; may need ibuf merge
buf_page_t::REINIT=3U<<29 + fix: reinitialized pages (skip doublewrite)
buf_page_t::READ_FIX=4U<<29 + fix: read-fixed pages (also X-latched)
buf_page_t::WRITE_FIX=5U<<29 + fix: write-fixed pages (also U-latched)
buf_page_t::WRITE_FIX_IBUF=6U<<29 + fix: write-fixed; may have ibuf
buf_page_t::WRITE_FIX_REINIT=7U<<29 + fix: write-fixed (no doublewrite)
buf_page_t::write_complete(): Change WRITE_FIX or WRITE_FIX_REINIT to
UNFIXED, and WRITE_FIX_IBUF to IBUF_EXIST, before releasing the U-latch.
buf_page_t::read_complete(): Renamed from buf_page_read_complete().
Change READ_FIX to UNFIXED or IBUF_EXIST, before releasing the X-latch.
buf_page_t::can_relocate(): If the page latch is being held or waited for,
or the block is buffer-fixed or io-fixed, return false. (The condition
on the page latch is new.)
Outside buf_page_get_gen(), buf_page_get_low() and buf_page_free(), we
will acquire the page latch before fix(), and unfix() before unlocking.
buf_page_t::flush(): Replaces buf_flush_page(). Optimize the
handling of FREED pages.
buf_pool_t::release_freed_page(): Assume that buf_pool.mutex is held
by the caller.
buf_page_t::is_read_fixed(), buf_page_t::is_write_fixed(): New predicates.
buf_page_get_low(): Ignore guesses that are read-fixed because they
may not yet be registered in buf_pool.page_hash and buf_pool.LRU.
buf_page_optimistic_get(): Acquire latch before buffer-fixing.
buf_page_make_young(): Leave read-fixed blocks alone, because they
might not be registered in buf_pool.LRU yet.
recv_sys_t::recover_deferred(), recv_sys_t::recover_low():
Possibly fix MDEV-26326, by holding a page X-latch instead of
only buffer-fixing the page.
4 years ago  MDEV-23399: Performance regression with write workloads
The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted
the performance bottleneck to the page flushing.
The configuration parameters will be changed as follows:
innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction)
innodb_lru_scan_depth=1536 (old: 1024)
innodb_max_dirty_pages_pct=90 (old: 75)
innodb_max_dirty_pages_pct_lwm=75 (old: 0)
Note: The parameter innodb_lru_scan_depth will only affect LRU
eviction of buffer pool pages when a new page is being allocated. The
page cleaner thread will no longer evict any pages. It used to
guarantee that some pages will remain free in the buffer pool. Now, we
perform that eviction 'on demand' in buf_LRU_get_free_block().
The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows:
* When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks()
* As a buf_pool.free limit in buf_LRU_list_batch() for terminating
the flushing that is initiated e.g., by buf_LRU_get_free_block()
The parameter also used to serve as an initial limit for unzip_LRU
eviction (evicting uncompressed page frames while retaining
ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit
of 100 or unlimited for invoking buf_LRU_scan_and_free_block().
The status variables will be changed as follows:
innodb_buffer_pool_pages_flushed: This includes also the count of
innodb_buffer_pool_pages_LRU_flushed and should work reliably,
updated one by one in buf_flush_page() to give more real-time
statistics. The function buf_flush_stats(), which we are removing,
was not called in every code path. For both counters, we will use
regular variables that are incremented in a critical section of
buf_pool.mutex. Note that show_innodb_vars() directly links to the
variables, and reads of the counters will *not* be protected by
buf_pool.mutex, so you cannot get a consistent snapshot of both variables.
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be
removed, because the page cleaner no longer deals with writing or
evicting least recently used pages, and because the single-page writes
have been removed:
* buffer_LRU_batch_flush_avg_time_slot
* buffer_LRU_batch_flush_avg_time_thread
* buffer_LRU_batch_flush_avg_time_est
* buffer_LRU_batch_flush_avg_pass
* buffer_LRU_single_flush_scanned
* buffer_LRU_single_flush_num_scan
* buffer_LRU_single_flush_scanned_per_call
When moving to a single buffer pool instance in MDEV-15058, we missed
some opportunity to simplify the buf_flush_page_cleaner thread. It was
unnecessarily using a mutex and some complex data structures, even
though we always have a single page cleaner thread.
Furthermore, the buf_flush_page_cleaner thread had separate 'recovery'
and 'shutdown' modes where it was waiting to be triggered by some
other thread, adding unnecessary latency and potential for hangs in
relatively rarely executed startup or shutdown code.
The page cleaner was also running two kinds of batches in an
interleaved fashion: "LRU flush" (writing out some least recently used
pages and evicting them on write completion) and the normal batches
that aim to increase the MIN(oldest_modification) in the buffer pool,
to help the log checkpoint advance.
The buf_pool.flush_list flushing was being blocked by
buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN
of a page is ahead of log_sys.get_flushed_lsn(), that is, what has
been persistently written to the redo log, we would trigger a log
flush and then resume the page flushing. This would unnecessarily
limit the performance of the page cleaner thread and trigger the
infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms.
The settings might not be optimal" that were suppressed in
commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2.
Our revised algorithm will make log_sys.get_flushed_lsn() advance at
the start of buf_flush_lists(), and then execute a 'best effort' to
write out all pages. The flush batches will skip pages that were modified
since the log was written, or are are currently exclusively locked.
The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message
will be removed, because by design, the buf_flush_page_cleaner() should
not be blocked during a batch for extended periods of time.
We will remove the single-page flushing altogether. Related to this,
the debug parameter innodb_doublewrite_batch_size will be removed,
because all of the doublewrite buffer will be used for flushing
batches. If a page needs to be evicted from the buffer pool and all
100 least recently used pages in the buffer pool have unflushed
changes, buf_LRU_get_free_block() will execute buf_flush_lists() to
write out and evict innodb_lru_flush_size pages. At most one thread
will execute buf_flush_lists() in buf_LRU_get_free_block(); other
threads will wait for that LRU flushing batch to finish.
To improve concurrency, we will replace the InnoDB ib_mutex_t and
os_event_t native mutexes and condition variables in this area of code.
Most notably, this means that the buffer pool mutex (buf_pool.mutex)
is no longer instrumented via any InnoDB interfaces. It will continue
to be instrumented via PERFORMANCE_SCHEMA.
For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be
declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical
sections of buf_pool.flush_list_mutex should be shorter than those for
buf_pool.mutex, because in the worst case, they cover a linear scan of
buf_pool.flush_list, while the worst case of a critical section of
buf_pool.mutex covers a linear scan of the potentially much longer
buf_pool.LRU list.
mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable
with SAFE_MUTEX. Some InnoDB debug assertions need this predicate
instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner().
buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list:
Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[].
The number of active flush operations.
buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t
instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA
and SAFE_MUTEX instrumentation.
buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU.
buf_pool_t::done_flush_list: Condition variable for !n_flush_list.
buf_pool_t::do_flush_list: Condition variable to wake up the
buf_flush_page_cleaner when a log checkpoint needs to be written
or the server is being shut down. Replaces buf_flush_event.
We will keep using timed waits (the page cleaner thread will wake
_at least_ once per second), because the calculations for
innodb_adaptive_flushing depend on fixed time intervals.
buf_dblwr: Allocate statically, and move all code to member functions.
Use a native mutex and condition variable. Remove code to deal with
single-page flushing.
buf_dblwr_check_block(): Make the check debug-only. We were spending
a significant amount of execution time in page_simple_validate_new().
flush_counters_t::unzip_LRU_evicted: Remove.
IORequest: Make more members const. FIXME: m_fil_node should be removed.
buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex
(which we are removing).
page_cleaner_slot_t, page_cleaner_t: Remove many redundant members.
pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot().
recv_writer_thread: Remove. Recovery works just fine without it, if we
simply invoke buf_flush_sync() at the end of each batch in
recv_sys_t::apply().
recv_recovery_from_checkpoint_finish(): Remove. We can simply call
recv_sys.debug_free() directly.
srv_started_redo: Replaces srv_start_state.
SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown()
can communicate with the normal page cleaner loop via the new function
flush_buffer_pool().
buf_flush_remove(): Assert that the calling thread is holding
buf_pool.flush_list_mutex. This removes unnecessary mutex operations
from buf_flush_remove_pages() and buf_flush_dirty_pages(),
which replace buf_LRU_flush_or_remove_pages().
buf_flush_lists(): Renamed from buf_flush_batch(), with simplified
interface. Return the number of flushed pages. Clarified comments and
renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions
buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this
function, which was their only caller, and remove 2 unnecessary
buf_pool.mutex release/re-acquisition that we used to perform around
the buf_flush_batch() call. At the start, if not all log has been
durably written, wait for a background task to do it, or start a new
task to do it. This allows the log write to run concurrently with our
page flushing batch. Any pages that were skipped due to too recent
FIL_PAGE_LSN or due to them being latched by a writer should be flushed
during the next batch, unless there are further modifications to those
pages. It is possible that a page that we must flush due to small
oldest_modification also carries a recent FIL_PAGE_LSN or is being
constantly modified. In the worst case, all writers would then end up
waiting in log_free_check() to allow the flushing and the checkpoint
to complete.
buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n.
Cache the last looked up tablespace. If neighbor flushing is not applicable,
invoke buf_flush_page() directly, avoiding a page lookup in between.
buf_flush_space(): Auxiliary function to look up a tablespace for
page flushing.
buf_flush_page(): Defer the computation of space->full_crc32(). Never
call log_write_up_to(), but instead skip persistent pages whose latest
modification (FIL_PAGE_LSN) is newer than the redo log. Also skip
pages on which we cannot acquire a shared latch without waiting.
buf_flush_try_neighbors(): Do not bother checking buf_fix_count
because buf_flush_page() will no longer wait for the page latch.
Take the tablespace as a parameter, and only execute this function
when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold().
buf_flush_relocate_on_flush_list(): Declare as cold, and push down
a condition from the callers.
buf_flush_check_neighbor(): Take id.fold() as a parameter.
buf_flush_sync(): Ensure that the buf_pool.flush_list is empty,
because the flushing batch will skip pages whose modifications have
not yet been written to the log or were latched for modification.
buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables.
buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize
the counters, and report n->evicted.
Cache the last looked up tablespace. If neighbor flushing is not applicable,
invoke buf_flush_page() directly, avoiding a page lookup in between.
buf_do_LRU_batch(): Return the number of pages flushed.
buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if
adaptive hash index entries are pointing to the block.
buf_LRU_get_free_block(): Do not wake up the page cleaner, because it
will no longer perform any useful work for us, and we do not want it
to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0)
writes out and evicts at most innodb_lru_flush_size pages. (The
function buf_do_LRU_batch() may complete after writing fewer pages if
more than innodb_lru_scan_depth pages end up in buf_pool.free list.)
Eliminate some mutex release-acquire cycles, and wait for the LRU
flush batch to complete before rescanning.
buf_LRU_check_size_of_non_data_objects(): Simplify the code.
buf_page_write_complete(): Remove the parameter evict, and always
evict pages that were part of an LRU flush.
buf_page_create(): Take a pre-allocated page as a parameter.
buf_pool_t::free_block(): Free a pre-allocated block.
recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block
while not holding recv_sys.mutex. During page allocation, we may
initiate a page flush, which in turn may initiate a log flush, which
would require acquiring log_sys.mutex, which should always be acquired
before recv_sys.mutex in order to avoid deadlocks. Therefore, we must
not be holding recv_sys.mutex while allocating a buffer pool block.
BtrBulk::logFreeCheck(): Skip a redundant condition.
row_undo_step(): Do not invoke srv_inc_activity_count() for every row
that is being rolled back. It should suffice to invoke the function in
trx_flush_log_if_needed() during trx_t::commit_in_memory() when the
rollback completes.
sync_check_enable(): Remove. We will enable innodb_sync_debug from the
very beginning.
Reviewed by: Vladislav Vaintroub
5 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-27058: Reduce the size of buf_block_t and buf_page_t
buf_page_t::frame: Moved from buf_block_t::frame.
All 'thin' buf_page_t describing compressed-only ROW_FORMAT=COMPRESSED
pages will have frame=nullptr, while all 'fat' buf_block_t
will have a non-null frame pointing to aligned innodb_page_size bytes.
This eliminates the need for separate states for
BUF_BLOCK_FILE_PAGE and BUF_BLOCK_ZIP_PAGE.
buf_page_t::lock: Moved from buf_block_t::lock. That is, all block
descriptors will have a page latch. The IO_PIN state that was used
for discarding or creating the uncompressed page frame of a
ROW_FORMAT=COMPRESSED block is replaced by a combination of read-fix
and page X-latch.
page_zip_des_t::fix: Replaces state_, buf_fix_count_, io_fix_, status
of buf_page_t with a single std::atomic<uint32_t>. All modifications
will use store(), fetch_add(), fetch_sub(). This space was previously
wasted to alignment on 64-bit systems. We will use the following encoding
that combines a state (partly read-fix or write-fix) and a buffer-fix
count:
buf_page_t::NOT_USED=0 (previously BUF_BLOCK_NOT_USED)
buf_page_t::MEMORY=1 (previously BUF_BLOCK_MEMORY)
buf_page_t::REMOVE_HASH=2 (previously BUF_BLOCK_REMOVE_HASH)
buf_page_t::FREED=3 + fix: pages marked as freed in the file
buf_page_t::UNFIXED=1U<<29 + fix: normal pages
buf_page_t::IBUF_EXIST=2U<<29 + fix: normal pages; may need ibuf merge
buf_page_t::REINIT=3U<<29 + fix: reinitialized pages (skip doublewrite)
buf_page_t::READ_FIX=4U<<29 + fix: read-fixed pages (also X-latched)
buf_page_t::WRITE_FIX=5U<<29 + fix: write-fixed pages (also U-latched)
buf_page_t::WRITE_FIX_IBUF=6U<<29 + fix: write-fixed; may have ibuf
buf_page_t::WRITE_FIX_REINIT=7U<<29 + fix: write-fixed (no doublewrite)
buf_page_t::write_complete(): Change WRITE_FIX or WRITE_FIX_REINIT to
UNFIXED, and WRITE_FIX_IBUF to IBUF_EXIST, before releasing the U-latch.
buf_page_t::read_complete(): Renamed from buf_page_read_complete().
Change READ_FIX to UNFIXED or IBUF_EXIST, before releasing the X-latch.
buf_page_t::can_relocate(): If the page latch is being held or waited for,
or the block is buffer-fixed or io-fixed, return false. (The condition
on the page latch is new.)
Outside buf_page_get_gen(), buf_page_get_low() and buf_page_free(), we
will acquire the page latch before fix(), and unfix() before unlocking.
buf_page_t::flush(): Replaces buf_flush_page(). Optimize the
handling of FREED pages.
buf_pool_t::release_freed_page(): Assume that buf_pool.mutex is held
by the caller.
buf_page_t::is_read_fixed(), buf_page_t::is_write_fixed(): New predicates.
buf_page_get_low(): Ignore guesses that are read-fixed because they
may not yet be registered in buf_pool.page_hash and buf_pool.LRU.
buf_page_optimistic_get(): Acquire latch before buffer-fixing.
buf_page_make_young(): Leave read-fixed blocks alone, because they
might not be registered in buf_pool.LRU yet.
recv_sys_t::recover_deferred(), recv_sys_t::recover_low():
Possibly fix MDEV-26326, by holding a page X-latch instead of
only buffer-fixing the page.
4 years ago  MDEV-27058: Reduce the size of buf_block_t and buf_page_t
buf_page_t::frame: Moved from buf_block_t::frame.
All 'thin' buf_page_t describing compressed-only ROW_FORMAT=COMPRESSED
pages will have frame=nullptr, while all 'fat' buf_block_t
will have a non-null frame pointing to aligned innodb_page_size bytes.
This eliminates the need for separate states for
BUF_BLOCK_FILE_PAGE and BUF_BLOCK_ZIP_PAGE.
buf_page_t::lock: Moved from buf_block_t::lock. That is, all block
descriptors will have a page latch. The IO_PIN state that was used
for discarding or creating the uncompressed page frame of a
ROW_FORMAT=COMPRESSED block is replaced by a combination of read-fix
and page X-latch.
page_zip_des_t::fix: Replaces state_, buf_fix_count_, io_fix_, status
of buf_page_t with a single std::atomic<uint32_t>. All modifications
will use store(), fetch_add(), fetch_sub(). This space was previously
wasted to alignment on 64-bit systems. We will use the following encoding
that combines a state (partly read-fix or write-fix) and a buffer-fix
count:
buf_page_t::NOT_USED=0 (previously BUF_BLOCK_NOT_USED)
buf_page_t::MEMORY=1 (previously BUF_BLOCK_MEMORY)
buf_page_t::REMOVE_HASH=2 (previously BUF_BLOCK_REMOVE_HASH)
buf_page_t::FREED=3 + fix: pages marked as freed in the file
buf_page_t::UNFIXED=1U<<29 + fix: normal pages
buf_page_t::IBUF_EXIST=2U<<29 + fix: normal pages; may need ibuf merge
buf_page_t::REINIT=3U<<29 + fix: reinitialized pages (skip doublewrite)
buf_page_t::READ_FIX=4U<<29 + fix: read-fixed pages (also X-latched)
buf_page_t::WRITE_FIX=5U<<29 + fix: write-fixed pages (also U-latched)
buf_page_t::WRITE_FIX_IBUF=6U<<29 + fix: write-fixed; may have ibuf
buf_page_t::WRITE_FIX_REINIT=7U<<29 + fix: write-fixed (no doublewrite)
buf_page_t::write_complete(): Change WRITE_FIX or WRITE_FIX_REINIT to
UNFIXED, and WRITE_FIX_IBUF to IBUF_EXIST, before releasing the U-latch.
buf_page_t::read_complete(): Renamed from buf_page_read_complete().
Change READ_FIX to UNFIXED or IBUF_EXIST, before releasing the X-latch.
buf_page_t::can_relocate(): If the page latch is being held or waited for,
or the block is buffer-fixed or io-fixed, return false. (The condition
on the page latch is new.)
Outside buf_page_get_gen(), buf_page_get_low() and buf_page_free(), we
will acquire the page latch before fix(), and unfix() before unlocking.
buf_page_t::flush(): Replaces buf_flush_page(). Optimize the
handling of FREED pages.
buf_pool_t::release_freed_page(): Assume that buf_pool.mutex is held
by the caller.
buf_page_t::is_read_fixed(), buf_page_t::is_write_fixed(): New predicates.
buf_page_get_low(): Ignore guesses that are read-fixed because they
may not yet be registered in buf_pool.page_hash and buf_pool.LRU.
buf_page_optimistic_get(): Acquire latch before buffer-fixing.
buf_page_make_young(): Leave read-fixed blocks alone, because they
might not be registered in buf_pool.LRU yet.
recv_sys_t::recover_deferred(), recv_sys_t::recover_low():
Possibly fix MDEV-26326, by holding a page X-latch instead of
only buffer-fixing the page.
4 years ago  MDEV-27058: Reduce the size of buf_block_t and buf_page_t
buf_page_t::frame: Moved from buf_block_t::frame.
All 'thin' buf_page_t describing compressed-only ROW_FORMAT=COMPRESSED
pages will have frame=nullptr, while all 'fat' buf_block_t
will have a non-null frame pointing to aligned innodb_page_size bytes.
This eliminates the need for separate states for
BUF_BLOCK_FILE_PAGE and BUF_BLOCK_ZIP_PAGE.
buf_page_t::lock: Moved from buf_block_t::lock. That is, all block
descriptors will have a page latch. The IO_PIN state that was used
for discarding or creating the uncompressed page frame of a
ROW_FORMAT=COMPRESSED block is replaced by a combination of read-fix
and page X-latch.
page_zip_des_t::fix: Replaces state_, buf_fix_count_, io_fix_, status
of buf_page_t with a single std::atomic<uint32_t>. All modifications
will use store(), fetch_add(), fetch_sub(). This space was previously
wasted to alignment on 64-bit systems. We will use the following encoding
that combines a state (partly read-fix or write-fix) and a buffer-fix
count:
buf_page_t::NOT_USED=0 (previously BUF_BLOCK_NOT_USED)
buf_page_t::MEMORY=1 (previously BUF_BLOCK_MEMORY)
buf_page_t::REMOVE_HASH=2 (previously BUF_BLOCK_REMOVE_HASH)
buf_page_t::FREED=3 + fix: pages marked as freed in the file
buf_page_t::UNFIXED=1U<<29 + fix: normal pages
buf_page_t::IBUF_EXIST=2U<<29 + fix: normal pages; may need ibuf merge
buf_page_t::REINIT=3U<<29 + fix: reinitialized pages (skip doublewrite)
buf_page_t::READ_FIX=4U<<29 + fix: read-fixed pages (also X-latched)
buf_page_t::WRITE_FIX=5U<<29 + fix: write-fixed pages (also U-latched)
buf_page_t::WRITE_FIX_IBUF=6U<<29 + fix: write-fixed; may have ibuf
buf_page_t::WRITE_FIX_REINIT=7U<<29 + fix: write-fixed (no doublewrite)
buf_page_t::write_complete(): Change WRITE_FIX or WRITE_FIX_REINIT to
UNFIXED, and WRITE_FIX_IBUF to IBUF_EXIST, before releasing the U-latch.
buf_page_t::read_complete(): Renamed from buf_page_read_complete().
Change READ_FIX to UNFIXED or IBUF_EXIST, before releasing the X-latch.
buf_page_t::can_relocate(): If the page latch is being held or waited for,
or the block is buffer-fixed or io-fixed, return false. (The condition
on the page latch is new.)
Outside buf_page_get_gen(), buf_page_get_low() and buf_page_free(), we
will acquire the page latch before fix(), and unfix() before unlocking.
buf_page_t::flush(): Replaces buf_flush_page(). Optimize the
handling of FREED pages.
buf_pool_t::release_freed_page(): Assume that buf_pool.mutex is held
by the caller.
buf_page_t::is_read_fixed(), buf_page_t::is_write_fixed(): New predicates.
buf_page_get_low(): Ignore guesses that are read-fixed because they
may not yet be registered in buf_pool.page_hash and buf_pool.LRU.
buf_page_optimistic_get(): Acquire latch before buffer-fixing.
buf_page_make_young(): Leave read-fixed blocks alone, because they
might not be registered in buf_pool.LRU yet.
recv_sys_t::recover_deferred(), recv_sys_t::recover_low():
Possibly fix MDEV-26326, by holding a page X-latch instead of
only buffer-fixing the page.
4 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-27058: Reduce the size of buf_block_t and buf_page_t
buf_page_t::frame: Moved from buf_block_t::frame.
All 'thin' buf_page_t describing compressed-only ROW_FORMAT=COMPRESSED
pages will have frame=nullptr, while all 'fat' buf_block_t
will have a non-null frame pointing to aligned innodb_page_size bytes.
This eliminates the need for separate states for
BUF_BLOCK_FILE_PAGE and BUF_BLOCK_ZIP_PAGE.
buf_page_t::lock: Moved from buf_block_t::lock. That is, all block
descriptors will have a page latch. The IO_PIN state that was used
for discarding or creating the uncompressed page frame of a
ROW_FORMAT=COMPRESSED block is replaced by a combination of read-fix
and page X-latch.
page_zip_des_t::fix: Replaces state_, buf_fix_count_, io_fix_, status
of buf_page_t with a single std::atomic<uint32_t>. All modifications
will use store(), fetch_add(), fetch_sub(). This space was previously
wasted to alignment on 64-bit systems. We will use the following encoding
that combines a state (partly read-fix or write-fix) and a buffer-fix
count:
buf_page_t::NOT_USED=0 (previously BUF_BLOCK_NOT_USED)
buf_page_t::MEMORY=1 (previously BUF_BLOCK_MEMORY)
buf_page_t::REMOVE_HASH=2 (previously BUF_BLOCK_REMOVE_HASH)
buf_page_t::FREED=3 + fix: pages marked as freed in the file
buf_page_t::UNFIXED=1U<<29 + fix: normal pages
buf_page_t::IBUF_EXIST=2U<<29 + fix: normal pages; may need ibuf merge
buf_page_t::REINIT=3U<<29 + fix: reinitialized pages (skip doublewrite)
buf_page_t::READ_FIX=4U<<29 + fix: read-fixed pages (also X-latched)
buf_page_t::WRITE_FIX=5U<<29 + fix: write-fixed pages (also U-latched)
buf_page_t::WRITE_FIX_IBUF=6U<<29 + fix: write-fixed; may have ibuf
buf_page_t::WRITE_FIX_REINIT=7U<<29 + fix: write-fixed (no doublewrite)
buf_page_t::write_complete(): Change WRITE_FIX or WRITE_FIX_REINIT to
UNFIXED, and WRITE_FIX_IBUF to IBUF_EXIST, before releasing the U-latch.
buf_page_t::read_complete(): Renamed from buf_page_read_complete().
Change READ_FIX to UNFIXED or IBUF_EXIST, before releasing the X-latch.
buf_page_t::can_relocate(): If the page latch is being held or waited for,
or the block is buffer-fixed or io-fixed, return false. (The condition
on the page latch is new.)
Outside buf_page_get_gen(), buf_page_get_low() and buf_page_free(), we
will acquire the page latch before fix(), and unfix() before unlocking.
buf_page_t::flush(): Replaces buf_flush_page(). Optimize the
handling of FREED pages.
buf_pool_t::release_freed_page(): Assume that buf_pool.mutex is held
by the caller.
buf_page_t::is_read_fixed(), buf_page_t::is_write_fixed(): New predicates.
buf_page_get_low(): Ignore guesses that are read-fixed because they
may not yet be registered in buf_pool.page_hash and buf_pool.LRU.
buf_page_optimistic_get(): Acquire latch before buffer-fixing.
buf_page_make_young(): Leave read-fixed blocks alone, because they
might not be registered in buf_pool.LRU yet.
recv_sys_t::recover_deferred(), recv_sys_t::recover_low():
Possibly fix MDEV-26326, by holding a page X-latch instead of
only buffer-fixing the page.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-27058: Reduce the size of buf_block_t and buf_page_t
buf_page_t::frame: Moved from buf_block_t::frame.
All 'thin' buf_page_t describing compressed-only ROW_FORMAT=COMPRESSED
pages will have frame=nullptr, while all 'fat' buf_block_t
will have a non-null frame pointing to aligned innodb_page_size bytes.
This eliminates the need for separate states for
BUF_BLOCK_FILE_PAGE and BUF_BLOCK_ZIP_PAGE.
buf_page_t::lock: Moved from buf_block_t::lock. That is, all block
descriptors will have a page latch. The IO_PIN state that was used
for discarding or creating the uncompressed page frame of a
ROW_FORMAT=COMPRESSED block is replaced by a combination of read-fix
and page X-latch.
page_zip_des_t::fix: Replaces state_, buf_fix_count_, io_fix_, status
of buf_page_t with a single std::atomic<uint32_t>. All modifications
will use store(), fetch_add(), fetch_sub(). This space was previously
wasted to alignment on 64-bit systems. We will use the following encoding
that combines a state (partly read-fix or write-fix) and a buffer-fix
count:
buf_page_t::NOT_USED=0 (previously BUF_BLOCK_NOT_USED)
buf_page_t::MEMORY=1 (previously BUF_BLOCK_MEMORY)
buf_page_t::REMOVE_HASH=2 (previously BUF_BLOCK_REMOVE_HASH)
buf_page_t::FREED=3 + fix: pages marked as freed in the file
buf_page_t::UNFIXED=1U<<29 + fix: normal pages
buf_page_t::IBUF_EXIST=2U<<29 + fix: normal pages; may need ibuf merge
buf_page_t::REINIT=3U<<29 + fix: reinitialized pages (skip doublewrite)
buf_page_t::READ_FIX=4U<<29 + fix: read-fixed pages (also X-latched)
buf_page_t::WRITE_FIX=5U<<29 + fix: write-fixed pages (also U-latched)
buf_page_t::WRITE_FIX_IBUF=6U<<29 + fix: write-fixed; may have ibuf
buf_page_t::WRITE_FIX_REINIT=7U<<29 + fix: write-fixed (no doublewrite)
buf_page_t::write_complete(): Change WRITE_FIX or WRITE_FIX_REINIT to
UNFIXED, and WRITE_FIX_IBUF to IBUF_EXIST, before releasing the U-latch.
buf_page_t::read_complete(): Renamed from buf_page_read_complete().
Change READ_FIX to UNFIXED or IBUF_EXIST, before releasing the X-latch.
buf_page_t::can_relocate(): If the page latch is being held or waited for,
or the block is buffer-fixed or io-fixed, return false. (The condition
on the page latch is new.)
Outside buf_page_get_gen(), buf_page_get_low() and buf_page_free(), we
will acquire the page latch before fix(), and unfix() before unlocking.
buf_page_t::flush(): Replaces buf_flush_page(). Optimize the
handling of FREED pages.
buf_pool_t::release_freed_page(): Assume that buf_pool.mutex is held
by the caller.
buf_page_t::is_read_fixed(), buf_page_t::is_write_fixed(): New predicates.
buf_page_get_low(): Ignore guesses that are read-fixed because they
may not yet be registered in buf_pool.page_hash and buf_pool.LRU.
buf_page_optimistic_get(): Acquire latch before buffer-fixing.
buf_page_make_young(): Leave read-fixed blocks alone, because they
might not be registered in buf_pool.LRU yet.
recv_sys_t::recover_deferred(), recv_sys_t::recover_low():
Possibly fix MDEV-26326, by holding a page X-latch instead of
only buffer-fixing the page.
4 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-27058: Reduce the size of buf_block_t and buf_page_t
buf_page_t::frame: Moved from buf_block_t::frame.
All 'thin' buf_page_t describing compressed-only ROW_FORMAT=COMPRESSED
pages will have frame=nullptr, while all 'fat' buf_block_t
will have a non-null frame pointing to aligned innodb_page_size bytes.
This eliminates the need for separate states for
BUF_BLOCK_FILE_PAGE and BUF_BLOCK_ZIP_PAGE.
buf_page_t::lock: Moved from buf_block_t::lock. That is, all block
descriptors will have a page latch. The IO_PIN state that was used
for discarding or creating the uncompressed page frame of a
ROW_FORMAT=COMPRESSED block is replaced by a combination of read-fix
and page X-latch.
page_zip_des_t::fix: Replaces state_, buf_fix_count_, io_fix_, status
of buf_page_t with a single std::atomic<uint32_t>. All modifications
will use store(), fetch_add(), fetch_sub(). This space was previously
wasted to alignment on 64-bit systems. We will use the following encoding
that combines a state (partly read-fix or write-fix) and a buffer-fix
count:
buf_page_t::NOT_USED=0 (previously BUF_BLOCK_NOT_USED)
buf_page_t::MEMORY=1 (previously BUF_BLOCK_MEMORY)
buf_page_t::REMOVE_HASH=2 (previously BUF_BLOCK_REMOVE_HASH)
buf_page_t::FREED=3 + fix: pages marked as freed in the file
buf_page_t::UNFIXED=1U<<29 + fix: normal pages
buf_page_t::IBUF_EXIST=2U<<29 + fix: normal pages; may need ibuf merge
buf_page_t::REINIT=3U<<29 + fix: reinitialized pages (skip doublewrite)
buf_page_t::READ_FIX=4U<<29 + fix: read-fixed pages (also X-latched)
buf_page_t::WRITE_FIX=5U<<29 + fix: write-fixed pages (also U-latched)
buf_page_t::WRITE_FIX_IBUF=6U<<29 + fix: write-fixed; may have ibuf
buf_page_t::WRITE_FIX_REINIT=7U<<29 + fix: write-fixed (no doublewrite)
buf_page_t::write_complete(): Change WRITE_FIX or WRITE_FIX_REINIT to
UNFIXED, and WRITE_FIX_IBUF to IBUF_EXIST, before releasing the U-latch.
buf_page_t::read_complete(): Renamed from buf_page_read_complete().
Change READ_FIX to UNFIXED or IBUF_EXIST, before releasing the X-latch.
buf_page_t::can_relocate(): If the page latch is being held or waited for,
or the block is buffer-fixed or io-fixed, return false. (The condition
on the page latch is new.)
Outside buf_page_get_gen(), buf_page_get_low() and buf_page_free(), we
will acquire the page latch before fix(), and unfix() before unlocking.
buf_page_t::flush(): Replaces buf_flush_page(). Optimize the
handling of FREED pages.
buf_pool_t::release_freed_page(): Assume that buf_pool.mutex is held
by the caller.
buf_page_t::is_read_fixed(), buf_page_t::is_write_fixed(): New predicates.
buf_page_get_low(): Ignore guesses that are read-fixed because they
may not yet be registered in buf_pool.page_hash and buf_pool.LRU.
buf_page_optimistic_get(): Acquire latch before buffer-fixing.
buf_page_make_young(): Leave read-fixed blocks alone, because they
might not be registered in buf_pool.LRU yet.
recv_sys_t::recover_deferred(), recv_sys_t::recover_low():
Possibly fix MDEV-26326, by holding a page X-latch instead of
only buffer-fixing the page.
4 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-33515 log_sys.lsn_lock causes excessive context switching
The log_sys.lsn_lock is a very contended resource with a small
critical section in log_sys.append_prepare(). On many processor
microarchitectures, replacing the system call based log_sys.lsn_lock
with a pure spin lock would fare worse during high concurrency workloads,
wasting a significant amount of CPU cycles in the spin loop.
On other microarchitectures, we would see a significant amount of time
being spent in native_queued_spin_lock_slowpath() in the Linux kernel,
plus context switching between user and kernel address space. This was
pointed out by Steve Shaw from Intel Corporation.
Depending on the workload and the hardware implementation, it may be
useful to use a pure spin lock in log_sys.append_prepare().
We will introduce a parameter. The statement
SET GLOBAL INNODB_LOG_SPIN_WAIT_DELAY=50;
would enable a spin lock that will execute that many MY_RELAX_CPU()
operations (such as the x86 PAUSE instruction) between successive
attempts of acquiring the spin lock. The use of a system call based
log_sys.lsn_lock (which is the default setting) can be enabled by
SET GLOBAL INNODB_LOG_SPIN_WAIT_DELAY=0;
This patch will also introduce #ifdef LOG_LATCH_DEBUG
(part of cmake -DWITH_INNODB_EXTRA_DEBUG=ON) for more accurate
tracking of log_sys.latch ownership and reorganize the fields of
log_sys to improve the locality of reference and to reduce the
chances of false sharing.
When a spin lock is being used, it will be maintained in the
most significant bit of log_sys.buf_free. This is useful, because that is
one of the fields that is covered by the lock. For IA-32 or AMD64, we
implement the spin lock specially via log_t::lsn_lock_bts(), employing the
i386 LOCK BTS instruction. A straightforward std::atomic::fetch_or() would
translate into an inefficient loop around LOCK CMPXCHG.
mtr_t::spin_wait_delay: The value of innodb_log_spin_wait_delay.
mtr_t::finisher: Pointer to the currently used mtr_t::finish_write()
implementation. This allows to avoid introducing conditional branches.
We no longer invoke log_sys.is_pmem() at the mini-transaction level,
but we would do that in log_write_up_to().
mtr_t::finisher_update(): Update finisher when spin_wait_delay is
changed from or to 0 (the spin lock is changed to log_sys.lsn_lock or
vice versa).
2 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-13542: Crashing on corrupted page is unhelpful
The approach to handling corruption that was chosen by Oracle in
commit 177d8b0c125b841c0650d27d735e3b87509dc286
is not really useful. Not only did it actually fail to prevent InnoDB
from crashing, but it is making things worse by blocking attempts to
rescue data from or rebuild a partially readable table.
We will try to prevent crashes in a different way: by propagating
errors up the call stack. We will never mark the clustered index
persistently corrupted, so that data recovery may be attempted by
reading from the table, or by rebuilding the table.
This should also fix MDEV-13680 (crash on btr_page_alloc() failure);
it was extensively tested with innodb_file_per_table=0 and a
non-autoextend system tablespace.
We should now avoid crashes in many cases, such as when a page
cannot be read or allocated, or an inconsistency is detected when
attempting to update multiple pages. We will not crash on double-free,
such as on the recovery of DDL in system tablespace in case something
was corrupted.
Crashes on corrupted data are still possible. The fault injection mechanism
that is introduced in the subsequent commit may help catch more of them.
buf_page_import_corrupt_failure: Remove the fault injection, and instead
corrupt some pages using Perl code in the tests.
btr_cur_pessimistic_insert(): Always reserve extents (except for the
change buffer), in order to prevent a subsequent allocation failure.
btr_pcur_open_at_rnd_pos(): Merged to the only caller ibuf_merge_pages().
btr_assert_not_corrupted(), btr_corruption_report(): Remove.
Similar checks are already part of btr_block_get().
FSEG_MAGIC_N_BYTES: Replaces FSEG_MAGIC_N_VALUE.
dict_hdr_get(), trx_rsegf_get_new(), trx_undo_page_get(),
trx_undo_page_get_s_latched(): Replaced with error-checking calls.
trx_rseg_t::get(mtr_t*): Replaces trx_rsegf_get().
trx_rseg_header_create(): Let the caller update the TRX_SYS page if needed.
trx_sys_create_sys_pages(): Merged with trx_sysf_create().
dict_check_tablespaces_and_store_max_id(): Do not access
DICT_HDR_MAX_SPACE_ID, because it was already recovered in dict_boot().
Merge dict_check_sys_tables() with this function.
dir_pathname(): Replaces os_file_make_new_pathname().
row_undo_ins_remove_sec(): Do not modify the undo page by adding
a terminating NUL byte to the record.
btr_decryption_failed(): Report decryption failures
dict_set_corrupted_by_space(), dict_set_encrypted_by_space(),
dict_set_corrupted_index_cache_only(): Remove.
dict_set_corrupted(): Remove the constant parameter dict_locked=false.
Never flag the clustered index corrupted in SYS_INDEXES, because
that would deny further access to the table. It might be possible to
repair the table by executing ALTER TABLE or OPTIMIZE TABLE, in case
no B-tree leaf page is corrupted.
dict_table_skip_corrupt_index(), dict_table_next_uncorrupted_index(),
row_purge_skip_uncommitted_virtual_index(): Remove, and refactor
the callers to read dict_index_t::type only once.
dict_table_is_corrupted(): Remove.
dict_index_t::is_btree(): Determine if the index is a valid B-tree.
BUF_GET_NO_LATCH, BUF_EVICT_IF_IN_POOL: Remove.
UNIV_BTR_DEBUG: Remove. Any inconsistency will no longer trigger
assertion failures, but error codes being returned.
buf_corrupt_page_release(): Replaced with a direct call to
buf_pool.corrupted_evict().
fil_invalid_page_access_msg(): Never crash on an invalid read;
let the caller of buf_page_get_gen() decide.
btr_pcur_t::restore_position(): Propagate failure status to the caller
by returning CORRUPTED.
opt_search_plan_for_table(): Simplify the code.
row_purge_del_mark(), row_purge_upd_exist_or_extern_func(),
row_undo_ins_remove_sec_rec(), row_undo_mod_upd_del_sec(),
row_undo_mod_del_mark_sec(): Avoid mem_heap_create()/mem_heap_free()
when no secondary indexes exist.
row_undo_mod_upd_exist_sec(): Simplify the code.
row_upd_clust_step(), dict_load_table_one(): Return DB_TABLE_CORRUPT
if the clustered index (and therefore the table) is corrupted, similar
to what we do in row_insert_for_mysql().
fut_get_ptr(): Replace with buf_page_get_gen() calls.
buf_page_get_gen(): Return nullptr and *err=DB_CORRUPTION
if the page is marked as freed. For other modes than
BUF_GET_POSSIBLY_FREED or BUF_PEEK_IF_IN_POOL this will
trigger a debug assertion failure. For BUF_GET_POSSIBLY_FREED,
we will return nullptr for freed pages, so that the callers
can be simplified. The purge of transaction history will be
a new user of BUF_GET_POSSIBLY_FREED, to avoid crashes on
corrupted data.
buf_page_get_low(): Never crash on a corrupted page, but simply
return nullptr.
fseg_page_is_allocated(): Replaces fseg_page_is_free().
fts_drop_common_tables(): Return an error if the transaction
was rolled back.
fil_space_t::set_corrupted(): Report a tablespace as corrupted if
it was not reported already.
fil_space_t::io(): Invoke fil_space_t::set_corrupted() to report
out-of-bounds page access or other errors.
Clean up mtr_t::page_lock()
buf_page_get_low(): Validate the page identifier (to check for
recently read corrupted pages) after acquiring the page latch.
buf_page_t::read_complete(): Flag uninitialized (all-zero) pages
with DB_FAIL. Return DB_PAGE_CORRUPTED on page number mismatch.
mtr_t::defer_drop_ahi(): Renamed from mtr_defer_drop_ahi().
recv_sys_t::free_corrupted_page(): Only set_corrupt_fs()
if any log records exist for the page. We do not mind if read-ahead
produces corrupted (or all-zero) pages that were not actually needed
during recovery.
recv_recover_page(): Return whether the operation succeeded.
recv_sys_t::recover_low(): Simplify the logic. Check for recovery error.
Thanks to Matthias Leich for testing this extensively and to the
authors of https://rr-project.org for making it easy to diagnose
and fix any failures that were found during the testing.
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-15053 Reduce buf_pool_t::mutex contention
User-visible changes: The INFORMATION_SCHEMA views INNODB_BUFFER_PAGE
and INNODB_BUFFER_PAGE_LRU will report a dummy value FLUSH_TYPE=0
and will no longer report the PAGE_STATE value READY_FOR_USE.
We will remove some fields from buf_page_t and move much code to
member functions of buf_pool_t and buf_page_t, so that the access
rules of data members can be enforced consistently.
Evicting or adding pages in buf_pool.LRU will remain covered by
buf_pool.mutex.
Evicting or adding pages in buf_pool.page_hash will remain
covered by both buf_pool.mutex and the buf_pool.page_hash X-latch.
After this fix, buf_pool.page_hash lookups can entirely
avoid acquiring buf_pool.mutex, only relying on
buf_pool.hash_lock_get() S-latch.
Similarly, buf_flush_check_neighbors() can will rely solely on
buf_pool.mutex, no buf_pool.page_hash latch at all.
The buf_pool.mutex is rather contended in I/O heavy benchmarks,
especially when the workload does not fit in the buffer pool.
The first attempt to alleviate the contention was the
buf_pool_t::mutex split in
commit 4ed7082eefe56b3e97e0edefb3df76dd7ef5e858
which introduced buf_block_t::mutex, which we are now removing.
Later, multiple instances of buf_pool_t were introduced
in commit c18084f71b02ea707c6461353e6cfc15d7553bc6
and recently removed by us in
commit 1a6f708ec594ac0ae2dd30db926ab07b100fa24b (MDEV-15058).
UNIV_BUF_DEBUG: Remove. This option to enable some buffer pool
related debugging in otherwise non-debug builds has not been used
for years. Instead, we have been using UNIV_DEBUG, which is enabled
in CMAKE_BUILD_TYPE=Debug.
buf_block_t::mutex, buf_pool_t::zip_mutex: Remove. We can mainly rely on
std::atomic and the buf_pool.page_hash latches, and in some cases
depend on buf_pool.mutex or buf_pool.flush_list_mutex just like before.
We must always release buf_block_t::lock before invoking
unfix() or io_unfix(), to prevent a glitch where a block that was
added to the buf_pool.free list would apper X-latched. See
commit c5883debd6ef440a037011c11873b396923e93c5 how this glitch
was finally caught in a debug environment.
We move some buf_pool_t::page_hash specific code from the
ha and hash modules to buf_pool, for improved readability.
buf_pool_t::close(): Assert that all blocks are clean, except
on aborted startup or crash-like shutdown.
buf_pool_t::validate(): No longer attempt to validate
n_flush[] against the number of BUF_IO_WRITE fixed blocks,
because buf_page_t::flush_type no longer exists.
buf_pool_t::watch_set(): Replaces buf_pool_watch_set().
Reduce mutex contention by separating the buf_pool.watch[]
allocation and the insert into buf_pool.page_hash.
buf_pool_t::page_hash_lock<bool exclusive>(): Acquire a
buf_pool.page_hash latch.
Replaces and extends buf_page_hash_lock_s_confirm()
and buf_page_hash_lock_x_confirm().
buf_pool_t::READ_AHEAD_PAGES: Renamed from BUF_READ_AHEAD_PAGES.
buf_pool_t::curr_size, old_size, read_ahead_area, n_pend_reads:
Use Atomic_counter.
buf_pool_t::running_out(): Replaces buf_LRU_buf_pool_running_out().
buf_pool_t::LRU_remove(): Remove a block from the LRU list
and return its predecessor. Incorporates buf_LRU_adjust_hp(),
which was removed.
buf_page_get_gen(): Remove a redundant call of fsp_is_system_temporary(),
for mode == BUF_GET_IF_IN_POOL_OR_WATCH, which is only used by
BTR_DELETE_OP (purge), which is never invoked on temporary tables.
buf_free_from_unzip_LRU_list_batch(): Avoid redundant assignments.
buf_LRU_free_from_unzip_LRU_list(): Simplify the loop condition.
buf_LRU_free_page(): Clarify the function comment.
buf_flush_check_neighbor(), buf_flush_check_neighbors():
Rewrite the construction of the page hash range. We will hold
the buf_pool.mutex for up to buf_pool.read_ahead_area (at most 64)
consecutive lookups of buf_pool.page_hash.
buf_flush_page_and_try_neighbors(): Remove.
Merge to its only callers, and remove redundant operations in
buf_flush_LRU_list_batch().
buf_read_ahead_random(), buf_read_ahead_linear(): Rewrite.
Do not acquire buf_pool.mutex, and iterate directly with page_id_t.
ut_2_power_up(): Remove. my_round_up_to_next_power() is inlined
and avoids any loops.
fil_page_get_prev(), fil_page_get_next(), fil_addr_is_null(): Remove.
buf_flush_page(): Add a fil_space_t* parameter. Minimize the
buf_pool.mutex hold time. buf_pool.n_flush[] is no longer updated
atomically with the io_fix, and we will protect most buf_block_t
fields with buf_block_t::lock. The function
buf_flush_write_block_low() is removed and merged here.
buf_page_init_for_read(): Use static linkage. Initialize the newly
allocated block and acquire the exclusive buf_block_t::lock while not
holding any mutex.
IORequest::IORequest(): Remove the body. We only need to invoke
set_punch_hole() in buf_flush_page() and nowhere else.
buf_page_t::flush_type: Remove. Replaced by IORequest::flush_type.
This field is only used during a fil_io() call.
That function already takes IORequest as a parameter, so we had
better introduce for the rarely changing field.
buf_block_t::init(): Replaces buf_page_init().
buf_page_t::init(): Replaces buf_page_init_low().
buf_block_t::initialise(): Initialise many fields, but
keep the buf_page_t::state(). Both buf_pool_t::validate() and
buf_page_optimistic_get() requires that buf_page_t::in_file()
be protected atomically with buf_page_t::in_page_hash
and buf_page_t::in_LRU_list.
buf_page_optimistic_get(): Now that buf_block_t::mutex
no longer exists, we must check buf_page_t::io_fix()
after acquiring the buf_pool.page_hash lock, to detect
whether buf_page_init_for_read() has been initiated.
We will also check the io_fix() before acquiring hash_lock
in order to avoid unnecessary computation.
The field buf_block_t::modify_clock (protected by buf_block_t::lock)
allows buf_page_optimistic_get() to validate the block.
buf_page_t::real_size: Remove. It was only used while flushing
pages of page_compressed tables.
buf_page_encrypt(): Add an output parameter that allows us ot eliminate
buf_page_t::real_size. Replace a condition with debug assertion.
buf_page_should_punch_hole(): Remove.
buf_dblwr_t::add_to_batch(): Replaces buf_dblwr_add_to_batch().
Add the parameter size (to replace buf_page_t::real_size).
buf_dblwr_t::write_single_page(): Replaces buf_dblwr_write_single_page().
Add the parameter size (to replace buf_page_t::real_size).
fil_system_t::detach(): Replaces fil_space_detach().
Ensure that fil_validate() will not be violated even if
fil_system.mutex is released and reacquired.
fil_node_t::complete_io(): Renamed from fil_node_complete_io().
fil_node_t::close_to_free(): Replaces fil_node_close_to_free().
Avoid invoking fil_node_t::close() because fil_system.n_open
has already been decremented in fil_space_t::detach().
BUF_BLOCK_READY_FOR_USE: Remove. Directly use BUF_BLOCK_MEMORY.
BUF_BLOCK_ZIP_DIRTY: Remove. Directly use BUF_BLOCK_ZIP_PAGE,
and distinguish dirty pages by buf_page_t::oldest_modification().
BUF_BLOCK_POOL_WATCH: Remove. Use BUF_BLOCK_NOT_USED instead.
This state was only being used for buf_page_t that are in
buf_pool.watch.
buf_pool_t::watch[]: Remove pointer indirection.
buf_page_t::in_flush_list: Remove. It was set if and only if
buf_page_t::oldest_modification() is nonzero.
buf_page_decrypt_after_read(), buf_corrupt_page_release(),
buf_page_check_corrupt(): Change the const fil_space_t* parameter
to const fil_node_t& so that we can report the correct file name.
buf_page_monitor(): Declare as an ATTRIBUTE_COLD global function.
buf_page_io_complete(): Split to buf_page_read_complete() and
buf_page_write_complete().
buf_dblwr_t::in_use: Remove.
buf_dblwr_t::buf_block_array: Add IORequest::flush_t.
buf_dblwr_sync_datafiles(): Remove. It was a useless wrapper of
os_aio_wait_until_no_pending_writes().
buf_flush_write_complete(): Declare static, not global.
Add the parameter IORequest::flush_t.
buf_flush_freed_page(): Simplify the code.
recv_sys_t::flush_lru: Renamed from flush_type and changed to bool.
fil_read(), fil_write(): Replaced with direct use of fil_io().
fil_buffering_disabled(): Remove. Check srv_file_flush_method directly.
fil_mutex_enter_and_prepare_for_io(): Return the resolved
fil_space_t* to avoid a duplicated lookup in the caller.
fil_report_invalid_page_access(): Clean up the parameters.
fil_io(): Return fil_io_t, which comprises fil_node_t and error code.
Always invoke fil_space_t::acquire_for_io() and let either the
sync=true caller or fil_aio_callback() invoke
fil_space_t::release_for_io().
fil_aio_callback(): Rewrite to replace buf_page_io_complete().
fil_check_pending_operations(): Remove a parameter, and remove some
redundant lookups.
fil_node_close_to_free(): Wait for n_pending==0. Because we no longer
do an extra lookup of the tablespace between fil_io() and the
completion of the operation, we must give fil_node_t::complete_io() a
chance to decrement the counter.
fil_close_tablespace(): Remove unused parameter trx, and document
that this is only invoked during the error handling of IMPORT TABLESPACE.
row_import_discard_changes(): Merged with the only caller,
row_import_cleanup(). Do not lock up the data dictionary while
invoking fil_close_tablespace().
logs_empty_and_mark_files_at_shutdown(): Do not invoke
fil_close_all_files(), to avoid a !needs_flush assertion failure
on fil_node_t::close().
innodb_shutdown(): Invoke os_aio_free() before fil_close_all_files().
fil_close_all_files(): Invoke fil_flush_file_spaces()
to ensure proper durability.
thread_pool::unbind(): Fix a crash that would occur on Windows
after srv_thread_pool->disable_aio() and os_file_close().
This fix was submitted by Vladislav Vaintroub.
Thanks to Matthias Leich and Axel Schwenke for extensive testing,
Vladislav Vaintroub for helpful comments, and Eugene Kosov for a review.
6 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-15053 Reduce buf_pool_t::mutex contention
User-visible changes: The INFORMATION_SCHEMA views INNODB_BUFFER_PAGE
and INNODB_BUFFER_PAGE_LRU will report a dummy value FLUSH_TYPE=0
and will no longer report the PAGE_STATE value READY_FOR_USE.
We will remove some fields from buf_page_t and move much code to
member functions of buf_pool_t and buf_page_t, so that the access
rules of data members can be enforced consistently.
Evicting or adding pages in buf_pool.LRU will remain covered by
buf_pool.mutex.
Evicting or adding pages in buf_pool.page_hash will remain
covered by both buf_pool.mutex and the buf_pool.page_hash X-latch.
After this fix, buf_pool.page_hash lookups can entirely
avoid acquiring buf_pool.mutex, only relying on
buf_pool.hash_lock_get() S-latch.
Similarly, buf_flush_check_neighbors() can will rely solely on
buf_pool.mutex, no buf_pool.page_hash latch at all.
The buf_pool.mutex is rather contended in I/O heavy benchmarks,
especially when the workload does not fit in the buffer pool.
The first attempt to alleviate the contention was the
buf_pool_t::mutex split in
commit 4ed7082eefe56b3e97e0edefb3df76dd7ef5e858
which introduced buf_block_t::mutex, which we are now removing.
Later, multiple instances of buf_pool_t were introduced
in commit c18084f71b02ea707c6461353e6cfc15d7553bc6
and recently removed by us in
commit 1a6f708ec594ac0ae2dd30db926ab07b100fa24b (MDEV-15058).
UNIV_BUF_DEBUG: Remove. This option to enable some buffer pool
related debugging in otherwise non-debug builds has not been used
for years. Instead, we have been using UNIV_DEBUG, which is enabled
in CMAKE_BUILD_TYPE=Debug.
buf_block_t::mutex, buf_pool_t::zip_mutex: Remove. We can mainly rely on
std::atomic and the buf_pool.page_hash latches, and in some cases
depend on buf_pool.mutex or buf_pool.flush_list_mutex just like before.
We must always release buf_block_t::lock before invoking
unfix() or io_unfix(), to prevent a glitch where a block that was
added to the buf_pool.free list would apper X-latched. See
commit c5883debd6ef440a037011c11873b396923e93c5 how this glitch
was finally caught in a debug environment.
We move some buf_pool_t::page_hash specific code from the
ha and hash modules to buf_pool, for improved readability.
buf_pool_t::close(): Assert that all blocks are clean, except
on aborted startup or crash-like shutdown.
buf_pool_t::validate(): No longer attempt to validate
n_flush[] against the number of BUF_IO_WRITE fixed blocks,
because buf_page_t::flush_type no longer exists.
buf_pool_t::watch_set(): Replaces buf_pool_watch_set().
Reduce mutex contention by separating the buf_pool.watch[]
allocation and the insert into buf_pool.page_hash.
buf_pool_t::page_hash_lock<bool exclusive>(): Acquire a
buf_pool.page_hash latch.
Replaces and extends buf_page_hash_lock_s_confirm()
and buf_page_hash_lock_x_confirm().
buf_pool_t::READ_AHEAD_PAGES: Renamed from BUF_READ_AHEAD_PAGES.
buf_pool_t::curr_size, old_size, read_ahead_area, n_pend_reads:
Use Atomic_counter.
buf_pool_t::running_out(): Replaces buf_LRU_buf_pool_running_out().
buf_pool_t::LRU_remove(): Remove a block from the LRU list
and return its predecessor. Incorporates buf_LRU_adjust_hp(),
which was removed.
buf_page_get_gen(): Remove a redundant call of fsp_is_system_temporary(),
for mode == BUF_GET_IF_IN_POOL_OR_WATCH, which is only used by
BTR_DELETE_OP (purge), which is never invoked on temporary tables.
buf_free_from_unzip_LRU_list_batch(): Avoid redundant assignments.
buf_LRU_free_from_unzip_LRU_list(): Simplify the loop condition.
buf_LRU_free_page(): Clarify the function comment.
buf_flush_check_neighbor(), buf_flush_check_neighbors():
Rewrite the construction of the page hash range. We will hold
the buf_pool.mutex for up to buf_pool.read_ahead_area (at most 64)
consecutive lookups of buf_pool.page_hash.
buf_flush_page_and_try_neighbors(): Remove.
Merge to its only callers, and remove redundant operations in
buf_flush_LRU_list_batch().
buf_read_ahead_random(), buf_read_ahead_linear(): Rewrite.
Do not acquire buf_pool.mutex, and iterate directly with page_id_t.
ut_2_power_up(): Remove. my_round_up_to_next_power() is inlined
and avoids any loops.
fil_page_get_prev(), fil_page_get_next(), fil_addr_is_null(): Remove.
buf_flush_page(): Add a fil_space_t* parameter. Minimize the
buf_pool.mutex hold time. buf_pool.n_flush[] is no longer updated
atomically with the io_fix, and we will protect most buf_block_t
fields with buf_block_t::lock. The function
buf_flush_write_block_low() is removed and merged here.
buf_page_init_for_read(): Use static linkage. Initialize the newly
allocated block and acquire the exclusive buf_block_t::lock while not
holding any mutex.
IORequest::IORequest(): Remove the body. We only need to invoke
set_punch_hole() in buf_flush_page() and nowhere else.
buf_page_t::flush_type: Remove. Replaced by IORequest::flush_type.
This field is only used during a fil_io() call.
That function already takes IORequest as a parameter, so we had
better introduce for the rarely changing field.
buf_block_t::init(): Replaces buf_page_init().
buf_page_t::init(): Replaces buf_page_init_low().
buf_block_t::initialise(): Initialise many fields, but
keep the buf_page_t::state(). Both buf_pool_t::validate() and
buf_page_optimistic_get() requires that buf_page_t::in_file()
be protected atomically with buf_page_t::in_page_hash
and buf_page_t::in_LRU_list.
buf_page_optimistic_get(): Now that buf_block_t::mutex
no longer exists, we must check buf_page_t::io_fix()
after acquiring the buf_pool.page_hash lock, to detect
whether buf_page_init_for_read() has been initiated.
We will also check the io_fix() before acquiring hash_lock
in order to avoid unnecessary computation.
The field buf_block_t::modify_clock (protected by buf_block_t::lock)
allows buf_page_optimistic_get() to validate the block.
buf_page_t::real_size: Remove. It was only used while flushing
pages of page_compressed tables.
buf_page_encrypt(): Add an output parameter that allows us ot eliminate
buf_page_t::real_size. Replace a condition with debug assertion.
buf_page_should_punch_hole(): Remove.
buf_dblwr_t::add_to_batch(): Replaces buf_dblwr_add_to_batch().
Add the parameter size (to replace buf_page_t::real_size).
buf_dblwr_t::write_single_page(): Replaces buf_dblwr_write_single_page().
Add the parameter size (to replace buf_page_t::real_size).
fil_system_t::detach(): Replaces fil_space_detach().
Ensure that fil_validate() will not be violated even if
fil_system.mutex is released and reacquired.
fil_node_t::complete_io(): Renamed from fil_node_complete_io().
fil_node_t::close_to_free(): Replaces fil_node_close_to_free().
Avoid invoking fil_node_t::close() because fil_system.n_open
has already been decremented in fil_space_t::detach().
BUF_BLOCK_READY_FOR_USE: Remove. Directly use BUF_BLOCK_MEMORY.
BUF_BLOCK_ZIP_DIRTY: Remove. Directly use BUF_BLOCK_ZIP_PAGE,
and distinguish dirty pages by buf_page_t::oldest_modification().
BUF_BLOCK_POOL_WATCH: Remove. Use BUF_BLOCK_NOT_USED instead.
This state was only being used for buf_page_t that are in
buf_pool.watch.
buf_pool_t::watch[]: Remove pointer indirection.
buf_page_t::in_flush_list: Remove. It was set if and only if
buf_page_t::oldest_modification() is nonzero.
buf_page_decrypt_after_read(), buf_corrupt_page_release(),
buf_page_check_corrupt(): Change the const fil_space_t* parameter
to const fil_node_t& so that we can report the correct file name.
buf_page_monitor(): Declare as an ATTRIBUTE_COLD global function.
buf_page_io_complete(): Split to buf_page_read_complete() and
buf_page_write_complete().
buf_dblwr_t::in_use: Remove.
buf_dblwr_t::buf_block_array: Add IORequest::flush_t.
buf_dblwr_sync_datafiles(): Remove. It was a useless wrapper of
os_aio_wait_until_no_pending_writes().
buf_flush_write_complete(): Declare static, not global.
Add the parameter IORequest::flush_t.
buf_flush_freed_page(): Simplify the code.
recv_sys_t::flush_lru: Renamed from flush_type and changed to bool.
fil_read(), fil_write(): Replaced with direct use of fil_io().
fil_buffering_disabled(): Remove. Check srv_file_flush_method directly.
fil_mutex_enter_and_prepare_for_io(): Return the resolved
fil_space_t* to avoid a duplicated lookup in the caller.
fil_report_invalid_page_access(): Clean up the parameters.
fil_io(): Return fil_io_t, which comprises fil_node_t and error code.
Always invoke fil_space_t::acquire_for_io() and let either the
sync=true caller or fil_aio_callback() invoke
fil_space_t::release_for_io().
fil_aio_callback(): Rewrite to replace buf_page_io_complete().
fil_check_pending_operations(): Remove a parameter, and remove some
redundant lookups.
fil_node_close_to_free(): Wait for n_pending==0. Because we no longer
do an extra lookup of the tablespace between fil_io() and the
completion of the operation, we must give fil_node_t::complete_io() a
chance to decrement the counter.
fil_close_tablespace(): Remove unused parameter trx, and document
that this is only invoked during the error handling of IMPORT TABLESPACE.
row_import_discard_changes(): Merged with the only caller,
row_import_cleanup(). Do not lock up the data dictionary while
invoking fil_close_tablespace().
logs_empty_and_mark_files_at_shutdown(): Do not invoke
fil_close_all_files(), to avoid a !needs_flush assertion failure
on fil_node_t::close().
innodb_shutdown(): Invoke os_aio_free() before fil_close_all_files().
fil_close_all_files(): Invoke fil_flush_file_spaces()
to ensure proper durability.
thread_pool::unbind(): Fix a crash that would occur on Windows
after srv_thread_pool->disable_aio() and os_file_close().
This fix was submitted by Vladislav Vaintroub.
Thanks to Matthias Leich and Axel Schwenke for extensive testing,
Vladislav Vaintroub for helpful comments, and Eugene Kosov for a review.
6 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-15053 Reduce buf_pool_t::mutex contention
User-visible changes: The INFORMATION_SCHEMA views INNODB_BUFFER_PAGE
and INNODB_BUFFER_PAGE_LRU will report a dummy value FLUSH_TYPE=0
and will no longer report the PAGE_STATE value READY_FOR_USE.
We will remove some fields from buf_page_t and move much code to
member functions of buf_pool_t and buf_page_t, so that the access
rules of data members can be enforced consistently.
Evicting or adding pages in buf_pool.LRU will remain covered by
buf_pool.mutex.
Evicting or adding pages in buf_pool.page_hash will remain
covered by both buf_pool.mutex and the buf_pool.page_hash X-latch.
After this fix, buf_pool.page_hash lookups can entirely
avoid acquiring buf_pool.mutex, only relying on
buf_pool.hash_lock_get() S-latch.
Similarly, buf_flush_check_neighbors() can will rely solely on
buf_pool.mutex, no buf_pool.page_hash latch at all.
The buf_pool.mutex is rather contended in I/O heavy benchmarks,
especially when the workload does not fit in the buffer pool.
The first attempt to alleviate the contention was the
buf_pool_t::mutex split in
commit 4ed7082eefe56b3e97e0edefb3df76dd7ef5e858
which introduced buf_block_t::mutex, which we are now removing.
Later, multiple instances of buf_pool_t were introduced
in commit c18084f71b02ea707c6461353e6cfc15d7553bc6
and recently removed by us in
commit 1a6f708ec594ac0ae2dd30db926ab07b100fa24b (MDEV-15058).
UNIV_BUF_DEBUG: Remove. This option to enable some buffer pool
related debugging in otherwise non-debug builds has not been used
for years. Instead, we have been using UNIV_DEBUG, which is enabled
in CMAKE_BUILD_TYPE=Debug.
buf_block_t::mutex, buf_pool_t::zip_mutex: Remove. We can mainly rely on
std::atomic and the buf_pool.page_hash latches, and in some cases
depend on buf_pool.mutex or buf_pool.flush_list_mutex just like before.
We must always release buf_block_t::lock before invoking
unfix() or io_unfix(), to prevent a glitch where a block that was
added to the buf_pool.free list would apper X-latched. See
commit c5883debd6ef440a037011c11873b396923e93c5 how this glitch
was finally caught in a debug environment.
We move some buf_pool_t::page_hash specific code from the
ha and hash modules to buf_pool, for improved readability.
buf_pool_t::close(): Assert that all blocks are clean, except
on aborted startup or crash-like shutdown.
buf_pool_t::validate(): No longer attempt to validate
n_flush[] against the number of BUF_IO_WRITE fixed blocks,
because buf_page_t::flush_type no longer exists.
buf_pool_t::watch_set(): Replaces buf_pool_watch_set().
Reduce mutex contention by separating the buf_pool.watch[]
allocation and the insert into buf_pool.page_hash.
buf_pool_t::page_hash_lock<bool exclusive>(): Acquire a
buf_pool.page_hash latch.
Replaces and extends buf_page_hash_lock_s_confirm()
and buf_page_hash_lock_x_confirm().
buf_pool_t::READ_AHEAD_PAGES: Renamed from BUF_READ_AHEAD_PAGES.
buf_pool_t::curr_size, old_size, read_ahead_area, n_pend_reads:
Use Atomic_counter.
buf_pool_t::running_out(): Replaces buf_LRU_buf_pool_running_out().
buf_pool_t::LRU_remove(): Remove a block from the LRU list
and return its predecessor. Incorporates buf_LRU_adjust_hp(),
which was removed.
buf_page_get_gen(): Remove a redundant call of fsp_is_system_temporary(),
for mode == BUF_GET_IF_IN_POOL_OR_WATCH, which is only used by
BTR_DELETE_OP (purge), which is never invoked on temporary tables.
buf_free_from_unzip_LRU_list_batch(): Avoid redundant assignments.
buf_LRU_free_from_unzip_LRU_list(): Simplify the loop condition.
buf_LRU_free_page(): Clarify the function comment.
buf_flush_check_neighbor(), buf_flush_check_neighbors():
Rewrite the construction of the page hash range. We will hold
the buf_pool.mutex for up to buf_pool.read_ahead_area (at most 64)
consecutive lookups of buf_pool.page_hash.
buf_flush_page_and_try_neighbors(): Remove.
Merge to its only callers, and remove redundant operations in
buf_flush_LRU_list_batch().
buf_read_ahead_random(), buf_read_ahead_linear(): Rewrite.
Do not acquire buf_pool.mutex, and iterate directly with page_id_t.
ut_2_power_up(): Remove. my_round_up_to_next_power() is inlined
and avoids any loops.
fil_page_get_prev(), fil_page_get_next(), fil_addr_is_null(): Remove.
buf_flush_page(): Add a fil_space_t* parameter. Minimize the
buf_pool.mutex hold time. buf_pool.n_flush[] is no longer updated
atomically with the io_fix, and we will protect most buf_block_t
fields with buf_block_t::lock. The function
buf_flush_write_block_low() is removed and merged here.
buf_page_init_for_read(): Use static linkage. Initialize the newly
allocated block and acquire the exclusive buf_block_t::lock while not
holding any mutex.
IORequest::IORequest(): Remove the body. We only need to invoke
set_punch_hole() in buf_flush_page() and nowhere else.
buf_page_t::flush_type: Remove. Replaced by IORequest::flush_type.
This field is only used during a fil_io() call.
That function already takes IORequest as a parameter, so we had
better introduce for the rarely changing field.
buf_block_t::init(): Replaces buf_page_init().
buf_page_t::init(): Replaces buf_page_init_low().
buf_block_t::initialise(): Initialise many fields, but
keep the buf_page_t::state(). Both buf_pool_t::validate() and
buf_page_optimistic_get() requires that buf_page_t::in_file()
be protected atomically with buf_page_t::in_page_hash
and buf_page_t::in_LRU_list.
buf_page_optimistic_get(): Now that buf_block_t::mutex
no longer exists, we must check buf_page_t::io_fix()
after acquiring the buf_pool.page_hash lock, to detect
whether buf_page_init_for_read() has been initiated.
We will also check the io_fix() before acquiring hash_lock
in order to avoid unnecessary computation.
The field buf_block_t::modify_clock (protected by buf_block_t::lock)
allows buf_page_optimistic_get() to validate the block.
buf_page_t::real_size: Remove. It was only used while flushing
pages of page_compressed tables.
buf_page_encrypt(): Add an output parameter that allows us ot eliminate
buf_page_t::real_size. Replace a condition with debug assertion.
buf_page_should_punch_hole(): Remove.
buf_dblwr_t::add_to_batch(): Replaces buf_dblwr_add_to_batch().
Add the parameter size (to replace buf_page_t::real_size).
buf_dblwr_t::write_single_page(): Replaces buf_dblwr_write_single_page().
Add the parameter size (to replace buf_page_t::real_size).
fil_system_t::detach(): Replaces fil_space_detach().
Ensure that fil_validate() will not be violated even if
fil_system.mutex is released and reacquired.
fil_node_t::complete_io(): Renamed from fil_node_complete_io().
fil_node_t::close_to_free(): Replaces fil_node_close_to_free().
Avoid invoking fil_node_t::close() because fil_system.n_open
has already been decremented in fil_space_t::detach().
BUF_BLOCK_READY_FOR_USE: Remove. Directly use BUF_BLOCK_MEMORY.
BUF_BLOCK_ZIP_DIRTY: Remove. Directly use BUF_BLOCK_ZIP_PAGE,
and distinguish dirty pages by buf_page_t::oldest_modification().
BUF_BLOCK_POOL_WATCH: Remove. Use BUF_BLOCK_NOT_USED instead.
This state was only being used for buf_page_t that are in
buf_pool.watch.
buf_pool_t::watch[]: Remove pointer indirection.
buf_page_t::in_flush_list: Remove. It was set if and only if
buf_page_t::oldest_modification() is nonzero.
buf_page_decrypt_after_read(), buf_corrupt_page_release(),
buf_page_check_corrupt(): Change the const fil_space_t* parameter
to const fil_node_t& so that we can report the correct file name.
buf_page_monitor(): Declare as an ATTRIBUTE_COLD global function.
buf_page_io_complete(): Split to buf_page_read_complete() and
buf_page_write_complete().
buf_dblwr_t::in_use: Remove.
buf_dblwr_t::buf_block_array: Add IORequest::flush_t.
buf_dblwr_sync_datafiles(): Remove. It was a useless wrapper of
os_aio_wait_until_no_pending_writes().
buf_flush_write_complete(): Declare static, not global.
Add the parameter IORequest::flush_t.
buf_flush_freed_page(): Simplify the code.
recv_sys_t::flush_lru: Renamed from flush_type and changed to bool.
fil_read(), fil_write(): Replaced with direct use of fil_io().
fil_buffering_disabled(): Remove. Check srv_file_flush_method directly.
fil_mutex_enter_and_prepare_for_io(): Return the resolved
fil_space_t* to avoid a duplicated lookup in the caller.
fil_report_invalid_page_access(): Clean up the parameters.
fil_io(): Return fil_io_t, which comprises fil_node_t and error code.
Always invoke fil_space_t::acquire_for_io() and let either the
sync=true caller or fil_aio_callback() invoke
fil_space_t::release_for_io().
fil_aio_callback(): Rewrite to replace buf_page_io_complete().
fil_check_pending_operations(): Remove a parameter, and remove some
redundant lookups.
fil_node_close_to_free(): Wait for n_pending==0. Because we no longer
do an extra lookup of the tablespace between fil_io() and the
completion of the operation, we must give fil_node_t::complete_io() a
chance to decrement the counter.
fil_close_tablespace(): Remove unused parameter trx, and document
that this is only invoked during the error handling of IMPORT TABLESPACE.
row_import_discard_changes(): Merged with the only caller,
row_import_cleanup(). Do not lock up the data dictionary while
invoking fil_close_tablespace().
logs_empty_and_mark_files_at_shutdown(): Do not invoke
fil_close_all_files(), to avoid a !needs_flush assertion failure
on fil_node_t::close().
innodb_shutdown(): Invoke os_aio_free() before fil_close_all_files().
fil_close_all_files(): Invoke fil_flush_file_spaces()
to ensure proper durability.
thread_pool::unbind(): Fix a crash that would occur on Windows
after srv_thread_pool->disable_aio() and os_file_close().
This fix was submitted by Vladislav Vaintroub.
Thanks to Matthias Leich and Axel Schwenke for extensive testing,
Vladislav Vaintroub for helpful comments, and Eugene Kosov for a review.
6 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-27058: Reduce the size of buf_block_t and buf_page_t
buf_page_t::frame: Moved from buf_block_t::frame.
All 'thin' buf_page_t describing compressed-only ROW_FORMAT=COMPRESSED
pages will have frame=nullptr, while all 'fat' buf_block_t
will have a non-null frame pointing to aligned innodb_page_size bytes.
This eliminates the need for separate states for
BUF_BLOCK_FILE_PAGE and BUF_BLOCK_ZIP_PAGE.
buf_page_t::lock: Moved from buf_block_t::lock. That is, all block
descriptors will have a page latch. The IO_PIN state that was used
for discarding or creating the uncompressed page frame of a
ROW_FORMAT=COMPRESSED block is replaced by a combination of read-fix
and page X-latch.
page_zip_des_t::fix: Replaces state_, buf_fix_count_, io_fix_, status
of buf_page_t with a single std::atomic<uint32_t>. All modifications
will use store(), fetch_add(), fetch_sub(). This space was previously
wasted to alignment on 64-bit systems. We will use the following encoding
that combines a state (partly read-fix or write-fix) and a buffer-fix
count:
buf_page_t::NOT_USED=0 (previously BUF_BLOCK_NOT_USED)
buf_page_t::MEMORY=1 (previously BUF_BLOCK_MEMORY)
buf_page_t::REMOVE_HASH=2 (previously BUF_BLOCK_REMOVE_HASH)
buf_page_t::FREED=3 + fix: pages marked as freed in the file
buf_page_t::UNFIXED=1U<<29 + fix: normal pages
buf_page_t::IBUF_EXIST=2U<<29 + fix: normal pages; may need ibuf merge
buf_page_t::REINIT=3U<<29 + fix: reinitialized pages (skip doublewrite)
buf_page_t::READ_FIX=4U<<29 + fix: read-fixed pages (also X-latched)
buf_page_t::WRITE_FIX=5U<<29 + fix: write-fixed pages (also U-latched)
buf_page_t::WRITE_FIX_IBUF=6U<<29 + fix: write-fixed; may have ibuf
buf_page_t::WRITE_FIX_REINIT=7U<<29 + fix: write-fixed (no doublewrite)
buf_page_t::write_complete(): Change WRITE_FIX or WRITE_FIX_REINIT to
UNFIXED, and WRITE_FIX_IBUF to IBUF_EXIST, before releasing the U-latch.
buf_page_t::read_complete(): Renamed from buf_page_read_complete().
Change READ_FIX to UNFIXED or IBUF_EXIST, before releasing the X-latch.
buf_page_t::can_relocate(): If the page latch is being held or waited for,
or the block is buffer-fixed or io-fixed, return false. (The condition
on the page latch is new.)
Outside buf_page_get_gen(), buf_page_get_low() and buf_page_free(), we
will acquire the page latch before fix(), and unfix() before unlocking.
buf_page_t::flush(): Replaces buf_flush_page(). Optimize the
handling of FREED pages.
buf_pool_t::release_freed_page(): Assume that buf_pool.mutex is held
by the caller.
buf_page_t::is_read_fixed(), buf_page_t::is_write_fixed(): New predicates.
buf_page_get_low(): Ignore guesses that are read-fixed because they
may not yet be registered in buf_pool.page_hash and buf_pool.LRU.
buf_page_optimistic_get(): Acquire latch before buffer-fixing.
buf_page_make_young(): Leave read-fixed blocks alone, because they
might not be registered in buf_pool.LRU yet.
recv_sys_t::recover_deferred(), recv_sys_t::recover_low():
Possibly fix MDEV-26326, by holding a page X-latch instead of
only buffer-fixing the page.
4 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-15053 Reduce buf_pool_t::mutex contention
User-visible changes: The INFORMATION_SCHEMA views INNODB_BUFFER_PAGE
and INNODB_BUFFER_PAGE_LRU will report a dummy value FLUSH_TYPE=0
and will no longer report the PAGE_STATE value READY_FOR_USE.
We will remove some fields from buf_page_t and move much code to
member functions of buf_pool_t and buf_page_t, so that the access
rules of data members can be enforced consistently.
Evicting or adding pages in buf_pool.LRU will remain covered by
buf_pool.mutex.
Evicting or adding pages in buf_pool.page_hash will remain
covered by both buf_pool.mutex and the buf_pool.page_hash X-latch.
After this fix, buf_pool.page_hash lookups can entirely
avoid acquiring buf_pool.mutex, only relying on
buf_pool.hash_lock_get() S-latch.
Similarly, buf_flush_check_neighbors() can will rely solely on
buf_pool.mutex, no buf_pool.page_hash latch at all.
The buf_pool.mutex is rather contended in I/O heavy benchmarks,
especially when the workload does not fit in the buffer pool.
The first attempt to alleviate the contention was the
buf_pool_t::mutex split in
commit 4ed7082eefe56b3e97e0edefb3df76dd7ef5e858
which introduced buf_block_t::mutex, which we are now removing.
Later, multiple instances of buf_pool_t were introduced
in commit c18084f71b02ea707c6461353e6cfc15d7553bc6
and recently removed by us in
commit 1a6f708ec594ac0ae2dd30db926ab07b100fa24b (MDEV-15058).
UNIV_BUF_DEBUG: Remove. This option to enable some buffer pool
related debugging in otherwise non-debug builds has not been used
for years. Instead, we have been using UNIV_DEBUG, which is enabled
in CMAKE_BUILD_TYPE=Debug.
buf_block_t::mutex, buf_pool_t::zip_mutex: Remove. We can mainly rely on
std::atomic and the buf_pool.page_hash latches, and in some cases
depend on buf_pool.mutex or buf_pool.flush_list_mutex just like before.
We must always release buf_block_t::lock before invoking
unfix() or io_unfix(), to prevent a glitch where a block that was
added to the buf_pool.free list would apper X-latched. See
commit c5883debd6ef440a037011c11873b396923e93c5 how this glitch
was finally caught in a debug environment.
We move some buf_pool_t::page_hash specific code from the
ha and hash modules to buf_pool, for improved readability.
buf_pool_t::close(): Assert that all blocks are clean, except
on aborted startup or crash-like shutdown.
buf_pool_t::validate(): No longer attempt to validate
n_flush[] against the number of BUF_IO_WRITE fixed blocks,
because buf_page_t::flush_type no longer exists.
buf_pool_t::watch_set(): Replaces buf_pool_watch_set().
Reduce mutex contention by separating the buf_pool.watch[]
allocation and the insert into buf_pool.page_hash.
buf_pool_t::page_hash_lock<bool exclusive>(): Acquire a
buf_pool.page_hash latch.
Replaces and extends buf_page_hash_lock_s_confirm()
and buf_page_hash_lock_x_confirm().
buf_pool_t::READ_AHEAD_PAGES: Renamed from BUF_READ_AHEAD_PAGES.
buf_pool_t::curr_size, old_size, read_ahead_area, n_pend_reads:
Use Atomic_counter.
buf_pool_t::running_out(): Replaces buf_LRU_buf_pool_running_out().
buf_pool_t::LRU_remove(): Remove a block from the LRU list
and return its predecessor. Incorporates buf_LRU_adjust_hp(),
which was removed.
buf_page_get_gen(): Remove a redundant call of fsp_is_system_temporary(),
for mode == BUF_GET_IF_IN_POOL_OR_WATCH, which is only used by
BTR_DELETE_OP (purge), which is never invoked on temporary tables.
buf_free_from_unzip_LRU_list_batch(): Avoid redundant assignments.
buf_LRU_free_from_unzip_LRU_list(): Simplify the loop condition.
buf_LRU_free_page(): Clarify the function comment.
buf_flush_check_neighbor(), buf_flush_check_neighbors():
Rewrite the construction of the page hash range. We will hold
the buf_pool.mutex for up to buf_pool.read_ahead_area (at most 64)
consecutive lookups of buf_pool.page_hash.
buf_flush_page_and_try_neighbors(): Remove.
Merge to its only callers, and remove redundant operations in
buf_flush_LRU_list_batch().
buf_read_ahead_random(), buf_read_ahead_linear(): Rewrite.
Do not acquire buf_pool.mutex, and iterate directly with page_id_t.
ut_2_power_up(): Remove. my_round_up_to_next_power() is inlined
and avoids any loops.
fil_page_get_prev(), fil_page_get_next(), fil_addr_is_null(): Remove.
buf_flush_page(): Add a fil_space_t* parameter. Minimize the
buf_pool.mutex hold time. buf_pool.n_flush[] is no longer updated
atomically with the io_fix, and we will protect most buf_block_t
fields with buf_block_t::lock. The function
buf_flush_write_block_low() is removed and merged here.
buf_page_init_for_read(): Use static linkage. Initialize the newly
allocated block and acquire the exclusive buf_block_t::lock while not
holding any mutex.
IORequest::IORequest(): Remove the body. We only need to invoke
set_punch_hole() in buf_flush_page() and nowhere else.
buf_page_t::flush_type: Remove. Replaced by IORequest::flush_type.
This field is only used during a fil_io() call.
That function already takes IORequest as a parameter, so we had
better introduce for the rarely changing field.
buf_block_t::init(): Replaces buf_page_init().
buf_page_t::init(): Replaces buf_page_init_low().
buf_block_t::initialise(): Initialise many fields, but
keep the buf_page_t::state(). Both buf_pool_t::validate() and
buf_page_optimistic_get() requires that buf_page_t::in_file()
be protected atomically with buf_page_t::in_page_hash
and buf_page_t::in_LRU_list.
buf_page_optimistic_get(): Now that buf_block_t::mutex
no longer exists, we must check buf_page_t::io_fix()
after acquiring the buf_pool.page_hash lock, to detect
whether buf_page_init_for_read() has been initiated.
We will also check the io_fix() before acquiring hash_lock
in order to avoid unnecessary computation.
The field buf_block_t::modify_clock (protected by buf_block_t::lock)
allows buf_page_optimistic_get() to validate the block.
buf_page_t::real_size: Remove. It was only used while flushing
pages of page_compressed tables.
buf_page_encrypt(): Add an output parameter that allows us ot eliminate
buf_page_t::real_size. Replace a condition with debug assertion.
buf_page_should_punch_hole(): Remove.
buf_dblwr_t::add_to_batch(): Replaces buf_dblwr_add_to_batch().
Add the parameter size (to replace buf_page_t::real_size).
buf_dblwr_t::write_single_page(): Replaces buf_dblwr_write_single_page().
Add the parameter size (to replace buf_page_t::real_size).
fil_system_t::detach(): Replaces fil_space_detach().
Ensure that fil_validate() will not be violated even if
fil_system.mutex is released and reacquired.
fil_node_t::complete_io(): Renamed from fil_node_complete_io().
fil_node_t::close_to_free(): Replaces fil_node_close_to_free().
Avoid invoking fil_node_t::close() because fil_system.n_open
has already been decremented in fil_space_t::detach().
BUF_BLOCK_READY_FOR_USE: Remove. Directly use BUF_BLOCK_MEMORY.
BUF_BLOCK_ZIP_DIRTY: Remove. Directly use BUF_BLOCK_ZIP_PAGE,
and distinguish dirty pages by buf_page_t::oldest_modification().
BUF_BLOCK_POOL_WATCH: Remove. Use BUF_BLOCK_NOT_USED instead.
This state was only being used for buf_page_t that are in
buf_pool.watch.
buf_pool_t::watch[]: Remove pointer indirection.
buf_page_t::in_flush_list: Remove. It was set if and only if
buf_page_t::oldest_modification() is nonzero.
buf_page_decrypt_after_read(), buf_corrupt_page_release(),
buf_page_check_corrupt(): Change the const fil_space_t* parameter
to const fil_node_t& so that we can report the correct file name.
buf_page_monitor(): Declare as an ATTRIBUTE_COLD global function.
buf_page_io_complete(): Split to buf_page_read_complete() and
buf_page_write_complete().
buf_dblwr_t::in_use: Remove.
buf_dblwr_t::buf_block_array: Add IORequest::flush_t.
buf_dblwr_sync_datafiles(): Remove. It was a useless wrapper of
os_aio_wait_until_no_pending_writes().
buf_flush_write_complete(): Declare static, not global.
Add the parameter IORequest::flush_t.
buf_flush_freed_page(): Simplify the code.
recv_sys_t::flush_lru: Renamed from flush_type and changed to bool.
fil_read(), fil_write(): Replaced with direct use of fil_io().
fil_buffering_disabled(): Remove. Check srv_file_flush_method directly.
fil_mutex_enter_and_prepare_for_io(): Return the resolved
fil_space_t* to avoid a duplicated lookup in the caller.
fil_report_invalid_page_access(): Clean up the parameters.
fil_io(): Return fil_io_t, which comprises fil_node_t and error code.
Always invoke fil_space_t::acquire_for_io() and let either the
sync=true caller or fil_aio_callback() invoke
fil_space_t::release_for_io().
fil_aio_callback(): Rewrite to replace buf_page_io_complete().
fil_check_pending_operations(): Remove a parameter, and remove some
redundant lookups.
fil_node_close_to_free(): Wait for n_pending==0. Because we no longer
do an extra lookup of the tablespace between fil_io() and the
completion of the operation, we must give fil_node_t::complete_io() a
chance to decrement the counter.
fil_close_tablespace(): Remove unused parameter trx, and document
that this is only invoked during the error handling of IMPORT TABLESPACE.
row_import_discard_changes(): Merged with the only caller,
row_import_cleanup(). Do not lock up the data dictionary while
invoking fil_close_tablespace().
logs_empty_and_mark_files_at_shutdown(): Do not invoke
fil_close_all_files(), to avoid a !needs_flush assertion failure
on fil_node_t::close().
innodb_shutdown(): Invoke os_aio_free() before fil_close_all_files().
fil_close_all_files(): Invoke fil_flush_file_spaces()
to ensure proper durability.
thread_pool::unbind(): Fix a crash that would occur on Windows
after srv_thread_pool->disable_aio() and os_file_close().
This fix was submitted by Vladislav Vaintroub.
Thanks to Matthias Leich and Axel Schwenke for extensive testing,
Vladislav Vaintroub for helpful comments, and Eugene Kosov for a review.
6 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-15053 Reduce buf_pool_t::mutex contention
User-visible changes: The INFORMATION_SCHEMA views INNODB_BUFFER_PAGE
and INNODB_BUFFER_PAGE_LRU will report a dummy value FLUSH_TYPE=0
and will no longer report the PAGE_STATE value READY_FOR_USE.
We will remove some fields from buf_page_t and move much code to
member functions of buf_pool_t and buf_page_t, so that the access
rules of data members can be enforced consistently.
Evicting or adding pages in buf_pool.LRU will remain covered by
buf_pool.mutex.
Evicting or adding pages in buf_pool.page_hash will remain
covered by both buf_pool.mutex and the buf_pool.page_hash X-latch.
After this fix, buf_pool.page_hash lookups can entirely
avoid acquiring buf_pool.mutex, only relying on
buf_pool.hash_lock_get() S-latch.
Similarly, buf_flush_check_neighbors() can will rely solely on
buf_pool.mutex, no buf_pool.page_hash latch at all.
The buf_pool.mutex is rather contended in I/O heavy benchmarks,
especially when the workload does not fit in the buffer pool.
The first attempt to alleviate the contention was the
buf_pool_t::mutex split in
commit 4ed7082eefe56b3e97e0edefb3df76dd7ef5e858
which introduced buf_block_t::mutex, which we are now removing.
Later, multiple instances of buf_pool_t were introduced
in commit c18084f71b02ea707c6461353e6cfc15d7553bc6
and recently removed by us in
commit 1a6f708ec594ac0ae2dd30db926ab07b100fa24b (MDEV-15058).
UNIV_BUF_DEBUG: Remove. This option to enable some buffer pool
related debugging in otherwise non-debug builds has not been used
for years. Instead, we have been using UNIV_DEBUG, which is enabled
in CMAKE_BUILD_TYPE=Debug.
buf_block_t::mutex, buf_pool_t::zip_mutex: Remove. We can mainly rely on
std::atomic and the buf_pool.page_hash latches, and in some cases
depend on buf_pool.mutex or buf_pool.flush_list_mutex just like before.
We must always release buf_block_t::lock before invoking
unfix() or io_unfix(), to prevent a glitch where a block that was
added to the buf_pool.free list would apper X-latched. See
commit c5883debd6ef440a037011c11873b396923e93c5 how this glitch
was finally caught in a debug environment.
We move some buf_pool_t::page_hash specific code from the
ha and hash modules to buf_pool, for improved readability.
buf_pool_t::close(): Assert that all blocks are clean, except
on aborted startup or crash-like shutdown.
buf_pool_t::validate(): No longer attempt to validate
n_flush[] against the number of BUF_IO_WRITE fixed blocks,
because buf_page_t::flush_type no longer exists.
buf_pool_t::watch_set(): Replaces buf_pool_watch_set().
Reduce mutex contention by separating the buf_pool.watch[]
allocation and the insert into buf_pool.page_hash.
buf_pool_t::page_hash_lock<bool exclusive>(): Acquire a
buf_pool.page_hash latch.
Replaces and extends buf_page_hash_lock_s_confirm()
and buf_page_hash_lock_x_confirm().
buf_pool_t::READ_AHEAD_PAGES: Renamed from BUF_READ_AHEAD_PAGES.
buf_pool_t::curr_size, old_size, read_ahead_area, n_pend_reads:
Use Atomic_counter.
buf_pool_t::running_out(): Replaces buf_LRU_buf_pool_running_out().
buf_pool_t::LRU_remove(): Remove a block from the LRU list
and return its predecessor. Incorporates buf_LRU_adjust_hp(),
which was removed.
buf_page_get_gen(): Remove a redundant call of fsp_is_system_temporary(),
for mode == BUF_GET_IF_IN_POOL_OR_WATCH, which is only used by
BTR_DELETE_OP (purge), which is never invoked on temporary tables.
buf_free_from_unzip_LRU_list_batch(): Avoid redundant assignments.
buf_LRU_free_from_unzip_LRU_list(): Simplify the loop condition.
buf_LRU_free_page(): Clarify the function comment.
buf_flush_check_neighbor(), buf_flush_check_neighbors():
Rewrite the construction of the page hash range. We will hold
the buf_pool.mutex for up to buf_pool.read_ahead_area (at most 64)
consecutive lookups of buf_pool.page_hash.
buf_flush_page_and_try_neighbors(): Remove.
Merge to its only callers, and remove redundant operations in
buf_flush_LRU_list_batch().
buf_read_ahead_random(), buf_read_ahead_linear(): Rewrite.
Do not acquire buf_pool.mutex, and iterate directly with page_id_t.
ut_2_power_up(): Remove. my_round_up_to_next_power() is inlined
and avoids any loops.
fil_page_get_prev(), fil_page_get_next(), fil_addr_is_null(): Remove.
buf_flush_page(): Add a fil_space_t* parameter. Minimize the
buf_pool.mutex hold time. buf_pool.n_flush[] is no longer updated
atomically with the io_fix, and we will protect most buf_block_t
fields with buf_block_t::lock. The function
buf_flush_write_block_low() is removed and merged here.
buf_page_init_for_read(): Use static linkage. Initialize the newly
allocated block and acquire the exclusive buf_block_t::lock while not
holding any mutex.
IORequest::IORequest(): Remove the body. We only need to invoke
set_punch_hole() in buf_flush_page() and nowhere else.
buf_page_t::flush_type: Remove. Replaced by IORequest::flush_type.
This field is only used during a fil_io() call.
That function already takes IORequest as a parameter, so we had
better introduce for the rarely changing field.
buf_block_t::init(): Replaces buf_page_init().
buf_page_t::init(): Replaces buf_page_init_low().
buf_block_t::initialise(): Initialise many fields, but
keep the buf_page_t::state(). Both buf_pool_t::validate() and
buf_page_optimistic_get() requires that buf_page_t::in_file()
be protected atomically with buf_page_t::in_page_hash
and buf_page_t::in_LRU_list.
buf_page_optimistic_get(): Now that buf_block_t::mutex
no longer exists, we must check buf_page_t::io_fix()
after acquiring the buf_pool.page_hash lock, to detect
whether buf_page_init_for_read() has been initiated.
We will also check the io_fix() before acquiring hash_lock
in order to avoid unnecessary computation.
The field buf_block_t::modify_clock (protected by buf_block_t::lock)
allows buf_page_optimistic_get() to validate the block.
buf_page_t::real_size: Remove. It was only used while flushing
pages of page_compressed tables.
buf_page_encrypt(): Add an output parameter that allows us ot eliminate
buf_page_t::real_size. Replace a condition with debug assertion.
buf_page_should_punch_hole(): Remove.
buf_dblwr_t::add_to_batch(): Replaces buf_dblwr_add_to_batch().
Add the parameter size (to replace buf_page_t::real_size).
buf_dblwr_t::write_single_page(): Replaces buf_dblwr_write_single_page().
Add the parameter size (to replace buf_page_t::real_size).
fil_system_t::detach(): Replaces fil_space_detach().
Ensure that fil_validate() will not be violated even if
fil_system.mutex is released and reacquired.
fil_node_t::complete_io(): Renamed from fil_node_complete_io().
fil_node_t::close_to_free(): Replaces fil_node_close_to_free().
Avoid invoking fil_node_t::close() because fil_system.n_open
has already been decremented in fil_space_t::detach().
BUF_BLOCK_READY_FOR_USE: Remove. Directly use BUF_BLOCK_MEMORY.
BUF_BLOCK_ZIP_DIRTY: Remove. Directly use BUF_BLOCK_ZIP_PAGE,
and distinguish dirty pages by buf_page_t::oldest_modification().
BUF_BLOCK_POOL_WATCH: Remove. Use BUF_BLOCK_NOT_USED instead.
This state was only being used for buf_page_t that are in
buf_pool.watch.
buf_pool_t::watch[]: Remove pointer indirection.
buf_page_t::in_flush_list: Remove. It was set if and only if
buf_page_t::oldest_modification() is nonzero.
buf_page_decrypt_after_read(), buf_corrupt_page_release(),
buf_page_check_corrupt(): Change the const fil_space_t* parameter
to const fil_node_t& so that we can report the correct file name.
buf_page_monitor(): Declare as an ATTRIBUTE_COLD global function.
buf_page_io_complete(): Split to buf_page_read_complete() and
buf_page_write_complete().
buf_dblwr_t::in_use: Remove.
buf_dblwr_t::buf_block_array: Add IORequest::flush_t.
buf_dblwr_sync_datafiles(): Remove. It was a useless wrapper of
os_aio_wait_until_no_pending_writes().
buf_flush_write_complete(): Declare static, not global.
Add the parameter IORequest::flush_t.
buf_flush_freed_page(): Simplify the code.
recv_sys_t::flush_lru: Renamed from flush_type and changed to bool.
fil_read(), fil_write(): Replaced with direct use of fil_io().
fil_buffering_disabled(): Remove. Check srv_file_flush_method directly.
fil_mutex_enter_and_prepare_for_io(): Return the resolved
fil_space_t* to avoid a duplicated lookup in the caller.
fil_report_invalid_page_access(): Clean up the parameters.
fil_io(): Return fil_io_t, which comprises fil_node_t and error code.
Always invoke fil_space_t::acquire_for_io() and let either the
sync=true caller or fil_aio_callback() invoke
fil_space_t::release_for_io().
fil_aio_callback(): Rewrite to replace buf_page_io_complete().
fil_check_pending_operations(): Remove a parameter, and remove some
redundant lookups.
fil_node_close_to_free(): Wait for n_pending==0. Because we no longer
do an extra lookup of the tablespace between fil_io() and the
completion of the operation, we must give fil_node_t::complete_io() a
chance to decrement the counter.
fil_close_tablespace(): Remove unused parameter trx, and document
that this is only invoked during the error handling of IMPORT TABLESPACE.
row_import_discard_changes(): Merged with the only caller,
row_import_cleanup(). Do not lock up the data dictionary while
invoking fil_close_tablespace().
logs_empty_and_mark_files_at_shutdown(): Do not invoke
fil_close_all_files(), to avoid a !needs_flush assertion failure
on fil_node_t::close().
innodb_shutdown(): Invoke os_aio_free() before fil_close_all_files().
fil_close_all_files(): Invoke fil_flush_file_spaces()
to ensure proper durability.
thread_pool::unbind(): Fix a crash that would occur on Windows
after srv_thread_pool->disable_aio() and os_file_close().
This fix was submitted by Vladislav Vaintroub.
Thanks to Matthias Leich and Axel Schwenke for extensive testing,
Vladislav Vaintroub for helpful comments, and Eugene Kosov for a review.
6 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-15053 Reduce buf_pool_t::mutex contention
User-visible changes: The INFORMATION_SCHEMA views INNODB_BUFFER_PAGE
and INNODB_BUFFER_PAGE_LRU will report a dummy value FLUSH_TYPE=0
and will no longer report the PAGE_STATE value READY_FOR_USE.
We will remove some fields from buf_page_t and move much code to
member functions of buf_pool_t and buf_page_t, so that the access
rules of data members can be enforced consistently.
Evicting or adding pages in buf_pool.LRU will remain covered by
buf_pool.mutex.
Evicting or adding pages in buf_pool.page_hash will remain
covered by both buf_pool.mutex and the buf_pool.page_hash X-latch.
After this fix, buf_pool.page_hash lookups can entirely
avoid acquiring buf_pool.mutex, only relying on
buf_pool.hash_lock_get() S-latch.
Similarly, buf_flush_check_neighbors() can will rely solely on
buf_pool.mutex, no buf_pool.page_hash latch at all.
The buf_pool.mutex is rather contended in I/O heavy benchmarks,
especially when the workload does not fit in the buffer pool.
The first attempt to alleviate the contention was the
buf_pool_t::mutex split in
commit 4ed7082eefe56b3e97e0edefb3df76dd7ef5e858
which introduced buf_block_t::mutex, which we are now removing.
Later, multiple instances of buf_pool_t were introduced
in commit c18084f71b02ea707c6461353e6cfc15d7553bc6
and recently removed by us in
commit 1a6f708ec594ac0ae2dd30db926ab07b100fa24b (MDEV-15058).
UNIV_BUF_DEBUG: Remove. This option to enable some buffer pool
related debugging in otherwise non-debug builds has not been used
for years. Instead, we have been using UNIV_DEBUG, which is enabled
in CMAKE_BUILD_TYPE=Debug.
buf_block_t::mutex, buf_pool_t::zip_mutex: Remove. We can mainly rely on
std::atomic and the buf_pool.page_hash latches, and in some cases
depend on buf_pool.mutex or buf_pool.flush_list_mutex just like before.
We must always release buf_block_t::lock before invoking
unfix() or io_unfix(), to prevent a glitch where a block that was
added to the buf_pool.free list would apper X-latched. See
commit c5883debd6ef440a037011c11873b396923e93c5 how this glitch
was finally caught in a debug environment.
We move some buf_pool_t::page_hash specific code from the
ha and hash modules to buf_pool, for improved readability.
buf_pool_t::close(): Assert that all blocks are clean, except
on aborted startup or crash-like shutdown.
buf_pool_t::validate(): No longer attempt to validate
n_flush[] against the number of BUF_IO_WRITE fixed blocks,
because buf_page_t::flush_type no longer exists.
buf_pool_t::watch_set(): Replaces buf_pool_watch_set().
Reduce mutex contention by separating the buf_pool.watch[]
allocation and the insert into buf_pool.page_hash.
buf_pool_t::page_hash_lock<bool exclusive>(): Acquire a
buf_pool.page_hash latch.
Replaces and extends buf_page_hash_lock_s_confirm()
and buf_page_hash_lock_x_confirm().
buf_pool_t::READ_AHEAD_PAGES: Renamed from BUF_READ_AHEAD_PAGES.
buf_pool_t::curr_size, old_size, read_ahead_area, n_pend_reads:
Use Atomic_counter.
buf_pool_t::running_out(): Replaces buf_LRU_buf_pool_running_out().
buf_pool_t::LRU_remove(): Remove a block from the LRU list
and return its predecessor. Incorporates buf_LRU_adjust_hp(),
which was removed.
buf_page_get_gen(): Remove a redundant call of fsp_is_system_temporary(),
for mode == BUF_GET_IF_IN_POOL_OR_WATCH, which is only used by
BTR_DELETE_OP (purge), which is never invoked on temporary tables.
buf_free_from_unzip_LRU_list_batch(): Avoid redundant assignments.
buf_LRU_free_from_unzip_LRU_list(): Simplify the loop condition.
buf_LRU_free_page(): Clarify the function comment.
buf_flush_check_neighbor(), buf_flush_check_neighbors():
Rewrite the construction of the page hash range. We will hold
the buf_pool.mutex for up to buf_pool.read_ahead_area (at most 64)
consecutive lookups of buf_pool.page_hash.
buf_flush_page_and_try_neighbors(): Remove.
Merge to its only callers, and remove redundant operations in
buf_flush_LRU_list_batch().
buf_read_ahead_random(), buf_read_ahead_linear(): Rewrite.
Do not acquire buf_pool.mutex, and iterate directly with page_id_t.
ut_2_power_up(): Remove. my_round_up_to_next_power() is inlined
and avoids any loops.
fil_page_get_prev(), fil_page_get_next(), fil_addr_is_null(): Remove.
buf_flush_page(): Add a fil_space_t* parameter. Minimize the
buf_pool.mutex hold time. buf_pool.n_flush[] is no longer updated
atomically with the io_fix, and we will protect most buf_block_t
fields with buf_block_t::lock. The function
buf_flush_write_block_low() is removed and merged here.
buf_page_init_for_read(): Use static linkage. Initialize the newly
allocated block and acquire the exclusive buf_block_t::lock while not
holding any mutex.
IORequest::IORequest(): Remove the body. We only need to invoke
set_punch_hole() in buf_flush_page() and nowhere else.
buf_page_t::flush_type: Remove. Replaced by IORequest::flush_type.
This field is only used during a fil_io() call.
That function already takes IORequest as a parameter, so we had
better introduce for the rarely changing field.
buf_block_t::init(): Replaces buf_page_init().
buf_page_t::init(): Replaces buf_page_init_low().
buf_block_t::initialise(): Initialise many fields, but
keep the buf_page_t::state(). Both buf_pool_t::validate() and
buf_page_optimistic_get() requires that buf_page_t::in_file()
be protected atomically with buf_page_t::in_page_hash
and buf_page_t::in_LRU_list.
buf_page_optimistic_get(): Now that buf_block_t::mutex
no longer exists, we must check buf_page_t::io_fix()
after acquiring the buf_pool.page_hash lock, to detect
whether buf_page_init_for_read() has been initiated.
We will also check the io_fix() before acquiring hash_lock
in order to avoid unnecessary computation.
The field buf_block_t::modify_clock (protected by buf_block_t::lock)
allows buf_page_optimistic_get() to validate the block.
buf_page_t::real_size: Remove. It was only used while flushing
pages of page_compressed tables.
buf_page_encrypt(): Add an output parameter that allows us ot eliminate
buf_page_t::real_size. Replace a condition with debug assertion.
buf_page_should_punch_hole(): Remove.
buf_dblwr_t::add_to_batch(): Replaces buf_dblwr_add_to_batch().
Add the parameter size (to replace buf_page_t::real_size).
buf_dblwr_t::write_single_page(): Replaces buf_dblwr_write_single_page().
Add the parameter size (to replace buf_page_t::real_size).
fil_system_t::detach(): Replaces fil_space_detach().
Ensure that fil_validate() will not be violated even if
fil_system.mutex is released and reacquired.
fil_node_t::complete_io(): Renamed from fil_node_complete_io().
fil_node_t::close_to_free(): Replaces fil_node_close_to_free().
Avoid invoking fil_node_t::close() because fil_system.n_open
has already been decremented in fil_space_t::detach().
BUF_BLOCK_READY_FOR_USE: Remove. Directly use BUF_BLOCK_MEMORY.
BUF_BLOCK_ZIP_DIRTY: Remove. Directly use BUF_BLOCK_ZIP_PAGE,
and distinguish dirty pages by buf_page_t::oldest_modification().
BUF_BLOCK_POOL_WATCH: Remove. Use BUF_BLOCK_NOT_USED instead.
This state was only being used for buf_page_t that are in
buf_pool.watch.
buf_pool_t::watch[]: Remove pointer indirection.
buf_page_t::in_flush_list: Remove. It was set if and only if
buf_page_t::oldest_modification() is nonzero.
buf_page_decrypt_after_read(), buf_corrupt_page_release(),
buf_page_check_corrupt(): Change the const fil_space_t* parameter
to const fil_node_t& so that we can report the correct file name.
buf_page_monitor(): Declare as an ATTRIBUTE_COLD global function.
buf_page_io_complete(): Split to buf_page_read_complete() and
buf_page_write_complete().
buf_dblwr_t::in_use: Remove.
buf_dblwr_t::buf_block_array: Add IORequest::flush_t.
buf_dblwr_sync_datafiles(): Remove. It was a useless wrapper of
os_aio_wait_until_no_pending_writes().
buf_flush_write_complete(): Declare static, not global.
Add the parameter IORequest::flush_t.
buf_flush_freed_page(): Simplify the code.
recv_sys_t::flush_lru: Renamed from flush_type and changed to bool.
fil_read(), fil_write(): Replaced with direct use of fil_io().
fil_buffering_disabled(): Remove. Check srv_file_flush_method directly.
fil_mutex_enter_and_prepare_for_io(): Return the resolved
fil_space_t* to avoid a duplicated lookup in the caller.
fil_report_invalid_page_access(): Clean up the parameters.
fil_io(): Return fil_io_t, which comprises fil_node_t and error code.
Always invoke fil_space_t::acquire_for_io() and let either the
sync=true caller or fil_aio_callback() invoke
fil_space_t::release_for_io().
fil_aio_callback(): Rewrite to replace buf_page_io_complete().
fil_check_pending_operations(): Remove a parameter, and remove some
redundant lookups.
fil_node_close_to_free(): Wait for n_pending==0. Because we no longer
do an extra lookup of the tablespace between fil_io() and the
completion of the operation, we must give fil_node_t::complete_io() a
chance to decrement the counter.
fil_close_tablespace(): Remove unused parameter trx, and document
that this is only invoked during the error handling of IMPORT TABLESPACE.
row_import_discard_changes(): Merged with the only caller,
row_import_cleanup(). Do not lock up the data dictionary while
invoking fil_close_tablespace().
logs_empty_and_mark_files_at_shutdown(): Do not invoke
fil_close_all_files(), to avoid a !needs_flush assertion failure
on fil_node_t::close().
innodb_shutdown(): Invoke os_aio_free() before fil_close_all_files().
fil_close_all_files(): Invoke fil_flush_file_spaces()
to ensure proper durability.
thread_pool::unbind(): Fix a crash that would occur on Windows
after srv_thread_pool->disable_aio() and os_file_close().
This fix was submitted by Vladislav Vaintroub.
Thanks to Matthias Leich and Axel Schwenke for extensive testing,
Vladislav Vaintroub for helpful comments, and Eugene Kosov for a review.
6 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-15053 Reduce buf_pool_t::mutex contention
User-visible changes: The INFORMATION_SCHEMA views INNODB_BUFFER_PAGE
and INNODB_BUFFER_PAGE_LRU will report a dummy value FLUSH_TYPE=0
and will no longer report the PAGE_STATE value READY_FOR_USE.
We will remove some fields from buf_page_t and move much code to
member functions of buf_pool_t and buf_page_t, so that the access
rules of data members can be enforced consistently.
Evicting or adding pages in buf_pool.LRU will remain covered by
buf_pool.mutex.
Evicting or adding pages in buf_pool.page_hash will remain
covered by both buf_pool.mutex and the buf_pool.page_hash X-latch.
After this fix, buf_pool.page_hash lookups can entirely
avoid acquiring buf_pool.mutex, only relying on
buf_pool.hash_lock_get() S-latch.
Similarly, buf_flush_check_neighbors() can will rely solely on
buf_pool.mutex, no buf_pool.page_hash latch at all.
The buf_pool.mutex is rather contended in I/O heavy benchmarks,
especially when the workload does not fit in the buffer pool.
The first attempt to alleviate the contention was the
buf_pool_t::mutex split in
commit 4ed7082eefe56b3e97e0edefb3df76dd7ef5e858
which introduced buf_block_t::mutex, which we are now removing.
Later, multiple instances of buf_pool_t were introduced
in commit c18084f71b02ea707c6461353e6cfc15d7553bc6
and recently removed by us in
commit 1a6f708ec594ac0ae2dd30db926ab07b100fa24b (MDEV-15058).
UNIV_BUF_DEBUG: Remove. This option to enable some buffer pool
related debugging in otherwise non-debug builds has not been used
for years. Instead, we have been using UNIV_DEBUG, which is enabled
in CMAKE_BUILD_TYPE=Debug.
buf_block_t::mutex, buf_pool_t::zip_mutex: Remove. We can mainly rely on
std::atomic and the buf_pool.page_hash latches, and in some cases
depend on buf_pool.mutex or buf_pool.flush_list_mutex just like before.
We must always release buf_block_t::lock before invoking
unfix() or io_unfix(), to prevent a glitch where a block that was
added to the buf_pool.free list would apper X-latched. See
commit c5883debd6ef440a037011c11873b396923e93c5 how this glitch
was finally caught in a debug environment.
We move some buf_pool_t::page_hash specific code from the
ha and hash modules to buf_pool, for improved readability.
buf_pool_t::close(): Assert that all blocks are clean, except
on aborted startup or crash-like shutdown.
buf_pool_t::validate(): No longer attempt to validate
n_flush[] against the number of BUF_IO_WRITE fixed blocks,
because buf_page_t::flush_type no longer exists.
buf_pool_t::watch_set(): Replaces buf_pool_watch_set().
Reduce mutex contention by separating the buf_pool.watch[]
allocation and the insert into buf_pool.page_hash.
buf_pool_t::page_hash_lock<bool exclusive>(): Acquire a
buf_pool.page_hash latch.
Replaces and extends buf_page_hash_lock_s_confirm()
and buf_page_hash_lock_x_confirm().
buf_pool_t::READ_AHEAD_PAGES: Renamed from BUF_READ_AHEAD_PAGES.
buf_pool_t::curr_size, old_size, read_ahead_area, n_pend_reads:
Use Atomic_counter.
buf_pool_t::running_out(): Replaces buf_LRU_buf_pool_running_out().
buf_pool_t::LRU_remove(): Remove a block from the LRU list
and return its predecessor. Incorporates buf_LRU_adjust_hp(),
which was removed.
buf_page_get_gen(): Remove a redundant call of fsp_is_system_temporary(),
for mode == BUF_GET_IF_IN_POOL_OR_WATCH, which is only used by
BTR_DELETE_OP (purge), which is never invoked on temporary tables.
buf_free_from_unzip_LRU_list_batch(): Avoid redundant assignments.
buf_LRU_free_from_unzip_LRU_list(): Simplify the loop condition.
buf_LRU_free_page(): Clarify the function comment.
buf_flush_check_neighbor(), buf_flush_check_neighbors():
Rewrite the construction of the page hash range. We will hold
the buf_pool.mutex for up to buf_pool.read_ahead_area (at most 64)
consecutive lookups of buf_pool.page_hash.
buf_flush_page_and_try_neighbors(): Remove.
Merge to its only callers, and remove redundant operations in
buf_flush_LRU_list_batch().
buf_read_ahead_random(), buf_read_ahead_linear(): Rewrite.
Do not acquire buf_pool.mutex, and iterate directly with page_id_t.
ut_2_power_up(): Remove. my_round_up_to_next_power() is inlined
and avoids any loops.
fil_page_get_prev(), fil_page_get_next(), fil_addr_is_null(): Remove.
buf_flush_page(): Add a fil_space_t* parameter. Minimize the
buf_pool.mutex hold time. buf_pool.n_flush[] is no longer updated
atomically with the io_fix, and we will protect most buf_block_t
fields with buf_block_t::lock. The function
buf_flush_write_block_low() is removed and merged here.
buf_page_init_for_read(): Use static linkage. Initialize the newly
allocated block and acquire the exclusive buf_block_t::lock while not
holding any mutex.
IORequest::IORequest(): Remove the body. We only need to invoke
set_punch_hole() in buf_flush_page() and nowhere else.
buf_page_t::flush_type: Remove. Replaced by IORequest::flush_type.
This field is only used during a fil_io() call.
That function already takes IORequest as a parameter, so we had
better introduce for the rarely changing field.
buf_block_t::init(): Replaces buf_page_init().
buf_page_t::init(): Replaces buf_page_init_low().
buf_block_t::initialise(): Initialise many fields, but
keep the buf_page_t::state(). Both buf_pool_t::validate() and
buf_page_optimistic_get() requires that buf_page_t::in_file()
be protected atomically with buf_page_t::in_page_hash
and buf_page_t::in_LRU_list.
buf_page_optimistic_get(): Now that buf_block_t::mutex
no longer exists, we must check buf_page_t::io_fix()
after acquiring the buf_pool.page_hash lock, to detect
whether buf_page_init_for_read() has been initiated.
We will also check the io_fix() before acquiring hash_lock
in order to avoid unnecessary computation.
The field buf_block_t::modify_clock (protected by buf_block_t::lock)
allows buf_page_optimistic_get() to validate the block.
buf_page_t::real_size: Remove. It was only used while flushing
pages of page_compressed tables.
buf_page_encrypt(): Add an output parameter that allows us ot eliminate
buf_page_t::real_size. Replace a condition with debug assertion.
buf_page_should_punch_hole(): Remove.
buf_dblwr_t::add_to_batch(): Replaces buf_dblwr_add_to_batch().
Add the parameter size (to replace buf_page_t::real_size).
buf_dblwr_t::write_single_page(): Replaces buf_dblwr_write_single_page().
Add the parameter size (to replace buf_page_t::real_size).
fil_system_t::detach(): Replaces fil_space_detach().
Ensure that fil_validate() will not be violated even if
fil_system.mutex is released and reacquired.
fil_node_t::complete_io(): Renamed from fil_node_complete_io().
fil_node_t::close_to_free(): Replaces fil_node_close_to_free().
Avoid invoking fil_node_t::close() because fil_system.n_open
has already been decremented in fil_space_t::detach().
BUF_BLOCK_READY_FOR_USE: Remove. Directly use BUF_BLOCK_MEMORY.
BUF_BLOCK_ZIP_DIRTY: Remove. Directly use BUF_BLOCK_ZIP_PAGE,
and distinguish dirty pages by buf_page_t::oldest_modification().
BUF_BLOCK_POOL_WATCH: Remove. Use BUF_BLOCK_NOT_USED instead.
This state was only being used for buf_page_t that are in
buf_pool.watch.
buf_pool_t::watch[]: Remove pointer indirection.
buf_page_t::in_flush_list: Remove. It was set if and only if
buf_page_t::oldest_modification() is nonzero.
buf_page_decrypt_after_read(), buf_corrupt_page_release(),
buf_page_check_corrupt(): Change the const fil_space_t* parameter
to const fil_node_t& so that we can report the correct file name.
buf_page_monitor(): Declare as an ATTRIBUTE_COLD global function.
buf_page_io_complete(): Split to buf_page_read_complete() and
buf_page_write_complete().
buf_dblwr_t::in_use: Remove.
buf_dblwr_t::buf_block_array: Add IORequest::flush_t.
buf_dblwr_sync_datafiles(): Remove. It was a useless wrapper of
os_aio_wait_until_no_pending_writes().
buf_flush_write_complete(): Declare static, not global.
Add the parameter IORequest::flush_t.
buf_flush_freed_page(): Simplify the code.
recv_sys_t::flush_lru: Renamed from flush_type and changed to bool.
fil_read(), fil_write(): Replaced with direct use of fil_io().
fil_buffering_disabled(): Remove. Check srv_file_flush_method directly.
fil_mutex_enter_and_prepare_for_io(): Return the resolved
fil_space_t* to avoid a duplicated lookup in the caller.
fil_report_invalid_page_access(): Clean up the parameters.
fil_io(): Return fil_io_t, which comprises fil_node_t and error code.
Always invoke fil_space_t::acquire_for_io() and let either the
sync=true caller or fil_aio_callback() invoke
fil_space_t::release_for_io().
fil_aio_callback(): Rewrite to replace buf_page_io_complete().
fil_check_pending_operations(): Remove a parameter, and remove some
redundant lookups.
fil_node_close_to_free(): Wait for n_pending==0. Because we no longer
do an extra lookup of the tablespace between fil_io() and the
completion of the operation, we must give fil_node_t::complete_io() a
chance to decrement the counter.
fil_close_tablespace(): Remove unused parameter trx, and document
that this is only invoked during the error handling of IMPORT TABLESPACE.
row_import_discard_changes(): Merged with the only caller,
row_import_cleanup(). Do not lock up the data dictionary while
invoking fil_close_tablespace().
logs_empty_and_mark_files_at_shutdown(): Do not invoke
fil_close_all_files(), to avoid a !needs_flush assertion failure
on fil_node_t::close().
innodb_shutdown(): Invoke os_aio_free() before fil_close_all_files().
fil_close_all_files(): Invoke fil_flush_file_spaces()
to ensure proper durability.
thread_pool::unbind(): Fix a crash that would occur on Windows
after srv_thread_pool->disable_aio() and os_file_close().
This fix was submitted by Vladislav Vaintroub.
Thanks to Matthias Leich and Axel Schwenke for extensive testing,
Vladislav Vaintroub for helpful comments, and Eugene Kosov for a review.
6 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-13542: Crashing on corrupted page is unhelpful
The approach to handling corruption that was chosen by Oracle in
commit 177d8b0c125b841c0650d27d735e3b87509dc286
is not really useful. Not only did it actually fail to prevent InnoDB
from crashing, but it is making things worse by blocking attempts to
rescue data from or rebuild a partially readable table.
We will try to prevent crashes in a different way: by propagating
errors up the call stack. We will never mark the clustered index
persistently corrupted, so that data recovery may be attempted by
reading from the table, or by rebuilding the table.
This should also fix MDEV-13680 (crash on btr_page_alloc() failure);
it was extensively tested with innodb_file_per_table=0 and a
non-autoextend system tablespace.
We should now avoid crashes in many cases, such as when a page
cannot be read or allocated, or an inconsistency is detected when
attempting to update multiple pages. We will not crash on double-free,
such as on the recovery of DDL in system tablespace in case something
was corrupted.
Crashes on corrupted data are still possible. The fault injection mechanism
that is introduced in the subsequent commit may help catch more of them.
buf_page_import_corrupt_failure: Remove the fault injection, and instead
corrupt some pages using Perl code in the tests.
btr_cur_pessimistic_insert(): Always reserve extents (except for the
change buffer), in order to prevent a subsequent allocation failure.
btr_pcur_open_at_rnd_pos(): Merged to the only caller ibuf_merge_pages().
btr_assert_not_corrupted(), btr_corruption_report(): Remove.
Similar checks are already part of btr_block_get().
FSEG_MAGIC_N_BYTES: Replaces FSEG_MAGIC_N_VALUE.
dict_hdr_get(), trx_rsegf_get_new(), trx_undo_page_get(),
trx_undo_page_get_s_latched(): Replaced with error-checking calls.
trx_rseg_t::get(mtr_t*): Replaces trx_rsegf_get().
trx_rseg_header_create(): Let the caller update the TRX_SYS page if needed.
trx_sys_create_sys_pages(): Merged with trx_sysf_create().
dict_check_tablespaces_and_store_max_id(): Do not access
DICT_HDR_MAX_SPACE_ID, because it was already recovered in dict_boot().
Merge dict_check_sys_tables() with this function.
dir_pathname(): Replaces os_file_make_new_pathname().
row_undo_ins_remove_sec(): Do not modify the undo page by adding
a terminating NUL byte to the record.
btr_decryption_failed(): Report decryption failures
dict_set_corrupted_by_space(), dict_set_encrypted_by_space(),
dict_set_corrupted_index_cache_only(): Remove.
dict_set_corrupted(): Remove the constant parameter dict_locked=false.
Never flag the clustered index corrupted in SYS_INDEXES, because
that would deny further access to the table. It might be possible to
repair the table by executing ALTER TABLE or OPTIMIZE TABLE, in case
no B-tree leaf page is corrupted.
dict_table_skip_corrupt_index(), dict_table_next_uncorrupted_index(),
row_purge_skip_uncommitted_virtual_index(): Remove, and refactor
the callers to read dict_index_t::type only once.
dict_table_is_corrupted(): Remove.
dict_index_t::is_btree(): Determine if the index is a valid B-tree.
BUF_GET_NO_LATCH, BUF_EVICT_IF_IN_POOL: Remove.
UNIV_BTR_DEBUG: Remove. Any inconsistency will no longer trigger
assertion failures, but error codes being returned.
buf_corrupt_page_release(): Replaced with a direct call to
buf_pool.corrupted_evict().
fil_invalid_page_access_msg(): Never crash on an invalid read;
let the caller of buf_page_get_gen() decide.
btr_pcur_t::restore_position(): Propagate failure status to the caller
by returning CORRUPTED.
opt_search_plan_for_table(): Simplify the code.
row_purge_del_mark(), row_purge_upd_exist_or_extern_func(),
row_undo_ins_remove_sec_rec(), row_undo_mod_upd_del_sec(),
row_undo_mod_del_mark_sec(): Avoid mem_heap_create()/mem_heap_free()
when no secondary indexes exist.
row_undo_mod_upd_exist_sec(): Simplify the code.
row_upd_clust_step(), dict_load_table_one(): Return DB_TABLE_CORRUPT
if the clustered index (and therefore the table) is corrupted, similar
to what we do in row_insert_for_mysql().
fut_get_ptr(): Replace with buf_page_get_gen() calls.
buf_page_get_gen(): Return nullptr and *err=DB_CORRUPTION
if the page is marked as freed. For other modes than
BUF_GET_POSSIBLY_FREED or BUF_PEEK_IF_IN_POOL this will
trigger a debug assertion failure. For BUF_GET_POSSIBLY_FREED,
we will return nullptr for freed pages, so that the callers
can be simplified. The purge of transaction history will be
a new user of BUF_GET_POSSIBLY_FREED, to avoid crashes on
corrupted data.
buf_page_get_low(): Never crash on a corrupted page, but simply
return nullptr.
fseg_page_is_allocated(): Replaces fseg_page_is_free().
fts_drop_common_tables(): Return an error if the transaction
was rolled back.
fil_space_t::set_corrupted(): Report a tablespace as corrupted if
it was not reported already.
fil_space_t::io(): Invoke fil_space_t::set_corrupted() to report
out-of-bounds page access or other errors.
Clean up mtr_t::page_lock()
buf_page_get_low(): Validate the page identifier (to check for
recently read corrupted pages) after acquiring the page latch.
buf_page_t::read_complete(): Flag uninitialized (all-zero) pages
with DB_FAIL. Return DB_PAGE_CORRUPTED on page number mismatch.
mtr_t::defer_drop_ahi(): Renamed from mtr_defer_drop_ahi().
recv_sys_t::free_corrupted_page(): Only set_corrupt_fs()
if any log records exist for the page. We do not mind if read-ahead
produces corrupted (or all-zero) pages that were not actually needed
during recovery.
recv_recover_page(): Return whether the operation succeeded.
recv_sys_t::recover_low(): Simplify the logic. Check for recovery error.
Thanks to Matthias Leich for testing this extensively and to the
authors of https://rr-project.org for making it easy to diagnose
and fix any failures that were found during the testing.
3 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-12353: Change the redo log encoding
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
6 years ago  MDEV-27058: Reduce the size of buf_block_t and buf_page_t
buf_page_t::frame: Moved from buf_block_t::frame.
All 'thin' buf_page_t describing compressed-only ROW_FORMAT=COMPRESSED
pages will have frame=nullptr, while all 'fat' buf_block_t
will have a non-null frame pointing to aligned innodb_page_size bytes.
This eliminates the need for separate states for
BUF_BLOCK_FILE_PAGE and BUF_BLOCK_ZIP_PAGE.
buf_page_t::lock: Moved from buf_block_t::lock. That is, all block
descriptors will have a page latch. The IO_PIN state that was used
for discarding or creating the uncompressed page frame of a
ROW_FORMAT=COMPRESSED block is replaced by a combination of read-fix
and page X-latch.
page_zip_des_t::fix: Replaces state_, buf_fix_count_, io_fix_, status
of buf_page_t with a single std::atomic<uint32_t>. All modifications
will use store(), fetch_add(), fetch_sub(). This space was previously
wasted to alignment on 64-bit systems. We will use the following encoding
that combines a state (partly read-fix or write-fix) and a buffer-fix
count:
buf_page_t::NOT_USED=0 (previously BUF_BLOCK_NOT_USED)
buf_page_t::MEMORY=1 (previously BUF_BLOCK_MEMORY)
buf_page_t::REMOVE_HASH=2 (previously BUF_BLOCK_REMOVE_HASH)
buf_page_t::FREED=3 + fix: pages marked as freed in the file
buf_page_t::UNFIXED=1U<<29 + fix: normal pages
buf_page_t::IBUF_EXIST=2U<<29 + fix: normal pages; may need ibuf merge
buf_page_t::REINIT=3U<<29 + fix: reinitialized pages (skip doublewrite)
buf_page_t::READ_FIX=4U<<29 + fix: read-fixed pages (also X-latched)
buf_page_t::WRITE_FIX=5U<<29 + fix: write-fixed pages (also U-latched)
buf_page_t::WRITE_FIX_IBUF=6U<<29 + fix: write-fixed; may have ibuf
buf_page_t::WRITE_FIX_REINIT=7U<<29 + fix: write-fixed (no doublewrite)
buf_page_t::write_complete(): Change WRITE_FIX or WRITE_FIX_REINIT to
UNFIXED, and WRITE_FIX_IBUF to IBUF_EXIST, before releasing the U-latch.
buf_page_t::read_complete(): Renamed from buf_page_read_complete().
Change READ_FIX to UNFIXED or IBUF_EXIST, before releasing the X-latch.
buf_page_t::can_relocate(): If the page latch is being held or waited for,
or the block is buffer-fixed or io-fixed, return false. (The condition
on the page latch is new.)
Outside buf_page_get_gen(), buf_page_get_low() and buf_page_free(), we
will acquire the page latch before fix(), and unfix() before unlocking.
buf_page_t::flush(): Replaces buf_flush_page(). Optimize the
handling of FREED pages.
buf_pool_t::release_freed_page(): Assume that buf_pool.mutex is held
by the caller.
buf_page_t::is_read_fixed(), buf_page_t::is_write_fixed(): New predicates.
buf_page_get_low(): Ignore guesses that are read-fixed because they
may not yet be registered in buf_pool.page_hash and buf_pool.LRU.
buf_page_optimistic_get(): Acquire latch before buffer-fixing.
buf_page_make_young(): Leave read-fixed blocks alone, because they
might not be registered in buf_pool.LRU yet.
recv_sys_t::recover_deferred(), recv_sys_t::recover_low():
Possibly fix MDEV-26326, by holding a page X-latch instead of
only buffer-fixing the page.
4 years ago  MDEV-13542: Crashing on corrupted page is unhelpful
The approach to handling corruption that was chosen by Oracle in
commit 177d8b0c125b841c0650d27d735e3b87509dc286
is not really useful. Not only did it actually fail to prevent InnoDB
from crashing, but it is making things worse by blocking attempts to
rescue data from or rebuild a partially readable table.
We will try to prevent crashes in a different way: by propagating
errors up the call stack. We will never mark the clustered index
persistently corrupted, so that data recovery may be attempted by
reading from the table, or by rebuilding the table.
This should also fix MDEV-13680 (crash on btr_page_alloc() failure);
it was extensively tested with innodb_file_per_table=0 and a
non-autoextend system tablespace.
We should now avoid crashes in many cases, such as when a page
cannot be read or allocated, or an inconsistency is detected when
attempting to update multiple pages. We will not crash on double-free,
such as on the recovery of DDL in system tablespace in case something
was corrupted.
Crashes on corrupted data are still possible. The fault injection mechanism
that is introduced in the subsequent commit may help catch more of them.
buf_page_import_corrupt_failure: Remove the fault injection, and instead
corrupt some pages using Perl code in the tests.
btr_cur_pessimistic_insert(): Always reserve extents (except for the
change buffer), in order to prevent a subsequent allocation failure.
btr_pcur_open_at_rnd_pos(): Merged to the only caller ibuf_merge_pages().
btr_assert_not_corrupted(), btr_corruption_report(): Remove.
Similar checks are already part of btr_block_get().
FSEG_MAGIC_N_BYTES: Replaces FSEG_MAGIC_N_VALUE.
dict_hdr_get(), trx_rsegf_get_new(), trx_undo_page_get(),
trx_undo_page_get_s_latched(): Replaced with error-checking calls.
trx_rseg_t::get(mtr_t*): Replaces trx_rsegf_get().
trx_rseg_header_create(): Let the caller update the TRX_SYS page if needed.
trx_sys_create_sys_pages(): Merged with trx_sysf_create().
dict_check_tablespaces_and_store_max_id(): Do not access
DICT_HDR_MAX_SPACE_ID, because it was already recovered in dict_boot().
Merge dict_check_sys_tables() with this function.
dir_pathname(): Replaces os_file_make_new_pathname().
row_undo_ins_remove_sec(): Do not modify the undo page by adding
a terminating NUL byte to the record.
btr_decryption_failed(): Report decryption failures
dict_set_corrupted_by_space(), dict_set_encrypted_by_space(),
dict_set_corrupted_index_cache_only(): Remove.
dict_set_corrupted(): Remove the constant parameter dict_locked=false.
Never flag the clustered index corrupted in SYS_INDEXES, because
that would deny further access to the table. It might be possible to
repair the table by executing ALTER TABLE or OPTIMIZE TABLE, in case
no B-tree leaf page is corrupted.
dict_table_skip_corrupt_index(), dict_table_next_uncorrupted_index(),
row_purge_skip_uncommitted_virtual_index(): Remove, and refactor
the callers to read dict_index_t::type only once.
dict_table_is_corrupted(): Remove.
dict_index_t::is_btree(): Determine if the index is a valid B-tree.
BUF_GET_NO_LATCH, BUF_EVICT_IF_IN_POOL: Remove.
UNIV_BTR_DEBUG: Remove. Any inconsistency will no longer trigger
assertion failures, but error codes being returned.
buf_corrupt_page_release(): Replaced with a direct call to
buf_pool.corrupted_evict().
fil_invalid_page_access_msg(): Never crash on an invalid read;
let the caller of buf_page_get_gen() decide.
btr_pcur_t::restore_position(): Propagate failure status to the caller
by returning CORRUPTED.
opt_search_plan_for_table(): Simplify the code.
row_purge_del_mark(), row_purge_upd_exist_or_extern_func(),
row_undo_ins_remove_sec_rec(), row_undo_mod_upd_del_sec(),
row_undo_mod_del_mark_sec(): Avoid mem_heap_create()/mem_heap_free()
when no secondary indexes exist.
row_undo_mod_upd_exist_sec(): Simplify the code.
row_upd_clust_step(), dict_load_table_one(): Return DB_TABLE_CORRUPT
if the clustered index (and therefore the table) is corrupted, similar
to what we do in row_insert_for_mysql().
fut_get_ptr(): Replace with buf_page_get_gen() calls.
buf_page_get_gen(): Return nullptr and *err=DB_CORRUPTION
if the page is marked as freed. For other modes than
BUF_GET_POSSIBLY_FREED or BUF_PEEK_IF_IN_POOL this will
trigger a debug assertion failure. For BUF_GET_POSSIBLY_FREED,
we will return nullptr for freed pages, so that the callers
can be simplified. The purge of transaction history will be
a new user of BUF_GET_POSSIBLY_FREED, to avoid crashes on
corrupted data.
buf_page_get_low(): Never crash on a corrupted page, but simply
return nullptr.
fseg_page_is_allocated(): Replaces fseg_page_is_free().
fts_drop_common_tables(): Return an error if the transaction
was rolled back.
fil_space_t::set_corrupted(): Report a tablespace as corrupted if
it was not reported already.
fil_space_t::io(): Invoke fil_space_t::set_corrupted() to report
out-of-bounds page access or other errors.
Clean up mtr_t::page_lock()
buf_page_get_low(): Validate the page identifier (to check for
recently read corrupted pages) after acquiring the page latch.
buf_page_t::read_complete(): Flag uninitialized (all-zero) pages
with DB_FAIL. Return DB_PAGE_CORRUPTED on page number mismatch.
mtr_t::defer_drop_ahi(): Renamed from mtr_defer_drop_ahi().
recv_sys_t::free_corrupted_page(): Only set_corrupt_fs()
if any log records exist for the page. We do not mind if read-ahead
produces corrupted (or all-zero) pages that were not actually needed
during recovery.
recv_recover_page(): Return whether the operation succeeded.
recv_sys_t::recover_low(): Simplify the logic. Check for recovery error.
Thanks to Matthias Leich for testing this extensively and to the
authors of https://rr-project.org for making it easy to diagnose
and fix any failures that were found during the testing.
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-13542: Crashing on corrupted page is unhelpful
The approach to handling corruption that was chosen by Oracle in
commit 177d8b0c125b841c0650d27d735e3b87509dc286
is not really useful. Not only did it actually fail to prevent InnoDB
from crashing, but it is making things worse by blocking attempts to
rescue data from or rebuild a partially readable table.
We will try to prevent crashes in a different way: by propagating
errors up the call stack. We will never mark the clustered index
persistently corrupted, so that data recovery may be attempted by
reading from the table, or by rebuilding the table.
This should also fix MDEV-13680 (crash on btr_page_alloc() failure);
it was extensively tested with innodb_file_per_table=0 and a
non-autoextend system tablespace.
We should now avoid crashes in many cases, such as when a page
cannot be read or allocated, or an inconsistency is detected when
attempting to update multiple pages. We will not crash on double-free,
such as on the recovery of DDL in system tablespace in case something
was corrupted.
Crashes on corrupted data are still possible. The fault injection mechanism
that is introduced in the subsequent commit may help catch more of them.
buf_page_import_corrupt_failure: Remove the fault injection, and instead
corrupt some pages using Perl code in the tests.
btr_cur_pessimistic_insert(): Always reserve extents (except for the
change buffer), in order to prevent a subsequent allocation failure.
btr_pcur_open_at_rnd_pos(): Merged to the only caller ibuf_merge_pages().
btr_assert_not_corrupted(), btr_corruption_report(): Remove.
Similar checks are already part of btr_block_get().
FSEG_MAGIC_N_BYTES: Replaces FSEG_MAGIC_N_VALUE.
dict_hdr_get(), trx_rsegf_get_new(), trx_undo_page_get(),
trx_undo_page_get_s_latched(): Replaced with error-checking calls.
trx_rseg_t::get(mtr_t*): Replaces trx_rsegf_get().
trx_rseg_header_create(): Let the caller update the TRX_SYS page if needed.
trx_sys_create_sys_pages(): Merged with trx_sysf_create().
dict_check_tablespaces_and_store_max_id(): Do not access
DICT_HDR_MAX_SPACE_ID, because it was already recovered in dict_boot().
Merge dict_check_sys_tables() with this function.
dir_pathname(): Replaces os_file_make_new_pathname().
row_undo_ins_remove_sec(): Do not modify the undo page by adding
a terminating NUL byte to the record.
btr_decryption_failed(): Report decryption failures
dict_set_corrupted_by_space(), dict_set_encrypted_by_space(),
dict_set_corrupted_index_cache_only(): Remove.
dict_set_corrupted(): Remove the constant parameter dict_locked=false.
Never flag the clustered index corrupted in SYS_INDEXES, because
that would deny further access to the table. It might be possible to
repair the table by executing ALTER TABLE or OPTIMIZE TABLE, in case
no B-tree leaf page is corrupted.
dict_table_skip_corrupt_index(), dict_table_next_uncorrupted_index(),
row_purge_skip_uncommitted_virtual_index(): Remove, and refactor
the callers to read dict_index_t::type only once.
dict_table_is_corrupted(): Remove.
dict_index_t::is_btree(): Determine if the index is a valid B-tree.
BUF_GET_NO_LATCH, BUF_EVICT_IF_IN_POOL: Remove.
UNIV_BTR_DEBUG: Remove. Any inconsistency will no longer trigger
assertion failures, but error codes being returned.
buf_corrupt_page_release(): Replaced with a direct call to
buf_pool.corrupted_evict().
fil_invalid_page_access_msg(): Never crash on an invalid read;
let the caller of buf_page_get_gen() decide.
btr_pcur_t::restore_position(): Propagate failure status to the caller
by returning CORRUPTED.
opt_search_plan_for_table(): Simplify the code.
row_purge_del_mark(), row_purge_upd_exist_or_extern_func(),
row_undo_ins_remove_sec_rec(), row_undo_mod_upd_del_sec(),
row_undo_mod_del_mark_sec(): Avoid mem_heap_create()/mem_heap_free()
when no secondary indexes exist.
row_undo_mod_upd_exist_sec(): Simplify the code.
row_upd_clust_step(), dict_load_table_one(): Return DB_TABLE_CORRUPT
if the clustered index (and therefore the table) is corrupted, similar
to what we do in row_insert_for_mysql().
fut_get_ptr(): Replace with buf_page_get_gen() calls.
buf_page_get_gen(): Return nullptr and *err=DB_CORRUPTION
if the page is marked as freed. For other modes than
BUF_GET_POSSIBLY_FREED or BUF_PEEK_IF_IN_POOL this will
trigger a debug assertion failure. For BUF_GET_POSSIBLY_FREED,
we will return nullptr for freed pages, so that the callers
can be simplified. The purge of transaction history will be
a new user of BUF_GET_POSSIBLY_FREED, to avoid crashes on
corrupted data.
buf_page_get_low(): Never crash on a corrupted page, but simply
return nullptr.
fseg_page_is_allocated(): Replaces fseg_page_is_free().
fts_drop_common_tables(): Return an error if the transaction
was rolled back.
fil_space_t::set_corrupted(): Report a tablespace as corrupted if
it was not reported already.
fil_space_t::io(): Invoke fil_space_t::set_corrupted() to report
out-of-bounds page access or other errors.
Clean up mtr_t::page_lock()
buf_page_get_low(): Validate the page identifier (to check for
recently read corrupted pages) after acquiring the page latch.
buf_page_t::read_complete(): Flag uninitialized (all-zero) pages
with DB_FAIL. Return DB_PAGE_CORRUPTED on page number mismatch.
mtr_t::defer_drop_ahi(): Renamed from mtr_defer_drop_ahi().
recv_sys_t::free_corrupted_page(): Only set_corrupt_fs()
if any log records exist for the page. We do not mind if read-ahead
produces corrupted (or all-zero) pages that were not actually needed
during recovery.
recv_recover_page(): Return whether the operation succeeded.
recv_sys_t::recover_low(): Simplify the logic. Check for recovery error.
Thanks to Matthias Leich for testing this extensively and to the
authors of https://rr-project.org for making it easy to diagnose
and fix any failures that were found during the testing.
3 years ago  MDEV-13542: Crashing on corrupted page is unhelpful
The approach to handling corruption that was chosen by Oracle in
commit 177d8b0c125b841c0650d27d735e3b87509dc286
is not really useful. Not only did it actually fail to prevent InnoDB
from crashing, but it is making things worse by blocking attempts to
rescue data from or rebuild a partially readable table.
We will try to prevent crashes in a different way: by propagating
errors up the call stack. We will never mark the clustered index
persistently corrupted, so that data recovery may be attempted by
reading from the table, or by rebuilding the table.
This should also fix MDEV-13680 (crash on btr_page_alloc() failure);
it was extensively tested with innodb_file_per_table=0 and a
non-autoextend system tablespace.
We should now avoid crashes in many cases, such as when a page
cannot be read or allocated, or an inconsistency is detected when
attempting to update multiple pages. We will not crash on double-free,
such as on the recovery of DDL in system tablespace in case something
was corrupted.
Crashes on corrupted data are still possible. The fault injection mechanism
that is introduced in the subsequent commit may help catch more of them.
buf_page_import_corrupt_failure: Remove the fault injection, and instead
corrupt some pages using Perl code in the tests.
btr_cur_pessimistic_insert(): Always reserve extents (except for the
change buffer), in order to prevent a subsequent allocation failure.
btr_pcur_open_at_rnd_pos(): Merged to the only caller ibuf_merge_pages().
btr_assert_not_corrupted(), btr_corruption_report(): Remove.
Similar checks are already part of btr_block_get().
FSEG_MAGIC_N_BYTES: Replaces FSEG_MAGIC_N_VALUE.
dict_hdr_get(), trx_rsegf_get_new(), trx_undo_page_get(),
trx_undo_page_get_s_latched(): Replaced with error-checking calls.
trx_rseg_t::get(mtr_t*): Replaces trx_rsegf_get().
trx_rseg_header_create(): Let the caller update the TRX_SYS page if needed.
trx_sys_create_sys_pages(): Merged with trx_sysf_create().
dict_check_tablespaces_and_store_max_id(): Do not access
DICT_HDR_MAX_SPACE_ID, because it was already recovered in dict_boot().
Merge dict_check_sys_tables() with this function.
dir_pathname(): Replaces os_file_make_new_pathname().
row_undo_ins_remove_sec(): Do not modify the undo page by adding
a terminating NUL byte to the record.
btr_decryption_failed(): Report decryption failures
dict_set_corrupted_by_space(), dict_set_encrypted_by_space(),
dict_set_corrupted_index_cache_only(): Remove.
dict_set_corrupted(): Remove the constant parameter dict_locked=false.
Never flag the clustered index corrupted in SYS_INDEXES, because
that would deny further access to the table. It might be possible to
repair the table by executing ALTER TABLE or OPTIMIZE TABLE, in case
no B-tree leaf page is corrupted.
dict_table_skip_corrupt_index(), dict_table_next_uncorrupted_index(),
row_purge_skip_uncommitted_virtual_index(): Remove, and refactor
the callers to read dict_index_t::type only once.
dict_table_is_corrupted(): Remove.
dict_index_t::is_btree(): Determine if the index is a valid B-tree.
BUF_GET_NO_LATCH, BUF_EVICT_IF_IN_POOL: Remove.
UNIV_BTR_DEBUG: Remove. Any inconsistency will no longer trigger
assertion failures, but error codes being returned.
buf_corrupt_page_release(): Replaced with a direct call to
buf_pool.corrupted_evict().
fil_invalid_page_access_msg(): Never crash on an invalid read;
let the caller of buf_page_get_gen() decide.
btr_pcur_t::restore_position(): Propagate failure status to the caller
by returning CORRUPTED.
opt_search_plan_for_table(): Simplify the code.
row_purge_del_mark(), row_purge_upd_exist_or_extern_func(),
row_undo_ins_remove_sec_rec(), row_undo_mod_upd_del_sec(),
row_undo_mod_del_mark_sec(): Avoid mem_heap_create()/mem_heap_free()
when no secondary indexes exist.
row_undo_mod_upd_exist_sec(): Simplify the code.
row_upd_clust_step(), dict_load_table_one(): Return DB_TABLE_CORRUPT
if the clustered index (and therefore the table) is corrupted, similar
to what we do in row_insert_for_mysql().
fut_get_ptr(): Replace with buf_page_get_gen() calls.
buf_page_get_gen(): Return nullptr and *err=DB_CORRUPTION
if the page is marked as freed. For other modes than
BUF_GET_POSSIBLY_FREED or BUF_PEEK_IF_IN_POOL this will
trigger a debug assertion failure. For BUF_GET_POSSIBLY_FREED,
we will return nullptr for freed pages, so that the callers
can be simplified. The purge of transaction history will be
a new user of BUF_GET_POSSIBLY_FREED, to avoid crashes on
corrupted data.
buf_page_get_low(): Never crash on a corrupted page, but simply
return nullptr.
fseg_page_is_allocated(): Replaces fseg_page_is_free().
fts_drop_common_tables(): Return an error if the transaction
was rolled back.
fil_space_t::set_corrupted(): Report a tablespace as corrupted if
it was not reported already.
fil_space_t::io(): Invoke fil_space_t::set_corrupted() to report
out-of-bounds page access or other errors.
Clean up mtr_t::page_lock()
buf_page_get_low(): Validate the page identifier (to check for
recently read corrupted pages) after acquiring the page latch.
buf_page_t::read_complete(): Flag uninitialized (all-zero) pages
with DB_FAIL. Return DB_PAGE_CORRUPTED on page number mismatch.
mtr_t::defer_drop_ahi(): Renamed from mtr_defer_drop_ahi().
recv_sys_t::free_corrupted_page(): Only set_corrupt_fs()
if any log records exist for the page. We do not mind if read-ahead
produces corrupted (or all-zero) pages that were not actually needed
during recovery.
recv_recover_page(): Return whether the operation succeeded.
recv_sys_t::recover_low(): Simplify the logic. Check for recovery error.
Thanks to Matthias Leich for testing this extensively and to the
authors of https://rr-project.org for making it easy to diagnose
and fix any failures that were found during the testing.
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-13542: Crashing on corrupted page is unhelpful
The approach to handling corruption that was chosen by Oracle in
commit 177d8b0c125b841c0650d27d735e3b87509dc286
is not really useful. Not only did it actually fail to prevent InnoDB
from crashing, but it is making things worse by blocking attempts to
rescue data from or rebuild a partially readable table.
We will try to prevent crashes in a different way: by propagating
errors up the call stack. We will never mark the clustered index
persistently corrupted, so that data recovery may be attempted by
reading from the table, or by rebuilding the table.
This should also fix MDEV-13680 (crash on btr_page_alloc() failure);
it was extensively tested with innodb_file_per_table=0 and a
non-autoextend system tablespace.
We should now avoid crashes in many cases, such as when a page
cannot be read or allocated, or an inconsistency is detected when
attempting to update multiple pages. We will not crash on double-free,
such as on the recovery of DDL in system tablespace in case something
was corrupted.
Crashes on corrupted data are still possible. The fault injection mechanism
that is introduced in the subsequent commit may help catch more of them.
buf_page_import_corrupt_failure: Remove the fault injection, and instead
corrupt some pages using Perl code in the tests.
btr_cur_pessimistic_insert(): Always reserve extents (except for the
change buffer), in order to prevent a subsequent allocation failure.
btr_pcur_open_at_rnd_pos(): Merged to the only caller ibuf_merge_pages().
btr_assert_not_corrupted(), btr_corruption_report(): Remove.
Similar checks are already part of btr_block_get().
FSEG_MAGIC_N_BYTES: Replaces FSEG_MAGIC_N_VALUE.
dict_hdr_get(), trx_rsegf_get_new(), trx_undo_page_get(),
trx_undo_page_get_s_latched(): Replaced with error-checking calls.
trx_rseg_t::get(mtr_t*): Replaces trx_rsegf_get().
trx_rseg_header_create(): Let the caller update the TRX_SYS page if needed.
trx_sys_create_sys_pages(): Merged with trx_sysf_create().
dict_check_tablespaces_and_store_max_id(): Do not access
DICT_HDR_MAX_SPACE_ID, because it was already recovered in dict_boot().
Merge dict_check_sys_tables() with this function.
dir_pathname(): Replaces os_file_make_new_pathname().
row_undo_ins_remove_sec(): Do not modify the undo page by adding
a terminating NUL byte to the record.
btr_decryption_failed(): Report decryption failures
dict_set_corrupted_by_space(), dict_set_encrypted_by_space(),
dict_set_corrupted_index_cache_only(): Remove.
dict_set_corrupted(): Remove the constant parameter dict_locked=false.
Never flag the clustered index corrupted in SYS_INDEXES, because
that would deny further access to the table. It might be possible to
repair the table by executing ALTER TABLE or OPTIMIZE TABLE, in case
no B-tree leaf page is corrupted.
dict_table_skip_corrupt_index(), dict_table_next_uncorrupted_index(),
row_purge_skip_uncommitted_virtual_index(): Remove, and refactor
the callers to read dict_index_t::type only once.
dict_table_is_corrupted(): Remove.
dict_index_t::is_btree(): Determine if the index is a valid B-tree.
BUF_GET_NO_LATCH, BUF_EVICT_IF_IN_POOL: Remove.
UNIV_BTR_DEBUG: Remove. Any inconsistency will no longer trigger
assertion failures, but error codes being returned.
buf_corrupt_page_release(): Replaced with a direct call to
buf_pool.corrupted_evict().
fil_invalid_page_access_msg(): Never crash on an invalid read;
let the caller of buf_page_get_gen() decide.
btr_pcur_t::restore_position(): Propagate failure status to the caller
by returning CORRUPTED.
opt_search_plan_for_table(): Simplify the code.
row_purge_del_mark(), row_purge_upd_exist_or_extern_func(),
row_undo_ins_remove_sec_rec(), row_undo_mod_upd_del_sec(),
row_undo_mod_del_mark_sec(): Avoid mem_heap_create()/mem_heap_free()
when no secondary indexes exist.
row_undo_mod_upd_exist_sec(): Simplify the code.
row_upd_clust_step(), dict_load_table_one(): Return DB_TABLE_CORRUPT
if the clustered index (and therefore the table) is corrupted, similar
to what we do in row_insert_for_mysql().
fut_get_ptr(): Replace with buf_page_get_gen() calls.
buf_page_get_gen(): Return nullptr and *err=DB_CORRUPTION
if the page is marked as freed. For other modes than
BUF_GET_POSSIBLY_FREED or BUF_PEEK_IF_IN_POOL this will
trigger a debug assertion failure. For BUF_GET_POSSIBLY_FREED,
we will return nullptr for freed pages, so that the callers
can be simplified. The purge of transaction history will be
a new user of BUF_GET_POSSIBLY_FREED, to avoid crashes on
corrupted data.
buf_page_get_low(): Never crash on a corrupted page, but simply
return nullptr.
fseg_page_is_allocated(): Replaces fseg_page_is_free().
fts_drop_common_tables(): Return an error if the transaction
was rolled back.
fil_space_t::set_corrupted(): Report a tablespace as corrupted if
it was not reported already.
fil_space_t::io(): Invoke fil_space_t::set_corrupted() to report
out-of-bounds page access or other errors.
Clean up mtr_t::page_lock()
buf_page_get_low(): Validate the page identifier (to check for
recently read corrupted pages) after acquiring the page latch.
buf_page_t::read_complete(): Flag uninitialized (all-zero) pages
with DB_FAIL. Return DB_PAGE_CORRUPTED on page number mismatch.
mtr_t::defer_drop_ahi(): Renamed from mtr_defer_drop_ahi().
recv_sys_t::free_corrupted_page(): Only set_corrupt_fs()
if any log records exist for the page. We do not mind if read-ahead
produces corrupted (or all-zero) pages that were not actually needed
during recovery.
recv_recover_page(): Return whether the operation succeeded.
recv_sys_t::recover_low(): Simplify the logic. Check for recovery error.
Thanks to Matthias Leich for testing this extensively and to the
authors of https://rr-project.org for making it easy to diagnose
and fix any failures that were found during the testing.
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-13542: Crashing on corrupted page is unhelpful
The approach to handling corruption that was chosen by Oracle in
commit 177d8b0c125b841c0650d27d735e3b87509dc286
is not really useful. Not only did it actually fail to prevent InnoDB
from crashing, but it is making things worse by blocking attempts to
rescue data from or rebuild a partially readable table.
We will try to prevent crashes in a different way: by propagating
errors up the call stack. We will never mark the clustered index
persistently corrupted, so that data recovery may be attempted by
reading from the table, or by rebuilding the table.
This should also fix MDEV-13680 (crash on btr_page_alloc() failure);
it was extensively tested with innodb_file_per_table=0 and a
non-autoextend system tablespace.
We should now avoid crashes in many cases, such as when a page
cannot be read or allocated, or an inconsistency is detected when
attempting to update multiple pages. We will not crash on double-free,
such as on the recovery of DDL in system tablespace in case something
was corrupted.
Crashes on corrupted data are still possible. The fault injection mechanism
that is introduced in the subsequent commit may help catch more of them.
buf_page_import_corrupt_failure: Remove the fault injection, and instead
corrupt some pages using Perl code in the tests.
btr_cur_pessimistic_insert(): Always reserve extents (except for the
change buffer), in order to prevent a subsequent allocation failure.
btr_pcur_open_at_rnd_pos(): Merged to the only caller ibuf_merge_pages().
btr_assert_not_corrupted(), btr_corruption_report(): Remove.
Similar checks are already part of btr_block_get().
FSEG_MAGIC_N_BYTES: Replaces FSEG_MAGIC_N_VALUE.
dict_hdr_get(), trx_rsegf_get_new(), trx_undo_page_get(),
trx_undo_page_get_s_latched(): Replaced with error-checking calls.
trx_rseg_t::get(mtr_t*): Replaces trx_rsegf_get().
trx_rseg_header_create(): Let the caller update the TRX_SYS page if needed.
trx_sys_create_sys_pages(): Merged with trx_sysf_create().
dict_check_tablespaces_and_store_max_id(): Do not access
DICT_HDR_MAX_SPACE_ID, because it was already recovered in dict_boot().
Merge dict_check_sys_tables() with this function.
dir_pathname(): Replaces os_file_make_new_pathname().
row_undo_ins_remove_sec(): Do not modify the undo page by adding
a terminating NUL byte to the record.
btr_decryption_failed(): Report decryption failures
dict_set_corrupted_by_space(), dict_set_encrypted_by_space(),
dict_set_corrupted_index_cache_only(): Remove.
dict_set_corrupted(): Remove the constant parameter dict_locked=false.
Never flag the clustered index corrupted in SYS_INDEXES, because
that would deny further access to the table. It might be possible to
repair the table by executing ALTER TABLE or OPTIMIZE TABLE, in case
no B-tree leaf page is corrupted.
dict_table_skip_corrupt_index(), dict_table_next_uncorrupted_index(),
row_purge_skip_uncommitted_virtual_index(): Remove, and refactor
the callers to read dict_index_t::type only once.
dict_table_is_corrupted(): Remove.
dict_index_t::is_btree(): Determine if the index is a valid B-tree.
BUF_GET_NO_LATCH, BUF_EVICT_IF_IN_POOL: Remove.
UNIV_BTR_DEBUG: Remove. Any inconsistency will no longer trigger
assertion failures, but error codes being returned.
buf_corrupt_page_release(): Replaced with a direct call to
buf_pool.corrupted_evict().
fil_invalid_page_access_msg(): Never crash on an invalid read;
let the caller of buf_page_get_gen() decide.
btr_pcur_t::restore_position(): Propagate failure status to the caller
by returning CORRUPTED.
opt_search_plan_for_table(): Simplify the code.
row_purge_del_mark(), row_purge_upd_exist_or_extern_func(),
row_undo_ins_remove_sec_rec(), row_undo_mod_upd_del_sec(),
row_undo_mod_del_mark_sec(): Avoid mem_heap_create()/mem_heap_free()
when no secondary indexes exist.
row_undo_mod_upd_exist_sec(): Simplify the code.
row_upd_clust_step(), dict_load_table_one(): Return DB_TABLE_CORRUPT
if the clustered index (and therefore the table) is corrupted, similar
to what we do in row_insert_for_mysql().
fut_get_ptr(): Replace with buf_page_get_gen() calls.
buf_page_get_gen(): Return nullptr and *err=DB_CORRUPTION
if the page is marked as freed. For other modes than
BUF_GET_POSSIBLY_FREED or BUF_PEEK_IF_IN_POOL this will
trigger a debug assertion failure. For BUF_GET_POSSIBLY_FREED,
we will return nullptr for freed pages, so that the callers
can be simplified. The purge of transaction history will be
a new user of BUF_GET_POSSIBLY_FREED, to avoid crashes on
corrupted data.
buf_page_get_low(): Never crash on a corrupted page, but simply
return nullptr.
fseg_page_is_allocated(): Replaces fseg_page_is_free().
fts_drop_common_tables(): Return an error if the transaction
was rolled back.
fil_space_t::set_corrupted(): Report a tablespace as corrupted if
it was not reported already.
fil_space_t::io(): Invoke fil_space_t::set_corrupted() to report
out-of-bounds page access or other errors.
Clean up mtr_t::page_lock()
buf_page_get_low(): Validate the page identifier (to check for
recently read corrupted pages) after acquiring the page latch.
buf_page_t::read_complete(): Flag uninitialized (all-zero) pages
with DB_FAIL. Return DB_PAGE_CORRUPTED on page number mismatch.
mtr_t::defer_drop_ahi(): Renamed from mtr_defer_drop_ahi().
recv_sys_t::free_corrupted_page(): Only set_corrupt_fs()
if any log records exist for the page. We do not mind if read-ahead
produces corrupted (or all-zero) pages that were not actually needed
during recovery.
recv_recover_page(): Return whether the operation succeeded.
recv_sys_t::recover_low(): Simplify the logic. Check for recovery error.
Thanks to Matthias Leich for testing this extensively and to the
authors of https://rr-project.org for making it easy to diagnose
and fix any failures that were found during the testing.
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-13542: Crashing on corrupted page is unhelpful
The approach to handling corruption that was chosen by Oracle in
commit 177d8b0c125b841c0650d27d735e3b87509dc286
is not really useful. Not only did it actually fail to prevent InnoDB
from crashing, but it is making things worse by blocking attempts to
rescue data from or rebuild a partially readable table.
We will try to prevent crashes in a different way: by propagating
errors up the call stack. We will never mark the clustered index
persistently corrupted, so that data recovery may be attempted by
reading from the table, or by rebuilding the table.
This should also fix MDEV-13680 (crash on btr_page_alloc() failure);
it was extensively tested with innodb_file_per_table=0 and a
non-autoextend system tablespace.
We should now avoid crashes in many cases, such as when a page
cannot be read or allocated, or an inconsistency is detected when
attempting to update multiple pages. We will not crash on double-free,
such as on the recovery of DDL in system tablespace in case something
was corrupted.
Crashes on corrupted data are still possible. The fault injection mechanism
that is introduced in the subsequent commit may help catch more of them.
buf_page_import_corrupt_failure: Remove the fault injection, and instead
corrupt some pages using Perl code in the tests.
btr_cur_pessimistic_insert(): Always reserve extents (except for the
change buffer), in order to prevent a subsequent allocation failure.
btr_pcur_open_at_rnd_pos(): Merged to the only caller ibuf_merge_pages().
btr_assert_not_corrupted(), btr_corruption_report(): Remove.
Similar checks are already part of btr_block_get().
FSEG_MAGIC_N_BYTES: Replaces FSEG_MAGIC_N_VALUE.
dict_hdr_get(), trx_rsegf_get_new(), trx_undo_page_get(),
trx_undo_page_get_s_latched(): Replaced with error-checking calls.
trx_rseg_t::get(mtr_t*): Replaces trx_rsegf_get().
trx_rseg_header_create(): Let the caller update the TRX_SYS page if needed.
trx_sys_create_sys_pages(): Merged with trx_sysf_create().
dict_check_tablespaces_and_store_max_id(): Do not access
DICT_HDR_MAX_SPACE_ID, because it was already recovered in dict_boot().
Merge dict_check_sys_tables() with this function.
dir_pathname(): Replaces os_file_make_new_pathname().
row_undo_ins_remove_sec(): Do not modify the undo page by adding
a terminating NUL byte to the record.
btr_decryption_failed(): Report decryption failures
dict_set_corrupted_by_space(), dict_set_encrypted_by_space(),
dict_set_corrupted_index_cache_only(): Remove.
dict_set_corrupted(): Remove the constant parameter dict_locked=false.
Never flag the clustered index corrupted in SYS_INDEXES, because
that would deny further access to the table. It might be possible to
repair the table by executing ALTER TABLE or OPTIMIZE TABLE, in case
no B-tree leaf page is corrupted.
dict_table_skip_corrupt_index(), dict_table_next_uncorrupted_index(),
row_purge_skip_uncommitted_virtual_index(): Remove, and refactor
the callers to read dict_index_t::type only once.
dict_table_is_corrupted(): Remove.
dict_index_t::is_btree(): Determine if the index is a valid B-tree.
BUF_GET_NO_LATCH, BUF_EVICT_IF_IN_POOL: Remove.
UNIV_BTR_DEBUG: Remove. Any inconsistency will no longer trigger
assertion failures, but error codes being returned.
buf_corrupt_page_release(): Replaced with a direct call to
buf_pool.corrupted_evict().
fil_invalid_page_access_msg(): Never crash on an invalid read;
let the caller of buf_page_get_gen() decide.
btr_pcur_t::restore_position(): Propagate failure status to the caller
by returning CORRUPTED.
opt_search_plan_for_table(): Simplify the code.
row_purge_del_mark(), row_purge_upd_exist_or_extern_func(),
row_undo_ins_remove_sec_rec(), row_undo_mod_upd_del_sec(),
row_undo_mod_del_mark_sec(): Avoid mem_heap_create()/mem_heap_free()
when no secondary indexes exist.
row_undo_mod_upd_exist_sec(): Simplify the code.
row_upd_clust_step(), dict_load_table_one(): Return DB_TABLE_CORRUPT
if the clustered index (and therefore the table) is corrupted, similar
to what we do in row_insert_for_mysql().
fut_get_ptr(): Replace with buf_page_get_gen() calls.
buf_page_get_gen(): Return nullptr and *err=DB_CORRUPTION
if the page is marked as freed. For other modes than
BUF_GET_POSSIBLY_FREED or BUF_PEEK_IF_IN_POOL this will
trigger a debug assertion failure. For BUF_GET_POSSIBLY_FREED,
we will return nullptr for freed pages, so that the callers
can be simplified. The purge of transaction history will be
a new user of BUF_GET_POSSIBLY_FREED, to avoid crashes on
corrupted data.
buf_page_get_low(): Never crash on a corrupted page, but simply
return nullptr.
fseg_page_is_allocated(): Replaces fseg_page_is_free().
fts_drop_common_tables(): Return an error if the transaction
was rolled back.
fil_space_t::set_corrupted(): Report a tablespace as corrupted if
it was not reported already.
fil_space_t::io(): Invoke fil_space_t::set_corrupted() to report
out-of-bounds page access or other errors.
Clean up mtr_t::page_lock()
buf_page_get_low(): Validate the page identifier (to check for
recently read corrupted pages) after acquiring the page latch.
buf_page_t::read_complete(): Flag uninitialized (all-zero) pages
with DB_FAIL. Return DB_PAGE_CORRUPTED on page number mismatch.
mtr_t::defer_drop_ahi(): Renamed from mtr_defer_drop_ahi().
recv_sys_t::free_corrupted_page(): Only set_corrupt_fs()
if any log records exist for the page. We do not mind if read-ahead
produces corrupted (or all-zero) pages that were not actually needed
during recovery.
recv_recover_page(): Return whether the operation succeeded.
recv_sys_t::recover_low(): Simplify the logic. Check for recovery error.
Thanks to Matthias Leich for testing this extensively and to the
authors of https://rr-project.org for making it easy to diagnose
and fix any failures that were found during the testing.
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-23399: Performance regression with write workloads
The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted
the performance bottleneck to the page flushing.
The configuration parameters will be changed as follows:
innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction)
innodb_lru_scan_depth=1536 (old: 1024)
innodb_max_dirty_pages_pct=90 (old: 75)
innodb_max_dirty_pages_pct_lwm=75 (old: 0)
Note: The parameter innodb_lru_scan_depth will only affect LRU
eviction of buffer pool pages when a new page is being allocated. The
page cleaner thread will no longer evict any pages. It used to
guarantee that some pages will remain free in the buffer pool. Now, we
perform that eviction 'on demand' in buf_LRU_get_free_block().
The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows:
* When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks()
* As a buf_pool.free limit in buf_LRU_list_batch() for terminating
the flushing that is initiated e.g., by buf_LRU_get_free_block()
The parameter also used to serve as an initial limit for unzip_LRU
eviction (evicting uncompressed page frames while retaining
ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit
of 100 or unlimited for invoking buf_LRU_scan_and_free_block().
The status variables will be changed as follows:
innodb_buffer_pool_pages_flushed: This includes also the count of
innodb_buffer_pool_pages_LRU_flushed and should work reliably,
updated one by one in buf_flush_page() to give more real-time
statistics. The function buf_flush_stats(), which we are removing,
was not called in every code path. For both counters, we will use
regular variables that are incremented in a critical section of
buf_pool.mutex. Note that show_innodb_vars() directly links to the
variables, and reads of the counters will *not* be protected by
buf_pool.mutex, so you cannot get a consistent snapshot of both variables.
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be
removed, because the page cleaner no longer deals with writing or
evicting least recently used pages, and because the single-page writes
have been removed:
* buffer_LRU_batch_flush_avg_time_slot
* buffer_LRU_batch_flush_avg_time_thread
* buffer_LRU_batch_flush_avg_time_est
* buffer_LRU_batch_flush_avg_pass
* buffer_LRU_single_flush_scanned
* buffer_LRU_single_flush_num_scan
* buffer_LRU_single_flush_scanned_per_call
When moving to a single buffer pool instance in MDEV-15058, we missed
some opportunity to simplify the buf_flush_page_cleaner thread. It was
unnecessarily using a mutex and some complex data structures, even
though we always have a single page cleaner thread.
Furthermore, the buf_flush_page_cleaner thread had separate 'recovery'
and 'shutdown' modes where it was waiting to be triggered by some
other thread, adding unnecessary latency and potential for hangs in
relatively rarely executed startup or shutdown code.
The page cleaner was also running two kinds of batches in an
interleaved fashion: "LRU flush" (writing out some least recently used
pages and evicting them on write completion) and the normal batches
that aim to increase the MIN(oldest_modification) in the buffer pool,
to help the log checkpoint advance.
The buf_pool.flush_list flushing was being blocked by
buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN
of a page is ahead of log_sys.get_flushed_lsn(), that is, what has
been persistently written to the redo log, we would trigger a log
flush and then resume the page flushing. This would unnecessarily
limit the performance of the page cleaner thread and trigger the
infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms.
The settings might not be optimal" that were suppressed in
commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2.
Our revised algorithm will make log_sys.get_flushed_lsn() advance at
the start of buf_flush_lists(), and then execute a 'best effort' to
write out all pages. The flush batches will skip pages that were modified
since the log was written, or are are currently exclusively locked.
The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message
will be removed, because by design, the buf_flush_page_cleaner() should
not be blocked during a batch for extended periods of time.
We will remove the single-page flushing altogether. Related to this,
the debug parameter innodb_doublewrite_batch_size will be removed,
because all of the doublewrite buffer will be used for flushing
batches. If a page needs to be evicted from the buffer pool and all
100 least recently used pages in the buffer pool have unflushed
changes, buf_LRU_get_free_block() will execute buf_flush_lists() to
write out and evict innodb_lru_flush_size pages. At most one thread
will execute buf_flush_lists() in buf_LRU_get_free_block(); other
threads will wait for that LRU flushing batch to finish.
To improve concurrency, we will replace the InnoDB ib_mutex_t and
os_event_t native mutexes and condition variables in this area of code.
Most notably, this means that the buffer pool mutex (buf_pool.mutex)
is no longer instrumented via any InnoDB interfaces. It will continue
to be instrumented via PERFORMANCE_SCHEMA.
For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be
declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical
sections of buf_pool.flush_list_mutex should be shorter than those for
buf_pool.mutex, because in the worst case, they cover a linear scan of
buf_pool.flush_list, while the worst case of a critical section of
buf_pool.mutex covers a linear scan of the potentially much longer
buf_pool.LRU list.
mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable
with SAFE_MUTEX. Some InnoDB debug assertions need this predicate
instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner().
buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list:
Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[].
The number of active flush operations.
buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t
instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA
and SAFE_MUTEX instrumentation.
buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU.
buf_pool_t::done_flush_list: Condition variable for !n_flush_list.
buf_pool_t::do_flush_list: Condition variable to wake up the
buf_flush_page_cleaner when a log checkpoint needs to be written
or the server is being shut down. Replaces buf_flush_event.
We will keep using timed waits (the page cleaner thread will wake
_at least_ once per second), because the calculations for
innodb_adaptive_flushing depend on fixed time intervals.
buf_dblwr: Allocate statically, and move all code to member functions.
Use a native mutex and condition variable. Remove code to deal with
single-page flushing.
buf_dblwr_check_block(): Make the check debug-only. We were spending
a significant amount of execution time in page_simple_validate_new().
flush_counters_t::unzip_LRU_evicted: Remove.
IORequest: Make more members const. FIXME: m_fil_node should be removed.
buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex
(which we are removing).
page_cleaner_slot_t, page_cleaner_t: Remove many redundant members.
pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot().
recv_writer_thread: Remove. Recovery works just fine without it, if we
simply invoke buf_flush_sync() at the end of each batch in
recv_sys_t::apply().
recv_recovery_from_checkpoint_finish(): Remove. We can simply call
recv_sys.debug_free() directly.
srv_started_redo: Replaces srv_start_state.
SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown()
can communicate with the normal page cleaner loop via the new function
flush_buffer_pool().
buf_flush_remove(): Assert that the calling thread is holding
buf_pool.flush_list_mutex. This removes unnecessary mutex operations
from buf_flush_remove_pages() and buf_flush_dirty_pages(),
which replace buf_LRU_flush_or_remove_pages().
buf_flush_lists(): Renamed from buf_flush_batch(), with simplified
interface. Return the number of flushed pages. Clarified comments and
renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions
buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this
function, which was their only caller, and remove 2 unnecessary
buf_pool.mutex release/re-acquisition that we used to perform around
the buf_flush_batch() call. At the start, if not all log has been
durably written, wait for a background task to do it, or start a new
task to do it. This allows the log write to run concurrently with our
page flushing batch. Any pages that were skipped due to too recent
FIL_PAGE_LSN or due to them being latched by a writer should be flushed
during the next batch, unless there are further modifications to those
pages. It is possible that a page that we must flush due to small
oldest_modification also carries a recent FIL_PAGE_LSN or is being
constantly modified. In the worst case, all writers would then end up
waiting in log_free_check() to allow the flushing and the checkpoint
to complete.
buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n.
Cache the last looked up tablespace. If neighbor flushing is not applicable,
invoke buf_flush_page() directly, avoiding a page lookup in between.
buf_flush_space(): Auxiliary function to look up a tablespace for
page flushing.
buf_flush_page(): Defer the computation of space->full_crc32(). Never
call log_write_up_to(), but instead skip persistent pages whose latest
modification (FIL_PAGE_LSN) is newer than the redo log. Also skip
pages on which we cannot acquire a shared latch without waiting.
buf_flush_try_neighbors(): Do not bother checking buf_fix_count
because buf_flush_page() will no longer wait for the page latch.
Take the tablespace as a parameter, and only execute this function
when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold().
buf_flush_relocate_on_flush_list(): Declare as cold, and push down
a condition from the callers.
buf_flush_check_neighbor(): Take id.fold() as a parameter.
buf_flush_sync(): Ensure that the buf_pool.flush_list is empty,
because the flushing batch will skip pages whose modifications have
not yet been written to the log or were latched for modification.
buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables.
buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize
the counters, and report n->evicted.
Cache the last looked up tablespace. If neighbor flushing is not applicable,
invoke buf_flush_page() directly, avoiding a page lookup in between.
buf_do_LRU_batch(): Return the number of pages flushed.
buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if
adaptive hash index entries are pointing to the block.
buf_LRU_get_free_block(): Do not wake up the page cleaner, because it
will no longer perform any useful work for us, and we do not want it
to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0)
writes out and evicts at most innodb_lru_flush_size pages. (The
function buf_do_LRU_batch() may complete after writing fewer pages if
more than innodb_lru_scan_depth pages end up in buf_pool.free list.)
Eliminate some mutex release-acquire cycles, and wait for the LRU
flush batch to complete before rescanning.
buf_LRU_check_size_of_non_data_objects(): Simplify the code.
buf_page_write_complete(): Remove the parameter evict, and always
evict pages that were part of an LRU flush.
buf_page_create(): Take a pre-allocated page as a parameter.
buf_pool_t::free_block(): Free a pre-allocated block.
recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block
while not holding recv_sys.mutex. During page allocation, we may
initiate a page flush, which in turn may initiate a log flush, which
would require acquiring log_sys.mutex, which should always be acquired
before recv_sys.mutex in order to avoid deadlocks. Therefore, we must
not be holding recv_sys.mutex while allocating a buffer pool block.
BtrBulk::logFreeCheck(): Skip a redundant condition.
row_undo_step(): Do not invoke srv_inc_activity_count() for every row
that is being rolled back. It should suffice to invoke the function in
trx_flush_log_if_needed() during trx_t::commit_in_memory() when the
rollback completes.
sync_check_enable(): Remove. We will enable innodb_sync_debug from the
very beginning.
Reviewed by: Vladislav Vaintroub
5 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-13542: Crashing on corrupted page is unhelpful
The approach to handling corruption that was chosen by Oracle in
commit 177d8b0c125b841c0650d27d735e3b87509dc286
is not really useful. Not only did it actually fail to prevent InnoDB
from crashing, but it is making things worse by blocking attempts to
rescue data from or rebuild a partially readable table.
We will try to prevent crashes in a different way: by propagating
errors up the call stack. We will never mark the clustered index
persistently corrupted, so that data recovery may be attempted by
reading from the table, or by rebuilding the table.
This should also fix MDEV-13680 (crash on btr_page_alloc() failure);
it was extensively tested with innodb_file_per_table=0 and a
non-autoextend system tablespace.
We should now avoid crashes in many cases, such as when a page
cannot be read or allocated, or an inconsistency is detected when
attempting to update multiple pages. We will not crash on double-free,
such as on the recovery of DDL in system tablespace in case something
was corrupted.
Crashes on corrupted data are still possible. The fault injection mechanism
that is introduced in the subsequent commit may help catch more of them.
buf_page_import_corrupt_failure: Remove the fault injection, and instead
corrupt some pages using Perl code in the tests.
btr_cur_pessimistic_insert(): Always reserve extents (except for the
change buffer), in order to prevent a subsequent allocation failure.
btr_pcur_open_at_rnd_pos(): Merged to the only caller ibuf_merge_pages().
btr_assert_not_corrupted(), btr_corruption_report(): Remove.
Similar checks are already part of btr_block_get().
FSEG_MAGIC_N_BYTES: Replaces FSEG_MAGIC_N_VALUE.
dict_hdr_get(), trx_rsegf_get_new(), trx_undo_page_get(),
trx_undo_page_get_s_latched(): Replaced with error-checking calls.
trx_rseg_t::get(mtr_t*): Replaces trx_rsegf_get().
trx_rseg_header_create(): Let the caller update the TRX_SYS page if needed.
trx_sys_create_sys_pages(): Merged with trx_sysf_create().
dict_check_tablespaces_and_store_max_id(): Do not access
DICT_HDR_MAX_SPACE_ID, because it was already recovered in dict_boot().
Merge dict_check_sys_tables() with this function.
dir_pathname(): Replaces os_file_make_new_pathname().
row_undo_ins_remove_sec(): Do not modify the undo page by adding
a terminating NUL byte to the record.
btr_decryption_failed(): Report decryption failures
dict_set_corrupted_by_space(), dict_set_encrypted_by_space(),
dict_set_corrupted_index_cache_only(): Remove.
dict_set_corrupted(): Remove the constant parameter dict_locked=false.
Never flag the clustered index corrupted in SYS_INDEXES, because
that would deny further access to the table. It might be possible to
repair the table by executing ALTER TABLE or OPTIMIZE TABLE, in case
no B-tree leaf page is corrupted.
dict_table_skip_corrupt_index(), dict_table_next_uncorrupted_index(),
row_purge_skip_uncommitted_virtual_index(): Remove, and refactor
the callers to read dict_index_t::type only once.
dict_table_is_corrupted(): Remove.
dict_index_t::is_btree(): Determine if the index is a valid B-tree.
BUF_GET_NO_LATCH, BUF_EVICT_IF_IN_POOL: Remove.
UNIV_BTR_DEBUG: Remove. Any inconsistency will no longer trigger
assertion failures, but error codes being returned.
buf_corrupt_page_release(): Replaced with a direct call to
buf_pool.corrupted_evict().
fil_invalid_page_access_msg(): Never crash on an invalid read;
let the caller of buf_page_get_gen() decide.
btr_pcur_t::restore_position(): Propagate failure status to the caller
by returning CORRUPTED.
opt_search_plan_for_table(): Simplify the code.
row_purge_del_mark(), row_purge_upd_exist_or_extern_func(),
row_undo_ins_remove_sec_rec(), row_undo_mod_upd_del_sec(),
row_undo_mod_del_mark_sec(): Avoid mem_heap_create()/mem_heap_free()
when no secondary indexes exist.
row_undo_mod_upd_exist_sec(): Simplify the code.
row_upd_clust_step(), dict_load_table_one(): Return DB_TABLE_CORRUPT
if the clustered index (and therefore the table) is corrupted, similar
to what we do in row_insert_for_mysql().
fut_get_ptr(): Replace with buf_page_get_gen() calls.
buf_page_get_gen(): Return nullptr and *err=DB_CORRUPTION
if the page is marked as freed. For other modes than
BUF_GET_POSSIBLY_FREED or BUF_PEEK_IF_IN_POOL this will
trigger a debug assertion failure. For BUF_GET_POSSIBLY_FREED,
we will return nullptr for freed pages, so that the callers
can be simplified. The purge of transaction history will be
a new user of BUF_GET_POSSIBLY_FREED, to avoid crashes on
corrupted data.
buf_page_get_low(): Never crash on a corrupted page, but simply
return nullptr.
fseg_page_is_allocated(): Replaces fseg_page_is_free().
fts_drop_common_tables(): Return an error if the transaction
was rolled back.
fil_space_t::set_corrupted(): Report a tablespace as corrupted if
it was not reported already.
fil_space_t::io(): Invoke fil_space_t::set_corrupted() to report
out-of-bounds page access or other errors.
Clean up mtr_t::page_lock()
buf_page_get_low(): Validate the page identifier (to check for
recently read corrupted pages) after acquiring the page latch.
buf_page_t::read_complete(): Flag uninitialized (all-zero) pages
with DB_FAIL. Return DB_PAGE_CORRUPTED on page number mismatch.
mtr_t::defer_drop_ahi(): Renamed from mtr_defer_drop_ahi().
recv_sys_t::free_corrupted_page(): Only set_corrupt_fs()
if any log records exist for the page. We do not mind if read-ahead
produces corrupted (or all-zero) pages that were not actually needed
during recovery.
recv_recover_page(): Return whether the operation succeeded.
recv_sys_t::recover_low(): Simplify the logic. Check for recovery error.
Thanks to Matthias Leich for testing this extensively and to the
authors of https://rr-project.org for making it easy to diagnose
and fix any failures that were found during the testing.
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-13542: Crashing on corrupted page is unhelpful
The approach to handling corruption that was chosen by Oracle in
commit 177d8b0c125b841c0650d27d735e3b87509dc286
is not really useful. Not only did it actually fail to prevent InnoDB
from crashing, but it is making things worse by blocking attempts to
rescue data from or rebuild a partially readable table.
We will try to prevent crashes in a different way: by propagating
errors up the call stack. We will never mark the clustered index
persistently corrupted, so that data recovery may be attempted by
reading from the table, or by rebuilding the table.
This should also fix MDEV-13680 (crash on btr_page_alloc() failure);
it was extensively tested with innodb_file_per_table=0 and a
non-autoextend system tablespace.
We should now avoid crashes in many cases, such as when a page
cannot be read or allocated, or an inconsistency is detected when
attempting to update multiple pages. We will not crash on double-free,
such as on the recovery of DDL in system tablespace in case something
was corrupted.
Crashes on corrupted data are still possible. The fault injection mechanism
that is introduced in the subsequent commit may help catch more of them.
buf_page_import_corrupt_failure: Remove the fault injection, and instead
corrupt some pages using Perl code in the tests.
btr_cur_pessimistic_insert(): Always reserve extents (except for the
change buffer), in order to prevent a subsequent allocation failure.
btr_pcur_open_at_rnd_pos(): Merged to the only caller ibuf_merge_pages().
btr_assert_not_corrupted(), btr_corruption_report(): Remove.
Similar checks are already part of btr_block_get().
FSEG_MAGIC_N_BYTES: Replaces FSEG_MAGIC_N_VALUE.
dict_hdr_get(), trx_rsegf_get_new(), trx_undo_page_get(),
trx_undo_page_get_s_latched(): Replaced with error-checking calls.
trx_rseg_t::get(mtr_t*): Replaces trx_rsegf_get().
trx_rseg_header_create(): Let the caller update the TRX_SYS page if needed.
trx_sys_create_sys_pages(): Merged with trx_sysf_create().
dict_check_tablespaces_and_store_max_id(): Do not access
DICT_HDR_MAX_SPACE_ID, because it was already recovered in dict_boot().
Merge dict_check_sys_tables() with this function.
dir_pathname(): Replaces os_file_make_new_pathname().
row_undo_ins_remove_sec(): Do not modify the undo page by adding
a terminating NUL byte to the record.
btr_decryption_failed(): Report decryption failures
dict_set_corrupted_by_space(), dict_set_encrypted_by_space(),
dict_set_corrupted_index_cache_only(): Remove.
dict_set_corrupted(): Remove the constant parameter dict_locked=false.
Never flag the clustered index corrupted in SYS_INDEXES, because
that would deny further access to the table. It might be possible to
repair the table by executing ALTER TABLE or OPTIMIZE TABLE, in case
no B-tree leaf page is corrupted.
dict_table_skip_corrupt_index(), dict_table_next_uncorrupted_index(),
row_purge_skip_uncommitted_virtual_index(): Remove, and refactor
the callers to read dict_index_t::type only once.
dict_table_is_corrupted(): Remove.
dict_index_t::is_btree(): Determine if the index is a valid B-tree.
BUF_GET_NO_LATCH, BUF_EVICT_IF_IN_POOL: Remove.
UNIV_BTR_DEBUG: Remove. Any inconsistency will no longer trigger
assertion failures, but error codes being returned.
buf_corrupt_page_release(): Replaced with a direct call to
buf_pool.corrupted_evict().
fil_invalid_page_access_msg(): Never crash on an invalid read;
let the caller of buf_page_get_gen() decide.
btr_pcur_t::restore_position(): Propagate failure status to the caller
by returning CORRUPTED.
opt_search_plan_for_table(): Simplify the code.
row_purge_del_mark(), row_purge_upd_exist_or_extern_func(),
row_undo_ins_remove_sec_rec(), row_undo_mod_upd_del_sec(),
row_undo_mod_del_mark_sec(): Avoid mem_heap_create()/mem_heap_free()
when no secondary indexes exist.
row_undo_mod_upd_exist_sec(): Simplify the code.
row_upd_clust_step(), dict_load_table_one(): Return DB_TABLE_CORRUPT
if the clustered index (and therefore the table) is corrupted, similar
to what we do in row_insert_for_mysql().
fut_get_ptr(): Replace with buf_page_get_gen() calls.
buf_page_get_gen(): Return nullptr and *err=DB_CORRUPTION
if the page is marked as freed. For other modes than
BUF_GET_POSSIBLY_FREED or BUF_PEEK_IF_IN_POOL this will
trigger a debug assertion failure. For BUF_GET_POSSIBLY_FREED,
we will return nullptr for freed pages, so that the callers
can be simplified. The purge of transaction history will be
a new user of BUF_GET_POSSIBLY_FREED, to avoid crashes on
corrupted data.
buf_page_get_low(): Never crash on a corrupted page, but simply
return nullptr.
fseg_page_is_allocated(): Replaces fseg_page_is_free().
fts_drop_common_tables(): Return an error if the transaction
was rolled back.
fil_space_t::set_corrupted(): Report a tablespace as corrupted if
it was not reported already.
fil_space_t::io(): Invoke fil_space_t::set_corrupted() to report
out-of-bounds page access or other errors.
Clean up mtr_t::page_lock()
buf_page_get_low(): Validate the page identifier (to check for
recently read corrupted pages) after acquiring the page latch.
buf_page_t::read_complete(): Flag uninitialized (all-zero) pages
with DB_FAIL. Return DB_PAGE_CORRUPTED on page number mismatch.
mtr_t::defer_drop_ahi(): Renamed from mtr_defer_drop_ahi().
recv_sys_t::free_corrupted_page(): Only set_corrupt_fs()
if any log records exist for the page. We do not mind if read-ahead
produces corrupted (or all-zero) pages that were not actually needed
during recovery.
recv_recover_page(): Return whether the operation succeeded.
recv_sys_t::recover_low(): Simplify the logic. Check for recovery error.
Thanks to Matthias Leich for testing this extensively and to the
authors of https://rr-project.org for making it easy to diagnose
and fix any failures that were found during the testing.
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-13542: Crashing on corrupted page is unhelpful
The approach to handling corruption that was chosen by Oracle in
commit 177d8b0c125b841c0650d27d735e3b87509dc286
is not really useful. Not only did it actually fail to prevent InnoDB
from crashing, but it is making things worse by blocking attempts to
rescue data from or rebuild a partially readable table.
We will try to prevent crashes in a different way: by propagating
errors up the call stack. We will never mark the clustered index
persistently corrupted, so that data recovery may be attempted by
reading from the table, or by rebuilding the table.
This should also fix MDEV-13680 (crash on btr_page_alloc() failure);
it was extensively tested with innodb_file_per_table=0 and a
non-autoextend system tablespace.
We should now avoid crashes in many cases, such as when a page
cannot be read or allocated, or an inconsistency is detected when
attempting to update multiple pages. We will not crash on double-free,
such as on the recovery of DDL in system tablespace in case something
was corrupted.
Crashes on corrupted data are still possible. The fault injection mechanism
that is introduced in the subsequent commit may help catch more of them.
buf_page_import_corrupt_failure: Remove the fault injection, and instead
corrupt some pages using Perl code in the tests.
btr_cur_pessimistic_insert(): Always reserve extents (except for the
change buffer), in order to prevent a subsequent allocation failure.
btr_pcur_open_at_rnd_pos(): Merged to the only caller ibuf_merge_pages().
btr_assert_not_corrupted(), btr_corruption_report(): Remove.
Similar checks are already part of btr_block_get().
FSEG_MAGIC_N_BYTES: Replaces FSEG_MAGIC_N_VALUE.
dict_hdr_get(), trx_rsegf_get_new(), trx_undo_page_get(),
trx_undo_page_get_s_latched(): Replaced with error-checking calls.
trx_rseg_t::get(mtr_t*): Replaces trx_rsegf_get().
trx_rseg_header_create(): Let the caller update the TRX_SYS page if needed.
trx_sys_create_sys_pages(): Merged with trx_sysf_create().
dict_check_tablespaces_and_store_max_id(): Do not access
DICT_HDR_MAX_SPACE_ID, because it was already recovered in dict_boot().
Merge dict_check_sys_tables() with this function.
dir_pathname(): Replaces os_file_make_new_pathname().
row_undo_ins_remove_sec(): Do not modify the undo page by adding
a terminating NUL byte to the record.
btr_decryption_failed(): Report decryption failures
dict_set_corrupted_by_space(), dict_set_encrypted_by_space(),
dict_set_corrupted_index_cache_only(): Remove.
dict_set_corrupted(): Remove the constant parameter dict_locked=false.
Never flag the clustered index corrupted in SYS_INDEXES, because
that would deny further access to the table. It might be possible to
repair the table by executing ALTER TABLE or OPTIMIZE TABLE, in case
no B-tree leaf page is corrupted.
dict_table_skip_corrupt_index(), dict_table_next_uncorrupted_index(),
row_purge_skip_uncommitted_virtual_index(): Remove, and refactor
the callers to read dict_index_t::type only once.
dict_table_is_corrupted(): Remove.
dict_index_t::is_btree(): Determine if the index is a valid B-tree.
BUF_GET_NO_LATCH, BUF_EVICT_IF_IN_POOL: Remove.
UNIV_BTR_DEBUG: Remove. Any inconsistency will no longer trigger
assertion failures, but error codes being returned.
buf_corrupt_page_release(): Replaced with a direct call to
buf_pool.corrupted_evict().
fil_invalid_page_access_msg(): Never crash on an invalid read;
let the caller of buf_page_get_gen() decide.
btr_pcur_t::restore_position(): Propagate failure status to the caller
by returning CORRUPTED.
opt_search_plan_for_table(): Simplify the code.
row_purge_del_mark(), row_purge_upd_exist_or_extern_func(),
row_undo_ins_remove_sec_rec(), row_undo_mod_upd_del_sec(),
row_undo_mod_del_mark_sec(): Avoid mem_heap_create()/mem_heap_free()
when no secondary indexes exist.
row_undo_mod_upd_exist_sec(): Simplify the code.
row_upd_clust_step(), dict_load_table_one(): Return DB_TABLE_CORRUPT
if the clustered index (and therefore the table) is corrupted, similar
to what we do in row_insert_for_mysql().
fut_get_ptr(): Replace with buf_page_get_gen() calls.
buf_page_get_gen(): Return nullptr and *err=DB_CORRUPTION
if the page is marked as freed. For other modes than
BUF_GET_POSSIBLY_FREED or BUF_PEEK_IF_IN_POOL this will
trigger a debug assertion failure. For BUF_GET_POSSIBLY_FREED,
we will return nullptr for freed pages, so that the callers
can be simplified. The purge of transaction history will be
a new user of BUF_GET_POSSIBLY_FREED, to avoid crashes on
corrupted data.
buf_page_get_low(): Never crash on a corrupted page, but simply
return nullptr.
fseg_page_is_allocated(): Replaces fseg_page_is_free().
fts_drop_common_tables(): Return an error if the transaction
was rolled back.
fil_space_t::set_corrupted(): Report a tablespace as corrupted if
it was not reported already.
fil_space_t::io(): Invoke fil_space_t::set_corrupted() to report
out-of-bounds page access or other errors.
Clean up mtr_t::page_lock()
buf_page_get_low(): Validate the page identifier (to check for
recently read corrupted pages) after acquiring the page latch.
buf_page_t::read_complete(): Flag uninitialized (all-zero) pages
with DB_FAIL. Return DB_PAGE_CORRUPTED on page number mismatch.
mtr_t::defer_drop_ahi(): Renamed from mtr_defer_drop_ahi().
recv_sys_t::free_corrupted_page(): Only set_corrupt_fs()
if any log records exist for the page. We do not mind if read-ahead
produces corrupted (or all-zero) pages that were not actually needed
during recovery.
recv_recover_page(): Return whether the operation succeeded.
recv_sys_t::recover_low(): Simplify the logic. Check for recovery error.
Thanks to Matthias Leich for testing this extensively and to the
authors of https://rr-project.org for making it easy to diagnose
and fix any failures that were found during the testing.
3 years ago  MDEV-13542: Crashing on corrupted page is unhelpful
The approach to handling corruption that was chosen by Oracle in
commit 177d8b0c125b841c0650d27d735e3b87509dc286
is not really useful. Not only did it actually fail to prevent InnoDB
from crashing, but it is making things worse by blocking attempts to
rescue data from or rebuild a partially readable table.
We will try to prevent crashes in a different way: by propagating
errors up the call stack. We will never mark the clustered index
persistently corrupted, so that data recovery may be attempted by
reading from the table, or by rebuilding the table.
This should also fix MDEV-13680 (crash on btr_page_alloc() failure);
it was extensively tested with innodb_file_per_table=0 and a
non-autoextend system tablespace.
We should now avoid crashes in many cases, such as when a page
cannot be read or allocated, or an inconsistency is detected when
attempting to update multiple pages. We will not crash on double-free,
such as on the recovery of DDL in system tablespace in case something
was corrupted.
Crashes on corrupted data are still possible. The fault injection mechanism
that is introduced in the subsequent commit may help catch more of them.
buf_page_import_corrupt_failure: Remove the fault injection, and instead
corrupt some pages using Perl code in the tests.
btr_cur_pessimistic_insert(): Always reserve extents (except for the
change buffer), in order to prevent a subsequent allocation failure.
btr_pcur_open_at_rnd_pos(): Merged to the only caller ibuf_merge_pages().
btr_assert_not_corrupted(), btr_corruption_report(): Remove.
Similar checks are already part of btr_block_get().
FSEG_MAGIC_N_BYTES: Replaces FSEG_MAGIC_N_VALUE.
dict_hdr_get(), trx_rsegf_get_new(), trx_undo_page_get(),
trx_undo_page_get_s_latched(): Replaced with error-checking calls.
trx_rseg_t::get(mtr_t*): Replaces trx_rsegf_get().
trx_rseg_header_create(): Let the caller update the TRX_SYS page if needed.
trx_sys_create_sys_pages(): Merged with trx_sysf_create().
dict_check_tablespaces_and_store_max_id(): Do not access
DICT_HDR_MAX_SPACE_ID, because it was already recovered in dict_boot().
Merge dict_check_sys_tables() with this function.
dir_pathname(): Replaces os_file_make_new_pathname().
row_undo_ins_remove_sec(): Do not modify the undo page by adding
a terminating NUL byte to the record.
btr_decryption_failed(): Report decryption failures
dict_set_corrupted_by_space(), dict_set_encrypted_by_space(),
dict_set_corrupted_index_cache_only(): Remove.
dict_set_corrupted(): Remove the constant parameter dict_locked=false.
Never flag the clustered index corrupted in SYS_INDEXES, because
that would deny further access to the table. It might be possible to
repair the table by executing ALTER TABLE or OPTIMIZE TABLE, in case
no B-tree leaf page is corrupted.
dict_table_skip_corrupt_index(), dict_table_next_uncorrupted_index(),
row_purge_skip_uncommitted_virtual_index(): Remove, and refactor
the callers to read dict_index_t::type only once.
dict_table_is_corrupted(): Remove.
dict_index_t::is_btree(): Determine if the index is a valid B-tree.
BUF_GET_NO_LATCH, BUF_EVICT_IF_IN_POOL: Remove.
UNIV_BTR_DEBUG: Remove. Any inconsistency will no longer trigger
assertion failures, but error codes being returned.
buf_corrupt_page_release(): Replaced with a direct call to
buf_pool.corrupted_evict().
fil_invalid_page_access_msg(): Never crash on an invalid read;
let the caller of buf_page_get_gen() decide.
btr_pcur_t::restore_position(): Propagate failure status to the caller
by returning CORRUPTED.
opt_search_plan_for_table(): Simplify the code.
row_purge_del_mark(), row_purge_upd_exist_or_extern_func(),
row_undo_ins_remove_sec_rec(), row_undo_mod_upd_del_sec(),
row_undo_mod_del_mark_sec(): Avoid mem_heap_create()/mem_heap_free()
when no secondary indexes exist.
row_undo_mod_upd_exist_sec(): Simplify the code.
row_upd_clust_step(), dict_load_table_one(): Return DB_TABLE_CORRUPT
if the clustered index (and therefore the table) is corrupted, similar
to what we do in row_insert_for_mysql().
fut_get_ptr(): Replace with buf_page_get_gen() calls.
buf_page_get_gen(): Return nullptr and *err=DB_CORRUPTION
if the page is marked as freed. For other modes than
BUF_GET_POSSIBLY_FREED or BUF_PEEK_IF_IN_POOL this will
trigger a debug assertion failure. For BUF_GET_POSSIBLY_FREED,
we will return nullptr for freed pages, so that the callers
can be simplified. The purge of transaction history will be
a new user of BUF_GET_POSSIBLY_FREED, to avoid crashes on
corrupted data.
buf_page_get_low(): Never crash on a corrupted page, but simply
return nullptr.
fseg_page_is_allocated(): Replaces fseg_page_is_free().
fts_drop_common_tables(): Return an error if the transaction
was rolled back.
fil_space_t::set_corrupted(): Report a tablespace as corrupted if
it was not reported already.
fil_space_t::io(): Invoke fil_space_t::set_corrupted() to report
out-of-bounds page access or other errors.
Clean up mtr_t::page_lock()
buf_page_get_low(): Validate the page identifier (to check for
recently read corrupted pages) after acquiring the page latch.
buf_page_t::read_complete(): Flag uninitialized (all-zero) pages
with DB_FAIL. Return DB_PAGE_CORRUPTED on page number mismatch.
mtr_t::defer_drop_ahi(): Renamed from mtr_defer_drop_ahi().
recv_sys_t::free_corrupted_page(): Only set_corrupt_fs()
if any log records exist for the page. We do not mind if read-ahead
produces corrupted (or all-zero) pages that were not actually needed
during recovery.
recv_recover_page(): Return whether the operation succeeded.
recv_sys_t::recover_low(): Simplify the logic. Check for recovery error.
Thanks to Matthias Leich for testing this extensively and to the
authors of https://rr-project.org for making it easy to diagnose
and fix any failures that were found during the testing.
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-13542: Crashing on corrupted page is unhelpful
The approach to handling corruption that was chosen by Oracle in
commit 177d8b0c125b841c0650d27d735e3b87509dc286
is not really useful. Not only did it actually fail to prevent InnoDB
from crashing, but it is making things worse by blocking attempts to
rescue data from or rebuild a partially readable table.
We will try to prevent crashes in a different way: by propagating
errors up the call stack. We will never mark the clustered index
persistently corrupted, so that data recovery may be attempted by
reading from the table, or by rebuilding the table.
This should also fix MDEV-13680 (crash on btr_page_alloc() failure);
it was extensively tested with innodb_file_per_table=0 and a
non-autoextend system tablespace.
We should now avoid crashes in many cases, such as when a page
cannot be read or allocated, or an inconsistency is detected when
attempting to update multiple pages. We will not crash on double-free,
such as on the recovery of DDL in system tablespace in case something
was corrupted.
Crashes on corrupted data are still possible. The fault injection mechanism
that is introduced in the subsequent commit may help catch more of them.
buf_page_import_corrupt_failure: Remove the fault injection, and instead
corrupt some pages using Perl code in the tests.
btr_cur_pessimistic_insert(): Always reserve extents (except for the
change buffer), in order to prevent a subsequent allocation failure.
btr_pcur_open_at_rnd_pos(): Merged to the only caller ibuf_merge_pages().
btr_assert_not_corrupted(), btr_corruption_report(): Remove.
Similar checks are already part of btr_block_get().
FSEG_MAGIC_N_BYTES: Replaces FSEG_MAGIC_N_VALUE.
dict_hdr_get(), trx_rsegf_get_new(), trx_undo_page_get(),
trx_undo_page_get_s_latched(): Replaced with error-checking calls.
trx_rseg_t::get(mtr_t*): Replaces trx_rsegf_get().
trx_rseg_header_create(): Let the caller update the TRX_SYS page if needed.
trx_sys_create_sys_pages(): Merged with trx_sysf_create().
dict_check_tablespaces_and_store_max_id(): Do not access
DICT_HDR_MAX_SPACE_ID, because it was already recovered in dict_boot().
Merge dict_check_sys_tables() with this function.
dir_pathname(): Replaces os_file_make_new_pathname().
row_undo_ins_remove_sec(): Do not modify the undo page by adding
a terminating NUL byte to the record.
btr_decryption_failed(): Report decryption failures
dict_set_corrupted_by_space(), dict_set_encrypted_by_space(),
dict_set_corrupted_index_cache_only(): Remove.
dict_set_corrupted(): Remove the constant parameter dict_locked=false.
Never flag the clustered index corrupted in SYS_INDEXES, because
that would deny further access to the table. It might be possible to
repair the table by executing ALTER TABLE or OPTIMIZE TABLE, in case
no B-tree leaf page is corrupted.
dict_table_skip_corrupt_index(), dict_table_next_uncorrupted_index(),
row_purge_skip_uncommitted_virtual_index(): Remove, and refactor
the callers to read dict_index_t::type only once.
dict_table_is_corrupted(): Remove.
dict_index_t::is_btree(): Determine if the index is a valid B-tree.
BUF_GET_NO_LATCH, BUF_EVICT_IF_IN_POOL: Remove.
UNIV_BTR_DEBUG: Remove. Any inconsistency will no longer trigger
assertion failures, but error codes being returned.
buf_corrupt_page_release(): Replaced with a direct call to
buf_pool.corrupted_evict().
fil_invalid_page_access_msg(): Never crash on an invalid read;
let the caller of buf_page_get_gen() decide.
btr_pcur_t::restore_position(): Propagate failure status to the caller
by returning CORRUPTED.
opt_search_plan_for_table(): Simplify the code.
row_purge_del_mark(), row_purge_upd_exist_or_extern_func(),
row_undo_ins_remove_sec_rec(), row_undo_mod_upd_del_sec(),
row_undo_mod_del_mark_sec(): Avoid mem_heap_create()/mem_heap_free()
when no secondary indexes exist.
row_undo_mod_upd_exist_sec(): Simplify the code.
row_upd_clust_step(), dict_load_table_one(): Return DB_TABLE_CORRUPT
if the clustered index (and therefore the table) is corrupted, similar
to what we do in row_insert_for_mysql().
fut_get_ptr(): Replace with buf_page_get_gen() calls.
buf_page_get_gen(): Return nullptr and *err=DB_CORRUPTION
if the page is marked as freed. For other modes than
BUF_GET_POSSIBLY_FREED or BUF_PEEK_IF_IN_POOL this will
trigger a debug assertion failure. For BUF_GET_POSSIBLY_FREED,
we will return nullptr for freed pages, so that the callers
can be simplified. The purge of transaction history will be
a new user of BUF_GET_POSSIBLY_FREED, to avoid crashes on
corrupted data.
buf_page_get_low(): Never crash on a corrupted page, but simply
return nullptr.
fseg_page_is_allocated(): Replaces fseg_page_is_free().
fts_drop_common_tables(): Return an error if the transaction
was rolled back.
fil_space_t::set_corrupted(): Report a tablespace as corrupted if
it was not reported already.
fil_space_t::io(): Invoke fil_space_t::set_corrupted() to report
out-of-bounds page access or other errors.
Clean up mtr_t::page_lock()
buf_page_get_low(): Validate the page identifier (to check for
recently read corrupted pages) after acquiring the page latch.
buf_page_t::read_complete(): Flag uninitialized (all-zero) pages
with DB_FAIL. Return DB_PAGE_CORRUPTED on page number mismatch.
mtr_t::defer_drop_ahi(): Renamed from mtr_defer_drop_ahi().
recv_sys_t::free_corrupted_page(): Only set_corrupt_fs()
if any log records exist for the page. We do not mind if read-ahead
produces corrupted (or all-zero) pages that were not actually needed
during recovery.
recv_recover_page(): Return whether the operation succeeded.
recv_sys_t::recover_low(): Simplify the logic. Check for recovery error.
Thanks to Matthias Leich for testing this extensively and to the
authors of https://rr-project.org for making it easy to diagnose
and fix any failures that were found during the testing.
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-13542: Crashing on corrupted page is unhelpful
The approach to handling corruption that was chosen by Oracle in
commit 177d8b0c125b841c0650d27d735e3b87509dc286
is not really useful. Not only did it actually fail to prevent InnoDB
from crashing, but it is making things worse by blocking attempts to
rescue data from or rebuild a partially readable table.
We will try to prevent crashes in a different way: by propagating
errors up the call stack. We will never mark the clustered index
persistently corrupted, so that data recovery may be attempted by
reading from the table, or by rebuilding the table.
This should also fix MDEV-13680 (crash on btr_page_alloc() failure);
it was extensively tested with innodb_file_per_table=0 and a
non-autoextend system tablespace.
We should now avoid crashes in many cases, such as when a page
cannot be read or allocated, or an inconsistency is detected when
attempting to update multiple pages. We will not crash on double-free,
such as on the recovery of DDL in system tablespace in case something
was corrupted.
Crashes on corrupted data are still possible. The fault injection mechanism
that is introduced in the subsequent commit may help catch more of them.
buf_page_import_corrupt_failure: Remove the fault injection, and instead
corrupt some pages using Perl code in the tests.
btr_cur_pessimistic_insert(): Always reserve extents (except for the
change buffer), in order to prevent a subsequent allocation failure.
btr_pcur_open_at_rnd_pos(): Merged to the only caller ibuf_merge_pages().
btr_assert_not_corrupted(), btr_corruption_report(): Remove.
Similar checks are already part of btr_block_get().
FSEG_MAGIC_N_BYTES: Replaces FSEG_MAGIC_N_VALUE.
dict_hdr_get(), trx_rsegf_get_new(), trx_undo_page_get(),
trx_undo_page_get_s_latched(): Replaced with error-checking calls.
trx_rseg_t::get(mtr_t*): Replaces trx_rsegf_get().
trx_rseg_header_create(): Let the caller update the TRX_SYS page if needed.
trx_sys_create_sys_pages(): Merged with trx_sysf_create().
dict_check_tablespaces_and_store_max_id(): Do not access
DICT_HDR_MAX_SPACE_ID, because it was already recovered in dict_boot().
Merge dict_check_sys_tables() with this function.
dir_pathname(): Replaces os_file_make_new_pathname().
row_undo_ins_remove_sec(): Do not modify the undo page by adding
a terminating NUL byte to the record.
btr_decryption_failed(): Report decryption failures
dict_set_corrupted_by_space(), dict_set_encrypted_by_space(),
dict_set_corrupted_index_cache_only(): Remove.
dict_set_corrupted(): Remove the constant parameter dict_locked=false.
Never flag the clustered index corrupted in SYS_INDEXES, because
that would deny further access to the table. It might be possible to
repair the table by executing ALTER TABLE or OPTIMIZE TABLE, in case
no B-tree leaf page is corrupted.
dict_table_skip_corrupt_index(), dict_table_next_uncorrupted_index(),
row_purge_skip_uncommitted_virtual_index(): Remove, and refactor
the callers to read dict_index_t::type only once.
dict_table_is_corrupted(): Remove.
dict_index_t::is_btree(): Determine if the index is a valid B-tree.
BUF_GET_NO_LATCH, BUF_EVICT_IF_IN_POOL: Remove.
UNIV_BTR_DEBUG: Remove. Any inconsistency will no longer trigger
assertion failures, but error codes being returned.
buf_corrupt_page_release(): Replaced with a direct call to
buf_pool.corrupted_evict().
fil_invalid_page_access_msg(): Never crash on an invalid read;
let the caller of buf_page_get_gen() decide.
btr_pcur_t::restore_position(): Propagate failure status to the caller
by returning CORRUPTED.
opt_search_plan_for_table(): Simplify the code.
row_purge_del_mark(), row_purge_upd_exist_or_extern_func(),
row_undo_ins_remove_sec_rec(), row_undo_mod_upd_del_sec(),
row_undo_mod_del_mark_sec(): Avoid mem_heap_create()/mem_heap_free()
when no secondary indexes exist.
row_undo_mod_upd_exist_sec(): Simplify the code.
row_upd_clust_step(), dict_load_table_one(): Return DB_TABLE_CORRUPT
if the clustered index (and therefore the table) is corrupted, similar
to what we do in row_insert_for_mysql().
fut_get_ptr(): Replace with buf_page_get_gen() calls.
buf_page_get_gen(): Return nullptr and *err=DB_CORRUPTION
if the page is marked as freed. For other modes than
BUF_GET_POSSIBLY_FREED or BUF_PEEK_IF_IN_POOL this will
trigger a debug assertion failure. For BUF_GET_POSSIBLY_FREED,
we will return nullptr for freed pages, so that the callers
can be simplified. The purge of transaction history will be
a new user of BUF_GET_POSSIBLY_FREED, to avoid crashes on
corrupted data.
buf_page_get_low(): Never crash on a corrupted page, but simply
return nullptr.
fseg_page_is_allocated(): Replaces fseg_page_is_free().
fts_drop_common_tables(): Return an error if the transaction
was rolled back.
fil_space_t::set_corrupted(): Report a tablespace as corrupted if
it was not reported already.
fil_space_t::io(): Invoke fil_space_t::set_corrupted() to report
out-of-bounds page access or other errors.
Clean up mtr_t::page_lock()
buf_page_get_low(): Validate the page identifier (to check for
recently read corrupted pages) after acquiring the page latch.
buf_page_t::read_complete(): Flag uninitialized (all-zero) pages
with DB_FAIL. Return DB_PAGE_CORRUPTED on page number mismatch.
mtr_t::defer_drop_ahi(): Renamed from mtr_defer_drop_ahi().
recv_sys_t::free_corrupted_page(): Only set_corrupt_fs()
if any log records exist for the page. We do not mind if read-ahead
produces corrupted (or all-zero) pages that were not actually needed
during recovery.
recv_recover_page(): Return whether the operation succeeded.
recv_sys_t::recover_low(): Simplify the logic. Check for recovery error.
Thanks to Matthias Leich for testing this extensively and to the
authors of https://rr-project.org for making it easy to diagnose
and fix any failures that were found during the testing.
3 years ago  MDEV-13542: Crashing on corrupted page is unhelpful
The approach to handling corruption that was chosen by Oracle in
commit 177d8b0c125b841c0650d27d735e3b87509dc286
is not really useful. Not only did it actually fail to prevent InnoDB
from crashing, but it is making things worse by blocking attempts to
rescue data from or rebuild a partially readable table.
We will try to prevent crashes in a different way: by propagating
errors up the call stack. We will never mark the clustered index
persistently corrupted, so that data recovery may be attempted by
reading from the table, or by rebuilding the table.
This should also fix MDEV-13680 (crash on btr_page_alloc() failure);
it was extensively tested with innodb_file_per_table=0 and a
non-autoextend system tablespace.
We should now avoid crashes in many cases, such as when a page
cannot be read or allocated, or an inconsistency is detected when
attempting to update multiple pages. We will not crash on double-free,
such as on the recovery of DDL in system tablespace in case something
was corrupted.
Crashes on corrupted data are still possible. The fault injection mechanism
that is introduced in the subsequent commit may help catch more of them.
buf_page_import_corrupt_failure: Remove the fault injection, and instead
corrupt some pages using Perl code in the tests.
btr_cur_pessimistic_insert(): Always reserve extents (except for the
change buffer), in order to prevent a subsequent allocation failure.
btr_pcur_open_at_rnd_pos(): Merged to the only caller ibuf_merge_pages().
btr_assert_not_corrupted(), btr_corruption_report(): Remove.
Similar checks are already part of btr_block_get().
FSEG_MAGIC_N_BYTES: Replaces FSEG_MAGIC_N_VALUE.
dict_hdr_get(), trx_rsegf_get_new(), trx_undo_page_get(),
trx_undo_page_get_s_latched(): Replaced with error-checking calls.
trx_rseg_t::get(mtr_t*): Replaces trx_rsegf_get().
trx_rseg_header_create(): Let the caller update the TRX_SYS page if needed.
trx_sys_create_sys_pages(): Merged with trx_sysf_create().
dict_check_tablespaces_and_store_max_id(): Do not access
DICT_HDR_MAX_SPACE_ID, because it was already recovered in dict_boot().
Merge dict_check_sys_tables() with this function.
dir_pathname(): Replaces os_file_make_new_pathname().
row_undo_ins_remove_sec(): Do not modify the undo page by adding
a terminating NUL byte to the record.
btr_decryption_failed(): Report decryption failures
dict_set_corrupted_by_space(), dict_set_encrypted_by_space(),
dict_set_corrupted_index_cache_only(): Remove.
dict_set_corrupted(): Remove the constant parameter dict_locked=false.
Never flag the clustered index corrupted in SYS_INDEXES, because
that would deny further access to the table. It might be possible to
repair the table by executing ALTER TABLE or OPTIMIZE TABLE, in case
no B-tree leaf page is corrupted.
dict_table_skip_corrupt_index(), dict_table_next_uncorrupted_index(),
row_purge_skip_uncommitted_virtual_index(): Remove, and refactor
the callers to read dict_index_t::type only once.
dict_table_is_corrupted(): Remove.
dict_index_t::is_btree(): Determine if the index is a valid B-tree.
BUF_GET_NO_LATCH, BUF_EVICT_IF_IN_POOL: Remove.
UNIV_BTR_DEBUG: Remove. Any inconsistency will no longer trigger
assertion failures, but error codes being returned.
buf_corrupt_page_release(): Replaced with a direct call to
buf_pool.corrupted_evict().
fil_invalid_page_access_msg(): Never crash on an invalid read;
let the caller of buf_page_get_gen() decide.
btr_pcur_t::restore_position(): Propagate failure status to the caller
by returning CORRUPTED.
opt_search_plan_for_table(): Simplify the code.
row_purge_del_mark(), row_purge_upd_exist_or_extern_func(),
row_undo_ins_remove_sec_rec(), row_undo_mod_upd_del_sec(),
row_undo_mod_del_mark_sec(): Avoid mem_heap_create()/mem_heap_free()
when no secondary indexes exist.
row_undo_mod_upd_exist_sec(): Simplify the code.
row_upd_clust_step(), dict_load_table_one(): Return DB_TABLE_CORRUPT
if the clustered index (and therefore the table) is corrupted, similar
to what we do in row_insert_for_mysql().
fut_get_ptr(): Replace with buf_page_get_gen() calls.
buf_page_get_gen(): Return nullptr and *err=DB_CORRUPTION
if the page is marked as freed. For other modes than
BUF_GET_POSSIBLY_FREED or BUF_PEEK_IF_IN_POOL this will
trigger a debug assertion failure. For BUF_GET_POSSIBLY_FREED,
we will return nullptr for freed pages, so that the callers
can be simplified. The purge of transaction history will be
a new user of BUF_GET_POSSIBLY_FREED, to avoid crashes on
corrupted data.
buf_page_get_low(): Never crash on a corrupted page, but simply
return nullptr.
fseg_page_is_allocated(): Replaces fseg_page_is_free().
fts_drop_common_tables(): Return an error if the transaction
was rolled back.
fil_space_t::set_corrupted(): Report a tablespace as corrupted if
it was not reported already.
fil_space_t::io(): Invoke fil_space_t::set_corrupted() to report
out-of-bounds page access or other errors.
Clean up mtr_t::page_lock()
buf_page_get_low(): Validate the page identifier (to check for
recently read corrupted pages) after acquiring the page latch.
buf_page_t::read_complete(): Flag uninitialized (all-zero) pages
with DB_FAIL. Return DB_PAGE_CORRUPTED on page number mismatch.
mtr_t::defer_drop_ahi(): Renamed from mtr_defer_drop_ahi().
recv_sys_t::free_corrupted_page(): Only set_corrupt_fs()
if any log records exist for the page. We do not mind if read-ahead
produces corrupted (or all-zero) pages that were not actually needed
during recovery.
recv_recover_page(): Return whether the operation succeeded.
recv_sys_t::recover_low(): Simplify the logic. Check for recovery error.
Thanks to Matthias Leich for testing this extensively and to the
authors of https://rr-project.org for making it easy to diagnose
and fix any failures that were found during the testing.
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-13542: Crashing on corrupted page is unhelpful
The approach to handling corruption that was chosen by Oracle in
commit 177d8b0c125b841c0650d27d735e3b87509dc286
is not really useful. Not only did it actually fail to prevent InnoDB
from crashing, but it is making things worse by blocking attempts to
rescue data from or rebuild a partially readable table.
We will try to prevent crashes in a different way: by propagating
errors up the call stack. We will never mark the clustered index
persistently corrupted, so that data recovery may be attempted by
reading from the table, or by rebuilding the table.
This should also fix MDEV-13680 (crash on btr_page_alloc() failure);
it was extensively tested with innodb_file_per_table=0 and a
non-autoextend system tablespace.
We should now avoid crashes in many cases, such as when a page
cannot be read or allocated, or an inconsistency is detected when
attempting to update multiple pages. We will not crash on double-free,
such as on the recovery of DDL in system tablespace in case something
was corrupted.
Crashes on corrupted data are still possible. The fault injection mechanism
that is introduced in the subsequent commit may help catch more of them.
buf_page_import_corrupt_failure: Remove the fault injection, and instead
corrupt some pages using Perl code in the tests.
btr_cur_pessimistic_insert(): Always reserve extents (except for the
change buffer), in order to prevent a subsequent allocation failure.
btr_pcur_open_at_rnd_pos(): Merged to the only caller ibuf_merge_pages().
btr_assert_not_corrupted(), btr_corruption_report(): Remove.
Similar checks are already part of btr_block_get().
FSEG_MAGIC_N_BYTES: Replaces FSEG_MAGIC_N_VALUE.
dict_hdr_get(), trx_rsegf_get_new(), trx_undo_page_get(),
trx_undo_page_get_s_latched(): Replaced with error-checking calls.
trx_rseg_t::get(mtr_t*): Replaces trx_rsegf_get().
trx_rseg_header_create(): Let the caller update the TRX_SYS page if needed.
trx_sys_create_sys_pages(): Merged with trx_sysf_create().
dict_check_tablespaces_and_store_max_id(): Do not access
DICT_HDR_MAX_SPACE_ID, because it was already recovered in dict_boot().
Merge dict_check_sys_tables() with this function.
dir_pathname(): Replaces os_file_make_new_pathname().
row_undo_ins_remove_sec(): Do not modify the undo page by adding
a terminating NUL byte to the record.
btr_decryption_failed(): Report decryption failures
dict_set_corrupted_by_space(), dict_set_encrypted_by_space(),
dict_set_corrupted_index_cache_only(): Remove.
dict_set_corrupted(): Remove the constant parameter dict_locked=false.
Never flag the clustered index corrupted in SYS_INDEXES, because
that would deny further access to the table. It might be possible to
repair the table by executing ALTER TABLE or OPTIMIZE TABLE, in case
no B-tree leaf page is corrupted.
dict_table_skip_corrupt_index(), dict_table_next_uncorrupted_index(),
row_purge_skip_uncommitted_virtual_index(): Remove, and refactor
the callers to read dict_index_t::type only once.
dict_table_is_corrupted(): Remove.
dict_index_t::is_btree(): Determine if the index is a valid B-tree.
BUF_GET_NO_LATCH, BUF_EVICT_IF_IN_POOL: Remove.
UNIV_BTR_DEBUG: Remove. Any inconsistency will no longer trigger
assertion failures, but error codes being returned.
buf_corrupt_page_release(): Replaced with a direct call to
buf_pool.corrupted_evict().
fil_invalid_page_access_msg(): Never crash on an invalid read;
let the caller of buf_page_get_gen() decide.
btr_pcur_t::restore_position(): Propagate failure status to the caller
by returning CORRUPTED.
opt_search_plan_for_table(): Simplify the code.
row_purge_del_mark(), row_purge_upd_exist_or_extern_func(),
row_undo_ins_remove_sec_rec(), row_undo_mod_upd_del_sec(),
row_undo_mod_del_mark_sec(): Avoid mem_heap_create()/mem_heap_free()
when no secondary indexes exist.
row_undo_mod_upd_exist_sec(): Simplify the code.
row_upd_clust_step(), dict_load_table_one(): Return DB_TABLE_CORRUPT
if the clustered index (and therefore the table) is corrupted, similar
to what we do in row_insert_for_mysql().
fut_get_ptr(): Replace with buf_page_get_gen() calls.
buf_page_get_gen(): Return nullptr and *err=DB_CORRUPTION
if the page is marked as freed. For other modes than
BUF_GET_POSSIBLY_FREED or BUF_PEEK_IF_IN_POOL this will
trigger a debug assertion failure. For BUF_GET_POSSIBLY_FREED,
we will return nullptr for freed pages, so that the callers
can be simplified. The purge of transaction history will be
a new user of BUF_GET_POSSIBLY_FREED, to avoid crashes on
corrupted data.
buf_page_get_low(): Never crash on a corrupted page, but simply
return nullptr.
fseg_page_is_allocated(): Replaces fseg_page_is_free().
fts_drop_common_tables(): Return an error if the transaction
was rolled back.
fil_space_t::set_corrupted(): Report a tablespace as corrupted if
it was not reported already.
fil_space_t::io(): Invoke fil_space_t::set_corrupted() to report
out-of-bounds page access or other errors.
Clean up mtr_t::page_lock()
buf_page_get_low(): Validate the page identifier (to check for
recently read corrupted pages) after acquiring the page latch.
buf_page_t::read_complete(): Flag uninitialized (all-zero) pages
with DB_FAIL. Return DB_PAGE_CORRUPTED on page number mismatch.
mtr_t::defer_drop_ahi(): Renamed from mtr_defer_drop_ahi().
recv_sys_t::free_corrupted_page(): Only set_corrupt_fs()
if any log records exist for the page. We do not mind if read-ahead
produces corrupted (or all-zero) pages that were not actually needed
during recovery.
recv_recover_page(): Return whether the operation succeeded.
recv_sys_t::recover_low(): Simplify the logic. Check for recovery error.
Thanks to Matthias Leich for testing this extensively and to the
authors of https://rr-project.org for making it easy to diagnose
and fix any failures that were found during the testing.
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-13542: Crashing on corrupted page is unhelpful
The approach to handling corruption that was chosen by Oracle in
commit 177d8b0c125b841c0650d27d735e3b87509dc286
is not really useful. Not only did it actually fail to prevent InnoDB
from crashing, but it is making things worse by blocking attempts to
rescue data from or rebuild a partially readable table.
We will try to prevent crashes in a different way: by propagating
errors up the call stack. We will never mark the clustered index
persistently corrupted, so that data recovery may be attempted by
reading from the table, or by rebuilding the table.
This should also fix MDEV-13680 (crash on btr_page_alloc() failure);
it was extensively tested with innodb_file_per_table=0 and a
non-autoextend system tablespace.
We should now avoid crashes in many cases, such as when a page
cannot be read or allocated, or an inconsistency is detected when
attempting to update multiple pages. We will not crash on double-free,
such as on the recovery of DDL in system tablespace in case something
was corrupted.
Crashes on corrupted data are still possible. The fault injection mechanism
that is introduced in the subsequent commit may help catch more of them.
buf_page_import_corrupt_failure: Remove the fault injection, and instead
corrupt some pages using Perl code in the tests.
btr_cur_pessimistic_insert(): Always reserve extents (except for the
change buffer), in order to prevent a subsequent allocation failure.
btr_pcur_open_at_rnd_pos(): Merged to the only caller ibuf_merge_pages().
btr_assert_not_corrupted(), btr_corruption_report(): Remove.
Similar checks are already part of btr_block_get().
FSEG_MAGIC_N_BYTES: Replaces FSEG_MAGIC_N_VALUE.
dict_hdr_get(), trx_rsegf_get_new(), trx_undo_page_get(),
trx_undo_page_get_s_latched(): Replaced with error-checking calls.
trx_rseg_t::get(mtr_t*): Replaces trx_rsegf_get().
trx_rseg_header_create(): Let the caller update the TRX_SYS page if needed.
trx_sys_create_sys_pages(): Merged with trx_sysf_create().
dict_check_tablespaces_and_store_max_id(): Do not access
DICT_HDR_MAX_SPACE_ID, because it was already recovered in dict_boot().
Merge dict_check_sys_tables() with this function.
dir_pathname(): Replaces os_file_make_new_pathname().
row_undo_ins_remove_sec(): Do not modify the undo page by adding
a terminating NUL byte to the record.
btr_decryption_failed(): Report decryption failures
dict_set_corrupted_by_space(), dict_set_encrypted_by_space(),
dict_set_corrupted_index_cache_only(): Remove.
dict_set_corrupted(): Remove the constant parameter dict_locked=false.
Never flag the clustered index corrupted in SYS_INDEXES, because
that would deny further access to the table. It might be possible to
repair the table by executing ALTER TABLE or OPTIMIZE TABLE, in case
no B-tree leaf page is corrupted.
dict_table_skip_corrupt_index(), dict_table_next_uncorrupted_index(),
row_purge_skip_uncommitted_virtual_index(): Remove, and refactor
the callers to read dict_index_t::type only once.
dict_table_is_corrupted(): Remove.
dict_index_t::is_btree(): Determine if the index is a valid B-tree.
BUF_GET_NO_LATCH, BUF_EVICT_IF_IN_POOL: Remove.
UNIV_BTR_DEBUG: Remove. Any inconsistency will no longer trigger
assertion failures, but error codes being returned.
buf_corrupt_page_release(): Replaced with a direct call to
buf_pool.corrupted_evict().
fil_invalid_page_access_msg(): Never crash on an invalid read;
let the caller of buf_page_get_gen() decide.
btr_pcur_t::restore_position(): Propagate failure status to the caller
by returning CORRUPTED.
opt_search_plan_for_table(): Simplify the code.
row_purge_del_mark(), row_purge_upd_exist_or_extern_func(),
row_undo_ins_remove_sec_rec(), row_undo_mod_upd_del_sec(),
row_undo_mod_del_mark_sec(): Avoid mem_heap_create()/mem_heap_free()
when no secondary indexes exist.
row_undo_mod_upd_exist_sec(): Simplify the code.
row_upd_clust_step(), dict_load_table_one(): Return DB_TABLE_CORRUPT
if the clustered index (and therefore the table) is corrupted, similar
to what we do in row_insert_for_mysql().
fut_get_ptr(): Replace with buf_page_get_gen() calls.
buf_page_get_gen(): Return nullptr and *err=DB_CORRUPTION
if the page is marked as freed. For other modes than
BUF_GET_POSSIBLY_FREED or BUF_PEEK_IF_IN_POOL this will
trigger a debug assertion failure. For BUF_GET_POSSIBLY_FREED,
we will return nullptr for freed pages, so that the callers
can be simplified. The purge of transaction history will be
a new user of BUF_GET_POSSIBLY_FREED, to avoid crashes on
corrupted data.
buf_page_get_low(): Never crash on a corrupted page, but simply
return nullptr.
fseg_page_is_allocated(): Replaces fseg_page_is_free().
fts_drop_common_tables(): Return an error if the transaction
was rolled back.
fil_space_t::set_corrupted(): Report a tablespace as corrupted if
it was not reported already.
fil_space_t::io(): Invoke fil_space_t::set_corrupted() to report
out-of-bounds page access or other errors.
Clean up mtr_t::page_lock()
buf_page_get_low(): Validate the page identifier (to check for
recently read corrupted pages) after acquiring the page latch.
buf_page_t::read_complete(): Flag uninitialized (all-zero) pages
with DB_FAIL. Return DB_PAGE_CORRUPTED on page number mismatch.
mtr_t::defer_drop_ahi(): Renamed from mtr_defer_drop_ahi().
recv_sys_t::free_corrupted_page(): Only set_corrupt_fs()
if any log records exist for the page. We do not mind if read-ahead
produces corrupted (or all-zero) pages that were not actually needed
during recovery.
recv_recover_page(): Return whether the operation succeeded.
recv_sys_t::recover_low(): Simplify the logic. Check for recovery error.
Thanks to Matthias Leich for testing this extensively and to the
authors of https://rr-project.org for making it easy to diagnose
and fix any failures that were found during the testing.
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-13542: Crashing on corrupted page is unhelpful
The approach to handling corruption that was chosen by Oracle in
commit 177d8b0c125b841c0650d27d735e3b87509dc286
is not really useful. Not only did it actually fail to prevent InnoDB
from crashing, but it is making things worse by blocking attempts to
rescue data from or rebuild a partially readable table.
We will try to prevent crashes in a different way: by propagating
errors up the call stack. We will never mark the clustered index
persistently corrupted, so that data recovery may be attempted by
reading from the table, or by rebuilding the table.
This should also fix MDEV-13680 (crash on btr_page_alloc() failure);
it was extensively tested with innodb_file_per_table=0 and a
non-autoextend system tablespace.
We should now avoid crashes in many cases, such as when a page
cannot be read or allocated, or an inconsistency is detected when
attempting to update multiple pages. We will not crash on double-free,
such as on the recovery of DDL in system tablespace in case something
was corrupted.
Crashes on corrupted data are still possible. The fault injection mechanism
that is introduced in the subsequent commit may help catch more of them.
buf_page_import_corrupt_failure: Remove the fault injection, and instead
corrupt some pages using Perl code in the tests.
btr_cur_pessimistic_insert(): Always reserve extents (except for the
change buffer), in order to prevent a subsequent allocation failure.
btr_pcur_open_at_rnd_pos(): Merged to the only caller ibuf_merge_pages().
btr_assert_not_corrupted(), btr_corruption_report(): Remove.
Similar checks are already part of btr_block_get().
FSEG_MAGIC_N_BYTES: Replaces FSEG_MAGIC_N_VALUE.
dict_hdr_get(), trx_rsegf_get_new(), trx_undo_page_get(),
trx_undo_page_get_s_latched(): Replaced with error-checking calls.
trx_rseg_t::get(mtr_t*): Replaces trx_rsegf_get().
trx_rseg_header_create(): Let the caller update the TRX_SYS page if needed.
trx_sys_create_sys_pages(): Merged with trx_sysf_create().
dict_check_tablespaces_and_store_max_id(): Do not access
DICT_HDR_MAX_SPACE_ID, because it was already recovered in dict_boot().
Merge dict_check_sys_tables() with this function.
dir_pathname(): Replaces os_file_make_new_pathname().
row_undo_ins_remove_sec(): Do not modify the undo page by adding
a terminating NUL byte to the record.
btr_decryption_failed(): Report decryption failures
dict_set_corrupted_by_space(), dict_set_encrypted_by_space(),
dict_set_corrupted_index_cache_only(): Remove.
dict_set_corrupted(): Remove the constant parameter dict_locked=false.
Never flag the clustered index corrupted in SYS_INDEXES, because
that would deny further access to the table. It might be possible to
repair the table by executing ALTER TABLE or OPTIMIZE TABLE, in case
no B-tree leaf page is corrupted.
dict_table_skip_corrupt_index(), dict_table_next_uncorrupted_index(),
row_purge_skip_uncommitted_virtual_index(): Remove, and refactor
the callers to read dict_index_t::type only once.
dict_table_is_corrupted(): Remove.
dict_index_t::is_btree(): Determine if the index is a valid B-tree.
BUF_GET_NO_LATCH, BUF_EVICT_IF_IN_POOL: Remove.
UNIV_BTR_DEBUG: Remove. Any inconsistency will no longer trigger
assertion failures, but error codes being returned.
buf_corrupt_page_release(): Replaced with a direct call to
buf_pool.corrupted_evict().
fil_invalid_page_access_msg(): Never crash on an invalid read;
let the caller of buf_page_get_gen() decide.
btr_pcur_t::restore_position(): Propagate failure status to the caller
by returning CORRUPTED.
opt_search_plan_for_table(): Simplify the code.
row_purge_del_mark(), row_purge_upd_exist_or_extern_func(),
row_undo_ins_remove_sec_rec(), row_undo_mod_upd_del_sec(),
row_undo_mod_del_mark_sec(): Avoid mem_heap_create()/mem_heap_free()
when no secondary indexes exist.
row_undo_mod_upd_exist_sec(): Simplify the code.
row_upd_clust_step(), dict_load_table_one(): Return DB_TABLE_CORRUPT
if the clustered index (and therefore the table) is corrupted, similar
to what we do in row_insert_for_mysql().
fut_get_ptr(): Replace with buf_page_get_gen() calls.
buf_page_get_gen(): Return nullptr and *err=DB_CORRUPTION
if the page is marked as freed. For other modes than
BUF_GET_POSSIBLY_FREED or BUF_PEEK_IF_IN_POOL this will
trigger a debug assertion failure. For BUF_GET_POSSIBLY_FREED,
we will return nullptr for freed pages, so that the callers
can be simplified. The purge of transaction history will be
a new user of BUF_GET_POSSIBLY_FREED, to avoid crashes on
corrupted data.
buf_page_get_low(): Never crash on a corrupted page, but simply
return nullptr.
fseg_page_is_allocated(): Replaces fseg_page_is_free().
fts_drop_common_tables(): Return an error if the transaction
was rolled back.
fil_space_t::set_corrupted(): Report a tablespace as corrupted if
it was not reported already.
fil_space_t::io(): Invoke fil_space_t::set_corrupted() to report
out-of-bounds page access or other errors.
Clean up mtr_t::page_lock()
buf_page_get_low(): Validate the page identifier (to check for
recently read corrupted pages) after acquiring the page latch.
buf_page_t::read_complete(): Flag uninitialized (all-zero) pages
with DB_FAIL. Return DB_PAGE_CORRUPTED on page number mismatch.
mtr_t::defer_drop_ahi(): Renamed from mtr_defer_drop_ahi().
recv_sys_t::free_corrupted_page(): Only set_corrupt_fs()
if any log records exist for the page. We do not mind if read-ahead
produces corrupted (or all-zero) pages that were not actually needed
during recovery.
recv_recover_page(): Return whether the operation succeeded.
recv_sys_t::recover_low(): Simplify the logic. Check for recovery error.
Thanks to Matthias Leich for testing this extensively and to the
authors of https://rr-project.org for making it easy to diagnose
and fix any failures that were found during the testing.
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-12699 Improve crash recovery of corrupted data pages
InnoDB crash recovery used to read every data page for which
redo log exists. This is unnecessary for those pages that are
initialized by the redo log. If a newly created page is corrupted,
recovery could unnecessarily fail. It would suffice to reinitialize
the page based on the redo log records.
To add insult to injury, InnoDB crash recovery could hang if it
encountered a corrupted page. We will fix also that problem.
InnoDB would normally refuse to start up if it encounters a
corrupted page on recovery, but that can be overridden by
setting innodb_force_recovery=1.
Data pages are completely initialized by the records
MLOG_INIT_FILE_PAGE2 and MLOG_ZIP_PAGE_COMPRESS.
MariaDB 10.4 additionally recognizes MLOG_INIT_FREE_PAGE,
which notifies that a page has been freed and its contents
can be discarded (filled with zeroes).
The record MLOG_INDEX_LOAD notifies that redo logging has
been re-enabled after being disabled. We can avoid loading
the page if all buffered redo log records predate the
MLOG_INDEX_LOAD record.
For the internal tables of FULLTEXT INDEX, no MLOG_INDEX_LOAD
records were written before commit aa3f7a107ce3a9a7f80daf3cadd442a61c5493ab.
Hence, we will skip these optimizations for tables whose
name starts with FTS_.
This is joint work with Thirunarayanan Balathandayuthapani.
fil_space_t::enable_lsn, file_name_t::enable_lsn: The LSN of the
latest recovered MLOG_INDEX_LOAD record for a tablespace.
mlog_init: Page initialization operations discovered during
redo log scanning. FIXME: This really belongs in recv_sys->addr_hash,
and should be removed in MDEV-19176.
recv_addr_state: Add the new state RECV_WILL_NOT_READ to
indicate that according to mlog_init, the page will be
initialized based on redo log record contents.
recv_add_to_hash_table(): Set the RECV_WILL_NOT_READ state
if appropriate. For now, we do not treat MLOG_ZIP_PAGE_COMPRESS
as page initialization. This works around bugs in the crash
recovery of ROW_FORMAT=COMPRESSED tables.
recv_mark_log_index_load(): Process a MLOG_INDEX_LOAD record
by resetting the state to RECV_NOT_PROCESSED and by updating
the fil_name_t::enable_lsn.
recv_init_crash_recovery_spaces(): Copy fil_name_t::enable_lsn
to fil_space_t::enable_lsn.
recv_recover_page(): Add the parameter init_lsn, to ignore
any log records that precede the page initialization.
Add DBUG output about skipped operations.
buf_page_create(): Initialize FIL_PAGE_LSN, so that
recv_recover_page() will not wrongly skip applying
the page-initialization record due to the field containing
some newer LSN as a leftover from a different page.
Do not invoke ibuf_merge_or_delete_for_page() during
crash recovery.
recv_apply_hashed_log_recs(): Remove some unnecessary lookups.
Note if a corrupted page was found during recovery.
After invoking buf_page_create(), do invoke
ibuf_merge_or_delete_for_page() via mlog_init.ibuf_merge()
in the last recovery batch.
ibuf_merge_or_delete_for_page(): Relax a debug assertion.
innobase_start_or_create_for_mysql(): Abort startup if
a corrupted page was found during recovery. Corrupted pages
will not be flagged if innodb_force_recovery is set.
However, the recv_sys->found_corrupt_fs flag can be set
regardless of innodb_force_recovery if file names are found
to be incorrect (for example, multiple files with the same
tablespace ID).
7 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-12253: Buffer pool blocks are accessed after they have been freed
Problem was that bpage was referenced after it was already freed
from LRU. Fixed by adding a new variable encrypted that is
passed down to buf_page_check_corrupt() and used in
buf_page_get_gen() to stop processing page read.
This patch should also address following test failures and
bugs:
MDEV-12419: IMPORT should not look up tablespace in
PageConverter::validate(). This is now removed.
MDEV-10099: encryption.innodb_onlinealter_encryption fails
sporadically in buildbot
MDEV-11420: encryption.innodb_encryption-page-compression
failed in buildbot
MDEV-11222: encryption.encrypt_and_grep failed in buildbot on P8
Removed dict_table_t::is_encrypted and dict_table_t::ibd_file_missing
and replaced these with dict_table_t::file_unreadable. Table
ibd file is missing if fil_get_space(space_id) returns NULL
and encrypted if not. Removed dict_table_t::is_corrupted field.
Ported FilSpace class from 10.2 and using that on buf_page_check_corrupt(),
buf_page_decrypt_after_read(), buf_page_encrypt_before_write(),
buf_dblwr_process(), buf_read_page(), dict_stats_save_defrag_stats().
Added test cases when enrypted page could be read while doing
redo log crash recovery. Also added test case for row compressed
blobs.
btr_cur_open_at_index_side_func(),
btr_cur_open_at_rnd_pos_func(): Avoid referencing block that is
NULL.
buf_page_get_zip(): Issue error if page read fails.
buf_page_get_gen(): Use dberr_t for error detection and
do not reference bpage after we hare freed it.
buf_mark_space_corrupt(): remove bpage from LRU also when
it is encrypted.
buf_page_check_corrupt(): @return DB_SUCCESS if page has
been read and is not corrupted,
DB_PAGE_CORRUPTED if page based on checksum check is corrupted,
DB_DECRYPTION_FAILED if page post encryption checksum matches but
after decryption normal page checksum does not match. In read
case only DB_SUCCESS is possible.
buf_page_io_complete(): use dberr_t for error handling.
buf_flush_write_block_low(),
buf_read_ahead_random(),
buf_read_page_async(),
buf_read_ahead_linear(),
buf_read_ibuf_merge_pages(),
buf_read_recv_pages(),
fil_aio_wait():
Issue error if page read fails.
btr_pcur_move_to_next_page(): Do not reference page if it is
NULL.
Introduced dict_table_t::is_readable() and dict_index_t::is_readable()
that will return true if tablespace exists and pages read from
tablespace are not corrupted or page decryption failed.
Removed buf_page_t::key_version. After page decryption the
key version is not removed from page frame. For unencrypted
pages, old key_version is removed at buf_page_encrypt_before_write()
dict_stats_update_transient_for_index(),
dict_stats_update_transient()
Do not continue if table decryption failed or table
is corrupted.
dict0stats.cc: Introduced a dict_stats_report_error function
to avoid code duplication.
fil_parse_write_crypt_data():
Check that key read from redo log entry is found from
encryption plugin and if it is not, refuse to start.
PageConverter::validate(): Removed access to fil_space_t as
tablespace is not available during import.
Fixed error code on innodb.innodb test.
Merged test cased innodb-bad-key-change5 and innodb-bad-key-shutdown
to innodb-bad-key-change2. Removed innodb-bad-key-change5 test.
Decreased unnecessary complexity on some long lasting tests.
Removed fil_inc_pending_ops(), fil_decr_pending_ops(),
fil_get_first_space(), fil_get_next_space(),
fil_get_first_space_safe(), fil_get_next_space_safe()
functions.
fil_space_verify_crypt_checksum(): Fixed bug found using ASAN
where FIL_PAGE_END_LSN_OLD_CHECKSUM field was incorrectly
accessed from row compressed tables. Fixed out of page frame
bug for row compressed tables in
fil_space_verify_crypt_checksum() found using ASAN. Incorrect
function was called for compressed table.
Added new tests for discard, rename table and drop (we should allow them
even when page decryption fails). Alter table rename is not allowed.
Added test for restart with innodb-force-recovery=1 when page read on
redo-recovery cant be decrypted. Added test for corrupted table where
both page data and FIL_PAGE_FILE_FLUSH_LSN_OR_KEY_VERSION is corrupted.
Adjusted the test case innodb_bug14147491 so that it does not anymore
expect crash. Instead table is just mostly not usable.
fil0fil.h: fil_space_acquire_low is not visible function
and fil_space_acquire and fil_space_acquire_silent are
inline functions. FilSpace class uses fil_space_acquire_low
directly.
recv_apply_hashed_log_recs() does not return anything.
9 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-23399: Performance regression with write workloads
The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted
the performance bottleneck to the page flushing.
The configuration parameters will be changed as follows:
innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction)
innodb_lru_scan_depth=1536 (old: 1024)
innodb_max_dirty_pages_pct=90 (old: 75)
innodb_max_dirty_pages_pct_lwm=75 (old: 0)
Note: The parameter innodb_lru_scan_depth will only affect LRU
eviction of buffer pool pages when a new page is being allocated. The
page cleaner thread will no longer evict any pages. It used to
guarantee that some pages will remain free in the buffer pool. Now, we
perform that eviction 'on demand' in buf_LRU_get_free_block().
The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows:
* When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks()
* As a buf_pool.free limit in buf_LRU_list_batch() for terminating
the flushing that is initiated e.g., by buf_LRU_get_free_block()
The parameter also used to serve as an initial limit for unzip_LRU
eviction (evicting uncompressed page frames while retaining
ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit
of 100 or unlimited for invoking buf_LRU_scan_and_free_block().
The status variables will be changed as follows:
innodb_buffer_pool_pages_flushed: This includes also the count of
innodb_buffer_pool_pages_LRU_flushed and should work reliably,
updated one by one in buf_flush_page() to give more real-time
statistics. The function buf_flush_stats(), which we are removing,
was not called in every code path. For both counters, we will use
regular variables that are incremented in a critical section of
buf_pool.mutex. Note that show_innodb_vars() directly links to the
variables, and reads of the counters will *not* be protected by
buf_pool.mutex, so you cannot get a consistent snapshot of both variables.
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be
removed, because the page cleaner no longer deals with writing or
evicting least recently used pages, and because the single-page writes
have been removed:
* buffer_LRU_batch_flush_avg_time_slot
* buffer_LRU_batch_flush_avg_time_thread
* buffer_LRU_batch_flush_avg_time_est
* buffer_LRU_batch_flush_avg_pass
* buffer_LRU_single_flush_scanned
* buffer_LRU_single_flush_num_scan
* buffer_LRU_single_flush_scanned_per_call
When moving to a single buffer pool instance in MDEV-15058, we missed
some opportunity to simplify the buf_flush_page_cleaner thread. It was
unnecessarily using a mutex and some complex data structures, even
though we always have a single page cleaner thread.
Furthermore, the buf_flush_page_cleaner thread had separate 'recovery'
and 'shutdown' modes where it was waiting to be triggered by some
other thread, adding unnecessary latency and potential for hangs in
relatively rarely executed startup or shutdown code.
The page cleaner was also running two kinds of batches in an
interleaved fashion: "LRU flush" (writing out some least recently used
pages and evicting them on write completion) and the normal batches
that aim to increase the MIN(oldest_modification) in the buffer pool,
to help the log checkpoint advance.
The buf_pool.flush_list flushing was being blocked by
buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN
of a page is ahead of log_sys.get_flushed_lsn(), that is, what has
been persistently written to the redo log, we would trigger a log
flush and then resume the page flushing. This would unnecessarily
limit the performance of the page cleaner thread and trigger the
infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms.
The settings might not be optimal" that were suppressed in
commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2.
Our revised algorithm will make log_sys.get_flushed_lsn() advance at
the start of buf_flush_lists(), and then execute a 'best effort' to
write out all pages. The flush batches will skip pages that were modified
since the log was written, or are are currently exclusively locked.
The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message
will be removed, because by design, the buf_flush_page_cleaner() should
not be blocked during a batch for extended periods of time.
We will remove the single-page flushing altogether. Related to this,
the debug parameter innodb_doublewrite_batch_size will be removed,
because all of the doublewrite buffer will be used for flushing
batches. If a page needs to be evicted from the buffer pool and all
100 least recently used pages in the buffer pool have unflushed
changes, buf_LRU_get_free_block() will execute buf_flush_lists() to
write out and evict innodb_lru_flush_size pages. At most one thread
will execute buf_flush_lists() in buf_LRU_get_free_block(); other
threads will wait for that LRU flushing batch to finish.
To improve concurrency, we will replace the InnoDB ib_mutex_t and
os_event_t native mutexes and condition variables in this area of code.
Most notably, this means that the buffer pool mutex (buf_pool.mutex)
is no longer instrumented via any InnoDB interfaces. It will continue
to be instrumented via PERFORMANCE_SCHEMA.
For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be
declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical
sections of buf_pool.flush_list_mutex should be shorter than those for
buf_pool.mutex, because in the worst case, they cover a linear scan of
buf_pool.flush_list, while the worst case of a critical section of
buf_pool.mutex covers a linear scan of the potentially much longer
buf_pool.LRU list.
mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable
with SAFE_MUTEX. Some InnoDB debug assertions need this predicate
instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner().
buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list:
Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[].
The number of active flush operations.
buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t
instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA
and SAFE_MUTEX instrumentation.
buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU.
buf_pool_t::done_flush_list: Condition variable for !n_flush_list.
buf_pool_t::do_flush_list: Condition variable to wake up the
buf_flush_page_cleaner when a log checkpoint needs to be written
or the server is being shut down. Replaces buf_flush_event.
We will keep using timed waits (the page cleaner thread will wake
_at least_ once per second), because the calculations for
innodb_adaptive_flushing depend on fixed time intervals.
buf_dblwr: Allocate statically, and move all code to member functions.
Use a native mutex and condition variable. Remove code to deal with
single-page flushing.
buf_dblwr_check_block(): Make the check debug-only. We were spending
a significant amount of execution time in page_simple_validate_new().
flush_counters_t::unzip_LRU_evicted: Remove.
IORequest: Make more members const. FIXME: m_fil_node should be removed.
buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex
(which we are removing).
page_cleaner_slot_t, page_cleaner_t: Remove many redundant members.
pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot().
recv_writer_thread: Remove. Recovery works just fine without it, if we
simply invoke buf_flush_sync() at the end of each batch in
recv_sys_t::apply().
recv_recovery_from_checkpoint_finish(): Remove. We can simply call
recv_sys.debug_free() directly.
srv_started_redo: Replaces srv_start_state.
SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown()
can communicate with the normal page cleaner loop via the new function
flush_buffer_pool().
buf_flush_remove(): Assert that the calling thread is holding
buf_pool.flush_list_mutex. This removes unnecessary mutex operations
from buf_flush_remove_pages() and buf_flush_dirty_pages(),
which replace buf_LRU_flush_or_remove_pages().
buf_flush_lists(): Renamed from buf_flush_batch(), with simplified
interface. Return the number of flushed pages. Clarified comments and
renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions
buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this
function, which was their only caller, and remove 2 unnecessary
buf_pool.mutex release/re-acquisition that we used to perform around
the buf_flush_batch() call. At the start, if not all log has been
durably written, wait for a background task to do it, or start a new
task to do it. This allows the log write to run concurrently with our
page flushing batch. Any pages that were skipped due to too recent
FIL_PAGE_LSN or due to them being latched by a writer should be flushed
during the next batch, unless there are further modifications to those
pages. It is possible that a page that we must flush due to small
oldest_modification also carries a recent FIL_PAGE_LSN or is being
constantly modified. In the worst case, all writers would then end up
waiting in log_free_check() to allow the flushing and the checkpoint
to complete.
buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n.
Cache the last looked up tablespace. If neighbor flushing is not applicable,
invoke buf_flush_page() directly, avoiding a page lookup in between.
buf_flush_space(): Auxiliary function to look up a tablespace for
page flushing.
buf_flush_page(): Defer the computation of space->full_crc32(). Never
call log_write_up_to(), but instead skip persistent pages whose latest
modification (FIL_PAGE_LSN) is newer than the redo log. Also skip
pages on which we cannot acquire a shared latch without waiting.
buf_flush_try_neighbors(): Do not bother checking buf_fix_count
because buf_flush_page() will no longer wait for the page latch.
Take the tablespace as a parameter, and only execute this function
when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold().
buf_flush_relocate_on_flush_list(): Declare as cold, and push down
a condition from the callers.
buf_flush_check_neighbor(): Take id.fold() as a parameter.
buf_flush_sync(): Ensure that the buf_pool.flush_list is empty,
because the flushing batch will skip pages whose modifications have
not yet been written to the log or were latched for modification.
buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables.
buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize
the counters, and report n->evicted.
Cache the last looked up tablespace. If neighbor flushing is not applicable,
invoke buf_flush_page() directly, avoiding a page lookup in between.
buf_do_LRU_batch(): Return the number of pages flushed.
buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if
adaptive hash index entries are pointing to the block.
buf_LRU_get_free_block(): Do not wake up the page cleaner, because it
will no longer perform any useful work for us, and we do not want it
to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0)
writes out and evicts at most innodb_lru_flush_size pages. (The
function buf_do_LRU_batch() may complete after writing fewer pages if
more than innodb_lru_scan_depth pages end up in buf_pool.free list.)
Eliminate some mutex release-acquire cycles, and wait for the LRU
flush batch to complete before rescanning.
buf_LRU_check_size_of_non_data_objects(): Simplify the code.
buf_page_write_complete(): Remove the parameter evict, and always
evict pages that were part of an LRU flush.
buf_page_create(): Take a pre-allocated page as a parameter.
buf_pool_t::free_block(): Free a pre-allocated block.
recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block
while not holding recv_sys.mutex. During page allocation, we may
initiate a page flush, which in turn may initiate a log flush, which
would require acquiring log_sys.mutex, which should always be acquired
before recv_sys.mutex in order to avoid deadlocks. Therefore, we must
not be holding recv_sys.mutex while allocating a buffer pool block.
BtrBulk::logFreeCheck(): Skip a redundant condition.
row_undo_step(): Do not invoke srv_inc_activity_count() for every row
that is being rolled back. It should suffice to invoke the function in
trx_flush_log_if_needed() during trx_t::commit_in_memory() when the
rollback completes.
sync_check_enable(): Remove. We will enable innodb_sync_debug from the
very beginning.
Reviewed by: Vladislav Vaintroub
5 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-33515 log_sys.lsn_lock causes excessive context switching
The log_sys.lsn_lock is a very contended resource with a small
critical section in log_sys.append_prepare(). On many processor
microarchitectures, replacing the system call based log_sys.lsn_lock
with a pure spin lock would fare worse during high concurrency workloads,
wasting a significant amount of CPU cycles in the spin loop.
On other microarchitectures, we would see a significant amount of time
being spent in native_queued_spin_lock_slowpath() in the Linux kernel,
plus context switching between user and kernel address space. This was
pointed out by Steve Shaw from Intel Corporation.
Depending on the workload and the hardware implementation, it may be
useful to use a pure spin lock in log_sys.append_prepare().
We will introduce a parameter. The statement
SET GLOBAL INNODB_LOG_SPIN_WAIT_DELAY=50;
would enable a spin lock that will execute that many MY_RELAX_CPU()
operations (such as the x86 PAUSE instruction) between successive
attempts of acquiring the spin lock. The use of a system call based
log_sys.lsn_lock (which is the default setting) can be enabled by
SET GLOBAL INNODB_LOG_SPIN_WAIT_DELAY=0;
This patch will also introduce #ifdef LOG_LATCH_DEBUG
(part of cmake -DWITH_INNODB_EXTRA_DEBUG=ON) for more accurate
tracking of log_sys.latch ownership and reorganize the fields of
log_sys to improve the locality of reference and to reduce the
chances of false sharing.
When a spin lock is being used, it will be maintained in the
most significant bit of log_sys.buf_free. This is useful, because that is
one of the fields that is covered by the lock. For IA-32 or AMD64, we
implement the spin lock specially via log_t::lsn_lock_bts(), employing the
i386 LOCK BTS instruction. A straightforward std::atomic::fetch_or() would
translate into an inefficient loop around LOCK CMPXCHG.
mtr_t::spin_wait_delay: The value of innodb_log_spin_wait_delay.
mtr_t::finisher: Pointer to the currently used mtr_t::finish_write()
implementation. This allows to avoid introducing conditional branches.
We no longer invoke log_sys.is_pmem() at the mini-transaction level,
but we would do that in log_write_up_to().
mtr_t::finisher_update(): Update finisher when spin_wait_delay is
changed from or to 0 (the spin lock is changed to log_sys.lsn_lock or
vice versa).
2 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-25180 Atomic ALTER TABLE
MDEV-25604 Atomic DDL: Binlog event written upon recovery does not
have default database
The purpose of this task is to ensure that ALTER TABLE is atomic even if
the MariaDB server would be killed at any point of the alter table.
This means that either the ALTER TABLE succeeds (including that triggers,
the status tables and the binary log are updated) or things should be
reverted to their original state.
If the server crashes before the new version is fully up to date and
commited, it will revert to the original table and remove all
temporary files and tables.
If the new version is commited, crash recovery will use the new version,
and update triggers, the status tables and the binary log.
The one execption is ALTER TABLE .. RENAME .. where no changes are done
to table definition. This one will work as RENAME and roll back unless
the whole statement completed, including updating the binary log (if
enabled).
Other changes:
- Added handlerton->check_version() function to allow the ddl recovery
code to check, in case of inplace alter table, if the table in the
storage engine is of the new or old version.
- Added handler->table_version() so that an engine can report the current
version of the table. This should be changed each time the table
definition changes.
- Added ha_signal_ddl_recovery_done() and
handlerton::signal_ddl_recovery_done() to inform all handlers when
ddl recovery has been done. (Needed by InnoDB).
- Added handlerton call inplace_alter_table_committed, to signal engine
that ddl_log has been closed for the alter table query.
- Added new handerton flag
HTON_REQUIRES_NOTIFY_TABLEDEF_CHANGED_AFTER_COMMIT to signal when we
should call hton->notify_tabledef_changed() during
mysql_inplace_alter_table. This was required as MyRocks and InnoDB
needed the call at different times.
- Added function server_uuid_value() to be able to generate a temporary
xid when ddl recovery writes the query to the binary log. This is
needed to be able to handle crashes during ddl log recovery.
- Moved freeing of the frm definition to end of mysql_alter_table() to
remove duplicate code and have a common exit strategy.
-------
InnoDB part of atomic ALTER TABLE
(Implemented by Marko Mäkelä)
innodb_check_version(): Compare the saved dict_table_t::def_trx_id
to determine whether an ALTER TABLE operation was committed.
We must correctly recover dict_table_t::def_trx_id for this to work.
Before purge removes any trace of DB_TRX_ID from system tables, it
will make an effort to load the user table into the cache, so that
the dict_table_t::def_trx_id can be recovered.
ha_innobase::table_version(): return garbage, or the trx_id that would
be used for committing an ALTER TABLE operation.
In InnoDB, table names starting with #sql-ib will remain special:
they will be dropped on startup. This may be revisited later in
MDEV-18518 when we implement proper undo logging and rollback
for creating or dropping multiple tables in a transaction.
Table names starting with #sql will retain some special meaning:
dict_table_t::parse_name() will not consider such names for
MDL acquisition, and dict_table_rename_in_cache() will treat such
names specially when handling FOREIGN KEY constraints.
Simplify InnoDB DROP INDEX.
Prevent purge wakeup
To ensure that dict_table_t::def_trx_id will be recovered correctly
in case the server is killed before ddl_log_complete(), we will block
the purge of any history in SYS_TABLES, SYS_INDEXES, SYS_COLUMNS
between ha_innobase::commit_inplace_alter_table(commit=true)
(purge_sys.stop_SYS()) and purge_sys.resume_SYS().
The completion callback purge_sys.resume_SYS() must be between
ddl_log_complete() and MDL release.
--------
MyRocks support for atomic ALTER TABLE
(Implemented by Sergui Petrunia)
Implement these SE API functions:
- ha_rocksdb::table_version()
- hton->check_version = rocksdb_check_versionMyRocks data dictionary
now stores table version for each table.
(Absence of table version record is interpreted as table_version=0,
that is, which means no upgrade changes are needed)
- For inplace alter table of a partitioned table, call the underlying
handlerton when checking if the table is ok. This assumes that the
partition engine commits all changes at once.
5 years ago  MDEV-12548 Initial implementation of Mariabackup for MariaDB 10.2
InnoDB I/O and buffer pool interfaces and the redo log format
have been changed between MariaDB 10.1 and 10.2, and the backup
code has to be adjusted accordingly.
The code has been simplified, and many memory leaks have been fixed.
Instead of the file name xtrabackup_logfile, the file name ib_logfile0
is being used for the copy of the redo log. Unnecessary InnoDB startup and
shutdown and some unnecessary threads have been removed.
Some help was provided by Vladislav Vaintroub.
Parameters have been cleaned up and aligned with those of MariaDB 10.2.
The --dbug option has been added, so that in debug builds,
--dbug=d,ib_log can be specified to enable diagnostic messages
for processing redo log entries.
By default, innodb_doublewrite=OFF, so that --prepare works faster.
If more crash-safety for --prepare is needed, double buffering
can be enabled.
The parameter innodb_log_checksums=OFF can be used to ignore redo log
checksums in --backup.
Some messages have been cleaned up.
Unless --export is specified, Mariabackup will not deal with undo log.
The InnoDB mini-transaction redo log is not only about user-level
transactions; it is actually about mini-transactions. To avoid confusion,
call it the redo log, not transaction log.
We disable any undo log processing in --prepare.
Because MariaDB 10.2 supports indexed virtual columns, the
undo log processing would need to be able to evaluate virtual column
expressions. To reduce the amount of code dependencies, we will not
process any undo log in prepare.
This means that the --export option must be disabled for now.
This also means that the following options are redundant
and have been removed:
xtrabackup --apply-log-only
innobackupex --redo-only
In addition to disabling any undo log processing, we will disable any
further changes to data pages during --prepare, including the change
buffer merge. This means that restoring incremental backups should
reliably work even when change buffering is being used on the server.
Because of this, preparing a backup will not generate any further
redo log, and the redo log file can be safely deleted. (If the
--export option is enabled in the future, it must generate redo log
when processing undo logs and buffered changes.)
In --prepare, we cannot easily know if a partial backup was used,
especially when restoring a series of incremental backups. So, we
simply warn about any missing files, and ignore the redo log for them.
FIXME: Enable the --export option.
FIXME: Improve the handling of the MLOG_INDEX_LOAD record, and write
a test that initiates a backup while an ALGORITHM=INPLACE operation
is creating indexes or rebuilding a table. An error should be detected
when preparing the backup.
FIXME: In --incremental --prepare, xtrabackup_apply_delta() should
ensure that if FSP_SIZE is modified, the file size will be adjusted
accordingly.
8 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-33515 log_sys.lsn_lock causes excessive context switching
The log_sys.lsn_lock is a very contended resource with a small
critical section in log_sys.append_prepare(). On many processor
microarchitectures, replacing the system call based log_sys.lsn_lock
with a pure spin lock would fare worse during high concurrency workloads,
wasting a significant amount of CPU cycles in the spin loop.
On other microarchitectures, we would see a significant amount of time
being spent in native_queued_spin_lock_slowpath() in the Linux kernel,
plus context switching between user and kernel address space. This was
pointed out by Steve Shaw from Intel Corporation.
Depending on the workload and the hardware implementation, it may be
useful to use a pure spin lock in log_sys.append_prepare().
We will introduce a parameter. The statement
SET GLOBAL INNODB_LOG_SPIN_WAIT_DELAY=50;
would enable a spin lock that will execute that many MY_RELAX_CPU()
operations (such as the x86 PAUSE instruction) between successive
attempts of acquiring the spin lock. The use of a system call based
log_sys.lsn_lock (which is the default setting) can be enabled by
SET GLOBAL INNODB_LOG_SPIN_WAIT_DELAY=0;
This patch will also introduce #ifdef LOG_LATCH_DEBUG
(part of cmake -DWITH_INNODB_EXTRA_DEBUG=ON) for more accurate
tracking of log_sys.latch ownership and reorganize the fields of
log_sys to improve the locality of reference and to reduce the
chances of false sharing.
When a spin lock is being used, it will be maintained in the
most significant bit of log_sys.buf_free. This is useful, because that is
one of the fields that is covered by the lock. For IA-32 or AMD64, we
implement the spin lock specially via log_t::lsn_lock_bts(), employing the
i386 LOCK BTS instruction. A straightforward std::atomic::fetch_or() would
translate into an inefficient loop around LOCK CMPXCHG.
mtr_t::spin_wait_delay: The value of innodb_log_spin_wait_delay.
mtr_t::finisher: Pointer to the currently used mtr_t::finish_write()
implementation. This allows to avoid introducing conditional branches.
We no longer invoke log_sys.is_pmem() at the mini-transaction level,
but we would do that in log_write_up_to().
mtr_t::finisher_update(): Update finisher when spin_wait_delay is
changed from or to 0 (the spin lock is changed to log_sys.lsn_lock or
vice versa).
2 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-23399: Performance regression with write workloads
The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted
the performance bottleneck to the page flushing.
The configuration parameters will be changed as follows:
innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction)
innodb_lru_scan_depth=1536 (old: 1024)
innodb_max_dirty_pages_pct=90 (old: 75)
innodb_max_dirty_pages_pct_lwm=75 (old: 0)
Note: The parameter innodb_lru_scan_depth will only affect LRU
eviction of buffer pool pages when a new page is being allocated. The
page cleaner thread will no longer evict any pages. It used to
guarantee that some pages will remain free in the buffer pool. Now, we
perform that eviction 'on demand' in buf_LRU_get_free_block().
The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows:
* When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks()
* As a buf_pool.free limit in buf_LRU_list_batch() for terminating
the flushing that is initiated e.g., by buf_LRU_get_free_block()
The parameter also used to serve as an initial limit for unzip_LRU
eviction (evicting uncompressed page frames while retaining
ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit
of 100 or unlimited for invoking buf_LRU_scan_and_free_block().
The status variables will be changed as follows:
innodb_buffer_pool_pages_flushed: This includes also the count of
innodb_buffer_pool_pages_LRU_flushed and should work reliably,
updated one by one in buf_flush_page() to give more real-time
statistics. The function buf_flush_stats(), which we are removing,
was not called in every code path. For both counters, we will use
regular variables that are incremented in a critical section of
buf_pool.mutex. Note that show_innodb_vars() directly links to the
variables, and reads of the counters will *not* be protected by
buf_pool.mutex, so you cannot get a consistent snapshot of both variables.
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be
removed, because the page cleaner no longer deals with writing or
evicting least recently used pages, and because the single-page writes
have been removed:
* buffer_LRU_batch_flush_avg_time_slot
* buffer_LRU_batch_flush_avg_time_thread
* buffer_LRU_batch_flush_avg_time_est
* buffer_LRU_batch_flush_avg_pass
* buffer_LRU_single_flush_scanned
* buffer_LRU_single_flush_num_scan
* buffer_LRU_single_flush_scanned_per_call
When moving to a single buffer pool instance in MDEV-15058, we missed
some opportunity to simplify the buf_flush_page_cleaner thread. It was
unnecessarily using a mutex and some complex data structures, even
though we always have a single page cleaner thread.
Furthermore, the buf_flush_page_cleaner thread had separate 'recovery'
and 'shutdown' modes where it was waiting to be triggered by some
other thread, adding unnecessary latency and potential for hangs in
relatively rarely executed startup or shutdown code.
The page cleaner was also running two kinds of batches in an
interleaved fashion: "LRU flush" (writing out some least recently used
pages and evicting them on write completion) and the normal batches
that aim to increase the MIN(oldest_modification) in the buffer pool,
to help the log checkpoint advance.
The buf_pool.flush_list flushing was being blocked by
buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN
of a page is ahead of log_sys.get_flushed_lsn(), that is, what has
been persistently written to the redo log, we would trigger a log
flush and then resume the page flushing. This would unnecessarily
limit the performance of the page cleaner thread and trigger the
infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms.
The settings might not be optimal" that were suppressed in
commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2.
Our revised algorithm will make log_sys.get_flushed_lsn() advance at
the start of buf_flush_lists(), and then execute a 'best effort' to
write out all pages. The flush batches will skip pages that were modified
since the log was written, or are are currently exclusively locked.
The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message
will be removed, because by design, the buf_flush_page_cleaner() should
not be blocked during a batch for extended periods of time.
We will remove the single-page flushing altogether. Related to this,
the debug parameter innodb_doublewrite_batch_size will be removed,
because all of the doublewrite buffer will be used for flushing
batches. If a page needs to be evicted from the buffer pool and all
100 least recently used pages in the buffer pool have unflushed
changes, buf_LRU_get_free_block() will execute buf_flush_lists() to
write out and evict innodb_lru_flush_size pages. At most one thread
will execute buf_flush_lists() in buf_LRU_get_free_block(); other
threads will wait for that LRU flushing batch to finish.
To improve concurrency, we will replace the InnoDB ib_mutex_t and
os_event_t native mutexes and condition variables in this area of code.
Most notably, this means that the buffer pool mutex (buf_pool.mutex)
is no longer instrumented via any InnoDB interfaces. It will continue
to be instrumented via PERFORMANCE_SCHEMA.
For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be
declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical
sections of buf_pool.flush_list_mutex should be shorter than those for
buf_pool.mutex, because in the worst case, they cover a linear scan of
buf_pool.flush_list, while the worst case of a critical section of
buf_pool.mutex covers a linear scan of the potentially much longer
buf_pool.LRU list.
mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable
with SAFE_MUTEX. Some InnoDB debug assertions need this predicate
instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner().
buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list:
Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[].
The number of active flush operations.
buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t
instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA
and SAFE_MUTEX instrumentation.
buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU.
buf_pool_t::done_flush_list: Condition variable for !n_flush_list.
buf_pool_t::do_flush_list: Condition variable to wake up the
buf_flush_page_cleaner when a log checkpoint needs to be written
or the server is being shut down. Replaces buf_flush_event.
We will keep using timed waits (the page cleaner thread will wake
_at least_ once per second), because the calculations for
innodb_adaptive_flushing depend on fixed time intervals.
buf_dblwr: Allocate statically, and move all code to member functions.
Use a native mutex and condition variable. Remove code to deal with
single-page flushing.
buf_dblwr_check_block(): Make the check debug-only. We were spending
a significant amount of execution time in page_simple_validate_new().
flush_counters_t::unzip_LRU_evicted: Remove.
IORequest: Make more members const. FIXME: m_fil_node should be removed.
buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex
(which we are removing).
page_cleaner_slot_t, page_cleaner_t: Remove many redundant members.
pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot().
recv_writer_thread: Remove. Recovery works just fine without it, if we
simply invoke buf_flush_sync() at the end of each batch in
recv_sys_t::apply().
recv_recovery_from_checkpoint_finish(): Remove. We can simply call
recv_sys.debug_free() directly.
srv_started_redo: Replaces srv_start_state.
SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown()
can communicate with the normal page cleaner loop via the new function
flush_buffer_pool().
buf_flush_remove(): Assert that the calling thread is holding
buf_pool.flush_list_mutex. This removes unnecessary mutex operations
from buf_flush_remove_pages() and buf_flush_dirty_pages(),
which replace buf_LRU_flush_or_remove_pages().
buf_flush_lists(): Renamed from buf_flush_batch(), with simplified
interface. Return the number of flushed pages. Clarified comments and
renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions
buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this
function, which was their only caller, and remove 2 unnecessary
buf_pool.mutex release/re-acquisition that we used to perform around
the buf_flush_batch() call. At the start, if not all log has been
durably written, wait for a background task to do it, or start a new
task to do it. This allows the log write to run concurrently with our
page flushing batch. Any pages that were skipped due to too recent
FIL_PAGE_LSN or due to them being latched by a writer should be flushed
during the next batch, unless there are further modifications to those
pages. It is possible that a page that we must flush due to small
oldest_modification also carries a recent FIL_PAGE_LSN or is being
constantly modified. In the worst case, all writers would then end up
waiting in log_free_check() to allow the flushing and the checkpoint
to complete.
buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n.
Cache the last looked up tablespace. If neighbor flushing is not applicable,
invoke buf_flush_page() directly, avoiding a page lookup in between.
buf_flush_space(): Auxiliary function to look up a tablespace for
page flushing.
buf_flush_page(): Defer the computation of space->full_crc32(). Never
call log_write_up_to(), but instead skip persistent pages whose latest
modification (FIL_PAGE_LSN) is newer than the redo log. Also skip
pages on which we cannot acquire a shared latch without waiting.
buf_flush_try_neighbors(): Do not bother checking buf_fix_count
because buf_flush_page() will no longer wait for the page latch.
Take the tablespace as a parameter, and only execute this function
when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold().
buf_flush_relocate_on_flush_list(): Declare as cold, and push down
a condition from the callers.
buf_flush_check_neighbor(): Take id.fold() as a parameter.
buf_flush_sync(): Ensure that the buf_pool.flush_list is empty,
because the flushing batch will skip pages whose modifications have
not yet been written to the log or were latched for modification.
buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables.
buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize
the counters, and report n->evicted.
Cache the last looked up tablespace. If neighbor flushing is not applicable,
invoke buf_flush_page() directly, avoiding a page lookup in between.
buf_do_LRU_batch(): Return the number of pages flushed.
buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if
adaptive hash index entries are pointing to the block.
buf_LRU_get_free_block(): Do not wake up the page cleaner, because it
will no longer perform any useful work for us, and we do not want it
to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0)
writes out and evicts at most innodb_lru_flush_size pages. (The
function buf_do_LRU_batch() may complete after writing fewer pages if
more than innodb_lru_scan_depth pages end up in buf_pool.free list.)
Eliminate some mutex release-acquire cycles, and wait for the LRU
flush batch to complete before rescanning.
buf_LRU_check_size_of_non_data_objects(): Simplify the code.
buf_page_write_complete(): Remove the parameter evict, and always
evict pages that were part of an LRU flush.
buf_page_create(): Take a pre-allocated page as a parameter.
buf_pool_t::free_block(): Free a pre-allocated block.
recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block
while not holding recv_sys.mutex. During page allocation, we may
initiate a page flush, which in turn may initiate a log flush, which
would require acquiring log_sys.mutex, which should always be acquired
before recv_sys.mutex in order to avoid deadlocks. Therefore, we must
not be holding recv_sys.mutex while allocating a buffer pool block.
BtrBulk::logFreeCheck(): Skip a redundant condition.
row_undo_step(): Do not invoke srv_inc_activity_count() for every row
that is being rolled back. It should suffice to invoke the function in
trx_flush_log_if_needed() during trx_t::commit_in_memory() when the
rollback completes.
sync_check_enable(): Remove. We will enable innodb_sync_debug from the
very beginning.
Reviewed by: Vladislav Vaintroub
5 years ago  MDEV-23399: Performance regression with write workloads
The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted
the performance bottleneck to the page flushing.
The configuration parameters will be changed as follows:
innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction)
innodb_lru_scan_depth=1536 (old: 1024)
innodb_max_dirty_pages_pct=90 (old: 75)
innodb_max_dirty_pages_pct_lwm=75 (old: 0)
Note: The parameter innodb_lru_scan_depth will only affect LRU
eviction of buffer pool pages when a new page is being allocated. The
page cleaner thread will no longer evict any pages. It used to
guarantee that some pages will remain free in the buffer pool. Now, we
perform that eviction 'on demand' in buf_LRU_get_free_block().
The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows:
* When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks()
* As a buf_pool.free limit in buf_LRU_list_batch() for terminating
the flushing that is initiated e.g., by buf_LRU_get_free_block()
The parameter also used to serve as an initial limit for unzip_LRU
eviction (evicting uncompressed page frames while retaining
ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit
of 100 or unlimited for invoking buf_LRU_scan_and_free_block().
The status variables will be changed as follows:
innodb_buffer_pool_pages_flushed: This includes also the count of
innodb_buffer_pool_pages_LRU_flushed and should work reliably,
updated one by one in buf_flush_page() to give more real-time
statistics. The function buf_flush_stats(), which we are removing,
was not called in every code path. For both counters, we will use
regular variables that are incremented in a critical section of
buf_pool.mutex. Note that show_innodb_vars() directly links to the
variables, and reads of the counters will *not* be protected by
buf_pool.mutex, so you cannot get a consistent snapshot of both variables.
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be
removed, because the page cleaner no longer deals with writing or
evicting least recently used pages, and because the single-page writes
have been removed:
* buffer_LRU_batch_flush_avg_time_slot
* buffer_LRU_batch_flush_avg_time_thread
* buffer_LRU_batch_flush_avg_time_est
* buffer_LRU_batch_flush_avg_pass
* buffer_LRU_single_flush_scanned
* buffer_LRU_single_flush_num_scan
* buffer_LRU_single_flush_scanned_per_call
When moving to a single buffer pool instance in MDEV-15058, we missed
some opportunity to simplify the buf_flush_page_cleaner thread. It was
unnecessarily using a mutex and some complex data structures, even
though we always have a single page cleaner thread.
Furthermore, the buf_flush_page_cleaner thread had separate 'recovery'
and 'shutdown' modes where it was waiting to be triggered by some
other thread, adding unnecessary latency and potential for hangs in
relatively rarely executed startup or shutdown code.
The page cleaner was also running two kinds of batches in an
interleaved fashion: "LRU flush" (writing out some least recently used
pages and evicting them on write completion) and the normal batches
that aim to increase the MIN(oldest_modification) in the buffer pool,
to help the log checkpoint advance.
The buf_pool.flush_list flushing was being blocked by
buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN
of a page is ahead of log_sys.get_flushed_lsn(), that is, what has
been persistently written to the redo log, we would trigger a log
flush and then resume the page flushing. This would unnecessarily
limit the performance of the page cleaner thread and trigger the
infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms.
The settings might not be optimal" that were suppressed in
commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2.
Our revised algorithm will make log_sys.get_flushed_lsn() advance at
the start of buf_flush_lists(), and then execute a 'best effort' to
write out all pages. The flush batches will skip pages that were modified
since the log was written, or are are currently exclusively locked.
The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message
will be removed, because by design, the buf_flush_page_cleaner() should
not be blocked during a batch for extended periods of time.
We will remove the single-page flushing altogether. Related to this,
the debug parameter innodb_doublewrite_batch_size will be removed,
because all of the doublewrite buffer will be used for flushing
batches. If a page needs to be evicted from the buffer pool and all
100 least recently used pages in the buffer pool have unflushed
changes, buf_LRU_get_free_block() will execute buf_flush_lists() to
write out and evict innodb_lru_flush_size pages. At most one thread
will execute buf_flush_lists() in buf_LRU_get_free_block(); other
threads will wait for that LRU flushing batch to finish.
To improve concurrency, we will replace the InnoDB ib_mutex_t and
os_event_t native mutexes and condition variables in this area of code.
Most notably, this means that the buffer pool mutex (buf_pool.mutex)
is no longer instrumented via any InnoDB interfaces. It will continue
to be instrumented via PERFORMANCE_SCHEMA.
For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be
declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical
sections of buf_pool.flush_list_mutex should be shorter than those for
buf_pool.mutex, because in the worst case, they cover a linear scan of
buf_pool.flush_list, while the worst case of a critical section of
buf_pool.mutex covers a linear scan of the potentially much longer
buf_pool.LRU list.
mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable
with SAFE_MUTEX. Some InnoDB debug assertions need this predicate
instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner().
buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list:
Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[].
The number of active flush operations.
buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t
instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA
and SAFE_MUTEX instrumentation.
buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU.
buf_pool_t::done_flush_list: Condition variable for !n_flush_list.
buf_pool_t::do_flush_list: Condition variable to wake up the
buf_flush_page_cleaner when a log checkpoint needs to be written
or the server is being shut down. Replaces buf_flush_event.
We will keep using timed waits (the page cleaner thread will wake
_at least_ once per second), because the calculations for
innodb_adaptive_flushing depend on fixed time intervals.
buf_dblwr: Allocate statically, and move all code to member functions.
Use a native mutex and condition variable. Remove code to deal with
single-page flushing.
buf_dblwr_check_block(): Make the check debug-only. We were spending
a significant amount of execution time in page_simple_validate_new().
flush_counters_t::unzip_LRU_evicted: Remove.
IORequest: Make more members const. FIXME: m_fil_node should be removed.
buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex
(which we are removing).
page_cleaner_slot_t, page_cleaner_t: Remove many redundant members.
pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot().
recv_writer_thread: Remove. Recovery works just fine without it, if we
simply invoke buf_flush_sync() at the end of each batch in
recv_sys_t::apply().
recv_recovery_from_checkpoint_finish(): Remove. We can simply call
recv_sys.debug_free() directly.
srv_started_redo: Replaces srv_start_state.
SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown()
can communicate with the normal page cleaner loop via the new function
flush_buffer_pool().
buf_flush_remove(): Assert that the calling thread is holding
buf_pool.flush_list_mutex. This removes unnecessary mutex operations
from buf_flush_remove_pages() and buf_flush_dirty_pages(),
which replace buf_LRU_flush_or_remove_pages().
buf_flush_lists(): Renamed from buf_flush_batch(), with simplified
interface. Return the number of flushed pages. Clarified comments and
renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions
buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this
function, which was their only caller, and remove 2 unnecessary
buf_pool.mutex release/re-acquisition that we used to perform around
the buf_flush_batch() call. At the start, if not all log has been
durably written, wait for a background task to do it, or start a new
task to do it. This allows the log write to run concurrently with our
page flushing batch. Any pages that were skipped due to too recent
FIL_PAGE_LSN or due to them being latched by a writer should be flushed
during the next batch, unless there are further modifications to those
pages. It is possible that a page that we must flush due to small
oldest_modification also carries a recent FIL_PAGE_LSN or is being
constantly modified. In the worst case, all writers would then end up
waiting in log_free_check() to allow the flushing and the checkpoint
to complete.
buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n.
Cache the last looked up tablespace. If neighbor flushing is not applicable,
invoke buf_flush_page() directly, avoiding a page lookup in between.
buf_flush_space(): Auxiliary function to look up a tablespace for
page flushing.
buf_flush_page(): Defer the computation of space->full_crc32(). Never
call log_write_up_to(), but instead skip persistent pages whose latest
modification (FIL_PAGE_LSN) is newer than the redo log. Also skip
pages on which we cannot acquire a shared latch without waiting.
buf_flush_try_neighbors(): Do not bother checking buf_fix_count
because buf_flush_page() will no longer wait for the page latch.
Take the tablespace as a parameter, and only execute this function
when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold().
buf_flush_relocate_on_flush_list(): Declare as cold, and push down
a condition from the callers.
buf_flush_check_neighbor(): Take id.fold() as a parameter.
buf_flush_sync(): Ensure that the buf_pool.flush_list is empty,
because the flushing batch will skip pages whose modifications have
not yet been written to the log or were latched for modification.
buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables.
buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize
the counters, and report n->evicted.
Cache the last looked up tablespace. If neighbor flushing is not applicable,
invoke buf_flush_page() directly, avoiding a page lookup in between.
buf_do_LRU_batch(): Return the number of pages flushed.
buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if
adaptive hash index entries are pointing to the block.
buf_LRU_get_free_block(): Do not wake up the page cleaner, because it
will no longer perform any useful work for us, and we do not want it
to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0)
writes out and evicts at most innodb_lru_flush_size pages. (The
function buf_do_LRU_batch() may complete after writing fewer pages if
more than innodb_lru_scan_depth pages end up in buf_pool.free list.)
Eliminate some mutex release-acquire cycles, and wait for the LRU
flush batch to complete before rescanning.
buf_LRU_check_size_of_non_data_objects(): Simplify the code.
buf_page_write_complete(): Remove the parameter evict, and always
evict pages that were part of an LRU flush.
buf_page_create(): Take a pre-allocated page as a parameter.
buf_pool_t::free_block(): Free a pre-allocated block.
recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block
while not holding recv_sys.mutex. During page allocation, we may
initiate a page flush, which in turn may initiate a log flush, which
would require acquiring log_sys.mutex, which should always be acquired
before recv_sys.mutex in order to avoid deadlocks. Therefore, we must
not be holding recv_sys.mutex while allocating a buffer pool block.
BtrBulk::logFreeCheck(): Skip a redundant condition.
row_undo_step(): Do not invoke srv_inc_activity_count() for every row
that is being rolled back. It should suffice to invoke the function in
trx_flush_log_if_needed() during trx_t::commit_in_memory() when the
rollback completes.
sync_check_enable(): Remove. We will enable innodb_sync_debug from the
very beginning.
Reviewed by: Vladislav Vaintroub
5 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-23399: Performance regression with write workloads
The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted
the performance bottleneck to the page flushing.
The configuration parameters will be changed as follows:
innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction)
innodb_lru_scan_depth=1536 (old: 1024)
innodb_max_dirty_pages_pct=90 (old: 75)
innodb_max_dirty_pages_pct_lwm=75 (old: 0)
Note: The parameter innodb_lru_scan_depth will only affect LRU
eviction of buffer pool pages when a new page is being allocated. The
page cleaner thread will no longer evict any pages. It used to
guarantee that some pages will remain free in the buffer pool. Now, we
perform that eviction 'on demand' in buf_LRU_get_free_block().
The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows:
* When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks()
* As a buf_pool.free limit in buf_LRU_list_batch() for terminating
the flushing that is initiated e.g., by buf_LRU_get_free_block()
The parameter also used to serve as an initial limit for unzip_LRU
eviction (evicting uncompressed page frames while retaining
ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit
of 100 or unlimited for invoking buf_LRU_scan_and_free_block().
The status variables will be changed as follows:
innodb_buffer_pool_pages_flushed: This includes also the count of
innodb_buffer_pool_pages_LRU_flushed and should work reliably,
updated one by one in buf_flush_page() to give more real-time
statistics. The function buf_flush_stats(), which we are removing,
was not called in every code path. For both counters, we will use
regular variables that are incremented in a critical section of
buf_pool.mutex. Note that show_innodb_vars() directly links to the
variables, and reads of the counters will *not* be protected by
buf_pool.mutex, so you cannot get a consistent snapshot of both variables.
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be
removed, because the page cleaner no longer deals with writing or
evicting least recently used pages, and because the single-page writes
have been removed:
* buffer_LRU_batch_flush_avg_time_slot
* buffer_LRU_batch_flush_avg_time_thread
* buffer_LRU_batch_flush_avg_time_est
* buffer_LRU_batch_flush_avg_pass
* buffer_LRU_single_flush_scanned
* buffer_LRU_single_flush_num_scan
* buffer_LRU_single_flush_scanned_per_call
When moving to a single buffer pool instance in MDEV-15058, we missed
some opportunity to simplify the buf_flush_page_cleaner thread. It was
unnecessarily using a mutex and some complex data structures, even
though we always have a single page cleaner thread.
Furthermore, the buf_flush_page_cleaner thread had separate 'recovery'
and 'shutdown' modes where it was waiting to be triggered by some
other thread, adding unnecessary latency and potential for hangs in
relatively rarely executed startup or shutdown code.
The page cleaner was also running two kinds of batches in an
interleaved fashion: "LRU flush" (writing out some least recently used
pages and evicting them on write completion) and the normal batches
that aim to increase the MIN(oldest_modification) in the buffer pool,
to help the log checkpoint advance.
The buf_pool.flush_list flushing was being blocked by
buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN
of a page is ahead of log_sys.get_flushed_lsn(), that is, what has
been persistently written to the redo log, we would trigger a log
flush and then resume the page flushing. This would unnecessarily
limit the performance of the page cleaner thread and trigger the
infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms.
The settings might not be optimal" that were suppressed in
commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2.
Our revised algorithm will make log_sys.get_flushed_lsn() advance at
the start of buf_flush_lists(), and then execute a 'best effort' to
write out all pages. The flush batches will skip pages that were modified
since the log was written, or are are currently exclusively locked.
The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message
will be removed, because by design, the buf_flush_page_cleaner() should
not be blocked during a batch for extended periods of time.
We will remove the single-page flushing altogether. Related to this,
the debug parameter innodb_doublewrite_batch_size will be removed,
because all of the doublewrite buffer will be used for flushing
batches. If a page needs to be evicted from the buffer pool and all
100 least recently used pages in the buffer pool have unflushed
changes, buf_LRU_get_free_block() will execute buf_flush_lists() to
write out and evict innodb_lru_flush_size pages. At most one thread
will execute buf_flush_lists() in buf_LRU_get_free_block(); other
threads will wait for that LRU flushing batch to finish.
To improve concurrency, we will replace the InnoDB ib_mutex_t and
os_event_t native mutexes and condition variables in this area of code.
Most notably, this means that the buffer pool mutex (buf_pool.mutex)
is no longer instrumented via any InnoDB interfaces. It will continue
to be instrumented via PERFORMANCE_SCHEMA.
For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be
declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical
sections of buf_pool.flush_list_mutex should be shorter than those for
buf_pool.mutex, because in the worst case, they cover a linear scan of
buf_pool.flush_list, while the worst case of a critical section of
buf_pool.mutex covers a linear scan of the potentially much longer
buf_pool.LRU list.
mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable
with SAFE_MUTEX. Some InnoDB debug assertions need this predicate
instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner().
buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list:
Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[].
The number of active flush operations.
buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t
instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA
and SAFE_MUTEX instrumentation.
buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU.
buf_pool_t::done_flush_list: Condition variable for !n_flush_list.
buf_pool_t::do_flush_list: Condition variable to wake up the
buf_flush_page_cleaner when a log checkpoint needs to be written
or the server is being shut down. Replaces buf_flush_event.
We will keep using timed waits (the page cleaner thread will wake
_at least_ once per second), because the calculations for
innodb_adaptive_flushing depend on fixed time intervals.
buf_dblwr: Allocate statically, and move all code to member functions.
Use a native mutex and condition variable. Remove code to deal with
single-page flushing.
buf_dblwr_check_block(): Make the check debug-only. We were spending
a significant amount of execution time in page_simple_validate_new().
flush_counters_t::unzip_LRU_evicted: Remove.
IORequest: Make more members const. FIXME: m_fil_node should be removed.
buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex
(which we are removing).
page_cleaner_slot_t, page_cleaner_t: Remove many redundant members.
pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot().
recv_writer_thread: Remove. Recovery works just fine without it, if we
simply invoke buf_flush_sync() at the end of each batch in
recv_sys_t::apply().
recv_recovery_from_checkpoint_finish(): Remove. We can simply call
recv_sys.debug_free() directly.
srv_started_redo: Replaces srv_start_state.
SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown()
can communicate with the normal page cleaner loop via the new function
flush_buffer_pool().
buf_flush_remove(): Assert that the calling thread is holding
buf_pool.flush_list_mutex. This removes unnecessary mutex operations
from buf_flush_remove_pages() and buf_flush_dirty_pages(),
which replace buf_LRU_flush_or_remove_pages().
buf_flush_lists(): Renamed from buf_flush_batch(), with simplified
interface. Return the number of flushed pages. Clarified comments and
renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions
buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this
function, which was their only caller, and remove 2 unnecessary
buf_pool.mutex release/re-acquisition that we used to perform around
the buf_flush_batch() call. At the start, if not all log has been
durably written, wait for a background task to do it, or start a new
task to do it. This allows the log write to run concurrently with our
page flushing batch. Any pages that were skipped due to too recent
FIL_PAGE_LSN or due to them being latched by a writer should be flushed
during the next batch, unless there are further modifications to those
pages. It is possible that a page that we must flush due to small
oldest_modification also carries a recent FIL_PAGE_LSN or is being
constantly modified. In the worst case, all writers would then end up
waiting in log_free_check() to allow the flushing and the checkpoint
to complete.
buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n.
Cache the last looked up tablespace. If neighbor flushing is not applicable,
invoke buf_flush_page() directly, avoiding a page lookup in between.
buf_flush_space(): Auxiliary function to look up a tablespace for
page flushing.
buf_flush_page(): Defer the computation of space->full_crc32(). Never
call log_write_up_to(), but instead skip persistent pages whose latest
modification (FIL_PAGE_LSN) is newer than the redo log. Also skip
pages on which we cannot acquire a shared latch without waiting.
buf_flush_try_neighbors(): Do not bother checking buf_fix_count
because buf_flush_page() will no longer wait for the page latch.
Take the tablespace as a parameter, and only execute this function
when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold().
buf_flush_relocate_on_flush_list(): Declare as cold, and push down
a condition from the callers.
buf_flush_check_neighbor(): Take id.fold() as a parameter.
buf_flush_sync(): Ensure that the buf_pool.flush_list is empty,
because the flushing batch will skip pages whose modifications have
not yet been written to the log or were latched for modification.
buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables.
buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize
the counters, and report n->evicted.
Cache the last looked up tablespace. If neighbor flushing is not applicable,
invoke buf_flush_page() directly, avoiding a page lookup in between.
buf_do_LRU_batch(): Return the number of pages flushed.
buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if
adaptive hash index entries are pointing to the block.
buf_LRU_get_free_block(): Do not wake up the page cleaner, because it
will no longer perform any useful work for us, and we do not want it
to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0)
writes out and evicts at most innodb_lru_flush_size pages. (The
function buf_do_LRU_batch() may complete after writing fewer pages if
more than innodb_lru_scan_depth pages end up in buf_pool.free list.)
Eliminate some mutex release-acquire cycles, and wait for the LRU
flush batch to complete before rescanning.
buf_LRU_check_size_of_non_data_objects(): Simplify the code.
buf_page_write_complete(): Remove the parameter evict, and always
evict pages that were part of an LRU flush.
buf_page_create(): Take a pre-allocated page as a parameter.
buf_pool_t::free_block(): Free a pre-allocated block.
recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block
while not holding recv_sys.mutex. During page allocation, we may
initiate a page flush, which in turn may initiate a log flush, which
would require acquiring log_sys.mutex, which should always be acquired
before recv_sys.mutex in order to avoid deadlocks. Therefore, we must
not be holding recv_sys.mutex while allocating a buffer pool block.
BtrBulk::logFreeCheck(): Skip a redundant condition.
row_undo_step(): Do not invoke srv_inc_activity_count() for every row
that is being rolled back. It should suffice to invoke the function in
trx_flush_log_if_needed() during trx_t::commit_in_memory() when the
rollback completes.
sync_check_enable(): Remove. We will enable innodb_sync_debug from the
very beginning.
Reviewed by: Vladislav Vaintroub
5 years ago  MDEV-29911 InnoDB recovery and mariadb-backup --prepare fail to report detailed progress
The progress reporting of InnoDB crash recovery was rather intermittent.
Nothing was reported during the single-threaded log record parsing, which
could consume minutes when parsing a large log. During log application,
there only was progress reporting in background threads that would be
invoked on data page read completion.
The progress reporting here will be detailed like this:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1990840177; to recover: 124806 pages
InnoDB: Parsed redo log up to LSN=2729777071; to recover: 186123 pages
InnoDB: Parsed redo log up to LSN=3488599173; to recover: 248397 pages
InnoDB: Parsed redo log up to LSN=4177856618; to recover: 306469 pages
InnoDB: Multi-batch recovery needed at LSN 4189599815
InnoDB: End of log at LSN=4483551634
InnoDB: To recover: LSN 4189599815/4483551634; 307490 pages
InnoDB: To recover: LSN 4189599815/4483551634; 197159 pages
InnoDB: To recover: LSN 4189599815/4483551634; 67623 pages
InnoDB: Parsed redo log up to LSN=4353924218; to recover: 102083 pages
...
InnoDB: log sequence number 4483551634 ...
The previous messages "Starting a batch to recover" or
"Starting a final batch to recover" will be replaced by
"To recover: ... pages" messages.
If a batch lasts longer than 15 seconds, then there will be
progress reports every 15 seconds, showing the number of remaining pages.
For the non-final batch, the "To recover:" message includes two end LSN:
that of the batch, and of the recovered log. This is the primary measure
of progress. The batch will end once the number of pages to recover
reaches 0.
If recovery is possible in a single batch, the output will look like this,
with a shorter "To recover:" message that counts only the remaining pages:
InnoDB: Starting crash recovery from checkpoint LSN=503549688
InnoDB: Parsed redo log up to LSN=1998701027; to recover: 125560 pages
InnoDB: Parsed redo log up to LSN=2734136874; to recover: 186446 pages
InnoDB: Parsed redo log up to LSN=3499505504; to recover: 249378 pages
InnoDB: Parsed redo log up to LSN=4183247844; to recover: 306964 pages
InnoDB: End of log at LSN=4483551634
...
InnoDB: To recover: 331797 pages
...
InnoDB: log sequence number 4483551634 ...
We will also speed up recovery by improving the memory management and
implementing multi-threaded recovery of data pages that will not need
to be read into the buffer pool ("fake read"). Log application in the
"fake read" threads will be protected by an atomic being_recovered field
and exclusive buf_page_t::latch.
Recovery will reserve for data pages two thirds of the buffer pool,
or 256 pages, whichever is smaller. Previously, we could only use at most
one third of the buffer pool for buffered log records. This would typically
mean that with large buffer pools, recovery unnecessary consisted of
multiple batches.
If recovery runs out of memory, it will "roll back" or "rewind" the current
mini-transaction. The recv_sys.lsn and recv_sys.pages will correspond
to the "out of memory LSN", at the end of the previous complete
mini-transaction.
If recovery runs out of memory while executing the final recovery batch,
we can simply invoke recv_sys.apply(false) to make room, and resume
parsing.
If recovery runs out of memory before the final batch, we will scan
the redo log to the end (recv_sys.scanned_lsn) and check for any missing
or inconsistent files. If recv_init_crash_recovery_spaces() does not
report any potentially missing tablespaces, we can make use of the
already stored recv_sys.pages and only rewind to the "out of memory LSN".
Else, we must keep parsing and invoking recv_validate_tablespace()
until an error has been found or everything has been resolved, and
ultimatily rewind to to the checkpoint LSN.
recv_sys_t::pages_it: A cached iterator to recv_sys.pages
recv_sys_t::parse_mtr(): Remove an ATTRIBUTE_NOINLINE that would
prevent tail call optimization in recv_sys_t::parse_pmem().
recv_sys_t::parse(), recv_sys_t::parse_mtr(), recv_sys_t::parse_pmem():
Add template<bool store> parameter. Redo log record parsing
(store=false) is better specialized from store=true
(with bool if_exists) so that we can avoid some conditional branches
in frequently invoked low-level code.
recv_sys_t::is_memory_exhausted(): Remove. The special parse() status
GOT_OOM will report out-of-memory situation at the low level.
recv_sys_t::rewind(), page_recv_t::recs_t::rewind():
Remove all log starting with a specific LSN.
recv_scan_log(): Separate some code for only parsing, not storing log.
In rewound_lsn, remember the LSN at which last_phase=false recovery
ran out of memory. This is where the next call to recv_scan_log()
will resume storing the log. This replaces recv_sys.last_stored_lsn.
recv_sys_t::parse(): Evaluate the template parameter store in a few more
cases, to allow dead code to be eliminated at compile time.
recv_sys_t::scanned_lsn: The end of the log found by recv_scan_log().
The special value 1 means that recv_sys has been initialized but
no log has been parsed.
IORequest::write_complete(), IORequest::read_complete():
Replaces fil_aio_callback().
read_io_callback(), write_io_callback(): Replaces io_callback().
IORequest::fake_read_complete(), fake_io_callback(), os_fake_read():
Process a "fake read" request for concurrent recovery.
recv_sys_t::apply_batch(): Choose a number of successive pages
for a recovery batch.
recv_sys_t::erase(recv_sys_t::map::iterator): Remove log records for a
page whose recovery is not in progress. Log application threads
will not invoke this; they will only set being_recovered=-1 to indicate
that the entry is no longer needed.
recv_sys_t::garbage_collect(): Remove all being_recovered=-1 entries.
recv_sys_t::wait_for_pool(): Wait for some space to become available
in the buffer pool.
mlog_init_t::mark_ibuf_exist(): Avoid calls to
recv_sys::recover_low() via ibuf_page_exists() and buf_page_get_low().
Such calls would lead to double locking of recv_sys.mutex, which
depending on implementation could cause a deadlock. We will use
lower-level calls to look up index pages.
buf_LRU_block_remove_hashed(): Disable consistency checks for freed
ROW_FORMAT=COMPRESSED pages. Their contents could be uninitialized garbage.
This fixes an occasional failure of the test
innodb.innodb_bulk_create_index_debug.
Tested by: Matthias Leich
3 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-14425 Improve the redo log for concurrency
The InnoDB redo log used to be formatted in blocks of 512 bytes.
The log blocks were encrypted and the checksum was calculated while
holding log_sys.mutex, creating a serious scalability bottleneck.
We remove the fixed-size redo log block structure altogether and
essentially turn every mini-transaction into a log block of its own.
This allows encryption and checksum calculations to be performed
on local mtr_t::m_log buffers, before acquiring log_sys.mutex.
The mutex only protects a memcpy() of the data to the shared
log_sys.buf, as well as the padding of the log, in case the
to-be-written part of the log would not end in a block boundary of
the underlying storage. For now, the "padding" consists of writing
a single NUL byte, to allow recovery and mariadb-backup to detect
the end of the circular log faster.
Like the previous implementation, we will overwrite the last log block
over and over again, until it has been completely filled. It would be
possible to write only up to the last completed block (if no more
recent write was requested), or to write dummy FILE_CHECKPOINT records
to fill the incomplete block, by invoking the currently disabled
function log_pad(). This would require adjustments to some logic around
log checkpoints, page flushing, and shutdown.
An upgrade after a crash of any previous version is not supported.
Logically empty log files from a previous version will be upgraded.
An attempt to start up InnoDB without a valid ib_logfile0 will be
refused. Previously, the redo log used to be created automatically
if it was missing. Only with with innodb_force_recovery=6, it is
possible to start InnoDB in read-only mode even if the log file
does not exist. This allows the contents of a possibly corrupted
database to be dumped.
Because a prepared backup from an earlier version of mariadb-backup
will create a 0-sized log file, we will allow an upgrade from such
log files, provided that the FIL_PAGE_FILE_FLUSH_LSN in the system
tablespace looks valid.
The 512-byte log checkpoint blocks at 0x200 and 0x600 will be replaced
with 64-byte log checkpoint blocks at 0x1000 and 0x2000.
The start of log records will move from 0x800 to 0x3000. This allows us
to use 4096-byte aligned blocks for all I/O in a future revision.
We extend the MDEV-12353 redo log record format as follows.
(1) Empty mini-transactions or extra NUL bytes will not be allowed.
(2) The end-of-minitransaction marker (a NUL byte) will be replaced
with a 1-bit sequence number, which will be toggled each time when the
circular log file wraps back to the beginning.
(3) After the sequence bit, a CRC-32C checksum of all data
(excluding the sequence bit) will written.
(4) If the log is encrypted, 8 bytes will be written before
the checksum and included in it. This is part of the
initialization vector (IV) of encrypted log data.
(5) File names, page numbers, and checkpoint information will not be
encrypted. Only the payload bytes of page-level log will be encrypted.
The tablespace ID and page number will form part of the IV.
(6) For padding, arbitrary-length FILE_CHECKPOINT records may be written,
with all-zero payload, and with the normal end marker and checksum.
The minimum size is 7 bytes, or 7+8 with innodb_encrypt_log=ON.
In mariadb-backup and in Galera snapshot transfer (SST) scripts, we will
no longer remove ib_logfile0 or create an empty ib_logfile0. Server startup
will require a valid log file. When resizing the log, we will create
a logically empty ib_logfile101 at the current LSN and use an atomic rename
to replace ib_logfile0 with it. See the test innodb.log_file_size.
Because there is no mandatory padding in the log file, we are able
to create a dummy log file as of an arbitrary log sequence number.
See the test mariabackup.huge_lsn.
The parameter innodb_log_write_ahead_size and the
INFORMATION_SCHEMA.INNODB_METRICS counter log_padded will be removed.
The minimum value of innodb_log_buffer_size will be increased to 2MiB
(because log_sys.buf will replace recv_sys.buf) and the increment
adjusted to 4096 bytes (the maximum log block size).
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed:
os_log_fsyncs
os_log_pending_fsyncs
log_pending_log_flushes
log_pending_checkpoint_writes
The following status variables will be removed:
Innodb_os_log_fsyncs (this is included in Innodb_data_fsyncs)
Innodb_os_log_pending_fsyncs (this was limited to at most 1 by design)
log_sys.get_block_size(): Return the physical block size of the log file.
This is only implemented on Linux and Microsoft Windows for now, and for
the power-of-2 block sizes between 64 and 4096 bytes (the minimum and
maximum size of a checkpoint block). If the block size is anything else,
the traditional 512-byte size will be used via normal file system
buffering.
If the file system buffers can be bypassed, a message like the following
will be issued:
InnoDB: File system buffers for log disabled (block size=512 bytes)
InnoDB: File system buffers for log disabled (block size=4096 bytes)
This has been tested on Linux and Microsoft Windows with both sizes.
On Linux, only enable O_DIRECT on the log for innodb_flush_method=O_DSYNC.
Tests in 3 different environments where the log is stored in a device
with a physical block size of 512 bytes are yielding better throughput
without O_DIRECT. This could be due to the fact that in the event the
last log block is being overwritten (if multiple transactions would
become durable at the same time, and each of will write a small
number of bytes to the last log block), it should be faster to re-copy
data from log_sys.buf or log_sys.flush_buf to the kernel buffer,
to be finally written at fdatasync() time.
The parameter innodb_flush_method=O_DSYNC will imply O_DIRECT for
data files. This option will enable O_DIRECT on the log file on Linux.
It may be unsafe to use when the storage device does not support
FUA (Force Unit Access) mode.
When the server is compiled WITH_PMEM=ON, we will use memory-mapped
I/O for the log file if the log resides on a "mount -o dax" device.
We will identify PMEM in a start-up message:
InnoDB: log sequence number 0 (memory-mapped); transaction id 3
On Linux, we will also invoke mmap() on any ib_logfile0 that resides
in /dev/shm, effectively treating the log file as persistent memory.
This should speed up "./mtr --mem" and increase the test coverage of
PMEM on non-PMEM hardware. It also allows users to estimate how much
the performance would be improved by installing persistent memory.
On other tmpfs file systems such as /run, we will not use mmap().
mariadb-backup: Eliminated several variables. We will refer
directly to recv_sys and log_sys.
backup_wait_for_lsn(): Detect non-progress of
xtrabackup_copy_logfile(). In this new log format with
arbitrary-sized blocks, we can only detect log file overrun
indirectly, by observing that the scanned log sequence number
is not advancing.
xtrabackup_copy_logfile(): On PMEM, do not modify the sequence bit,
because we are not allowed to modify the server's log file, and our
memory mapping is read-only.
trx_flush_log_if_needed_low(): Do not use the callback on pmem.
Using neither flush_lock nor write_lock around PMEM writes seems
to yield the best performance. The pmem_persist() calls may
still be somewhat slower than the pwrite() and fdatasync() based
interface (PMEM mounted without -o dax).
recv_sys_t::buf: Remove. We will use log_sys.buf for parsing.
recv_sys_t::MTR_SIZE_MAX: Replaces RECV_SCAN_SIZE.
recv_sys_t::file_checkpoint: Renamed from mlog_checkpoint_lsn.
recv_sys_t, log_sys_t: Removed many data members.
recv_sys.lsn: Renamed from recv_sys.recovered_lsn.
recv_sys.offset: Renamed from recv_sys.recovered_offset.
log_sys.buf_size: Replaces srv_log_buffer_size.
recv_buf: A smart pointer that wraps log_sys.buf[recv_sys.offset]
when the buffer is being allocated from the memory heap.
recv_ring: A smart pointer that wraps a circular log_sys.buf[] that is
backed by ib_logfile0. The pointer will wrap from recv_sys.len
(log_sys.file_size) to log_sys.START_OFFSET. For the record that
wraps around, we may copy file name or record payload data to
the auxiliary buffer decrypt_buf in order to have a contiguous
block of memory. The maximum size of a record is less than
innodb_page_size bytes.
recv_sys_t::parse(): Take the smart pointer as a template parameter.
Do not temporarily add a trailing NUL byte to FILE_ records, because
we are not supposed to modify the memory-mapped log file. (It is
attached in read-write mode already during recovery.)
recv_sys_t::parse_mtr(): Wrapper for recv_sys_t::parse().
recv_sys_t::parse_pmem(): Like parse_mtr(), but if PREMATURE_EOF would be
returned on PMEM, use recv_ring to wrap around the buffer to the start.
mtr_t::finish_write(), log_close(): Do not enforce log_sys.max_buf_free
on PMEM, because it has no meaning on the mmap-based log.
log_sys.write_to_buf: Count writes to log_sys.buf. Replaces
srv_stats.log_write_requests and export_vars.innodb_log_write_requests.
Protected by log_sys.mutex. Updated consistently in log_close().
Previously, mtr_t::commit() conditionally updated the count,
which was inconsistent.
log_sys.write_to_log: Count swaps of log_sys.buf and log_sys.flush_buf,
for writing to log_sys.log (the ib_logfile0). Replaces
srv_stats.log_writes and export_vars.innodb_log_writes.
Protected by log_sys.mutex.
log_sys.waits: Count waits in append_prepare(). Replaces
srv_stats.log_waits and export_vars.innodb_log_waits.
recv_recover_page(): Do not unnecessarily acquire
log_sys.flush_order_mutex. We are inserting the blocks in arbitary
order anyway, to be adjusted in recv_sys.apply(true).
We will change the definition of flush_lock and write_lock to
avoid potential false sharing. Depending on sizeof(log_sys) and
CPU_LEVEL1_DCACHE_LINESIZE, the flush_lock and write_lock could
share a cache line with each other or with the last data members
of log_sys.
Thanks to Matthias Leich for providing https://rr-project.org traces
for various failures during the development, and to
Thirunarayanan Balathandayuthapani for his help in debugging
some of the recovery code. And thanks to the developers of the
rr debugger for a tool without which extensive changes to InnoDB
would be very challenging to get right.
Thanks to Vladislav Vaintroub for useful feedback and
to him, Axel Schwenke and Krunal Bauskar for testing the performance.
4 years ago  MDEV-11799 Doublewrite recovery can corrupt data pages
The purpose of the InnoDB doublewrite buffer is to make InnoDB
tolerant against cases where the server was killed in the middle
of a page write. (In Linux, killing a process may interrupt a
write system call, typically on a 4096-byte boundary.)
There may exist multiple copies of a page number in the doublewrite
buffer. Recovery should choose the latest valid copy of the page.
By design, the FIL_PAGE_LSN must not precede the latest checkpoint LSN
nor be later than the end of the recovered log.
For page_compressed and encrypted pages, we were missing proper
consistency checks. In the 10.4 data set generated for in MDEV-23231,
the data file contained a valid page_compressed page, and an
identical copy of that page was also present in the doublewrite
buffer. But, recovery would incorrectly consider the page invalid
and restore an uncompressed copy of the same page that had been
written before the log checkpoint. (In fact, no redo log was to
be applied to that page.)
buf_dblwr_process(): Validate the FIL_PAGE_LSN in the doublewrite
buffer pages, and always skip page 0, because those pages should
have been recovered by Datafile::restore_from_doublewrite() if
necessary.
Datafile::restore_from_doublewrite(): Choose the latest applicable
page from the doublewrite buffer.
recv_dblwr_t::find_page(): Also validate encrypted or
page_compressed pages.
recv_dblwr_t::validate_page(): New function to validate a page,
either a copy in a data file or in the doublewrite buffer.
Also validate encrypted or page_compressed pages.
This is joint work with Thirunarayanan Balathandayuthapani.
5 years ago  MDEV-11799 Doublewrite recovery can corrupt data pages
The purpose of the InnoDB doublewrite buffer is to make InnoDB
tolerant against cases where the server was killed in the middle
of a page write. (In Linux, killing a process may interrupt a
write system call, typically on a 4096-byte boundary.)
There may exist multiple copies of a page number in the doublewrite
buffer. Recovery should choose the latest valid copy of the page.
By design, the FIL_PAGE_LSN must not precede the latest checkpoint LSN
nor be later than the end of the recovered log.
For page_compressed and encrypted pages, we were missing proper
consistency checks. In the 10.4 data set generated for in MDEV-23231,
the data file contained a valid page_compressed page, and an
identical copy of that page was also present in the doublewrite
buffer. But, recovery would incorrectly consider the page invalid
and restore an uncompressed copy of the same page that had been
written before the log checkpoint. (In fact, no redo log was to
be applied to that page.)
buf_dblwr_process(): Validate the FIL_PAGE_LSN in the doublewrite
buffer pages, and always skip page 0, because those pages should
have been recovered by Datafile::restore_from_doublewrite() if
necessary.
Datafile::restore_from_doublewrite(): Choose the latest applicable
page from the doublewrite buffer.
recv_dblwr_t::find_page(): Also validate encrypted or
page_compressed pages.
recv_dblwr_t::validate_page(): New function to validate a page,
either a copy in a data file or in the doublewrite buffer.
Also validate encrypted or page_compressed pages.
This is joint work with Thirunarayanan Balathandayuthapani.
5 years ago  MDEV-11799 Doublewrite recovery can corrupt data pages
The purpose of the InnoDB doublewrite buffer is to make InnoDB
tolerant against cases where the server was killed in the middle
of a page write. (In Linux, killing a process may interrupt a
write system call, typically on a 4096-byte boundary.)
There may exist multiple copies of a page number in the doublewrite
buffer. Recovery should choose the latest valid copy of the page.
By design, the FIL_PAGE_LSN must not precede the latest checkpoint LSN
nor be later than the end of the recovered log.
For page_compressed and encrypted pages, we were missing proper
consistency checks. In the 10.4 data set generated for in MDEV-23231,
the data file contained a valid page_compressed page, and an
identical copy of that page was also present in the doublewrite
buffer. But, recovery would incorrectly consider the page invalid
and restore an uncompressed copy of the same page that had been
written before the log checkpoint. (In fact, no redo log was to
be applied to that page.)
buf_dblwr_process(): Validate the FIL_PAGE_LSN in the doublewrite
buffer pages, and always skip page 0, because those pages should
have been recovered by Datafile::restore_from_doublewrite() if
necessary.
Datafile::restore_from_doublewrite(): Choose the latest applicable
page from the doublewrite buffer.
recv_dblwr_t::find_page(): Also validate encrypted or
page_compressed pages.
recv_dblwr_t::validate_page(): New function to validate a page,
either a copy in a data file or in the doublewrite buffer.
Also validate encrypted or page_compressed pages.
This is joint work with Thirunarayanan Balathandayuthapani.
5 years ago  MDEV-11799 Doublewrite recovery can corrupt data pages
The purpose of the InnoDB doublewrite buffer is to make InnoDB
tolerant against cases where the server was killed in the middle
of a page write. (In Linux, killing a process may interrupt a
write system call, typically on a 4096-byte boundary.)
There may exist multiple copies of a page number in the doublewrite
buffer. Recovery should choose the latest valid copy of the page.
By design, the FIL_PAGE_LSN must not precede the latest checkpoint LSN
nor be later than the end of the recovered log.
For page_compressed and encrypted pages, we were missing proper
consistency checks. In the 10.4 data set generated for in MDEV-23231,
the data file contained a valid page_compressed page, and an
identical copy of that page was also present in the doublewrite
buffer. But, recovery would incorrectly consider the page invalid
and restore an uncompressed copy of the same page that had been
written before the log checkpoint. (In fact, no redo log was to
be applied to that page.)
buf_dblwr_process(): Validate the FIL_PAGE_LSN in the doublewrite
buffer pages, and always skip page 0, because those pages should
have been recovered by Datafile::restore_from_doublewrite() if
necessary.
Datafile::restore_from_doublewrite(): Choose the latest applicable
page from the doublewrite buffer.
recv_dblwr_t::find_page(): Also validate encrypted or
page_compressed pages.
recv_dblwr_t::validate_page(): New function to validate a page,
either a copy in a data file or in the doublewrite buffer.
Also validate encrypted or page_compressed pages.
This is joint work with Thirunarayanan Balathandayuthapani.
5 years ago  MDEV-11799 Doublewrite recovery can corrupt data pages
The purpose of the InnoDB doublewrite buffer is to make InnoDB
tolerant against cases where the server was killed in the middle
of a page write. (In Linux, killing a process may interrupt a
write system call, typically on a 4096-byte boundary.)
There may exist multiple copies of a page number in the doublewrite
buffer. Recovery should choose the latest valid copy of the page.
By design, the FIL_PAGE_LSN must not precede the latest checkpoint LSN
nor be later than the end of the recovered log.
For page_compressed and encrypted pages, we were missing proper
consistency checks. In the 10.4 data set generated for in MDEV-23231,
the data file contained a valid page_compressed page, and an
identical copy of that page was also present in the doublewrite
buffer. But, recovery would incorrectly consider the page invalid
and restore an uncompressed copy of the same page that had been
written before the log checkpoint. (In fact, no redo log was to
be applied to that page.)
buf_dblwr_process(): Validate the FIL_PAGE_LSN in the doublewrite
buffer pages, and always skip page 0, because those pages should
have been recovered by Datafile::restore_from_doublewrite() if
necessary.
Datafile::restore_from_doublewrite(): Choose the latest applicable
page from the doublewrite buffer.
recv_dblwr_t::find_page(): Also validate encrypted or
page_compressed pages.
recv_dblwr_t::validate_page(): New function to validate a page,
either a copy in a data file or in the doublewrite buffer.
Also validate encrypted or page_compressed pages.
This is joint work with Thirunarayanan Balathandayuthapani.
5 years ago  MDEV-11799 Doublewrite recovery can corrupt data pages
The purpose of the InnoDB doublewrite buffer is to make InnoDB
tolerant against cases where the server was killed in the middle
of a page write. (In Linux, killing a process may interrupt a
write system call, typically on a 4096-byte boundary.)
There may exist multiple copies of a page number in the doublewrite
buffer. Recovery should choose the latest valid copy of the page.
By design, the FIL_PAGE_LSN must not precede the latest checkpoint LSN
nor be later than the end of the recovered log.
For page_compressed and encrypted pages, we were missing proper
consistency checks. In the 10.4 data set generated for in MDEV-23231,
the data file contained a valid page_compressed page, and an
identical copy of that page was also present in the doublewrite
buffer. But, recovery would incorrectly consider the page invalid
and restore an uncompressed copy of the same page that had been
written before the log checkpoint. (In fact, no redo log was to
be applied to that page.)
buf_dblwr_process(): Validate the FIL_PAGE_LSN in the doublewrite
buffer pages, and always skip page 0, because those pages should
have been recovered by Datafile::restore_from_doublewrite() if
necessary.
Datafile::restore_from_doublewrite(): Choose the latest applicable
page from the doublewrite buffer.
recv_dblwr_t::find_page(): Also validate encrypted or
page_compressed pages.
recv_dblwr_t::validate_page(): New function to validate a page,
either a copy in a data file or in the doublewrite buffer.
Also validate encrypted or page_compressed pages.
This is joint work with Thirunarayanan Balathandayuthapani.
5 years ago  MDEV-11799 Doublewrite recovery can corrupt data pages
The purpose of the InnoDB doublewrite buffer is to make InnoDB
tolerant against cases where the server was killed in the middle
of a page write. (In Linux, killing a process may interrupt a
write system call, typically on a 4096-byte boundary.)
There may exist multiple copies of a page number in the doublewrite
buffer. Recovery should choose the latest valid copy of the page.
By design, the FIL_PAGE_LSN must not precede the latest checkpoint LSN
nor be later than the end of the recovered log.
For page_compressed and encrypted pages, we were missing proper
consistency checks. In the 10.4 data set generated for in MDEV-23231,
the data file contained a valid page_compressed page, and an
identical copy of that page was also present in the doublewrite
buffer. But, recovery would incorrectly consider the page invalid
and restore an uncompressed copy of the same page that had been
written before the log checkpoint. (In fact, no redo log was to
be applied to that page.)
buf_dblwr_process(): Validate the FIL_PAGE_LSN in the doublewrite
buffer pages, and always skip page 0, because those pages should
have been recovered by Datafile::restore_from_doublewrite() if
necessary.
Datafile::restore_from_doublewrite(): Choose the latest applicable
page from the doublewrite buffer.
recv_dblwr_t::find_page(): Also validate encrypted or
page_compressed pages.
recv_dblwr_t::validate_page(): New function to validate a page,
either a copy in a data file or in the doublewrite buffer.
Also validate encrypted or page_compressed pages.
This is joint work with Thirunarayanan Balathandayuthapani.
5 years ago  MDEV-11799 Doublewrite recovery can corrupt data pages
The purpose of the InnoDB doublewrite buffer is to make InnoDB
tolerant against cases where the server was killed in the middle
of a page write. (In Linux, killing a process may interrupt a
write system call, typically on a 4096-byte boundary.)
There may exist multiple copies of a page number in the doublewrite
buffer. Recovery should choose the latest valid copy of the page.
By design, the FIL_PAGE_LSN must not precede the latest checkpoint LSN
nor be later than the end of the recovered log.
For page_compressed and encrypted pages, we were missing proper
consistency checks. In the 10.4 data set generated for in MDEV-23231,
the data file contained a valid page_compressed page, and an
identical copy of that page was also present in the doublewrite
buffer. But, recovery would incorrectly consider the page invalid
and restore an uncompressed copy of the same page that had been
written before the log checkpoint. (In fact, no redo log was to
be applied to that page.)
buf_dblwr_process(): Validate the FIL_PAGE_LSN in the doublewrite
buffer pages, and always skip page 0, because those pages should
have been recovered by Datafile::restore_from_doublewrite() if
necessary.
Datafile::restore_from_doublewrite(): Choose the latest applicable
page from the doublewrite buffer.
recv_dblwr_t::find_page(): Also validate encrypted or
page_compressed pages.
recv_dblwr_t::validate_page(): New function to validate a page,
either a copy in a data file or in the doublewrite buffer.
Also validate encrypted or page_compressed pages.
This is joint work with Thirunarayanan Balathandayuthapani.
5 years ago  MDEV-11799 Doublewrite recovery can corrupt data pages
The purpose of the InnoDB doublewrite buffer is to make InnoDB
tolerant against cases where the server was killed in the middle
of a page write. (In Linux, killing a process may interrupt a
write system call, typically on a 4096-byte boundary.)
There may exist multiple copies of a page number in the doublewrite
buffer. Recovery should choose the latest valid copy of the page.
By design, the FIL_PAGE_LSN must not precede the latest checkpoint LSN
nor be later than the end of the recovered log.
For page_compressed and encrypted pages, we were missing proper
consistency checks. In the 10.4 data set generated for in MDEV-23231,
the data file contained a valid page_compressed page, and an
identical copy of that page was also present in the doublewrite
buffer. But, recovery would incorrectly consider the page invalid
and restore an uncompressed copy of the same page that had been
written before the log checkpoint. (In fact, no redo log was to
be applied to that page.)
buf_dblwr_process(): Validate the FIL_PAGE_LSN in the doublewrite
buffer pages, and always skip page 0, because those pages should
have been recovered by Datafile::restore_from_doublewrite() if
necessary.
Datafile::restore_from_doublewrite(): Choose the latest applicable
page from the doublewrite buffer.
recv_dblwr_t::find_page(): Also validate encrypted or
page_compressed pages.
recv_dblwr_t::validate_page(): New function to validate a page,
either a copy in a data file or in the doublewrite buffer.
Also validate encrypted or page_compressed pages.
This is joint work with Thirunarayanan Balathandayuthapani.
5 years ago  MDEV-11799 Doublewrite recovery can corrupt data pages
The purpose of the InnoDB doublewrite buffer is to make InnoDB
tolerant against cases where the server was killed in the middle
of a page write. (In Linux, killing a process may interrupt a
write system call, typically on a 4096-byte boundary.)
There may exist multiple copies of a page number in the doublewrite
buffer. Recovery should choose the latest valid copy of the page.
By design, the FIL_PAGE_LSN must not precede the latest checkpoint LSN
nor be later than the end of the recovered log.
For page_compressed and encrypted pages, we were missing proper
consistency checks. In the 10.4 data set generated for in MDEV-23231,
the data file contained a valid page_compressed page, and an
identical copy of that page was also present in the doublewrite
buffer. But, recovery would incorrectly consider the page invalid
and restore an uncompressed copy of the same page that had been
written before the log checkpoint. (In fact, no redo log was to
be applied to that page.)
buf_dblwr_process(): Validate the FIL_PAGE_LSN in the doublewrite
buffer pages, and always skip page 0, because those pages should
have been recovered by Datafile::restore_from_doublewrite() if
necessary.
Datafile::restore_from_doublewrite(): Choose the latest applicable
page from the doublewrite buffer.
recv_dblwr_t::find_page(): Also validate encrypted or
page_compressed pages.
recv_dblwr_t::validate_page(): New function to validate a page,
either a copy in a data file or in the doublewrite buffer.
Also validate encrypted or page_compressed pages.
This is joint work with Thirunarayanan Balathandayuthapani.
5 years ago  MDEV-11799 Doublewrite recovery can corrupt data pages
The purpose of the InnoDB doublewrite buffer is to make InnoDB
tolerant against cases where the server was killed in the middle
of a page write. (In Linux, killing a process may interrupt a
write system call, typically on a 4096-byte boundary.)
There may exist multiple copies of a page number in the doublewrite
buffer. Recovery should choose the latest valid copy of the page.
By design, the FIL_PAGE_LSN must not precede the latest checkpoint LSN
nor be later than the end of the recovered log.
For page_compressed and encrypted pages, we were missing proper
consistency checks. In the 10.4 data set generated for in MDEV-23231,
the data file contained a valid page_compressed page, and an
identical copy of that page was also present in the doublewrite
buffer. But, recovery would incorrectly consider the page invalid
and restore an uncompressed copy of the same page that had been
written before the log checkpoint. (In fact, no redo log was to
be applied to that page.)
buf_dblwr_process(): Validate the FIL_PAGE_LSN in the doublewrite
buffer pages, and always skip page 0, because those pages should
have been recovered by Datafile::restore_from_doublewrite() if
necessary.
Datafile::restore_from_doublewrite(): Choose the latest applicable
page from the doublewrite buffer.
recv_dblwr_t::find_page(): Also validate encrypted or
page_compressed pages.
recv_dblwr_t::validate_page(): New function to validate a page,
either a copy in a data file or in the doublewrite buffer.
Also validate encrypted or page_compressed pages.
This is joint work with Thirunarayanan Balathandayuthapani.
5 years ago  MDEV-11799 Doublewrite recovery can corrupt data pages
The purpose of the InnoDB doublewrite buffer is to make InnoDB
tolerant against cases where the server was killed in the middle
of a page write. (In Linux, killing a process may interrupt a
write system call, typically on a 4096-byte boundary.)
There may exist multiple copies of a page number in the doublewrite
buffer. Recovery should choose the latest valid copy of the page.
By design, the FIL_PAGE_LSN must not precede the latest checkpoint LSN
nor be later than the end of the recovered log.
For page_compressed and encrypted pages, we were missing proper
consistency checks. In the 10.4 data set generated for in MDEV-23231,
the data file contained a valid page_compressed page, and an
identical copy of that page was also present in the doublewrite
buffer. But, recovery would incorrectly consider the page invalid
and restore an uncompressed copy of the same page that had been
written before the log checkpoint. (In fact, no redo log was to
be applied to that page.)
buf_dblwr_process(): Validate the FIL_PAGE_LSN in the doublewrite
buffer pages, and always skip page 0, because those pages should
have been recovered by Datafile::restore_from_doublewrite() if
necessary.
Datafile::restore_from_doublewrite(): Choose the latest applicable
page from the doublewrite buffer.
recv_dblwr_t::find_page(): Also validate encrypted or
page_compressed pages.
recv_dblwr_t::validate_page(): New function to validate a page,
either a copy in a data file or in the doublewrite buffer.
Also validate encrypted or page_compressed pages.
This is joint work with Thirunarayanan Balathandayuthapani.
5 years ago  MDEV-11799 Doublewrite recovery can corrupt data pages
The purpose of the InnoDB doublewrite buffer is to make InnoDB
tolerant against cases where the server was killed in the middle
of a page write. (In Linux, killing a process may interrupt a
write system call, typically on a 4096-byte boundary.)
There may exist multiple copies of a page number in the doublewrite
buffer. Recovery should choose the latest valid copy of the page.
By design, the FIL_PAGE_LSN must not precede the latest checkpoint LSN
nor be later than the end of the recovered log.
For page_compressed and encrypted pages, we were missing proper
consistency checks. In the 10.4 data set generated for in MDEV-23231,
the data file contained a valid page_compressed page, and an
identical copy of that page was also present in the doublewrite
buffer. But, recovery would incorrectly consider the page invalid
and restore an uncompressed copy of the same page that had been
written before the log checkpoint. (In fact, no redo log was to
be applied to that page.)
buf_dblwr_process(): Validate the FIL_PAGE_LSN in the doublewrite
buffer pages, and always skip page 0, because those pages should
have been recovered by Datafile::restore_from_doublewrite() if
necessary.
Datafile::restore_from_doublewrite(): Choose the latest applicable
page from the doublewrite buffer.
recv_dblwr_t::find_page(): Also validate encrypted or
page_compressed pages.
recv_dblwr_t::validate_page(): New function to validate a page,
either a copy in a data file or in the doublewrite buffer.
Also validate encrypted or page_compressed pages.
This is joint work with Thirunarayanan Balathandayuthapani.
5 years ago  MDEV-11799 Doublewrite recovery can corrupt data pages
The purpose of the InnoDB doublewrite buffer is to make InnoDB
tolerant against cases where the server was killed in the middle
of a page write. (In Linux, killing a process may interrupt a
write system call, typically on a 4096-byte boundary.)
There may exist multiple copies of a page number in the doublewrite
buffer. Recovery should choose the latest valid copy of the page.
By design, the FIL_PAGE_LSN must not precede the latest checkpoint LSN
nor be later than the end of the recovered log.
For page_compressed and encrypted pages, we were missing proper
consistency checks. In the 10.4 data set generated for in MDEV-23231,
the data file contained a valid page_compressed page, and an
identical copy of that page was also present in the doublewrite
buffer. But, recovery would incorrectly consider the page invalid
and restore an uncompressed copy of the same page that had been
written before the log checkpoint. (In fact, no redo log was to
be applied to that page.)
buf_dblwr_process(): Validate the FIL_PAGE_LSN in the doublewrite
buffer pages, and always skip page 0, because those pages should
have been recovered by Datafile::restore_from_doublewrite() if
necessary.
Datafile::restore_from_doublewrite(): Choose the latest applicable
page from the doublewrite buffer.
recv_dblwr_t::find_page(): Also validate encrypted or
page_compressed pages.
recv_dblwr_t::validate_page(): New function to validate a page,
either a copy in a data file or in the doublewrite buffer.
Also validate encrypted or page_compressed pages.
This is joint work with Thirunarayanan Balathandayuthapani.
5 years ago  MDEV-11799 Doublewrite recovery can corrupt data pages
The purpose of the InnoDB doublewrite buffer is to make InnoDB
tolerant against cases where the server was killed in the middle
of a page write. (In Linux, killing a process may interrupt a
write system call, typically on a 4096-byte boundary.)
There may exist multiple copies of a page number in the doublewrite
buffer. Recovery should choose the latest valid copy of the page.
By design, the FIL_PAGE_LSN must not precede the latest checkpoint LSN
nor be later than the end of the recovered log.
For page_compressed and encrypted pages, we were missing proper
consistency checks. In the 10.4 data set generated for in MDEV-23231,
the data file contained a valid page_compressed page, and an
identical copy of that page was also present in the doublewrite
buffer. But, recovery would incorrectly consider the page invalid
and restore an uncompressed copy of the same page that had been
written before the log checkpoint. (In fact, no redo log was to
be applied to that page.)
buf_dblwr_process(): Validate the FIL_PAGE_LSN in the doublewrite
buffer pages, and always skip page 0, because those pages should
have been recovered by Datafile::restore_from_doublewrite() if
necessary.
Datafile::restore_from_doublewrite(): Choose the latest applicable
page from the doublewrite buffer.
recv_dblwr_t::find_page(): Also validate encrypted or
page_compressed pages.
recv_dblwr_t::validate_page(): New function to validate a page,
either a copy in a data file or in the doublewrite buffer.
Also validate encrypted or page_compressed pages.
This is joint work with Thirunarayanan Balathandayuthapani.
5 years ago  MDEV-11799 Doublewrite recovery can corrupt data pages
The purpose of the InnoDB doublewrite buffer is to make InnoDB
tolerant against cases where the server was killed in the middle
of a page write. (In Linux, killing a process may interrupt a
write system call, typically on a 4096-byte boundary.)
There may exist multiple copies of a page number in the doublewrite
buffer. Recovery should choose the latest valid copy of the page.
By design, the FIL_PAGE_LSN must not precede the latest checkpoint LSN
nor be later than the end of the recovered log.
For page_compressed and encrypted pages, we were missing proper
consistency checks. In the 10.4 data set generated for in MDEV-23231,
the data file contained a valid page_compressed page, and an
identical copy of that page was also present in the doublewrite
buffer. But, recovery would incorrectly consider the page invalid
and restore an uncompressed copy of the same page that had been
written before the log checkpoint. (In fact, no redo log was to
be applied to that page.)
buf_dblwr_process(): Validate the FIL_PAGE_LSN in the doublewrite
buffer pages, and always skip page 0, because those pages should
have been recovered by Datafile::restore_from_doublewrite() if
necessary.
Datafile::restore_from_doublewrite(): Choose the latest applicable
page from the doublewrite buffer.
recv_dblwr_t::find_page(): Also validate encrypted or
page_compressed pages.
recv_dblwr_t::validate_page(): New function to validate a page,
either a copy in a data file or in the doublewrite buffer.
Also validate encrypted or page_compressed pages.
This is joint work with Thirunarayanan Balathandayuthapani.
5 years ago  MDEV-11799 Doublewrite recovery can corrupt data pages
The purpose of the InnoDB doublewrite buffer is to make InnoDB
tolerant against cases where the server was killed in the middle
of a page write. (In Linux, killing a process may interrupt a
write system call, typically on a 4096-byte boundary.)
There may exist multiple copies of a page number in the doublewrite
buffer. Recovery should choose the latest valid copy of the page.
By design, the FIL_PAGE_LSN must not precede the latest checkpoint LSN
nor be later than the end of the recovered log.
For page_compressed and encrypted pages, we were missing proper
consistency checks. In the 10.4 data set generated for in MDEV-23231,
the data file contained a valid page_compressed page, and an
identical copy of that page was also present in the doublewrite
buffer. But, recovery would incorrectly consider the page invalid
and restore an uncompressed copy of the same page that had been
written before the log checkpoint. (In fact, no redo log was to
be applied to that page.)
buf_dblwr_process(): Validate the FIL_PAGE_LSN in the doublewrite
buffer pages, and always skip page 0, because those pages should
have been recovered by Datafile::restore_from_doublewrite() if
necessary.
Datafile::restore_from_doublewrite(): Choose the latest applicable
page from the doublewrite buffer.
recv_dblwr_t::find_page(): Also validate encrypted or
page_compressed pages.
recv_dblwr_t::validate_page(): New function to validate a page,
either a copy in a data file or in the doublewrite buffer.
Also validate encrypted or page_compressed pages.
This is joint work with Thirunarayanan Balathandayuthapani.
5 years ago  MDEV-23399: Performance regression with write workloads
The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted
the performance bottleneck to the page flushing.
The configuration parameters will be changed as follows:
innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction)
innodb_lru_scan_depth=1536 (old: 1024)
innodb_max_dirty_pages_pct=90 (old: 75)
innodb_max_dirty_pages_pct_lwm=75 (old: 0)
Note: The parameter innodb_lru_scan_depth will only affect LRU
eviction of buffer pool pages when a new page is being allocated. The
page cleaner thread will no longer evict any pages. It used to
guarantee that some pages will remain free in the buffer pool. Now, we
perform that eviction 'on demand' in buf_LRU_get_free_block().
The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows:
* When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks()
* As a buf_pool.free limit in buf_LRU_list_batch() for terminating
the flushing that is initiated e.g., by buf_LRU_get_free_block()
The parameter also used to serve as an initial limit for unzip_LRU
eviction (evicting uncompressed page frames while retaining
ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit
of 100 or unlimited for invoking buf_LRU_scan_and_free_block().
The status variables will be changed as follows:
innodb_buffer_pool_pages_flushed: This includes also the count of
innodb_buffer_pool_pages_LRU_flushed and should work reliably,
updated one by one in buf_flush_page() to give more real-time
statistics. The function buf_flush_stats(), which we are removing,
was not called in every code path. For both counters, we will use
regular variables that are incremented in a critical section of
buf_pool.mutex. Note that show_innodb_vars() directly links to the
variables, and reads of the counters will *not* be protected by
buf_pool.mutex, so you cannot get a consistent snapshot of both variables.
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be
removed, because the page cleaner no longer deals with writing or
evicting least recently used pages, and because the single-page writes
have been removed:
* buffer_LRU_batch_flush_avg_time_slot
* buffer_LRU_batch_flush_avg_time_thread
* buffer_LRU_batch_flush_avg_time_est
* buffer_LRU_batch_flush_avg_pass
* buffer_LRU_single_flush_scanned
* buffer_LRU_single_flush_num_scan
* buffer_LRU_single_flush_scanned_per_call
When moving to a single buffer pool instance in MDEV-15058, we missed
some opportunity to simplify the buf_flush_page_cleaner thread. It was
unnecessarily using a mutex and some complex data structures, even
though we always have a single page cleaner thread.
Furthermore, the buf_flush_page_cleaner thread had separate 'recovery'
and 'shutdown' modes where it was waiting to be triggered by some
other thread, adding unnecessary latency and potential for hangs in
relatively rarely executed startup or shutdown code.
The page cleaner was also running two kinds of batches in an
interleaved fashion: "LRU flush" (writing out some least recently used
pages and evicting them on write completion) and the normal batches
that aim to increase the MIN(oldest_modification) in the buffer pool,
to help the log checkpoint advance.
The buf_pool.flush_list flushing was being blocked by
buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN
of a page is ahead of log_sys.get_flushed_lsn(), that is, what has
been persistently written to the redo log, we would trigger a log
flush and then resume the page flushing. This would unnecessarily
limit the performance of the page cleaner thread and trigger the
infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms.
The settings might not be optimal" that were suppressed in
commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2.
Our revised algorithm will make log_sys.get_flushed_lsn() advance at
the start of buf_flush_lists(), and then execute a 'best effort' to
write out all pages. The flush batches will skip pages that were modified
since the log was written, or are are currently exclusively locked.
The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message
will be removed, because by design, the buf_flush_page_cleaner() should
not be blocked during a batch for extended periods of time.
We will remove the single-page flushing altogether. Related to this,
the debug parameter innodb_doublewrite_batch_size will be removed,
because all of the doublewrite buffer will be used for flushing
batches. If a page needs to be evicted from the buffer pool and all
100 least recently used pages in the buffer pool have unflushed
changes, buf_LRU_get_free_block() will execute buf_flush_lists() to
write out and evict innodb_lru_flush_size pages. At most one thread
will execute buf_flush_lists() in buf_LRU_get_free_block(); other
threads will wait for that LRU flushing batch to finish.
To improve concurrency, we will replace the InnoDB ib_mutex_t and
os_event_t native mutexes and condition variables in this area of code.
Most notably, this means that the buffer pool mutex (buf_pool.mutex)
is no longer instrumented via any InnoDB interfaces. It will continue
to be instrumented via PERFORMANCE_SCHEMA.
For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be
declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical
sections of buf_pool.flush_list_mutex should be shorter than those for
buf_pool.mutex, because in the worst case, they cover a linear scan of
buf_pool.flush_list, while the worst case of a critical section of
buf_pool.mutex covers a linear scan of the potentially much longer
buf_pool.LRU list.
mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable
with SAFE_MUTEX. Some InnoDB debug assertions need this predicate
instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner().
buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list:
Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[].
The number of active flush operations.
buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t
instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA
and SAFE_MUTEX instrumentation.
buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU.
buf_pool_t::done_flush_list: Condition variable for !n_flush_list.
buf_pool_t::do_flush_list: Condition variable to wake up the
buf_flush_page_cleaner when a log checkpoint needs to be written
or the server is being shut down. Replaces buf_flush_event.
We will keep using timed waits (the page cleaner thread will wake
_at least_ once per second), because the calculations for
innodb_adaptive_flushing depend on fixed time intervals.
buf_dblwr: Allocate statically, and move all code to member functions.
Use a native mutex and condition variable. Remove code to deal with
single-page flushing.
buf_dblwr_check_block(): Make the check debug-only. We were spending
a significant amount of execution time in page_simple_validate_new().
flush_counters_t::unzip_LRU_evicted: Remove.
IORequest: Make more members const. FIXME: m_fil_node should be removed.
buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex
(which we are removing).
page_cleaner_slot_t, page_cleaner_t: Remove many redundant members.
pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot().
recv_writer_thread: Remove. Recovery works just fine without it, if we
simply invoke buf_flush_sync() at the end of each batch in
recv_sys_t::apply().
recv_recovery_from_checkpoint_finish(): Remove. We can simply call
recv_sys.debug_free() directly.
srv_started_redo: Replaces srv_start_state.
SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown()
can communicate with the normal page cleaner loop via the new function
flush_buffer_pool().
buf_flush_remove(): Assert that the calling thread is holding
buf_pool.flush_list_mutex. This removes unnecessary mutex operations
from buf_flush_remove_pages() and buf_flush_dirty_pages(),
which replace buf_LRU_flush_or_remove_pages().
buf_flush_lists(): Renamed from buf_flush_batch(), with simplified
interface. Return the number of flushed pages. Clarified comments and
renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions
buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this
function, which was their only caller, and remove 2 unnecessary
buf_pool.mutex release/re-acquisition that we used to perform around
the buf_flush_batch() call. At the start, if not all log has been
durably written, wait for a background task to do it, or start a new
task to do it. This allows the log write to run concurrently with our
page flushing batch. Any pages that were skipped due to too recent
FIL_PAGE_LSN or due to them being latched by a writer should be flushed
during the next batch, unless there are further modifications to those
pages. It is possible that a page that we must flush due to small
oldest_modification also carries a recent FIL_PAGE_LSN or is being
constantly modified. In the worst case, all writers would then end up
waiting in log_free_check() to allow the flushing and the checkpoint
to complete.
buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n.
Cache the last looked up tablespace. If neighbor flushing is not applicable,
invoke buf_flush_page() directly, avoiding a page lookup in between.
buf_flush_space(): Auxiliary function to look up a tablespace for
page flushing.
buf_flush_page(): Defer the computation of space->full_crc32(). Never
call log_write_up_to(), but instead skip persistent pages whose latest
modification (FIL_PAGE_LSN) is newer than the redo log. Also skip
pages on which we cannot acquire a shared latch without waiting.
buf_flush_try_neighbors(): Do not bother checking buf_fix_count
because buf_flush_page() will no longer wait for the page latch.
Take the tablespace as a parameter, and only execute this function
when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold().
buf_flush_relocate_on_flush_list(): Declare as cold, and push down
a condition from the callers.
buf_flush_check_neighbor(): Take id.fold() as a parameter.
buf_flush_sync(): Ensure that the buf_pool.flush_list is empty,
because the flushing batch will skip pages whose modifications have
not yet been written to the log or were latched for modification.
buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables.
buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize
the counters, and report n->evicted.
Cache the last looked up tablespace. If neighbor flushing is not applicable,
invoke buf_flush_page() directly, avoiding a page lookup in between.
buf_do_LRU_batch(): Return the number of pages flushed.
buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if
adaptive hash index entries are pointing to the block.
buf_LRU_get_free_block(): Do not wake up the page cleaner, because it
will no longer perform any useful work for us, and we do not want it
to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0)
writes out and evicts at most innodb_lru_flush_size pages. (The
function buf_do_LRU_batch() may complete after writing fewer pages if
more than innodb_lru_scan_depth pages end up in buf_pool.free list.)
Eliminate some mutex release-acquire cycles, and wait for the LRU
flush batch to complete before rescanning.
buf_LRU_check_size_of_non_data_objects(): Simplify the code.
buf_page_write_complete(): Remove the parameter evict, and always
evict pages that were part of an LRU flush.
buf_page_create(): Take a pre-allocated page as a parameter.
buf_pool_t::free_block(): Free a pre-allocated block.
recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block
while not holding recv_sys.mutex. During page allocation, we may
initiate a page flush, which in turn may initiate a log flush, which
would require acquiring log_sys.mutex, which should always be acquired
before recv_sys.mutex in order to avoid deadlocks. Therefore, we must
not be holding recv_sys.mutex while allocating a buffer pool block.
BtrBulk::logFreeCheck(): Skip a redundant condition.
row_undo_step(): Do not invoke srv_inc_activity_count() for every row
that is being rolled back. It should suffice to invoke the function in
trx_flush_log_if_needed() during trx_t::commit_in_memory() when the
rollback completes.
sync_check_enable(): Remove. We will enable innodb_sync_debug from the
very beginning.
Reviewed by: Vladislav Vaintroub
5 years ago  MDEV-11799 Doublewrite recovery can corrupt data pages
The purpose of the InnoDB doublewrite buffer is to make InnoDB
tolerant against cases where the server was killed in the middle
of a page write. (In Linux, killing a process may interrupt a
write system call, typically on a 4096-byte boundary.)
There may exist multiple copies of a page number in the doublewrite
buffer. Recovery should choose the latest valid copy of the page.
By design, the FIL_PAGE_LSN must not precede the latest checkpoint LSN
nor be later than the end of the recovered log.
For page_compressed and encrypted pages, we were missing proper
consistency checks. In the 10.4 data set generated for in MDEV-23231,
the data file contained a valid page_compressed page, and an
identical copy of that page was also present in the doublewrite
buffer. But, recovery would incorrectly consider the page invalid
and restore an uncompressed copy of the same page that had been
written before the log checkpoint. (In fact, no redo log was to
be applied to that page.)
buf_dblwr_process(): Validate the FIL_PAGE_LSN in the doublewrite
buffer pages, and always skip page 0, because those pages should
have been recovered by Datafile::restore_from_doublewrite() if
necessary.
Datafile::restore_from_doublewrite(): Choose the latest applicable
page from the doublewrite buffer.
recv_dblwr_t::find_page(): Also validate encrypted or
page_compressed pages.
recv_dblwr_t::validate_page(): New function to validate a page,
either a copy in a data file or in the doublewrite buffer.
Also validate encrypted or page_compressed pages.
This is joint work with Thirunarayanan Balathandayuthapani.
5 years ago  MDEV-11799 Doublewrite recovery can corrupt data pages
The purpose of the InnoDB doublewrite buffer is to make InnoDB
tolerant against cases where the server was killed in the middle
of a page write. (In Linux, killing a process may interrupt a
write system call, typically on a 4096-byte boundary.)
There may exist multiple copies of a page number in the doublewrite
buffer. Recovery should choose the latest valid copy of the page.
By design, the FIL_PAGE_LSN must not precede the latest checkpoint LSN
nor be later than the end of the recovered log.
For page_compressed and encrypted pages, we were missing proper
consistency checks. In the 10.4 data set generated for in MDEV-23231,
the data file contained a valid page_compressed page, and an
identical copy of that page was also present in the doublewrite
buffer. But, recovery would incorrectly consider the page invalid
and restore an uncompressed copy of the same page that had been
written before the log checkpoint. (In fact, no redo log was to
be applied to that page.)
buf_dblwr_process(): Validate the FIL_PAGE_LSN in the doublewrite
buffer pages, and always skip page 0, because those pages should
have been recovered by Datafile::restore_from_doublewrite() if
necessary.
Datafile::restore_from_doublewrite(): Choose the latest applicable
page from the doublewrite buffer.
recv_dblwr_t::find_page(): Also validate encrypted or
page_compressed pages.
recv_dblwr_t::validate_page(): New function to validate a page,
either a copy in a data file or in the doublewrite buffer.
Also validate encrypted or page_compressed pages.
This is joint work with Thirunarayanan Balathandayuthapani.
5 years ago |
|
/*****************************************************************************
Copyright (c) 1997, 2017, Oracle and/or its affiliates. All Rights Reserved.Copyright (c) 2013, 2022, MariaDB Corporation.
This program is free software; you can redistribute it and/or modify it underthe terms of the GNU General Public License as published by the Free SoftwareFoundation; version 2 of the License.
This program is distributed in the hope that it will be useful, but WITHOUTANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESSFOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along withthis program; if not, write to the Free Software Foundation, Inc.,51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA
*****************************************************************************/
/**************************************************//**
@file log/log0recv.ccRecovery
Created 9/20/1997 Heikki Tuuri*******************************************************/
#include "univ.i"
#include <map>
#include <string>
#include <my_service_manager.h>
#include "log0recv.h"
#ifdef HAVE_MY_AES_H
#include <my_aes.h>
#endif
#include "log0crypt.h"
#include "mem0mem.h"
#include "buf0buf.h"
#include "buf0dblwr.h"
#include "buf0flu.h"
#include "mtr0mtr.h"
#include "mtr0log.h"
#include "page0page.h"
#include "page0cur.h"
#include "trx0undo.h"
#include "ibuf0ibuf.h"
#include "trx0undo.h"
#include "trx0rec.h"
#include "fil0fil.h"
#include "buf0rea.h"
#include "srv0srv.h"
#include "srv0start.h"
#include "fil0pagecompress.h"
#include "log.h"
/** The recovery system */recv_sys_t recv_sys;/** TRUE when recv_init_crash_recovery() has been called. */bool recv_needed_recovery;#ifdef UNIV_DEBUG
/** TRUE if writing to the redo log (mtr_commit) is forbidden.
Protected by log_sys.latch. */bool recv_no_log_write = false;#endif /* UNIV_DEBUG */
/** TRUE if buf_page_is_corrupted() should check if the log sequence
number (FIL_PAGE_LSN) is in the future. Initially FALSE, and set byrecv_recovery_from_checkpoint_start(). */bool recv_lsn_checks_on;
/** If the following is TRUE, the buffer pool file pages must be invalidated
after recovery and no ibuf operations are allowed; this becomes TRUE ifthe log record hash table becomes too full, and log records must be mergedto file pages already before the recovery is finished: in this case noibuf operations are allowed, as they could modify the pages read in thebuffer pool before the pages have been recovered to the up-to-date state.
true means that recovery is running and no operations on the log fileare allowed yet: the variable name is misleading. */bool recv_no_ibuf_operations;
/** The maximum lsn we see for a page during the recovery process. If this
is bigger than the lsn we are able to scan up to, that is an indication thatthe recovery failed and the database may be corrupt. */static lsn_t recv_max_page_lsn;
/** Stored physical log record */struct log_phys_t : public log_rec_t{ /** start LSN of the mini-transaction (not necessarily of this record) */ const lsn_t start_lsn;private: /** @return the start of length and data */ const byte *start() const { return my_assume_aligned<sizeof(size_t)> (reinterpret_cast<const byte*>(&start_lsn + 1)); } /** @return the start of length and data */ byte *start() { return const_cast<byte*>(const_cast<const log_phys_t*>(this)->start()); } /** @return the length of the following record */ uint16_t len() const { uint16_t i; memcpy(&i, start(), 2); return i; }
/** @return start of the log records */ byte *begin() { return start() + 2; } /** @return end of the log records */ byte *end() { byte *e= begin() + len(); ut_ad(!*e); return e; }public: /** @return start of the log records */ const byte *begin() const { return const_cast<log_phys_t*>(this)->begin(); } /** @return end of the log records */ const byte *end() const { return const_cast<log_phys_t*>(this)->end(); }
/** Determine the allocated size of the object.
@param len length of recs, excluding terminating NUL byte @return the total allocation size */ static inline size_t alloc_size(size_t len);
/** Constructor.
@param start_lsn start LSN of the mini-transaction @param lsn mtr_t::commit_lsn() of the mini-transaction @param recs the first log record for the page in the mini-transaction @param size length of recs, in bytes, excluding terminating NUL byte */ log_phys_t(lsn_t start_lsn, lsn_t lsn, const byte *recs, size_t size) : log_rec_t(lsn), start_lsn(start_lsn) { ut_ad(start_lsn); ut_ad(start_lsn < lsn); const uint16_t len= static_cast<uint16_t>(size); ut_ad(len == size); memcpy(start(), &len, 2); reinterpret_cast<byte*>(memcpy(begin(), recs, size))[size]= 0; }
/** Append a record to the log.
@param recs log to append @param size size of the log, in bytes */ void append(const byte *recs, size_t size) { ut_ad(start_lsn < lsn); uint16_t l= len(); reinterpret_cast<byte*>(memcpy(end(), recs, size))[size]= 0; l= static_cast<uint16_t>(l + size); memcpy(start(), &l, 2); }
/** Apply an UNDO_APPEND record.
@see mtr_t::undo_append() @param block undo log page @param data undo log record @param len length of the undo log record @return whether the operation failed (inconcistency was noticed) */ static bool undo_append(const buf_block_t &block, const byte *data, size_t len) { ut_ad(len > 2); byte *free_p= my_assume_aligned<2> (TRX_UNDO_PAGE_HDR + TRX_UNDO_PAGE_FREE + block.page.frame); const uint16_t free= mach_read_from_2(free_p); if (UNIV_UNLIKELY(free < TRX_UNDO_PAGE_HDR + TRX_UNDO_PAGE_HDR_SIZE || free + len + 6 >= srv_page_size - FIL_PAGE_DATA_END)) { ib::error() << "Not applying UNDO_APPEND due to corruption on " << block.page.id(); return true; }
byte *p= block.page.frame + free; mach_write_to_2(free_p, free + 4 + len); memcpy(p, free_p, 2); p+= 2; memcpy(p, data, len); p+= len; mach_write_to_2(p, free); return false; }
/** Check an OPT_PAGE_CHECKSUM record.
@see mtr_t::page_checksum() @param block buffer page @param l pointer to checksum @return whether an unrecoverable mismatch was found */ static bool page_checksum(const buf_block_t &block, const byte *l) { size_t size; const byte *page= block.page.zip.data; if (UNIV_LIKELY_NULL(page)) size= (UNIV_ZIP_SIZE_MIN >> 1) << block.page.zip.ssize; else { page= block.page.frame; size= srv_page_size; } if (UNIV_LIKELY(my_crc32c(my_crc32c(my_crc32c(0, page + FIL_PAGE_OFFSET, FIL_PAGE_LSN - FIL_PAGE_OFFSET), page + FIL_PAGE_TYPE, 2), page + FIL_PAGE_SPACE_ID, size - (FIL_PAGE_SPACE_ID + 8)) == mach_read_from_4(l))) return false;
ib::error() << "OPT_PAGE_CHECKSUM mismatch on " << block.page.id(); return !srv_force_recovery; }
/** The status of apply() */ enum apply_status { /** The page was not affected */ APPLIED_NO= 0, /** The page was modified */ APPLIED_YES, /** The page was modified, affecting the encryption parameters */ APPLIED_TO_ENCRYPTION, /** The page was modified, affecting the tablespace header */ APPLIED_TO_FSP_HEADER, /** The page was found to be corrupted */ APPLIED_CORRUPTED, };
/** Apply log to a page frame.
@param[in,out] block buffer block @param[in,out] last_offset last byte offset, for same_page records @return whether any log was applied to the page */ apply_status apply(const buf_block_t &block, uint16_t &last_offset) const { const byte * const recs= begin(); byte *const frame= block.page.zip.data ? block.page.zip.data : block.page.frame; const size_t size= block.physical_size(); apply_status applied= APPLIED_NO;
for (const byte *l= recs;;) { const byte b= *l++; if (!b) return applied; ut_ad((b & 0x70) != RESERVED); size_t rlen= b & 0xf; if (!rlen) { const size_t lenlen= mlog_decode_varint_length(*l); const uint32_t addlen= mlog_decode_varint(l); ut_ad(addlen != MLOG_DECODE_ERROR); rlen= addlen + 15 - lenlen; l+= lenlen; } if (!(b & 0x80)) { /* Skip the page identifier. It has already been validated. */ size_t idlen= mlog_decode_varint_length(*l); ut_ad(idlen <= 5); ut_ad(idlen < rlen); ut_ad(mlog_decode_varint(l) == block.page.id().space()); l+= idlen; rlen-= idlen; idlen= mlog_decode_varint_length(*l); ut_ad(idlen <= 5); ut_ad(idlen <= rlen); ut_ad(mlog_decode_varint(l) == block.page.id().page_no()); l+= idlen; rlen-= idlen; last_offset= 0; }
switch (b & 0x70) { case FREE_PAGE: ut_ad(last_offset == 0); goto next_not_same_page; case INIT_PAGE: if (UNIV_LIKELY(rlen == 0)) { memset_aligned<UNIV_ZIP_SIZE_MIN>(frame, 0, size); mach_write_to_4(frame + FIL_PAGE_OFFSET, block.page.id().page_no()); memset_aligned<8>(FIL_PAGE_PREV + frame, 0xff, 8); mach_write_to_4(frame + FIL_PAGE_SPACE_ID, block.page.id().space()); last_offset= FIL_PAGE_TYPE; next_after_applying: if (applied == APPLIED_NO) applied= APPLIED_YES; } else { record_corrupted: if (!srv_force_recovery) { recv_sys.set_corrupt_log(); return applied; } next_not_same_page: last_offset= 1; /* the next record must not be same_page */ } l+= rlen; continue; case OPTION: ut_ad(rlen == 5); ut_ad(*l == OPT_PAGE_CHECKSUM); if (page_checksum(block, l + 1)) {page_corrupted: sql_print_error("InnoDB: Set innodb_force_recovery=1" " to ignore corruption."); return APPLIED_CORRUPTED; } goto next_after_applying; }
ut_ad(mach_read_from_4(frame + FIL_PAGE_OFFSET) == block.page.id().page_no()); ut_ad(mach_read_from_4(frame + FIL_PAGE_SPACE_ID) == block.page.id().space()); ut_ad(last_offset <= 1 || last_offset > 8); ut_ad(last_offset <= size);
switch (b & 0x70) { case EXTENDED: if (UNIV_UNLIKELY(block.page.id().page_no() < 3 || block.page.zip.ssize)) goto record_corrupted; static_assert(INIT_ROW_FORMAT_REDUNDANT == 0, "compatiblity"); static_assert(INIT_ROW_FORMAT_DYNAMIC == 1, "compatibility"); if (UNIV_UNLIKELY(!rlen)) goto record_corrupted; switch (const byte subtype= *l) { uint8_t ll; size_t prev_rec, hdr_size; default: goto record_corrupted; case INIT_ROW_FORMAT_REDUNDANT: case INIT_ROW_FORMAT_DYNAMIC: if (UNIV_UNLIKELY(rlen != 1)) goto record_corrupted; page_create_low(&block, *l != INIT_ROW_FORMAT_REDUNDANT); break; case UNDO_INIT: if (UNIV_UNLIKELY(rlen != 1)) goto record_corrupted; trx_undo_page_init(block); break; case UNDO_APPEND: if (UNIV_UNLIKELY(rlen <= 3)) goto record_corrupted; if (undo_append(block, ++l, --rlen) && !srv_force_recovery) goto page_corrupted; break; case INSERT_HEAP_REDUNDANT: case INSERT_REUSE_REDUNDANT: case INSERT_HEAP_DYNAMIC: case INSERT_REUSE_DYNAMIC: if (UNIV_UNLIKELY(rlen < 2)) goto record_corrupted; rlen--; ll= mlog_decode_varint_length(*++l); if (UNIV_UNLIKELY(ll > 3 || ll >= rlen)) goto record_corrupted; prev_rec= mlog_decode_varint(l); ut_ad(prev_rec != MLOG_DECODE_ERROR); rlen-= ll; l+= ll; ll= mlog_decode_varint_length(*l); static_assert(INSERT_HEAP_REDUNDANT == 4, "compatibility"); static_assert(INSERT_REUSE_REDUNDANT == 5, "compatibility"); static_assert(INSERT_HEAP_DYNAMIC == 6, "compatibility"); static_assert(INSERT_REUSE_DYNAMIC == 7, "compatibility"); if (subtype & 2) { size_t shift= 0; if (subtype & 1) { if (UNIV_UNLIKELY(ll > 3 || ll >= rlen)) goto record_corrupted; shift= mlog_decode_varint(l); ut_ad(shift != MLOG_DECODE_ERROR); rlen-= ll; l+= ll; ll= mlog_decode_varint_length(*l); } if (UNIV_UNLIKELY(ll > 3 || ll >= rlen)) goto record_corrupted; size_t enc_hdr_l= mlog_decode_varint(l); ut_ad(enc_hdr_l != MLOG_DECODE_ERROR); rlen-= ll; l+= ll; ll= mlog_decode_varint_length(*l); if (UNIV_UNLIKELY(ll > 2 || ll >= rlen)) goto record_corrupted; size_t hdr_c= mlog_decode_varint(l); ut_ad(hdr_c != MLOG_DECODE_ERROR); rlen-= ll; l+= ll; ll= mlog_decode_varint_length(*l); if (UNIV_UNLIKELY(ll > 3 || ll > rlen)) goto record_corrupted; size_t data_c= mlog_decode_varint(l); ut_ad(data_c != MLOG_DECODE_ERROR); rlen-= ll; l+= ll; if (page_apply_insert_dynamic(block, subtype & 1, prev_rec, shift, enc_hdr_l, hdr_c, data_c, l, rlen) && !srv_force_recovery) goto page_corrupted; } else { if (UNIV_UNLIKELY(ll > 2 || ll >= rlen)) goto record_corrupted; size_t header= mlog_decode_varint(l); ut_ad(header != MLOG_DECODE_ERROR); rlen-= ll; l+= ll; ll= mlog_decode_varint_length(*l); if (UNIV_UNLIKELY(ll > 2 || ll >= rlen)) goto record_corrupted; size_t hdr_c= mlog_decode_varint(l); ut_ad(hdr_c != MLOG_DECODE_ERROR); rlen-= ll; l+= ll; ll= mlog_decode_varint_length(*l); if (UNIV_UNLIKELY(ll > 2 || ll > rlen)) goto record_corrupted; size_t data_c= mlog_decode_varint(l); rlen-= ll; l+= ll; if (page_apply_insert_redundant(block, subtype & 1, prev_rec, header, hdr_c, data_c, l, rlen) && !srv_force_recovery) goto page_corrupted; } break; case DELETE_ROW_FORMAT_REDUNDANT: if (UNIV_UNLIKELY(rlen < 2 || rlen > 4)) goto record_corrupted; rlen--; ll= mlog_decode_varint_length(*++l); if (UNIV_UNLIKELY(ll != rlen)) goto record_corrupted; if (page_apply_delete_redundant(block, mlog_decode_varint(l)) && !srv_force_recovery) goto page_corrupted; break; case DELETE_ROW_FORMAT_DYNAMIC: if (UNIV_UNLIKELY(rlen < 2)) goto record_corrupted; rlen--; ll= mlog_decode_varint_length(*++l); if (UNIV_UNLIKELY(ll > 3 || ll >= rlen)) goto record_corrupted; prev_rec= mlog_decode_varint(l); ut_ad(prev_rec != MLOG_DECODE_ERROR); rlen-= ll; l+= ll; ll= mlog_decode_varint_length(*l); if (UNIV_UNLIKELY(ll > 2 || ll >= rlen)) goto record_corrupted; hdr_size= mlog_decode_varint(l); ut_ad(hdr_size != MLOG_DECODE_ERROR); rlen-= ll; l+= ll; ll= mlog_decode_varint_length(*l); if (UNIV_UNLIKELY(ll > 3 || ll != rlen)) goto record_corrupted; if (page_apply_delete_dynamic(block, prev_rec, hdr_size, mlog_decode_varint(l)) && !srv_force_recovery) goto page_corrupted; break; } last_offset= FIL_PAGE_TYPE; goto next_after_applying; case WRITE: case MEMSET: case MEMMOVE: if (UNIV_UNLIKELY(last_offset == 1)) goto record_corrupted; const size_t olen= mlog_decode_varint_length(*l); if (UNIV_UNLIKELY(olen >= rlen) || UNIV_UNLIKELY(olen > 3)) goto record_corrupted; const uint32_t offset= mlog_decode_varint(l); ut_ad(offset != MLOG_DECODE_ERROR); static_assert(FIL_PAGE_OFFSET == 4, "compatibility"); if (UNIV_UNLIKELY(offset >= size)) goto record_corrupted; if (UNIV_UNLIKELY(offset + last_offset < 8 || offset + last_offset >= size)) goto record_corrupted; last_offset= static_cast<uint16_t>(last_offset + offset); l+= olen; rlen-= olen; size_t llen= rlen; if ((b & 0x70) == WRITE) { if (UNIV_UNLIKELY(rlen + last_offset > size)) goto record_corrupted; memcpy(frame + last_offset, l, llen); if (UNIV_LIKELY(block.page.id().page_no())); else if (llen == 11 + MY_AES_BLOCK_SIZE && last_offset == FSP_HEADER_OFFSET + MAGIC_SZ + fsp_header_get_encryption_offset(block.zip_size())) applied= APPLIED_TO_ENCRYPTION; else if (last_offset < FSP_HEADER_OFFSET + FSP_FREE + FLST_LEN + 4 && last_offset + llen >= FSP_HEADER_OFFSET + FSP_SIZE) applied= APPLIED_TO_FSP_HEADER; next_after_applying_write: ut_ad(llen + last_offset <= size); last_offset= static_cast<uint16_t>(last_offset + llen); goto next_after_applying; } llen= mlog_decode_varint_length(*l); if (UNIV_UNLIKELY(llen > rlen || llen > 3)) goto record_corrupted; const uint32_t len= mlog_decode_varint(l); ut_ad(len != MLOG_DECODE_ERROR); if (UNIV_UNLIKELY(len + last_offset > size)) goto record_corrupted; l+= llen; rlen-= llen; llen= len; if ((b & 0x70) == MEMSET) { ut_ad(rlen <= llen); if (UNIV_UNLIKELY(rlen != 1)) { size_t s; for (s= 0; s < llen; s+= rlen) memcpy(frame + last_offset + s, l, rlen); memcpy(frame + last_offset + s, l, llen - s); } else memset(frame + last_offset, *l, llen); goto next_after_applying_write; } const size_t slen= mlog_decode_varint_length(*l); if (UNIV_UNLIKELY(slen != rlen || slen > 3)) goto record_corrupted; uint32_t s= mlog_decode_varint(l); ut_ad(slen != MLOG_DECODE_ERROR); if (s & 1) s= last_offset - (s >> 1) - 1; else s= last_offset + (s >> 1) + 1; if (UNIV_LIKELY(s >= 8 && s + llen <= size)) { memmove(frame + last_offset, frame + s, llen); goto next_after_applying_write; } } goto record_corrupted; } }};
inline size_t log_phys_t::alloc_size(size_t len){ return len + (1 + 2 + sizeof(log_phys_t));}
/** Tablespace item during recovery */struct file_name_t { /** Tablespace file name (FILE_MODIFY) */ std::string name; /** Tablespace object (NULL if not valid or not found) */ fil_space_t* space = nullptr;
/** Tablespace status. */ enum fil_status { /** Normal tablespace */ NORMAL, /** Deleted tablespace */ DELETED, /** Missing tablespace */ MISSING };
/** Status of the tablespace */ fil_status status;
/** FSP_SIZE of tablespace */ uint32_t size = 0;
/** Freed pages of tablespace */ range_set freed_ranges;
/** Dummy flags before they have been read from the .ibd file */ static constexpr uint32_t initial_flags = FSP_FLAGS_FCRC32_MASK_MARKER; /** FSP_SPACE_FLAGS of tablespace */ uint32_t flags = initial_flags;
/** Constructor */ file_name_t(std::string name_, bool deleted) : name(std::move(name_)), status(deleted ? DELETED: NORMAL) {}
/** Add the freed pages */ void add_freed_page(uint32_t page_no) { freed_ranges.add_value(page_no); }
/** Remove the freed pages */ void remove_freed_page(uint32_t page_no) { if (freed_ranges.empty()) return; freed_ranges.remove_value(page_no); }};
/** Map of dirty tablespaces during recovery */typedef std::map< uint32_t, file_name_t, std::less<uint32_t>, ut_allocator<std::pair<const uint32_t, file_name_t> > > recv_spaces_t;
static recv_spaces_t recv_spaces;
/** The last parsed FILE_RENAME records */static std::map<uint32_t,std::string> renamed_spaces;
/** Files for which fil_ibd_load() returned FIL_LOAD_DEFER */static struct{ /** Maintains the last opened defer file name along with lsn */ struct item { /** Log sequence number of latest add() called by fil_name_process() */ lsn_t lsn; /** File name from the FILE_ record */ std::string file_name; /** whether a FILE_DELETE record was encountered */ mutable bool deleted; };
using map= std::map<const uint32_t, item, std::less<const uint32_t>, ut_allocator<std::pair<const uint32_t, item> > >;
/** Map of defer tablespaces */ map defers;
/** Add the deferred space only if it is latest one
@param space space identifier @param f_name file name @param lsn log sequence number of the FILE_ record */ void add(uint32_t space, const std::string &f_name, lsn_t lsn) { mysql_mutex_assert_owner(&recv_sys.mutex); const char *filename= f_name.c_str();
if (srv_operation == SRV_OPERATION_RESTORE) { /* Replace absolute DATA DIRECTORY file paths with
short names relative to the backup directory. */ if (const char *name= strrchr(filename, '/')) { while (--name > filename && *name != '/'); if (name > filename) filename= name + 1; } }
char *fil_path= fil_make_filepath(nullptr, {filename, strlen(filename)}, IBD, false); const item defer{lsn, fil_path, false}; ut_free(fil_path);
/* The file name must be unique. Keep the one with the latest LSN. */ auto d= defers.begin();
while (d != defers.end()) { if (d->second.file_name != defer.file_name) ++d; else if (d->first == space) { /* Neither the file name nor the tablespace ID changed.
Update the LSN if needed. */ if (d->second.lsn < lsn) d->second.lsn= lsn; return; } else if (d->second.lsn < lsn) { /* Reset the old tablespace name in recovered spaces list */ recv_spaces_t::iterator it{recv_spaces.find(d->first)}; if (it != recv_spaces.end() && it->second.name == d->second.file_name) it->second.name = ""; defers.erase(d++); } else { ut_ad(d->second.lsn != lsn); return; /* A later tablespace already has this name. */ } }
auto p= defers.emplace(space, defer); if (!p.second && p.first->second.lsn <= lsn) { p.first->second.lsn= lsn; p.first->second.file_name= defer.file_name; } /* Add the newly added defered space and change the file name */ recv_spaces_t::iterator it{recv_spaces.find(space)}; if (it != recv_spaces.end()) it->second.name = defer.file_name; }
void remove(uint32_t space) { mysql_mutex_assert_owner(&recv_sys.mutex); defers.erase(space); }
/** Look up a tablespace that was found corrupted during recovery.
@param id tablespace id @return tablespace whose creation was deferred @retval nullptr if no such tablespace was found */ item *find(uint32_t id) { mysql_mutex_assert_owner(&recv_sys.mutex); auto it= defers.find(id); if (it != defers.end()) return &it->second; return nullptr; }
void clear() { mysql_mutex_assert_owner(&recv_sys.mutex); defers.clear(); }
/** Initialize all deferred tablespaces.
@return whether any deferred initialization failed */ bool reinit_all() {retry: log_sys.latch.wr_unlock(); fil_space_t *space= fil_system.sys_space; buf_block_t *free_block= buf_LRU_get_free_block(false); log_sys.latch.wr_lock(SRW_LOCK_CALL); mysql_mutex_lock(&recv_sys.mutex);
for (auto d= defers.begin(); d != defers.end(); ) { const uint32_t space_id{d->first}; recv_sys_t::map::iterator p{recv_sys.pages.lower_bound({space_id,0})};
if (d->second.deleted || p == recv_sys.pages.end() || p->first.space() != space_id) { /* We found a FILE_DELETE record for the tablespace, or
there were no buffered records. Either way, we must create a dummy tablespace with the latest known name, for dict_drop_index_tree(). */ recv_sys.pages_it_invalidate(space_id); while (p != recv_sys.pages.end() && p->first.space() == space_id) { ut_ad(!p->second.being_processed); recv_sys_t::map::iterator r= p++; recv_sys.erase(r); } recv_spaces_t::iterator it{recv_spaces.find(space_id)}; if (it != recv_spaces.end()) { const std::string *name= &d->second.file_name; if (d->second.deleted) { const auto r= renamed_spaces.find(space_id); if (r != renamed_spaces.end()) name= &r->second; bool exists; os_file_type_t ftype; if (!os_file_status(name->c_str(), &exists, &ftype) || !exists) goto processed; } if (create(it, *name, static_cast<uint32_t> (1U << FSP_FLAGS_FCRC32_POS_MARKER | FSP_FLAGS_FCRC32_PAGE_SSIZE()), nullptr, 0)) mysql_mutex_unlock(&fil_system.mutex); } } else space= recv_sys.recover_deferred(p, d->second.file_name, free_block);processed: auto e= d++; defers.erase(e); if (!space) break; if (space != fil_system.sys_space) space->release(); if (free_block) continue; mysql_mutex_unlock(&recv_sys.mutex); goto retry; }
clear(); mysql_mutex_unlock(&recv_sys.mutex); if (free_block) buf_pool.free_block(free_block); return !space; }
/** Create tablespace metadata for a data file that was initially
found corrupted during recovery. @param it tablespace iterator @param name latest file name @param flags FSP_SPACE_FLAGS @param crypt_data encryption metadata @param size tablespace size in pages @return tablespace; the caller must release fil_system.mutex @retval nullptr if crypt_data is invalid */ static fil_space_t *create(const recv_spaces_t::const_iterator &it, const std::string &name, uint32_t flags, fil_space_crypt_t *crypt_data, uint32_t size) { if (crypt_data && !fil_crypt_check(crypt_data, name.c_str())) return nullptr; mysql_mutex_lock(&fil_system.mutex); fil_space_t *space= fil_space_t::create(it->first, flags, FIL_TYPE_TABLESPACE, crypt_data); ut_ad(space); const char *filename= name.c_str(); if (srv_operation == SRV_OPERATION_RESTORE) { if (const char *tbl_name= strrchr(filename, '/')) { while (--tbl_name > filename && *tbl_name != '/'); if (tbl_name > filename) filename= tbl_name + 1; } } pfs_os_file_t handle= OS_FILE_CLOSED; if (srv_operation == SRV_OPERATION_RESTORE) { /* During mariadb-backup --backup, a table could be renamed,
created and dropped, and we may be missing the file at this point of --prepare. Try to create the file if it does not exist already. If the file exists, we'll pass handle=OS_FILE_CLOSED and the file will be opened normally in fil_space_t::acquire() inside recv_sys_t::recover_deferred(). */ bool success; handle= os_file_create(innodb_data_file_key, filename, OS_FILE_CREATE_SILENT, OS_FILE_AIO, OS_DATA_FILE, false, &success); } space->add(filename, handle, size, false, false); space->recv_size= it->second.size; space->size_in_header= size; return space; }
/** Attempt to recover pages from the doublewrite buffer.
This is invoked if we found neither a valid first page in the data file nor redo log records that would initialize the first page. */ void deferred_dblwr() { for (auto d= defers.begin(); d != defers.end(); ) { if (d->second.deleted) { next_item: d++; continue; } const page_id_t page_id{d->first, 0}; const byte *page= recv_sys.dblwr.find_page(page_id); if (!page) goto next_item; const uint32_t space_id= mach_read_from_4(page + FIL_PAGE_SPACE_ID); const uint32_t flags= fsp_header_get_flags(page); const uint32_t page_no= mach_read_from_4(page + FIL_PAGE_OFFSET); const uint32_t size= fsp_header_get_field(page, FSP_SIZE);
if (page_no == 0 && space_id == d->first && size >= 4 && fil_space_t::is_valid_flags(flags, space_id) && fil_space_t::logical_size(flags) == srv_page_size) { recv_spaces_t::iterator it {recv_spaces.find(d->first)}; ut_ad(it != recv_spaces.end());
fil_space_t *space= create( it, d->second.file_name.c_str(), flags, fil_space_read_crypt_data(fil_space_t::zip_size(flags), page), size);
if (!space) goto next_item;
space->free_limit= fsp_header_get_field(page, FSP_FREE_LIMIT); space->free_len= flst_get_len(FSP_HEADER_OFFSET + FSP_FREE + page); fil_node_t *node= UT_LIST_GET_FIRST(space->chain); mysql_mutex_unlock(&fil_system.mutex); if (!space->acquire()) {free_space: fil_space_free(it->first, false); goto next_item; } if (os_file_write(IORequestWrite, node->name, node->handle, page, 0, fil_space_t::physical_size(flags)) != DB_SUCCESS) { space->release(); goto free_space; } space->release(); it->second.space= space; defers.erase(d++); continue; } goto next_item; } }}deferred_spaces;
/** Report an operation to create, delete, or rename a file during backup.
@param[in] space_id tablespace identifier@param[in] type redo log type@param[in] name file name (not NUL-terminated)@param[in] len length of name, in bytes@param[in] new_name new file name (NULL if not rename)@param[in] new_len length of new_name, in bytes (0 if NULL) */void (*log_file_op)(uint32_t space_id, int type, const byte* name, ulint len, const byte* new_name, ulint new_len);
void (*undo_space_trunc)(uint32_t space_id);
void (*first_page_init)(uint32_t space_id);
/** Information about initializing page contents during redo log processing.
FIXME: Rely on recv_sys.pages! */class mlog_init_t{ using map= std::map<const page_id_t, recv_init, std::less<const page_id_t>, ut_allocator<std::pair<const page_id_t, recv_init>>>; /** Map of page initialization operations.
FIXME: Merge this to recv_sys.pages! */ map inits;
/** Iterator to the last add() or will_avoid_read(), for speeding up
will_avoid_read(). */ map::iterator i;public: /** Constructor */ mlog_init_t() : i(inits.end()) {}
/** Record that a page will be initialized by the redo log.
@param page_id page identifier @param lsn log sequence number @return whether the state was changed */ bool add(const page_id_t page_id, lsn_t lsn) { mysql_mutex_assert_owner(&recv_sys.mutex); const recv_init init = { lsn, false }; std::pair<map::iterator, bool> p= inits.insert(map::value_type(page_id, init)); ut_ad(!p.first->second.created); if (p.second) return true; if (p.first->second.lsn >= lsn) return false; p.first->second = init; i = p.first; return true; }
/** Get the last stored lsn of the page id and its respective
init/load operation. @param page_id page identifier @return the latest page initialization; not valid after releasing recv_sys.mutex. */ recv_init &last(page_id_t page_id) { mysql_mutex_assert_owner(&recv_sys.mutex); return inits.find(page_id)->second; }
/** Determine if a page will be initialized or freed after a time.
@param page_id page identifier @param lsn log sequence number @return whether page_id will be freed or initialized after lsn */ bool will_avoid_read(page_id_t page_id, lsn_t lsn) { mysql_mutex_assert_owner(&recv_sys.mutex); if (i != inits.end() && i->first == page_id) return i->second.lsn > lsn; i = inits.lower_bound(page_id); return i != inits.end() && i->first == page_id && i->second.lsn > lsn; }
/** At the end of each recovery batch, reset the 'created' flags. */ void reset() { mysql_mutex_assert_owner(&recv_sys.mutex); ut_ad(recv_no_ibuf_operations); for (map::value_type &i : inits) i.second.created= false; }
/** During the last recovery batch, mark whether there exist
buffered changes for the pages that were initialized by buf_page_create() and still reside in the buffer pool. */ void mark_ibuf_exist() { mysql_mutex_assert_owner(&recv_sys.mutex);
for (const map::value_type &i : inits) if (i.second.created) { auto &chain= buf_pool.page_hash.cell_get(i.first.fold()); page_hash_latch &hash_lock= buf_pool.page_hash.lock_get(chain);
hash_lock.lock_shared(); buf_block_t *block= reinterpret_cast<buf_block_t*> (buf_pool.page_hash.get(i.first, chain)); bool got_latch= block && block->page.lock.x_lock_try(); hash_lock.unlock_shared();
if (!block) continue;
uint32_t state;
if (!got_latch) { mysql_mutex_lock(&buf_pool.mutex); block= reinterpret_cast<buf_block_t*> (buf_pool.page_hash.get(i.first, chain)); if (!block) { mysql_mutex_unlock(&buf_pool.mutex); continue; }
state= block->page.fix(); mysql_mutex_unlock(&buf_pool.mutex); if (state < buf_page_t::UNFIXED) { block->page.unfix(); continue; } block->page.lock.x_lock(); state= block->page.unfix(); ut_ad(state < buf_page_t::READ_FIX); if (state >= buf_page_t::UNFIXED && block->page.id() == i.first) goto check_ibuf; } else { state= block->page.state(); ut_ad(state >= buf_page_t::FREED); ut_ad(state < buf_page_t::READ_FIX);
if (state >= buf_page_t::UNFIXED) { check_ibuf: mysql_mutex_unlock(&recv_sys.mutex); if (ibuf_page_exists(block->page.id(), block->zip_size())) block->page.set_ibuf_exist(); mysql_mutex_lock(&recv_sys.mutex); } }
block->page.lock.x_unlock(); } }
/** Clear the data structure */ void clear() { inits.clear(); i = inits.end(); }};
static mlog_init_t mlog_init;
/** Try to recover a tablespace that was not readable earlier
@param p iterator to the page@param name tablespace file name@param free_block spare buffer block@return recovered tablespace@retval nullptr if recovery failed */fil_space_t *recv_sys_t::recover_deferred(const recv_sys_t::map::iterator &p, const std::string &name, buf_block_t *&free_block){ mysql_mutex_assert_owner(&mutex);
ut_ad(p->first.space());
recv_spaces_t::iterator it{recv_spaces.find(p->first.space())}; ut_ad(it != recv_spaces.end());
if (!p->first.page_no() && p->second.skip_read) { mtr_t mtr; ut_ad(!p->second.being_processed); p->second.being_processed= 1; init &init= mlog_init.last(p->first); mysql_mutex_unlock(&mutex); buf_block_t *block= recover_low(p, mtr, free_block, init); mysql_mutex_lock(&mutex); p->second.being_processed= -1; ut_ad(block == free_block || block == reinterpret_cast<buf_block_t*>(-1)); free_block= nullptr; if (UNIV_UNLIKELY(!block || block == reinterpret_cast<buf_block_t*>(-1))) goto fail; const byte *page= UNIV_LIKELY_NULL(block->page.zip.data) ? block->page.zip.data : block->page.frame; const uint32_t space_id= mach_read_from_4(page + FIL_PAGE_SPACE_ID); const uint32_t flags= fsp_header_get_flags(page); const uint32_t page_no= mach_read_from_4(page + FIL_PAGE_OFFSET); const uint32_t size= fsp_header_get_field(page, FSP_SIZE);
if (page_id_t{space_id, page_no} == p->first && size >= 4 && fil_space_t::is_valid_flags(flags, space_id) && fil_space_t::logical_size(flags) == srv_page_size) { fil_space_t *space= deferred_spaces.create(it, name, flags, fil_space_read_crypt_data (fil_space_t::zip_size(flags), page), size); if (!space) goto release_and_fail; space->free_limit= fsp_header_get_field(page, FSP_FREE_LIMIT); space->free_len= flst_get_len(FSP_HEADER_OFFSET + FSP_FREE + page); fil_node_t *node= UT_LIST_GET_FIRST(space->chain); node->deferred= true; mysql_mutex_unlock(&fil_system.mutex); if (!space->acquire()) goto release_and_fail; fil_names_dirty(space); const bool is_compressed= fil_space_t::is_compressed(flags);#ifdef _WIN32
const bool is_sparse= is_compressed; if (is_compressed) os_file_set_sparse_win32(node->handle);#else
const bool is_sparse= is_compressed && DB_SUCCESS == os_file_punch_hole(node->handle, 0, 4096) && !my_test_if_thinly_provisioned(node->handle);#endif
/* Mimic fil_node_t::read_page0() in case the file exists and
has already been extended to a larger size. */ ut_ad(node->size == size); const os_offset_t file_size= os_file_get_size(node->handle); if (file_size != os_offset_t(-1)) { const uint32_t n_pages= uint32_t(file_size / fil_space_t::physical_size(flags)); if (n_pages > size) { mysql_mutex_lock(&fil_system.mutex); space->size= node->size= n_pages; space->set_committed_size(); mysql_mutex_unlock(&fil_system.mutex); goto size_set; } } if (!os_file_set_size(node->name, node->handle, (size * fil_space_t::physical_size(flags)) & ~4095ULL, is_sparse)) { space->release(); goto release_and_fail; } size_set: node->deferred= false; it->second.space= space; block->page.lock.x_unlock(); p->second.being_processed= -1; return space; }
release_and_fail: block->page.lock.x_unlock(); }
fail: ib::error() << "Cannot apply log to " << p->first << " of corrupted file '" << name << "'"; return nullptr;}
/** Process a record that indicates that a tablespace is
being shrunk in size.@param page_id first page identifier that is not in the file@param lsn log sequence number of the shrink operation */inline void recv_sys_t::trim(const page_id_t page_id, lsn_t lsn){ DBUG_ENTER("recv_sys_t::trim"); DBUG_LOG("ib_log", "discarding log beyond end of tablespace " << page_id << " before LSN " << lsn); mysql_mutex_assert_owner(&mutex); if (pages_it != pages.end() && pages_it->first.space() == page_id.space()) pages_it= pages.end(); for (recv_sys_t::map::iterator p = pages.lower_bound(page_id); p != pages.end() && p->first.space() == page_id.space();) { recv_sys_t::map::iterator r = p++; if (r->second.trim(lsn)) { ut_ad(!r->second.being_processed); pages.erase(r); } } DBUG_VOID_RETURN;}
inline dberr_t recv_sys_t::read(os_offset_t total_offset, span<byte> buf){ size_t file_idx= static_cast<size_t>(total_offset / log_sys.file_size); os_offset_t offset= total_offset % log_sys.file_size; return file_idx ? recv_sys.files[file_idx].read(offset, buf) : log_sys.log.read(offset, buf);}
inline size_t recv_sys_t::files_size(){ ut_ad(!files.empty()); return files.size();}
/** Process a file name from a FILE_* record.
@param[in] name file name@param[in] len length of the file name@param[in] space_id the tablespace ID@param[in] ftype FILE_MODIFY, FILE_DELETE, or FILE_RENAME@param[in] lsn lsn of the redo log@param[in] if_exists whether to check if the tablespace exists */static void fil_name_process(const char *name, ulint len, uint32_t space_id, mfile_type_t ftype, lsn_t lsn, bool if_exists){ ut_ad(srv_operation <= SRV_OPERATION_EXPORT_RESTORED || srv_operation == SRV_OPERATION_RESTORE || srv_operation == SRV_OPERATION_RESTORE_EXPORT);
/* We will also insert space=NULL into the map, so that
further checks can ensure that a FILE_MODIFY record was scanned before applying any page records for the space_id. */
const bool deleted{ftype == FILE_DELETE}; const file_name_t fname(std::string(name, len), deleted); std::pair<recv_spaces_t::iterator,bool> p = recv_spaces.emplace( space_id, fname); ut_ad(p.first->first == space_id);
file_name_t& f = p.first->second;
auto d = deferred_spaces.find(space_id); if (d) { if (deleted) { d->deleted = true; goto got_deleted; } goto reload; }
if (deleted) {got_deleted: /* Got FILE_DELETE */ if (!p.second && f.status != file_name_t::DELETED) { f.status = file_name_t::DELETED; if (f.space != NULL) { fil_space_free(space_id, false); f.space = NULL; } }
ut_ad(f.space == NULL); } else if (p.second // the first FILE_MODIFY or FILE_RENAME
|| f.name != fname.name) {reload: fil_space_t* space;
/* Check if the tablespace file exists and contains
the space_id. If not, ignore the file after displaying a note. Abort if there are multiple files with the same space_id. */ switch (fil_ibd_load(space_id, fname.name.c_str(), space)) { case FIL_LOAD_OK: ut_ad(space != NULL);
deferred_spaces.remove(space_id); if (!f.space) { if (f.size || f.flags != f.initial_flags) { fil_space_set_recv_size_and_flags( space->id, f.size, f.flags); }
f.space = space; goto same_space; } else if (f.space == space) {same_space: f.name = fname.name; f.status = file_name_t::NORMAL; } else { sql_print_error("InnoDB: Tablespace " UINT32PF " has been found" " in two places:" " '%.*s' and '%.*s'." " You must delete" " one of them.", space_id, int(f.name.size()), f.name.data(), int(fname.name.size()), fname.name.data()); recv_sys.set_corrupt_fs(); } break;
case FIL_LOAD_ID_CHANGED: ut_ad(space == NULL); break;
case FIL_LOAD_NOT_FOUND: /* No matching tablespace was found; maybe it
was renamed, and we will find a subsequent FILE_* record. */ ut_ad(space == NULL);
if (srv_operation == SRV_OPERATION_RESTORE && d && ftype == FILE_RENAME) {rename: d->file_name = fname.name; f.name = fname.name; break; }
if (srv_force_recovery || srv_operation == SRV_OPERATION_RESTORE) { /* Without innodb_force_recovery,
missing tablespaces will only be reported in recv_init_crash_recovery_spaces(). Enable some more diagnostics when forcing recovery. */
sql_print_information( "InnoDB: At LSN: " LSN_PF ": unable to open file %.*s" " for tablespace " UINT32PF, recv_sys.lsn, int(fname.name.size()), fname.name.data(), space_id); } break;
case FIL_LOAD_DEFER: if (d && ftype == FILE_RENAME && srv_operation == SRV_OPERATION_RESTORE) { goto rename; } /* Skip the deferred spaces
when lsn is already processed */ if (!if_exists) { deferred_spaces.add( space_id, fname.name.c_str(), lsn); } break; case FIL_LOAD_INVALID: ut_ad(space == NULL); if (srv_force_recovery == 0) { sql_print_error("InnoDB: Recovery cannot access" " file %.*s (tablespace " UINT32PF ")", int(len), name, space_id); sql_print_information("InnoDB: You may set " "innodb_force_recovery=1" " to ignore this and" " possibly get a" " corrupted database."); recv_sys.set_corrupt_fs(); break; }
sql_print_warning("InnoDB: Ignoring changes to" " file %.*s (tablespace " UINT32PF ")" " due to innodb_force_recovery", int(len), name, space_id); } }}
void recv_sys_t::close_files(){ for (auto &file : files) if (file.is_opened()) file.close(); files.clear(); files.shrink_to_fit();}
/** Clean up after recv_sys_t::create() */void recv_sys_t::close(){ ut_ad(this == &recv_sys);
if (is_initialised()) { dblwr.pages.clear(); ut_d(mysql_mutex_lock(&mutex)); clear(); deferred_spaces.clear(); ut_d(mysql_mutex_unlock(&mutex));
scanned_lsn= 0; mysql_mutex_destroy(&mutex); }
recv_spaces.clear(); renamed_spaces.clear(); mlog_init.clear(); close_files();}
/** Initialize the redo log recovery subsystem. */void recv_sys_t::create(){ ut_ad(this == &recv_sys); ut_ad(!is_initialised()); mysql_mutex_init(recv_sys_mutex_key, &mutex, nullptr);
apply_log_recs = false;
len = 0; offset = 0; lsn = 0; scanned_lsn = 1; found_corrupt_log = false; found_corrupt_fs = false; file_checkpoint = 0;
progress_time = time(NULL); ut_ad(pages.empty()); pages_it = pages.end(); recv_max_page_lsn = 0;
memset(truncated_undo_spaces, 0, sizeof truncated_undo_spaces); UT_LIST_INIT(blocks, &buf_block_t::unzip_LRU);}
/** Clear a fully processed set of stored redo log records. */void recv_sys_t::clear(){ mysql_mutex_assert_owner(&mutex); apply_log_recs= false; ut_ad(!after_apply || found_corrupt_fs || !UT_LIST_GET_LAST(blocks)); pages.clear(); pages_it= pages.end();
for (buf_block_t *block= UT_LIST_GET_LAST(blocks); block; ) { buf_block_t *prev_block= UT_LIST_GET_PREV(unzip_LRU, block); ut_ad(block->page.state() == buf_page_t::MEMORY); UT_LIST_REMOVE(blocks, block); MEM_MAKE_ADDRESSABLE(block->page.frame, srv_page_size); buf_block_free(block); block= prev_block; }}
/** Free most recovery data structures. */void recv_sys_t::debug_free(){ ut_ad(this == &recv_sys); ut_ad(is_initialised()); mysql_mutex_lock(&mutex);
recovery_on= false; pages.clear(); pages_it= pages.end();
mysql_mutex_unlock(&mutex);}
/** Free a redo log snippet.
@param data buffer allocated in add() */inline void recv_sys_t::free(const void *data){ ut_ad(!ut_align_offset(data, ALIGNMENT)); data= page_align(data); mysql_mutex_assert_owner(&mutex);
/* MDEV-14481 FIXME: To prevent race condition with buf_pool.resize(),
we must acquire and hold the buffer pool mutex here. */ ut_ad(!buf_pool.resize_in_progress());
auto *chunk= buf_pool.chunks; for (auto i= buf_pool.n_chunks; i--; chunk++) { if (data < chunk->blocks->page.frame) continue; const size_t offs= (reinterpret_cast<const byte*>(data) - chunk->blocks->page.frame) >> srv_page_size_shift; if (offs >= chunk->size) continue; buf_block_t *block= &chunk->blocks[offs]; ut_ad(block->page.frame == data); ut_ad(block->page.state() == buf_page_t::MEMORY); ut_ad(static_cast<uint16_t>(block->page.access_time - 1) < srv_page_size); unsigned a= block->page.access_time; ut_ad(a >= 1U << 16); a-= 1U << 16; block->page.access_time= a; if (!(a >> 16)) { UT_LIST_REMOVE(blocks, block); MEM_MAKE_ADDRESSABLE(block->page.frame, srv_page_size); buf_block_free(block); } return; } ut_ad(0);}
/** @return whether a log_t::FORMAT_10_5 log block checksum matches */static bool recv_check_log_block(const byte *buf){ return mach_read_from_4(my_assume_aligned<4>(508 + buf)) == my_crc32c(0, buf, 508);}
/** Calculate the checksum for a log block using the pre-10.2.2 algorithm. */inline uint32_t log_block_calc_checksum_format_0(const byte *b){ uint32_t sum= 1; const byte *const end= &b[512 - 4];
for (uint32_t sh= 0; b < end; ) { sum&= 0x7FFFFFFFUL; sum+= uint32_t{*b} << sh++; sum+= *b++; if (sh > 24) sh= 0; }
return sum;}
/** Determine if a redo log from before MariaDB 10.2.2 is clean.
@return error code@retval DB_SUCCESS if the redo log is clean@retval DB_CORRUPTION if the redo log is corrupted@retval DB_ERROR if the redo log is not empty */ATTRIBUTE_COLD static dberr_t recv_log_recover_pre_10_2(){ uint64_t max_no= 0;
ut_ad(log_sys.format == 0);
/** Offset of the first checkpoint checksum */ constexpr uint CHECKSUM_1= 288; /** Offset of the second checkpoint checksum */ constexpr uint CHECKSUM_2= CHECKSUM_1 + 4; /** the checkpoint LSN field */ constexpr uint CHECKPOINT_LSN= 8; /** Most significant bits of the checkpoint offset */ constexpr uint OFFS_HI= CHECKSUM_2 + 12; /** Least significant bits of the checkpoint offset */ constexpr uint OFFS_LO= 16;
lsn_t source_offset= 0; const lsn_t log_size{(log_sys.file_size - 2048) * recv_sys.files_size()}; for (size_t field= 512; field < 2048; field+= 1024) { const byte *buf= log_sys.buf + field;
if (static_cast<uint32_t>(ut_fold_binary(buf, CHECKSUM_1)) != mach_read_from_4(buf + CHECKSUM_1) || static_cast<uint32_t>(ut_fold_binary(buf + CHECKPOINT_LSN, CHECKSUM_2 - CHECKPOINT_LSN)) != mach_read_from_4(buf + CHECKSUM_2)) { DBUG_PRINT("ib_log", ("invalid pre-10.2.2 checkpoint %zu", field)); continue; }
if (!log_crypt_101_read_checkpoint(buf)) { sql_print_error("InnoDB: Decrypting checkpoint failed"); continue; }
const uint64_t checkpoint_no= mach_read_from_8(buf);
DBUG_PRINT("ib_log", ("checkpoint " UINT64PF " at " LSN_PF " found", checkpoint_no, mach_read_from_8(buf + CHECKPOINT_LSN)));
if (checkpoint_no < max_no) continue;
const lsn_t o= lsn_t{mach_read_from_4(buf + OFFS_HI)} << 32 | mach_read_from_4(buf + OFFS_LO); if (o >= 0x80c && (o & ~511) + 512 < log_size) { max_no= checkpoint_no; log_sys.next_checkpoint_lsn= mach_read_from_8(buf + CHECKPOINT_LSN); source_offset= o; } }
const char *uag= srv_operation == SRV_OPERATION_NORMAL ? "InnoDB: Upgrade after a crash is not supported." : "mariadb-backup --prepare is not possible.";
if (!log_sys.next_checkpoint_lsn) { sql_print_error("%s" " This redo log was created before MariaDB 10.2.2," " and we did not find a valid checkpoint." " Please follow the instructions at" " https://mariadb.com/kb/en/library/upgrading/", uag); return DB_ERROR; }
static const char pre_10_2[]= " This redo log was created before MariaDB 10.2.2";
byte *buf= const_cast<byte*>(field_ref_zero);
if (source_offset < (log_sys.is_pmem() ? log_sys.file_size : 4096)) memcpy_aligned<512>(buf, &log_sys.buf[source_offset & ~511], 512); else if (dberr_t err= recv_sys.read(source_offset & ~511, {buf, 512})) return err;
if (log_block_calc_checksum_format_0(buf) != mach_read_from_4(my_assume_aligned<4>(buf + 508)) && !log_crypt_101_read_block(buf, log_sys.next_checkpoint_lsn)) { sql_print_error("%s%s, and it appears corrupted.", uag, pre_10_2); return DB_CORRUPTION; }
if (mach_read_from_2(buf + 4) == (source_offset & 511)) return DB_SUCCESS;
if (buf[20 + 32 * 9] == 2) sql_print_error("InnoDB: Cannot decrypt log for upgrading." " The encrypted log was created before MariaDB 10.2.2."); else sql_print_error("%s%s. You must start up and shut down" " MariaDB 10.1 or MySQL 5.6 or earlier" " on the data directory.", uag, pre_10_2);
return DB_ERROR;}
/** Determine if a redo log from MariaDB 10.2.2, 10.3, 10.4, or 10.5 is clean.
@param lsn_offset checkpoint LSN offset@return error code@retval DB_SUCCESS if the redo log is clean@retval DB_CORRUPTION if the redo log is corrupted@retval DB_ERROR if the redo log is not empty */static dberr_t recv_log_recover_10_5(lsn_t lsn_offset){ byte *buf= const_cast<byte*>(field_ref_zero);
if (lsn_offset < (log_sys.is_pmem() ? log_sys.file_size : 4096)) memcpy_aligned<512>(buf, &log_sys.buf[lsn_offset & ~511], 512); else { if (dberr_t err= recv_sys.read(lsn_offset & ~lsn_t{4095}, {buf, 4096})) return err; buf+= lsn_offset & 0xe00; }
if (!recv_check_log_block(buf)) { sql_print_error("InnoDB: Invalid log header checksum"); return DB_CORRUPTION; }
if (log_sys.is_encrypted() && !log_decrypt(buf, log_sys.next_checkpoint_lsn & ~511, 512)) return DB_ERROR;
/* On a clean shutdown, the redo log will be logically empty
after the checkpoint lsn. */
if (mach_read_from_2(my_assume_aligned<2>(buf + 4)) != (lsn_offset & 511)) return DB_ERROR;
return DB_SUCCESS;}
dberr_t recv_sys_t::find_checkpoint(){ bool wrong_size= false; byte *buf;
ut_ad(pages.empty()); pages_it= pages.end();
if (files.empty()) { file_checkpoint= 0; std::string path{get_log_file_path()}; bool success; os_file_t file{os_file_create_func(path.c_str(), OS_FILE_OPEN, OS_FILE_NORMAL, OS_LOG_FILE, srv_read_only_mode, &success)}; if (file == OS_FILE_CLOSED) return DB_ERROR; const os_offset_t size{os_file_get_size(file)}; if (!size) { if (srv_operation != SRV_OPERATION_NORMAL) goto too_small; } else if (size < log_t::START_OFFSET + SIZE_OF_FILE_CHECKPOINT) { too_small: sql_print_error("InnoDB: File %.*s is too small", int(path.size()), path.data()); err_exit: os_file_close(file); return DB_ERROR; } else if (!log_sys.attach(file, size)) goto err_exit; else file= OS_FILE_CLOSED;
recv_sys.files.emplace_back(file); for (int i= 1; i < 101; i++) { path= get_log_file_path(LOG_FILE_NAME_PREFIX).append(std::to_string(i)); file= os_file_create_func(path.c_str(), OS_FILE_OPEN_SILENT, OS_FILE_NORMAL, OS_LOG_FILE, true, &success); if (file == OS_FILE_CLOSED) break; const os_offset_t sz{os_file_get_size(file)}; if (size != sz) { sql_print_error("InnoDB: Log file %.*s is of different size " UINT64PF " bytes than other log files " UINT64PF " bytes!", int(path.size()), path.data(), sz, size); wrong_size= true; } recv_sys.files.emplace_back(file); }
if (!size) { if (wrong_size) return DB_CORRUPTION; lsn= log_sys.next_checkpoint_lsn; log_sys.format= log_t::FORMAT_3_23; goto upgrade; } } else ut_ad(srv_operation == SRV_OPERATION_BACKUP); log_sys.next_checkpoint_lsn= 0; lsn= 0; buf= my_assume_aligned<4096>(log_sys.buf); if (!log_sys.is_pmem()) if (dberr_t err= log_sys.log.read(0, {buf, 4096})) return err; /* Check the header page checksum. There was no
checksum in the first redo log format (version 0). */ log_sys.format= mach_read_from_4(buf + LOG_HEADER_FORMAT); if (log_sys.format == log_t::FORMAT_3_23) { if (wrong_size) return DB_CORRUPTION; if (dberr_t err= recv_log_recover_pre_10_2()) return err; upgrade: memset_aligned<4096>(const_cast<byte*>(field_ref_zero), 0, 4096); /* Mark the redo log for upgrading. */ log_sys.last_checkpoint_lsn= log_sys.next_checkpoint_lsn; log_sys.set_recovered_lsn(log_sys.next_checkpoint_lsn); lsn= file_checkpoint= log_sys.next_checkpoint_lsn; log_sys.next_checkpoint_no= 0; return DB_SUCCESS; }
if (!recv_check_log_block(buf)) { sql_print_error("InnoDB: Invalid log header checksum"); return DB_CORRUPTION; }
const lsn_t first_lsn{mach_read_from_8(buf + LOG_HEADER_START_LSN)}; log_sys.set_first_lsn(first_lsn); char creator[LOG_HEADER_CREATOR_END - LOG_HEADER_CREATOR + 1]; memcpy(creator, buf + LOG_HEADER_CREATOR, sizeof creator); /* Ensure that the string is NUL-terminated. */ creator[LOG_HEADER_CREATOR_END - LOG_HEADER_CREATOR]= 0;
lsn_t lsn_offset= 0;
switch (log_sys.format) { default: sql_print_error("InnoDB: Unsupported redo log format." " The redo log was created with %s.", creator); return DB_ERROR; case log_t::FORMAT_10_8: if (files.size() != 1) { sql_print_error("InnoDB: Expecting only ib_logfile0"); return DB_CORRUPTION; }
if (*reinterpret_cast<const uint32_t*>(buf + LOG_HEADER_FORMAT + 4) || first_lsn < log_t::FIRST_LSN) { sql_print_error("InnoDB: Invalid ib_logfile0 header block;" " the log was created with %s.", creator); return DB_CORRUPTION; }
if (!mach_read_from_4(buf + LOG_HEADER_CREATOR_END)); else if (!log_crypt_read_header(buf + LOG_HEADER_CREATOR_END)) { sql_print_error("InnoDB: Reading log encryption info failed;" " the log was created with %s.", creator); return DB_ERROR; } else log_sys.format= log_t::FORMAT_ENC_10_8;
for (size_t field= log_t::CHECKPOINT_1; field <= log_t::CHECKPOINT_2; field+= log_t::CHECKPOINT_2 - log_t::CHECKPOINT_1) { if (log_sys.is_pmem()) buf= log_sys.buf + field; else if (dberr_t err= log_sys.log.read(field, {buf, log_sys.get_block_size()})) return err; const lsn_t checkpoint_lsn{mach_read_from_8(buf)}; const lsn_t end_lsn{mach_read_from_8(buf + 8)}; if (checkpoint_lsn < first_lsn || end_lsn < checkpoint_lsn || memcmp(buf + 16, field_ref_zero, 60 - 16) || my_crc32c(0, buf, 60) != mach_read_from_4(buf + 60)) { DBUG_PRINT("ib_log", ("invalid checkpoint at %zu", field)); continue; }
if (checkpoint_lsn >= log_sys.next_checkpoint_lsn) { log_sys.next_checkpoint_lsn= checkpoint_lsn; log_sys.next_checkpoint_no= field == log_t::CHECKPOINT_1; lsn= end_lsn; } } if (!log_sys.next_checkpoint_lsn) goto got_no_checkpoint; if (!memcmp(creator, "Backup ", 7)) srv_start_after_restore= true; return DB_SUCCESS; case log_t::FORMAT_10_5: case log_t::FORMAT_10_5 | log_t::FORMAT_ENCRYPTED: if (files.size() != 1) { sql_print_error("InnoDB: Expecting only ib_logfile0"); return DB_CORRUPTION; } /* fall through */ case log_t::FORMAT_10_2: case log_t::FORMAT_10_2 | log_t::FORMAT_ENCRYPTED: case log_t::FORMAT_10_3: case log_t::FORMAT_10_3 | log_t::FORMAT_ENCRYPTED: case log_t::FORMAT_10_4: case log_t::FORMAT_10_4 | log_t::FORMAT_ENCRYPTED: uint64_t max_no= 0; const lsn_t log_size{(log_sys.file_size - 2048) * files.size()}; for (size_t field= 512; field < 2048; field += 1024) { const byte *b = buf + field;
if (!recv_check_log_block(b)) { DBUG_PRINT("ib_log", ("invalid checkpoint checksum at %zu", field)); continue; }
if (log_sys.is_encrypted() && !log_crypt_read_checkpoint_buf(b)) { sql_print_error("InnoDB: Reading checkpoint encryption info failed."); continue; }
const uint64_t checkpoint_no= mach_read_from_8(b); const lsn_t checkpoint_lsn= mach_read_from_8(b + 8); DBUG_PRINT("ib_log", ("checkpoint " UINT64PF " at " LSN_PF " found", checkpoint_no, checkpoint_lsn)); const lsn_t o{mach_read_from_8(b + 16)}; if (checkpoint_no >= max_no && o >= 0x80c && (o & ~511) + 512 < log_size) { max_no= checkpoint_no; log_sys.next_checkpoint_lsn= checkpoint_lsn; log_sys.next_checkpoint_no= field == 512; lsn_offset= mach_read_from_8(b + 16); } } }
if (!log_sys.next_checkpoint_lsn) { got_no_checkpoint: sql_print_error("InnoDB: No valid checkpoint was found;" " the log was created with %s.", creator); return DB_ERROR; }
if (wrong_size) return DB_CORRUPTION;
if (dberr_t err= recv_log_recover_10_5(lsn_offset)) { const char *msg1, *msg2, *msg3; msg1= srv_operation == SRV_OPERATION_NORMAL ? "InnoDB: Upgrade after a crash is not supported." : "mariadb-backup --prepare is not possible.";
if (err == DB_ERROR) { msg2= srv_operation == SRV_OPERATION_NORMAL ? ". You must start up and shut down MariaDB " : ". You must use mariadb-backup "; msg3= (log_sys.format & ~log_t::FORMAT_ENCRYPTED) == log_t::FORMAT_10_5 ? "10.7 or earlier." : "10.4 or earlier."; } else msg2= ", and it appears corrupted.", msg3= "";
sql_print_error("%s The redo log was created with %s%s%s", msg1, creator, msg2, msg3); return err; }
goto upgrade;}
/** Trim old log records for a page.
@param start_lsn oldest log sequence number to preserve@return whether all the log for the page was trimmed */inline bool page_recv_t::trim(lsn_t start_lsn){ while (log.head) { if (log.head->lsn > start_lsn) return false; last_offset= 1; /* the next record must not be same_page */ log_rec_t *next= log.head->next; recv_sys.free(log.head); log.head= next; } log.tail= nullptr; return true;}
void page_recv_t::recs_t::rewind(lsn_t start_lsn){ mysql_mutex_assert_owner(&recv_sys.mutex); log_phys_t *trim= static_cast<log_phys_t*>(head); ut_ad(trim); while (log_phys_t *next= static_cast<log_phys_t*>(trim->next)) { ut_ad(trim->start_lsn < start_lsn); if (next->start_lsn == start_lsn) break; trim= next; } tail= trim; log_rec_t *l= tail->next; tail->next= nullptr; while (l) { log_rec_t *next= l->next; recv_sys.free(l); l= next; }}
void page_recv_t::recs_t::clear(){ mysql_mutex_assert_owner(&recv_sys.mutex); for (const log_rec_t *l= head; l; ) { const log_rec_t *next= l->next; recv_sys.free(l); l= next; } head= tail= nullptr;}
/** Ignore any earlier redo log records for this page. */inline void page_recv_t::will_not_read(){ ut_ad(!being_processed); skip_read= true; log.clear();}
void recv_sys_t::erase(map::iterator p){ ut_ad(p->second.being_processed <= 0); p->second.log.clear(); pages.erase(p);}
/** Free log for processed pages. */void recv_sys_t::garbage_collect(){ mysql_mutex_assert_owner(&mutex);
if (pages_it != pages.end() && pages_it->second.being_processed < 0) pages_it= pages.end();
for (map::iterator p= pages.begin(); p != pages.end(); ) { if (p->second.being_processed < 0) { map::iterator r= p++; erase(r); } else p++; }}
/** Allocate a block from the buffer pool for recv_sys.pages */ATTRIBUTE_COLD buf_block_t *recv_sys_t::add_block(){ for (bool freed= false;;) { const auto rs= UT_LIST_GET_LEN(blocks) * 2; mysql_mutex_lock(&buf_pool.mutex); const auto bs= UT_LIST_GET_LEN(buf_pool.free) + UT_LIST_GET_LEN(buf_pool.LRU); if (UNIV_LIKELY(bs > BUF_LRU_MIN_LEN || rs < bs)) { buf_block_t *block= buf_LRU_get_free_block(true); mysql_mutex_unlock(&buf_pool.mutex); return block; } /* out of memory: redo log occupies more than 1/3 of buf_pool
and there are fewer than BUF_LRU_MIN_LEN pages left */ mysql_mutex_unlock(&buf_pool.mutex); if (freed) return nullptr; freed= true; garbage_collect(); }}
/** Wait for buffer pool to become available. */ATTRIBUTE_COLD void recv_sys_t::wait_for_pool(size_t pages){ mysql_mutex_unlock(&mutex); os_aio_wait_until_no_pending_reads(false); mysql_mutex_lock(&mutex); garbage_collect(); mysql_mutex_lock(&buf_pool.mutex); bool need_more= UT_LIST_GET_LEN(buf_pool.free) < pages; mysql_mutex_unlock(&buf_pool.mutex); if (need_more) buf_flush_sync_batch(lsn);}
/** Register a redo log snippet for a page.
@param it page iterator@param start_lsn start LSN of the mini-transaction@param lsn @see mtr_t::commit_lsn()@param l redo log snippet@param len length of l, in bytes@return whether we ran out of memory */ATTRIBUTE_NOINLINEbool recv_sys_t::add(map::iterator it, lsn_t start_lsn, lsn_t lsn, const byte *l, size_t len){ mysql_mutex_assert_owner(&mutex); page_recv_t &recs= it->second; buf_block_t *block;
switch (*l & 0x70) { case FREE_PAGE: case INIT_PAGE: recs.will_not_read(); mlog_init.add(it->first, start_lsn); /* FIXME: remove this! */ /* fall through */ default: log_phys_t *tail= static_cast<log_phys_t*>(recs.log.last()); if (!tail) break; if (tail->start_lsn != start_lsn) break; ut_ad(tail->lsn == lsn); block= UT_LIST_GET_LAST(blocks); ut_ad(block); const size_t used= static_cast<uint16_t>(block->page.access_time - 1) + 1; ut_ad(used >= ALIGNMENT); const byte *end= const_cast<const log_phys_t*>(tail)->end(); if (!((reinterpret_cast<size_t>(end + len) ^ reinterpret_cast<size_t>(end)) & ~(ALIGNMENT - 1))) { /* Use already allocated 'padding' bytes */append: MEM_MAKE_ADDRESSABLE(end + 1, len); /* Append to the preceding record for the page */ tail->append(l, len); return false; } if (end <= &block->page.frame[used - ALIGNMENT] || &block->page.frame[used] >= end) break; /* Not the last allocated record in the page */ const size_t new_used= static_cast<size_t> (end - block->page.frame + len + 1); ut_ad(new_used > used); if (new_used > srv_page_size) break; block->page.access_time= (block->page.access_time & ~0U << 16) | ut_calc_align<uint16_t>(static_cast<uint16_t>(new_used), ALIGNMENT); goto append; }
const size_t size{log_phys_t::alloc_size(len)}; ut_ad(size <= srv_page_size); void *buf; block= UT_LIST_GET_FIRST(blocks); if (UNIV_UNLIKELY(!block)) { create_block: block= add_block(); if (UNIV_UNLIKELY(!block)) return true; block->page.access_time= 1U << 16 | ut_calc_align<uint16_t>(static_cast<uint16_t>(size), ALIGNMENT); static_assert(ut_is_2pow(ALIGNMENT), "ALIGNMENT must be a power of 2"); UT_LIST_ADD_FIRST(blocks, block); MEM_MAKE_ADDRESSABLE(block->page.frame, size); MEM_NOACCESS(block->page.frame + size, srv_page_size - size); buf= block->page.frame; } else { size_t free_offset= static_cast<uint16_t>(block->page.access_time); ut_ad(!ut_2pow_remainder(free_offset, ALIGNMENT)); if (UNIV_UNLIKELY(!free_offset)) { ut_ad(srv_page_size == 65536); goto create_block; } ut_ad(free_offset <= srv_page_size); free_offset+= size;
if (free_offset > srv_page_size) goto create_block;
block->page.access_time= ((block->page.access_time >> 16) + 1) << 16 | ut_calc_align<uint16_t>(static_cast<uint16_t>(free_offset), ALIGNMENT); MEM_MAKE_ADDRESSABLE(block->page.frame + free_offset - size, size); buf= block->page.frame + free_offset - size; }
recs.log.append(new (my_assume_aligned<ALIGNMENT>(buf)) log_phys_t{start_lsn, lsn, l, len}); return false;}
/** Store/remove the freed pages in fil_name_t of recv_spaces.
@param[in] page_id freed or init page_id@param[in] freed TRUE if page is freed */static void store_freed_or_init_rec(page_id_t page_id, bool freed){ uint32_t space_id= page_id.space(); uint32_t page_no= page_id.page_no(); if (is_predefined_tablespace(space_id)) { if (!srv_immediate_scrub_data_uncompressed) return; fil_space_t *space; if (space_id == TRX_SYS_SPACE) space= fil_system.sys_space; else space= fil_space_get(space_id);
space->free_page(page_no, freed); return; }
recv_spaces_t::iterator i= recv_spaces.lower_bound(space_id); if (i != recv_spaces.end() && i->first == space_id) { if (freed) i->second.add_freed_page(page_no); else i->second.remove_freed_page(page_no); }}
/** Wrapper for log_sys.buf[] between recv_sys.offset and recv_sys.len */struct recv_buf{ bool is_pmem() const noexcept { return log_sys.is_pmem(); }
const byte *ptr;
constexpr recv_buf(const byte *ptr) : ptr(ptr) {} constexpr bool operator==(const recv_buf other) const { return ptr == other.ptr; }
static const byte *end() { return &log_sys.buf[recv_sys.len]; }
const char *get_filename(byte*, size_t) const noexcept { return reinterpret_cast<const char*>(ptr); }
bool is_eof(size_t len= 0) const noexcept { return ptr + len >= end(); }
byte operator*() const noexcept { ut_ad(ptr >= log_sys.buf); ut_ad(ptr < end()); return *ptr; } byte operator[](size_t size) const noexcept { return *(*this + size); } recv_buf operator+(size_t len) const noexcept { recv_buf r{*this}; return r+= len; } recv_buf &operator++() noexcept { return *this+= 1; } recv_buf &operator+=(size_t len) noexcept { ptr+= len; return *this; }
size_t operator-(const recv_buf start) const noexcept { ut_ad(ptr >= start.ptr); return size_t(ptr - start.ptr); }
uint32_t crc32c(const recv_buf start) const noexcept { return my_crc32c(0, start.ptr, ptr - start.ptr); }
void *memcpy(void *buf, size_t size) const noexcept { ut_ad(size); ut_ad(!is_eof(size - 1)); return ::memcpy(buf, ptr, size); }
bool is_zero(size_t size) const noexcept { ut_ad(!is_eof(size)); return !memcmp(ptr, field_ref_zero, size); }
uint64_t read8() const noexcept { ut_ad(!is_eof(7)); return mach_read_from_8(ptr); } uint32_t read4() const noexcept { ut_ad(!is_eof(3)); return mach_read_from_4(ptr); }
/** Update the pointer if the new pointer is within the buffer. */ bool set_if_contains(const byte *pos) noexcept { if (pos > end() || pos < ptr) return false; ptr= pos; return true; }
/** Get the contiguous, unencrypted buffer.
@param buf return value of copy_if_needed() @param start start of the mini-transaction @param decrypt_buf possibly, a copy of the mini-transaction @return contiguous, non-encrypted buffer */ const byte *get_buf(const byte *buf, const recv_buf start, const byte *decrypt_buf) const noexcept { return ptr == buf ? start.ptr : decrypt_buf; }
/** Copy and decrypt a log record if needed.
@param iv initialization vector @param tmp buffer for the decrypted log record @param start un-encrypted start of the log record @param len length of the possibly encrypted part, in bytes */ const byte *copy_if_needed(const byte *iv, byte *tmp, recv_buf start, size_t len) { ut_ad(*this - start + len <= srv_page_size); if (!len || !log_sys.is_encrypted()) return ptr; const size_t s(*this - start); start.memcpy(tmp, s); return log_decrypt_buf(iv, tmp + s, ptr, static_cast<uint>(len)); }};
#ifdef HAVE_PMEM
/** Ring buffer wrapper for log_sys.buf[]; recv_sys.len == log_sys.file_size */struct recv_ring : public recv_buf{ static constexpr bool is_pmem() { return true; }
constexpr recv_ring(const byte *ptr) : recv_buf(ptr) {}
constexpr static bool is_eof() { return false; } constexpr static bool is_eof(size_t) { return false; }
byte operator*() const noexcept { ut_ad(ptr >= &log_sys.buf[log_sys.START_OFFSET]); ut_ad(ptr < end()); return *ptr; } byte operator[](size_t size) const noexcept { return *(*this + size); } recv_ring operator+(size_t len) const noexcept { recv_ring r{*this}; return r+= len; } recv_ring &operator++() noexcept { return *this+= 1; } recv_ring &operator+=(size_t len) noexcept { ut_ad(ptr < end()); ut_ad(ptr >= &log_sys.buf[log_sys.START_OFFSET]); ut_ad(len < recv_sys.MTR_SIZE_MAX * 2); ptr+= len; if (ptr >= end()) { ptr-= recv_sys.len - log_sys.START_OFFSET; ut_ad(ptr >= &log_sys.buf[log_sys.START_OFFSET]); ut_ad(ptr < end()); } return *this; } size_t operator-(const recv_ring start) const noexcept { auto s= ptr - start.ptr; return s >= 0 ? size_t(s) : size_t(s + recv_sys.len - log_sys.START_OFFSET); }
uint32_t crc32c(const recv_ring start) const noexcept { return ptr >= start.ptr ? my_crc32c(0, start.ptr, ptr - start.ptr) : my_crc32c(my_crc32c(0, start.ptr, end() - start.ptr), &log_sys.buf[log_sys.START_OFFSET], ptr - &log_sys.buf[log_sys.START_OFFSET]); }
void *memcpy(void *buf, size_t size) const noexcept { ut_ad(size); ut_ad(size < srv_page_size);
auto s= ptr + size - end(); if (s <= 0) return ::memcpy(buf, ptr, size); ::memcpy(buf, ptr, size - s); ::memcpy(static_cast<byte*>(buf) + size - s, &log_sys.buf[log_sys.START_OFFSET], s); return buf; }
bool is_zero(size_t size) const noexcept { auto s= ptr + size - end(); if (s <= 0) return !memcmp(ptr, field_ref_zero, size); return !memcmp(ptr, field_ref_zero, size - s) && !memcmp(&log_sys.buf[log_sys.START_OFFSET], field_ref_zero, s); }
uint64_t read8() const noexcept { if (UNIV_LIKELY(ptr + 8 <= end())) return mach_read_from_8(ptr); byte b[8]; return mach_read_from_8(static_cast<const byte*>(memcpy(b, 8))); } uint32_t read4() const noexcept { if (UNIV_LIKELY(ptr + 4 <= end())) return mach_read_from_4(ptr); byte b[4]; return mach_read_from_4(static_cast<const byte*>(memcpy(b, 4))); }
/** Get the contiguous, unencrypted buffer.
@param buf return value of copy_if_needed() @param start start of the mini-transaction @param decrypt_buf possibly, a copy of the mini-transaction @return contiguous, non-encrypted buffer */ const byte *get_buf(const byte *buf, const recv_ring start, const byte *decrypt_buf) const noexcept { return ptr == buf && start.ptr < ptr ? start.ptr : decrypt_buf; }
const char *get_filename(byte* buf, size_t rlen) const noexcept { return UNIV_LIKELY(ptr + rlen <= end()) ? reinterpret_cast<const char*>(ptr) : static_cast<const char*>(memcpy(buf, rlen)); }
/** Copy and decrypt a log record if needed.
@param iv initialization vector @param tmp buffer for the decrypted log record @param start un-encrypted start of the log record @param len length of the possibly encrypted part, in bytes */ const byte *copy_if_needed(const byte *iv, byte *tmp, recv_ring start, size_t len) { const size_t s(*this - start); ut_ad(s + len <= srv_page_size); if (!len || !log_sys.is_encrypted()) { if (start.ptr + s == ptr && ptr + len <= end()) return ptr; start.memcpy(tmp, s + len); return tmp + s; }
start.memcpy(tmp, s);
const byte *b= ptr; if (ptr + len > end()) b= static_cast<byte*>(memcpy(alloca(len), len)); return log_decrypt_buf(iv, tmp + s, b, static_cast<uint>(len)); }};#endif
template<typename source>void recv_sys_t::rewind(source &l, source &begin) noexcept{ ut_ad(srv_operation != SRV_OPERATION_BACKUP); mysql_mutex_assert_owner(&mutex);
const source end= l; uint32_t rlen; for (l= begin; !(l == end); l+= rlen) { const source recs{l}; ++l; const byte b= *recs;
ut_ad(b > 1); ut_ad(UNIV_LIKELY((b & 0x70) != RESERVED) || srv_force_recovery);
rlen= b & 0xf; if (!rlen) { const uint32_t lenlen= mlog_decode_varint_length(*l); const uint32_t addlen= mlog_decode_varint(l); ut_ad(addlen != MLOG_DECODE_ERROR); rlen= addlen + 15 - lenlen; l+= lenlen; } ut_ad(!l.is_eof(rlen)); if (b & 0x80) continue;
uint32_t idlen= mlog_decode_varint_length(*l); if (UNIV_UNLIKELY(idlen > 5 || idlen >= rlen)) continue; const uint32_t space_id= mlog_decode_varint(l); if (UNIV_UNLIKELY(space_id == MLOG_DECODE_ERROR)) continue; l+= idlen; rlen-= idlen; idlen= mlog_decode_varint_length(*l); if (UNIV_UNLIKELY(idlen > 5 || idlen > rlen)) continue; const uint32_t page_no= mlog_decode_varint(l); if (UNIV_UNLIKELY(page_no == MLOG_DECODE_ERROR)) continue; const page_id_t id{space_id, page_no}; if (pages_it == pages.end() || pages_it->first != id) { pages_it= pages.find(id); if (pages_it == pages.end()) continue; }
ut_ad(!pages_it->second.being_processed); const log_phys_t *head= static_cast<log_phys_t*>(*pages_it->second.log.begin()); if (!head || head->start_lsn == lsn) { erase(pages_it); pages_it= pages.end(); } else pages_it->second.log.rewind(lsn); }
l= begin; pages_it= pages.end();}
/** Parse and register one log_t::FORMAT_10_8 mini-transaction.
@tparam store whether to store the records@param l log data source@param if_exists if store: whether to check if the tablespace exists */template<typename source,bool store>inlinerecv_sys_t::parse_mtr_result recv_sys_t::parse(source &l, bool if_exists) noexcept{restart: ut_ad(log_sys.latch_have_wr() || srv_operation == SRV_OPERATION_BACKUP || srv_operation == SRV_OPERATION_BACKUP_NO_DEFER); mysql_mutex_assert_owner(&mutex); ut_ad(log_sys.next_checkpoint_lsn); ut_ad(log_sys.is_latest()); ut_ad(store || !if_exists); ut_ad(store || srv_operation != SRV_OPERATION_BACKUP || srv_operation != SRV_OPERATION_BACKUP_NO_DEFER);
alignas(8) byte iv[MY_AES_BLOCK_SIZE]; byte *decrypt_buf= static_cast<byte*>(alloca(srv_page_size));
const lsn_t start_lsn{lsn};
/* Check that the entire mini-transaction is included within the buffer */ if (l.is_eof(0)) return PREMATURE_EOF;
if (*l <= 1) return GOT_EOF; /* We should never write an empty mini-transaction. */
source begin{l}; uint32_t rlen; for (uint32_t total_len= 0; !l.is_eof(); l+= rlen, total_len+= rlen) { if (total_len >= MTR_SIZE_MAX) return GOT_EOF; if (*l <= 1) goto eom_found; rlen= *l & 0xf; ++l; if (!rlen) { if (l.is_eof(0)) break; rlen= mlog_decode_varint_length(*l); if (l.is_eof(rlen)) break; const uint32_t addlen= mlog_decode_varint(l); if (UNIV_UNLIKELY(addlen >= MTR_SIZE_MAX)) return GOT_EOF; rlen= addlen + 15; } }
/* Not the entire mini-transaction was present. */ return PREMATURE_EOF;
eom_found: if (*l != log_sys.get_sequence_bit((l - begin) + lsn)) return GOT_EOF;
if (l.is_eof(4)) return PREMATURE_EOF;
uint32_t crc{l.crc32c(begin)};
if (log_sys.is_encrypted()) { if (l.is_eof(8 + 4)) return PREMATURE_EOF; (l + 1).memcpy(iv, 8); l+= 8; crc= my_crc32c(crc, iv, 8); }
DBUG_EXECUTE_IF("log_intermittent_checksum_mismatch", { static int c; if (!c++) { sql_print_information("Invalid log block checksum"); return GOT_EOF; } });
if (crc != (l + 1).read4()) return GOT_EOF;
l+= 5; ut_d(const source el{l}); lsn+= l - begin; offset= l.ptr - log_sys.buf; if (!l.is_pmem()); else if (offset == log_sys.file_size) offset= log_sys.START_OFFSET; else ut_ad(offset < log_sys.file_size);
ut_d(std::set<page_id_t> freed);#if 0 && defined UNIV_DEBUG /* MDEV-21727 FIXME: enable this */
/* Pages that have been modified in this mini-transaction.
If a mini-transaction writes INIT_PAGE for a page, it should not have written any log records for the page. Unfortunately, this does not hold for ROW_FORMAT=COMPRESSED pages, because page_zip_compress() can be invoked in a pessimistic operation, even after log has been written for other pages. */ ut_d(std::set<page_id_t> modified);#endif
uint32_t space_id= 0, page_no= 0, last_offset= 0; bool got_page_op= false;
for (l= begin;; l+= rlen) { const source recs{l}; ++l; const byte b= *recs;
if (b <= 1) break;
if (UNIV_LIKELY((b & 0x70) != RESERVED)); else if (srv_force_recovery) sql_print_warning("InnoDB: Ignoring unknown log record at LSN " LSN_PF, lsn); else { sql_print_error("InnoDB: Unknown log record at LSN " LSN_PF, lsn); corrupted: found_corrupt_log= true; return GOT_EOF; }
rlen= b & 0xf; if (!rlen) { const uint32_t lenlen= mlog_decode_varint_length(*l); const uint32_t addlen= mlog_decode_varint(l); ut_ad(addlen != MLOG_DECODE_ERROR); rlen= addlen + 15 - lenlen; l+= lenlen; } ut_ad(!l.is_eof(rlen));
uint32_t idlen; if ((b & 0x80) && got_page_op) { /* This record is for the same page as the previous one. */ if (UNIV_UNLIKELY((b & 0x70) <= INIT_PAGE)) { record_corrupted: /* FREE_PAGE,INIT_PAGE cannot be with same_page flag */ if (!srv_force_recovery) { malformed: sql_print_error("InnoDB: Malformed log record at LSN " LSN_PF "; set innodb_force_recovery=1 to ignore.", lsn); goto corrupted; } sql_print_warning("InnoDB: Ignoring malformed log record at LSN " LSN_PF, lsn); last_offset= 1; /* the next record must not be same_page */ continue; } if (srv_operation == SRV_OPERATION_BACKUP) continue; DBUG_PRINT("ib_log", ("scan " LSN_PF ": rec %x len %zu page %u:%u", lsn, b, l - recs + rlen, space_id, page_no)); goto same_page; } last_offset= 0; idlen= mlog_decode_varint_length(*l); if (UNIV_UNLIKELY(idlen > 5 || idlen >= rlen)) { if (!*l && b == FILE_CHECKPOINT + 1) continue; page_id_corrupted: if (!srv_force_recovery) { sql_print_error("InnoDB: Corrupted page identifier at " LSN_PF "; set innodb_force_recovery=1 to ignore the record.", lsn); goto corrupted; } sql_print_warning("InnoDB: Ignoring corrupted page identifier at LSN " LSN_PF, lsn); continue; } space_id= mlog_decode_varint(l); if (UNIV_UNLIKELY(space_id == MLOG_DECODE_ERROR)) goto page_id_corrupted; l+= idlen; rlen-= idlen; idlen= mlog_decode_varint_length(*l); if (UNIV_UNLIKELY(idlen > 5 || idlen > rlen)) goto page_id_corrupted; page_no= mlog_decode_varint(l); if (UNIV_UNLIKELY(page_no == MLOG_DECODE_ERROR)) goto page_id_corrupted; l+= idlen; rlen-= idlen; mach_write_to_4(iv + 8, space_id); mach_write_to_4(iv + 12, page_no); got_page_op= !(b & 0x80); if (!got_page_op); else if (!store && srv_operation == SRV_OPERATION_BACKUP) { if (page_no == 0 && first_page_init && (b & 0x10)) first_page_init(space_id); continue; } else if (store && file_checkpoint && !is_predefined_tablespace(space_id)) { recv_spaces_t::iterator i= recv_spaces.lower_bound(space_id); if (i != recv_spaces.end() && i->first == space_id); else if (lsn < file_checkpoint) /* We have not seen all records between the checkpoint and
FILE_CHECKPOINT. There should be a FILE_DELETE for this tablespace later. */ recv_spaces.emplace_hint(i, space_id, file_name_t("", false)); else { const page_id_t id(space_id, page_no); if (!srv_force_recovery) { ib::error() << "Missing FILE_DELETE or FILE_MODIFY for " << id << " at " << lsn << "; set innodb_force_recovery=1 to ignore the record."; goto corrupted; } ib::warn() << "Ignoring record for " << id << " at " << lsn; continue; } } DBUG_PRINT("ib_log", ("scan " LSN_PF ": rec %x len %zu page %u:%u", lsn, b, l - recs + rlen, space_id, page_no)); if (got_page_op) { same_page: const byte *cl= l.ptr; if (!rlen); else if (UNIV_UNLIKELY(l - recs + rlen > srv_page_size)) goto record_corrupted; const page_id_t id{space_id, page_no}; ut_d(if ((b & 0x70) == INIT_PAGE || (b & 0x70) == OPTION) freed.erase(id)); ut_ad(freed.find(id) == freed.end()); switch (b & 0x70) { case FREE_PAGE: ut_ad(freed.emplace(id).second); last_offset= 1; /* the next record must not be same_page */ goto free_or_init_page; case INIT_PAGE: last_offset= FIL_PAGE_TYPE; free_or_init_page: store_freed_or_init_rec(id, (b & 0x70) == FREE_PAGE); if (UNIV_UNLIKELY(rlen != 0)) goto record_corrupted; copy_if_needed: cl= l.copy_if_needed(iv, decrypt_buf, recs, rlen); break; case EXTENDED: if (UNIV_UNLIKELY(!rlen)) goto record_corrupted; cl= l.copy_if_needed(iv, decrypt_buf, recs, rlen); if (rlen == 1 && *cl == TRIM_PAGES) {#if 0 /* For now, we can only truncate an undo log tablespace */
if (UNIV_UNLIKELY(!space_id || !page_no)) goto record_corrupted;#else
if (!srv_is_undo_tablespace(space_id) || page_no != SRV_UNDO_TABLESPACE_SIZE_IN_PAGES) goto record_corrupted; static_assert(UT_ARR_SIZE(truncated_undo_spaces) == TRX_SYS_MAX_UNDO_SPACES, "compatibility"); /* The entire undo tablespace will be reinitialized by
innodb_undo_log_truncate=ON. Discard old log for all pages. */ trim({space_id, 0}, start_lsn); truncated_undo_spaces[space_id - srv_undo_space_id_start]= { start_lsn, page_no }; if (!store && undo_space_trunc) undo_space_trunc(space_id);#endif
last_offset= 1; /* the next record must not be same_page */ continue; } last_offset= FIL_PAGE_TYPE; break; case OPTION: if (rlen == 5 && *l == OPT_PAGE_CHECKSUM) goto copy_if_needed; /* fall through */ case RESERVED: continue; case WRITE: case MEMMOVE: case MEMSET: if (UNIV_UNLIKELY(rlen == 0 || last_offset == 1)) goto record_corrupted; ut_d(const source payload{l}); cl= l.copy_if_needed(iv, decrypt_buf, recs, rlen); const uint32_t olen= mlog_decode_varint_length(*cl); if (UNIV_UNLIKELY(olen >= rlen) || UNIV_UNLIKELY(olen > 3)) goto record_corrupted; const uint32_t offset= mlog_decode_varint(cl); ut_ad(offset != MLOG_DECODE_ERROR); static_assert(FIL_PAGE_OFFSET == 4, "compatibility"); if (UNIV_UNLIKELY(offset >= srv_page_size)) goto record_corrupted; last_offset+= offset; if (UNIV_UNLIKELY(last_offset < 8 || last_offset >= srv_page_size)) goto record_corrupted; cl+= olen; rlen-= olen; if ((b & 0x70) == WRITE) { if (UNIV_UNLIKELY(rlen + last_offset > srv_page_size)) goto record_corrupted; if (UNIV_UNLIKELY(!page_no) && file_checkpoint) { const bool has_size= last_offset <= FSP_HEADER_OFFSET + FSP_SIZE && last_offset + rlen >= FSP_HEADER_OFFSET + FSP_SIZE + 4; const bool has_flags= last_offset <= FSP_HEADER_OFFSET + FSP_SPACE_FLAGS && last_offset + rlen >= FSP_HEADER_OFFSET + FSP_SPACE_FLAGS + 4; if (has_size || has_flags) { recv_spaces_t::iterator it= recv_spaces.find(space_id); const uint32_t size= has_size ? mach_read_from_4(FSP_HEADER_OFFSET + FSP_SIZE + cl - last_offset) : 0; const uint32_t flags= has_flags ? mach_read_from_4(FSP_HEADER_OFFSET + FSP_SPACE_FLAGS + cl - last_offset) : file_name_t::initial_flags; if (it == recv_spaces.end()) ut_ad(!file_checkpoint || space_id == TRX_SYS_SPACE || srv_is_undo_tablespace(space_id)); else if (!it->second.space) { if (has_size) it->second.size= size; if (has_flags) it->second.flags= flags; } fil_space_set_recv_size_and_flags(space_id, size, flags); } } parsed_ok: last_offset+= rlen; ut_ad(l == payload); if (!l.set_if_contains(cl)) (l= recs)+= cl - decrypt_buf; break; } uint32_t llen= mlog_decode_varint_length(*cl); if (UNIV_UNLIKELY(llen > rlen || llen > 3)) goto record_corrupted; const uint32_t len= mlog_decode_varint(cl); ut_ad(len != MLOG_DECODE_ERROR); if (UNIV_UNLIKELY(last_offset + len > srv_page_size)) goto record_corrupted; cl+= llen; rlen-= llen; llen= len; if ((b & 0x70) == MEMSET) { if (UNIV_UNLIKELY(rlen > llen)) goto record_corrupted; goto parsed_ok; } const uint32_t slen= mlog_decode_varint_length(*cl); if (UNIV_UNLIKELY(slen != rlen || slen > 3)) goto record_corrupted; uint32_t s= mlog_decode_varint(cl); ut_ad(slen != MLOG_DECODE_ERROR); if (s & 1) s= last_offset - (s >> 1) - 1; else s= last_offset + (s >> 1) + 1; if (UNIV_UNLIKELY(s < 8 || s + llen > srv_page_size)) goto record_corrupted; goto parsed_ok; }#if 0 && defined UNIV_DEBUG
switch (b & 0x70) { case RESERVED: ut_ad(0); /* we did "continue" earlier */ break; case OPTION: case FREE_PAGE: break; default: ut_ad(modified.emplace(id).second || (b & 0x70) != INIT_PAGE); }#endif
if (store) { if (if_exists) { if (fil_space_t *space= fil_space_t::get(space_id)) { const auto size= space->get_size(); space->release(); if (!size) continue; } else if (!deferred_spaces.find(space_id)) continue; } if (!mlog_init.will_avoid_read(id, start_lsn)) { if (pages_it == pages.end() || pages_it->first != id) pages_it= pages.emplace(id, page_recv_t{}).first; if (UNIV_UNLIKELY(add(pages_it, start_lsn, lsn, l.get_buf(cl, recs, decrypt_buf), l - recs + rlen))) { lsn= start_lsn; log_sys.set_recovered_lsn(start_lsn); l+= rlen; offset= begin.ptr - log_sys.buf; rewind(l, begin); if (if_exists) { apply(false); if (is_corrupt_fs()) return GOT_EOF; goto restart; } sql_print_information("InnoDB: Multi-batch recovery needed at LSN " LSN_PF, lsn); return GOT_OOM; } } } else if ((b & 0x70) <= INIT_PAGE) { mlog_init.add(id, start_lsn); if (pages_it == pages.end() || pages_it->first != id) { pages_it= pages.find(id); if (pages_it == pages.end()) continue; } map::iterator r= pages_it++; erase(r); } } else if (rlen) { switch (b & 0xf0) { case FILE_CHECKPOINT: if (space_id || page_no || l[rlen] > 1); else if (rlen != 8) { if (rlen < UNIV_PAGE_SIZE_MAX && !l.is_zero(rlen)) continue; } else if (store) { ut_ad(file_checkpoint); continue; } else if (const lsn_t c= l.read8()) { if (UNIV_UNLIKELY(srv_print_verbose_log == 2)) fprintf(stderr, "FILE_CHECKPOINT(" LSN_PF ") %s at " LSN_PF "\n", c, c != log_sys.next_checkpoint_lsn ? "ignored" : file_checkpoint ? "reread" : "read", lsn);
DBUG_PRINT("ib_log", ("FILE_CHECKPOINT(" LSN_PF ") %s at " LSN_PF, c, c != log_sys.next_checkpoint_lsn ? "ignored" : file_checkpoint ? "reread" : "read", lsn));
if (c == log_sys.next_checkpoint_lsn) { /* There can be multiple FILE_CHECKPOINT for the same LSN. */ if (file_checkpoint) continue; file_checkpoint= lsn; return GOT_EOF; } continue; } else continue; /* fall through */ default: if (!srv_force_recovery) goto malformed; sql_print_warning("InnoDB: Ignoring malformed log record at LSN " LSN_PF, lsn); continue; case FILE_DELETE: case FILE_MODIFY: case FILE_RENAME: if (UNIV_UNLIKELY(page_no != 0)) { file_rec_error: if (!srv_force_recovery) { sql_print_error("InnoDB: Corrupted file-level record;" " set innodb_force_recovery=1 to ignore."); goto corrupted; }
sql_print_warning("InnoDB: Ignoring corrupted file-level record" " at LSN " LSN_PF, lsn); continue; } /* fall through */ case FILE_CREATE: if (UNIV_UNLIKELY(!space_id || page_no)) goto file_rec_error; /* There is no terminating NUL character. Names must end in .ibd.
For FILE_RENAME, there is a NUL between the two file names. */
const char * const fn= l.get_filename(decrypt_buf, rlen); const char *fn2= static_cast<const char*>(memchr(fn, 0, rlen));
if (UNIV_UNLIKELY((fn2 == nullptr) == ((b & 0xf0) == FILE_RENAME))) goto file_rec_error;
const char * const fnend= fn2 ? fn2 : fn + rlen; const char * const fn2end= fn2 ? fn + rlen : nullptr;
if (fn2) { fn2++; if (memchr(fn2, 0, fn2end - fn2)) goto file_rec_error; if (fn2end - fn2 < 4 || memcmp(fn2end - 4, DOT_IBD, 4)) goto file_rec_error; }
if (is_predefined_tablespace(space_id)) goto file_rec_error; if (fnend - fn < 4 || memcmp(fnend - 4, DOT_IBD, 4)) goto file_rec_error;
if (UNIV_UNLIKELY(!recv_needed_recovery && srv_read_only_mode)) continue;
if (!store && (srv_operation == SRV_OPERATION_BACKUP || srv_operation == SRV_OPERATION_BACKUP_NO_DEFER)) { if ((b & 0xf0) < FILE_CHECKPOINT && log_file_op) log_file_op(space_id, b & 0xf0, reinterpret_cast<const byte*>(fn), static_cast<ulint>(fnend - fn), reinterpret_cast<const byte*>(fn2), fn2 ? static_cast<ulint>(fn2end - fn2) : 0); continue; }
fil_name_process(fn, fnend - fn, space_id, (b & 0xf0) == FILE_DELETE ? FILE_DELETE : FILE_MODIFY, start_lsn, if_exists);
if (fn2) { fil_name_process(fn2, fn2end - fn2, space_id, FILE_RENAME, start_lsn, if_exists); if (file_checkpoint) { const size_t len= fn2end - fn2; auto r= renamed_spaces.emplace(space_id, std::string{fn2, len}); if (!r.second) r.first->second= std::string{fn2, len}; } }
if (is_corrupt_fs()) return GOT_EOF; } } else if (b == FILE_CHECKPOINT + 2 && !space_id && !page_no); else goto malformed; }
l+= log_sys.is_encrypted() ? 4U + 8U : 4U; ut_ad(l == el); return OK;}
template<bool store>recv_sys_t::parse_mtr_result recv_sys_t::parse_mtr(bool if_exists) noexcept{ recv_buf s{&log_sys.buf[recv_sys.offset]}; return recv_sys.parse<recv_buf,store>(s, if_exists);}
/** for mariadb-backup; @see xtrabackup_copy_logfile() */templaterecv_sys_t::parse_mtr_result recv_sys_t::parse_mtr<false>(bool) noexcept;
#ifdef HAVE_PMEM
template<bool store>recv_sys_t::parse_mtr_result recv_sys_t::parse_pmem(bool if_exists) noexcept{ recv_sys_t::parse_mtr_result r{parse_mtr<store>(if_exists)}; if (UNIV_LIKELY(r != PREMATURE_EOF) || !log_sys.is_pmem()) return r; ut_ad(recv_sys.len == log_sys.file_size); ut_ad(recv_sys.offset >= log_sys.START_OFFSET); ut_ad(recv_sys.offset <= recv_sys.len); recv_ring s {recv_sys.offset == recv_sys.len ? &log_sys.buf[log_sys.START_OFFSET] : &log_sys.buf[recv_sys.offset]}; return recv_sys.parse<recv_ring,store>(s, if_exists);}#endif
/** Apply the hashed log records to the page, if the page lsn is less than the
lsn of a log record.@param[in,out] block buffer pool page@param[in,out] mtr mini-transaction@param[in,out] recs log records to apply@param[in,out] space tablespace, or NULL if not looked up yet@param[in,out] init page initialization operation, or NULL@return the recovered page@retval nullptr on failure */static buf_block_t *recv_recover_page(buf_block_t *block, mtr_t &mtr, page_recv_t &recs, fil_space_t *space, recv_init *init){ mysql_mutex_assert_not_owner(&recv_sys.mutex); ut_ad(recv_sys.apply_log_recs); ut_ad(recv_needed_recovery); ut_ad(!init || init->created); ut_ad(!init || init->lsn); ut_ad(recs.being_processed == 1); ut_ad(!space || space->id == block->page.id().space()); ut_ad(log_sys.is_latest());
if (UNIV_UNLIKELY(srv_print_verbose_log == 2)) { ib::info() << "Applying log to page " << block->page.id(); }
DBUG_PRINT("ib_log", ("Applying log to page %u:%u", block->page.id().space(), block->page.id().page_no()));
byte *frame = UNIV_LIKELY_NULL(block->page.zip.data) ? block->page.zip.data : block->page.frame; const lsn_t page_lsn = init ? 0 : mach_read_from_8(frame + FIL_PAGE_LSN); bool free_page = false; lsn_t start_lsn = 0, end_lsn = 0; ut_d(lsn_t recv_start_lsn = 0); const lsn_t init_lsn = init ? init->lsn : 0;
bool skipped_after_init = false;
for (const log_rec_t* recv : recs.log) { const log_phys_t* l = static_cast<const log_phys_t*>(recv); ut_ad(l->lsn); ut_ad(end_lsn <= l->lsn); ut_ad(l->lsn <= recv_sys.lsn);
ut_ad(l->start_lsn); ut_ad(recv_start_lsn <= l->start_lsn); ut_d(recv_start_lsn = l->start_lsn);
if (l->start_lsn < page_lsn) { /* This record has already been applied. */ DBUG_PRINT("ib_log", ("apply skip %u:%u LSN " LSN_PF " < " LSN_PF, block->page.id().space(), block->page.id().page_no(), l->start_lsn, page_lsn)); skipped_after_init = true; end_lsn = l->lsn; continue; }
if (l->start_lsn < init_lsn) { DBUG_PRINT("ib_log", ("init skip %u:%u LSN " LSN_PF " < " LSN_PF, block->page.id().space(), block->page.id().page_no(), l->start_lsn, init_lsn)); skipped_after_init = false; end_lsn = l->lsn; continue; }
/* There is no need to check LSN for just initialized pages. */ if (skipped_after_init) { skipped_after_init = false; ut_ad(end_lsn == page_lsn); if (end_lsn != page_lsn) { sql_print_information( "InnoDB: The last skipped log record" " LSN " LSN_PF " is not equal to page LSN " LSN_PF, end_lsn, page_lsn); } }
end_lsn = l->lsn;
if (UNIV_UNLIKELY(srv_print_verbose_log == 2)) { ib::info() << "apply " << l->start_lsn << ": " << block->page.id(); }
DBUG_PRINT("ib_log", ("apply " LSN_PF ": %u:%u", l->start_lsn, block->page.id().space(), block->page.id().page_no()));
log_phys_t::apply_status a= l->apply(*block, recs.last_offset);
switch (a) { case log_phys_t::APPLIED_NO: ut_ad(!mtr.has_modifications()); free_page = true; start_lsn = 0; continue; case log_phys_t::APPLIED_YES: case log_phys_t::APPLIED_CORRUPTED: goto set_start_lsn; case log_phys_t::APPLIED_TO_FSP_HEADER: case log_phys_t::APPLIED_TO_ENCRYPTION: break; }
if (fil_space_t* s = space ? space : fil_space_t::get(block->page.id().space())) { switch (a) { case log_phys_t::APPLIED_TO_FSP_HEADER: s->flags = mach_read_from_4( FSP_HEADER_OFFSET + FSP_SPACE_FLAGS + frame); s->size_in_header = mach_read_from_4( FSP_HEADER_OFFSET + FSP_SIZE + frame); s->free_limit = mach_read_from_4( FSP_HEADER_OFFSET + FSP_FREE_LIMIT + frame); s->free_len = mach_read_from_4( FSP_HEADER_OFFSET + FSP_FREE + FLST_LEN + frame); break; default: byte* b= frame + fsp_header_get_encryption_offset( block->zip_size()) + FSP_HEADER_OFFSET; if (memcmp(b, CRYPT_MAGIC, MAGIC_SZ)) { break; } b += MAGIC_SZ; if (*b != CRYPT_SCHEME_UNENCRYPTED && *b != CRYPT_SCHEME_1) { break; } if (b[1] != MY_AES_BLOCK_SIZE) { break; } if (b[2 + MY_AES_BLOCK_SIZE + 4 + 4] > FIL_ENCRYPTION_OFF) { break; } fil_crypt_parse(s, b); }
if (!space) { s->release(); } }
set_start_lsn: if ((a == log_phys_t::APPLIED_CORRUPTED || recv_sys.is_corrupt_log()) && !srv_force_recovery) { if (init) { init->created = false; }
mtr.discard_modifications(); mtr.commit();
buf_pool.corrupted_evict(&block->page, block->page.state() & buf_page_t::LRU_MASK); block = nullptr; goto done; }
if (!start_lsn) { start_lsn = l->start_lsn; } }
if (start_lsn) { ut_ad(end_lsn >= start_lsn); ut_ad(!block->page.oldest_modification()); mach_write_to_8(FIL_PAGE_LSN + frame, end_lsn); if (UNIV_LIKELY(!block->page.zip.data)) { mach_write_to_8(srv_page_size - FIL_PAGE_END_LSN_OLD_CHKSUM + frame, end_lsn); } else { buf_zip_decompress(block, false); } /* The following is adapted from
buf_pool_t::insert_into_flush_list() */ mysql_mutex_lock(&buf_pool.flush_list_mutex); buf_pool.flush_list_bytes+= block->physical_size(); block->page.set_oldest_modification(start_lsn); UT_LIST_ADD_FIRST(buf_pool.flush_list, &block->page); buf_pool.page_cleaner_wakeup(); mysql_mutex_unlock(&buf_pool.flush_list_mutex); } else if (free_page && init) { /* There have been no operations that modify the page.
Any buffered changes must not be merged. A subsequent buf_page_create() from a user thread should discard any buffered changes. */ init->created = false; ut_ad(!mtr.has_modifications()); block->page.set_freed(block->page.state()); }
/* Make sure that committing mtr does not change the modification
lsn values of page */
mtr.discard_modifications(); mtr.commit();
done: /* FIXME: do this in page read, protected with recv_sys.mutex! */ if (recv_max_page_lsn < page_lsn) { recv_max_page_lsn = page_lsn; }
return block;}
/** Remove records for a corrupted page.
This function should only be called when innodb_force_recovery is set.@param page_id corrupted page identifier */ATTRIBUTE_COLD void recv_sys_t::free_corrupted_page(page_id_t page_id){ if (!recovery_on) return;
mysql_mutex_lock(&mutex); map::iterator p= pages.find(page_id); if (p == pages.end()) { mysql_mutex_unlock(&mutex); return; }
p->second.being_processed= -1; if (!srv_force_recovery) set_corrupt_fs(); mysql_mutex_unlock(&mutex);
ib::error_or_warn(!srv_force_recovery) << "Unable to apply log to corrupted page " << page_id;}
ATTRIBUTE_COLD void recv_sys_t::set_corrupt_log(){ mysql_mutex_lock(&mutex); found_corrupt_log= true; mysql_mutex_unlock(&mutex);}
ATTRIBUTE_COLD void recv_sys_t::set_corrupt_fs(){ mysql_mutex_assert_owner(&mutex); if (!srv_force_recovery) sql_print_information("InnoDB: Set innodb_force_recovery=1" " to ignore corrupted pages."); found_corrupt_fs= true;}
/** Apply any buffered redo log to a page.
@param space tablespace@param bpage buffer pool page@return whether the page was recovered correctly */bool recv_recover_page(fil_space_t* space, buf_page_t* bpage){ mtr_t mtr; mtr.start(); mtr.set_log_mode(MTR_LOG_NO_REDO);
ut_ad(bpage->frame); /* Move the ownership of the x-latch on the page to this OS thread,
so that we can acquire a second x-latch on it. This is needed for the operations to the page to pass the debug checks. */ bpage->lock.claim_ownership(); bpage->lock.x_lock_recursive(); bpage->fix_on_recovery(); mtr.memo_push(reinterpret_cast<buf_block_t*>(bpage), MTR_MEMO_PAGE_X_FIX);
buf_block_t *success= reinterpret_cast<buf_block_t*>(bpage);
mysql_mutex_lock(&recv_sys.mutex); if (recv_sys.apply_log_recs) { const page_id_t id{bpage->id()}; recv_sys_t::map::iterator p= recv_sys.pages.find(id); if (p == recv_sys.pages.end()); else if (p->second.being_processed < 0) { recv_sys.pages_it_invalidate(p); recv_sys.erase(p); } else { p->second.being_processed= 1; recv_sys_t::init *init= nullptr; if (p->second.skip_read) (init= &mlog_init.last(id))->created= true; mysql_mutex_unlock(&recv_sys.mutex); success= recv_recover_page(success, mtr, p->second, space, init); p->second.being_processed= -1; goto func_exit; } }
mysql_mutex_unlock(&recv_sys.mutex); mtr.commit();func_exit: ut_ad(mtr.has_committed()); return success;}
void IORequest::fake_read_complete(os_offset_t offset) const{ ut_ad(node); ut_ad(is_read()); ut_ad(bpage); ut_ad(bpage->frame); ut_ad(recv_recovery_is_on()); ut_ad(offset);
mtr_t mtr; mtr.start(); mtr.set_log_mode(MTR_LOG_NO_REDO);
ut_ad(bpage->frame); /* Move the ownership of the x-latch on the page to this OS thread,
so that we can acquire a second x-latch on it. This is needed for the operations to the page to pass the debug checks. */ bpage->lock.claim_ownership(); bpage->lock.x_lock_recursive(); bpage->fix_on_recovery(); mtr.memo_push(reinterpret_cast<buf_block_t*>(bpage), MTR_MEMO_PAGE_X_FIX);
page_recv_t &recs= *reinterpret_cast<page_recv_t*>(slot); ut_ad(recs.being_processed == 1); recv_init &init= *reinterpret_cast<recv_init*>(offset); ut_ad(init.lsn > 1); init.created= true;
if (recv_recover_page(reinterpret_cast<buf_block_t*>(bpage), mtr, recs, node->space, &init)) { ut_ad(bpage->oldest_modification() || bpage->is_freed()); bpage->lock.x_unlock(true); } recs.being_processed= -1; ut_ad(mtr.has_committed());
node->space->release();}
/** @return whether a page has been freed */inline bool fil_space_t::is_freed(uint32_t page){ std::lock_guard<std::mutex> freed_lock(freed_range_mutex); return freed_ranges.contains(page);}
bool recv_sys_t::report(time_t time){ if (time - progress_time < 15) return false; progress_time= time; return true;}
ATTRIBUTE_COLDvoid recv_sys_t::report_progress() const{ mysql_mutex_assert_owner(&mutex); const size_t n{pages.size()}; if (recv_sys.scanned_lsn == recv_sys.lsn) { sql_print_information("InnoDB: To recover: %zu pages", n); service_manager_extend_timeout(INNODB_EXTEND_TIMEOUT_INTERVAL, "To recover: %zu pages", n); } else { sql_print_information("InnoDB: To recover: LSN " LSN_PF "/" LSN_PF "; %zu pages", recv_sys.lsn, recv_sys.scanned_lsn, n); service_manager_extend_timeout(INNODB_EXTEND_TIMEOUT_INTERVAL, "To recover: LSN " LSN_PF "/" LSN_PF "; %zu pages", recv_sys.lsn, recv_sys.scanned_lsn, n); }}
/** Apply a recovery batch.
@param space_id current tablespace identifier@param space current tablespace@param free_block spare buffer block@param last_batch whether it is possible to write more redo log@return whether the caller must provide a new free_block */bool recv_sys_t::apply_batch(uint32_t space_id, fil_space_t *&space, buf_block_t *&free_block, bool last_batch){ mysql_mutex_assert_owner(&mutex); ut_ad(pages_it != pages.end()); ut_ad(!pages_it->second.log.empty());
mysql_mutex_lock(&buf_pool.mutex); size_t n= 0, max_n= std::min<size_t>(BUF_LRU_MIN_LEN, UT_LIST_GET_LEN(buf_pool.LRU) + UT_LIST_GET_LEN(buf_pool.free)); mysql_mutex_unlock(&buf_pool.mutex);
map::iterator begin= pages.end(); page_id_t begin_id{~0ULL};
while (pages_it != pages.end() && n < max_n) { ut_ad(!buf_dblwr.is_inside(pages_it->first)); if (!pages_it->second.being_processed) { if (space_id != pages_it->first.space()) { space_id= pages_it->first.space(); if (space) space->release(); space= fil_space_t::get(space_id); if (!space) { auto d= deferred_spaces.defers.find(space_id); if (d == deferred_spaces.defers.end() || d->second.deleted) /* For deleted files we preserve the deferred_spaces entry */; else if (!free_block) return true; else { space= recover_deferred(pages_it, d->second.file_name, free_block); deferred_spaces.defers.erase(d); if (!space && !srv_force_recovery) { set_corrupt_fs(); return false; } } } } if (!space || space->is_freed(pages_it->first.page_no())) pages_it->second.being_processed= -1; else if (!n++) { begin= pages_it; begin_id= pages_it->first; } } pages_it++; }
if (!last_batch) log_sys.latch.wr_unlock();
pages_it= begin;
if (report(time(nullptr))) report_progress();
if (!n) goto wait;
mysql_mutex_lock(&buf_pool.mutex);
if (UNIV_UNLIKELY(UT_LIST_GET_LEN(buf_pool.free) < n)) { mysql_mutex_unlock(&buf_pool.mutex); wait: wait_for_pool(n); if (n); else if (!last_batch) goto unlock_relock; else goto get_last; pages_it= pages.lower_bound(begin_id); ut_ad(pages_it != pages.end()); } else mysql_mutex_unlock(&buf_pool.mutex);
while (pages_it != pages.end()) { ut_ad(!buf_dblwr.is_inside(pages_it->first)); if (!pages_it->second.being_processed) { const page_id_t id{pages_it->first};
if (space_id != id.space()) { space_id= id.space(); if (space) space->release(); space= fil_space_t::get(space_id); } if (!space) { const auto it= deferred_spaces.defers.find(space_id); if (it != deferred_spaces.defers.end() && !it->second.deleted) /* The records must be processed after recover_deferred(). */ goto next; goto space_not_found; } else if (space->is_freed(id.page_no())) { space_not_found: pages_it->second.being_processed= -1; goto next; } else { page_recv_t &recs= pages_it->second; ut_ad(!recs.log.empty()); recs.being_processed= 1; init *init= recs.skip_read ? &mlog_init.last(id) : nullptr; mysql_mutex_unlock(&mutex); buf_read_recover(space, id, recs, init); }
if (!--n) { if (last_batch) goto relock_last; goto relock; } mysql_mutex_lock(&mutex); pages_it= pages.lower_bound(id); } else next: pages_it++; }
if (!last_batch) { unlock_relock: mysql_mutex_unlock(&mutex); relock: log_sys.latch.wr_lock(SRW_LOCK_CALL); relock_last: mysql_mutex_lock(&mutex); get_last: pages_it= pages.lower_bound(begin_id); }
return false;}
/** Attempt to initialize a page based on redo log records.
@param p iterator@param mtr mini-transaction@param b pre-allocated buffer pool block@param init page initialization@return the recovered block@retval nullptr if the page cannot be initialized based on log records@retval -1 if the page cannot be recovered due to corruption */inline buf_block_t *recv_sys_t::recover_low(const map::iterator &p, mtr_t &mtr, buf_block_t *b, init &init){ mysql_mutex_assert_not_owner(&mutex); page_recv_t &recs= p->second; ut_ad(recs.skip_read); ut_ad(recs.being_processed == 1); buf_block_t* block= nullptr; const lsn_t end_lsn= recs.log.last()->lsn; if (end_lsn < init.lsn) DBUG_LOG("ib_log", "skip log for page " << p->first << " LSN " << end_lsn << " < " << init.lsn); fil_space_t *space= fil_space_t::get(p->first.space());
mtr.start(); mtr.set_log_mode(MTR_LOG_NO_REDO);
ulint zip_size= space ? space->zip_size() : 0;
if (!space) { if (p->first.page_no() != 0) { nothing_recoverable: mtr.commit(); return nullptr; } auto it= recv_spaces.find(p->first.space()); ut_ad(it != recv_spaces.end()); uint32_t flags= it->second.flags; zip_size= fil_space_t::zip_size(flags); block= buf_page_create_deferred(p->first.space(), zip_size, &mtr, b); ut_ad(block == b); block->page.lock.x_lock_recursive(); } else { block= buf_page_create(space, p->first.page_no(), zip_size, &mtr, b);
if (UNIV_UNLIKELY(block != b)) { /* The page happened to exist in the buffer pool, or it
was just being read in. Before the exclusive page latch was acquired by buf_page_create(), all changes to the page must have been applied. */ ut_d(mysql_mutex_lock(&mutex)); ut_ad(pages.find(p->first) == pages.end()); ut_d(mysql_mutex_unlock(&mutex)); space->release(); goto nothing_recoverable; } }
ut_d(mysql_mutex_lock(&mutex)); ut_ad(&recs == &pages.find(p->first)->second); ut_d(mysql_mutex_unlock(&mutex)); init.created= true; block= recv_recover_page(block, mtr, recs, space, &init); ut_ad(mtr.has_committed());
if (space) space->release();
return block ? block : reinterpret_cast<buf_block_t*>(-1);}
/** Attempt to initialize a page based on redo log records.
@param page_id page identifier@return recovered block@retval nullptr if the page cannot be initialized based on log records */ATTRIBUTE_COLD buf_block_t *recv_sys_t::recover_low(const page_id_t page_id){ mysql_mutex_lock(&mutex); map::iterator p= pages.find(page_id);
if (p != pages.end() && !p->second.being_processed && p->second.skip_read) { p->second.being_processed= 1; init &init= mlog_init.last(page_id); mysql_mutex_unlock(&mutex); buf_block_t *free_block= buf_LRU_get_free_block(false); mtr_t mtr; buf_block_t *block= recover_low(p, mtr, free_block, init); p->second.being_processed= -1; ut_ad(!block || block == reinterpret_cast<buf_block_t*>(-1) || block == free_block); if (UNIV_UNLIKELY(!block)) buf_pool.free_block(free_block); return block; }
mysql_mutex_unlock(&mutex); return nullptr;}
inline fil_space_t *fil_system_t::find(const char *path) const{ mysql_mutex_assert_owner(&mutex); for (fil_space_t &space : fil_system.space_list) if (space.chain.start && !strcmp(space.chain.start->name, path)) return &space; return nullptr;}
/** Thread-safe function which sorts flush_list by oldest_modification */static void log_sort_flush_list(){ /* Ensure that oldest_modification() cannot change during std::sort() */ { const double pct_lwm= srv_max_dirty_pages_pct_lwm; /* Disable "idle" flushing in order to minimize the wait time below. */ srv_max_dirty_pages_pct_lwm= 0.0;
for (;;) { os_aio_wait_until_no_pending_writes(false); mysql_mutex_lock(&buf_pool.flush_list_mutex); if (buf_pool.page_cleaner_active()) my_cond_wait(&buf_pool.done_flush_list, &buf_pool.flush_list_mutex.m_mutex); else if (!os_aio_pending_writes()) break; mysql_mutex_unlock(&buf_pool.flush_list_mutex); }
srv_max_dirty_pages_pct_lwm= pct_lwm; }
const size_t size= UT_LIST_GET_LEN(buf_pool.flush_list); std::unique_ptr<buf_page_t *[]> list(new buf_page_t *[size]);
/* Copy the dirty blocks from buf_pool.flush_list to an array for sorting. */ size_t idx= 0; for (buf_page_t *p= UT_LIST_GET_FIRST(buf_pool.flush_list); p; ) { const lsn_t lsn{p->oldest_modification()}; ut_ad(lsn > 2 || lsn == 1); buf_page_t *n= UT_LIST_GET_NEXT(list, p); if (lsn > 1) list.get()[idx++]= p; else buf_pool.delete_from_flush_list(p); p= n; }
std::sort(list.get(), list.get() + idx, [](const buf_page_t *lhs, const buf_page_t *rhs) { const lsn_t l{lhs->oldest_modification()}; const lsn_t r{rhs->oldest_modification()}; DBUG_ASSERT(l > 2); DBUG_ASSERT(r > 2); return r < l; });
UT_LIST_INIT(buf_pool.flush_list, &buf_page_t::list);
for (size_t i= 0; i < idx; i++) { UT_LIST_ADD_LAST(buf_pool.flush_list, list[i]); DBUG_ASSERT(list[i]->oldest_modification() > 2); }
mysql_mutex_unlock(&buf_pool.flush_list_mutex);}
/** Apply buffered log to persistent data pages.
@param last_batch whether it is possible to write more redo log */void recv_sys_t::apply(bool last_batch){ ut_ad(srv_operation <= SRV_OPERATION_EXPORT_RESTORED || srv_operation == SRV_OPERATION_RESTORE || srv_operation == SRV_OPERATION_RESTORE_EXPORT);
mysql_mutex_assert_owner(&mutex);
garbage_collect();
for (auto id= srv_undo_tablespaces_open; id--;) { const trunc& t= truncated_undo_spaces[id]; if (t.lsn) { /* The entire undo tablespace will be reinitialized by
innodb_undo_log_truncate=ON. Discard old log for all pages. Even though we recv_sys_t::parse() already invoked trim(), this will be needed in case recovery consists of multiple batches (there was an invocation with !last_batch). */ trim({id + srv_undo_space_id_start, 0}, t.lsn); if (fil_space_t *space = fil_space_get(id + srv_undo_space_id_start)) { ut_ad(UT_LIST_GET_LEN(space->chain) == 1); ut_ad(space->recv_size >= t.pages); fil_node_t *file= UT_LIST_GET_FIRST(space->chain); ut_ad(file->is_open()); os_file_truncate(file->name, file->handle, os_offset_t{space->recv_size} << srv_page_size_shift, true); } } }
if (!pages.empty()) { recv_no_ibuf_operations = !last_batch || srv_operation == SRV_OPERATION_RESTORE || srv_operation == SRV_OPERATION_RESTORE_EXPORT; ut_ad(!last_batch || lsn == scanned_lsn); progress_time= time(nullptr); report_progress();
apply_log_recs= true;
fil_system.extend_to_recv_size();
fil_space_t *space= nullptr; uint32_t space_id= ~0; buf_block_t *free_block= nullptr;
for (pages_it= pages.begin(); pages_it != pages.end(); pages_it= pages.begin()) { if (!free_block) { if (!last_batch) log_sys.latch.wr_unlock(); wait_for_pool(1); pages_it= pages.begin(); mysql_mutex_unlock(&mutex); /* We must release log_sys.latch and recv_sys.mutex before
invoking buf_LRU_get_free_block(). Allocating a block may initiate a redo log write and therefore acquire log_sys.latch. To avoid deadlocks, log_sys.latch must not be acquired while holding recv_sys.mutex. */ free_block= buf_LRU_get_free_block(false); if (!last_batch) log_sys.latch.wr_lock(SRW_LOCK_CALL); mysql_mutex_lock(&mutex); pages_it= pages.begin(); }
while (pages_it != pages.end()) { if (is_corrupt_fs() || is_corrupt_log()) { if (space) space->release(); if (free_block) { mysql_mutex_unlock(&mutex); mysql_mutex_lock(&buf_pool.mutex); buf_LRU_block_free_non_file_page(free_block); mysql_mutex_unlock(&buf_pool.mutex); mysql_mutex_lock(&mutex); } return; } if (apply_batch(space_id, space, free_block, last_batch)) break; } }
if (space) space->release();
if (free_block) { mysql_mutex_lock(&buf_pool.mutex); buf_LRU_block_free_non_file_page(free_block); mysql_mutex_unlock(&buf_pool.mutex); } }
if (last_batch) { if (!recv_no_ibuf_operations) /* We skipped this in buf_page_create(). */ mlog_init.mark_ibuf_exist(); mlog_init.clear(); } else { mlog_init.reset(); log_sys.latch.wr_unlock(); }
mysql_mutex_unlock(&mutex);
if (!last_batch) { buf_flush_sync_batch(lsn); buf_pool_invalidate(); log_sys.latch.wr_lock(SRW_LOCK_CALL); } else if (srv_operation == SRV_OPERATION_RESTORE || srv_operation == SRV_OPERATION_RESTORE_EXPORT) buf_flush_sync_batch(lsn); else /* Instead of flushing, last_batch sorts the buf_pool.flush_list
in ascending order of buf_page_t::oldest_modification. */ log_sort_flush_list();
#ifdef HAVE_PMEM
if (last_batch && log_sys.is_pmem()) mprotect(log_sys.buf, len, PROT_READ | PROT_WRITE);#endif
mysql_mutex_lock(&mutex);
ut_d(after_apply= true); clear();}
/** Scan log_t::FORMAT_10_8 log store records to the parsing buffer.
@param last_phase whether changes can be applied to the tablespaces@return whether rescan is needed (not everything was stored) */static bool recv_scan_log(bool last_phase){ DBUG_ENTER("recv_scan_log");
ut_ad(log_sys.is_latest()); const size_t block_size_1{log_sys.get_block_size() - 1};
mysql_mutex_lock(&recv_sys.mutex); if (!last_phase) recv_sys.clear(); else ut_ad(recv_sys.file_checkpoint);
bool store{recv_sys.file_checkpoint != 0}; size_t buf_size= log_sys.buf_size;#ifdef HAVE_PMEM
if (log_sys.is_pmem()) { recv_sys.offset= size_t(log_sys.calc_lsn_offset(recv_sys.lsn)); buf_size= size_t(log_sys.file_size); recv_sys.len= size_t(log_sys.file_size); } else#endif
{ recv_sys.offset= size_t(recv_sys.lsn - log_sys.get_first_lsn()) & block_size_1; recv_sys.len= 0; }
lsn_t rewound_lsn= 0; for (ut_d(lsn_t source_offset= 0);;) { ut_ad(log_sys.latch_have_wr());#ifdef UNIV_DEBUG
const bool wrap{source_offset + recv_sys.len == log_sys.file_size};#endif
if (size_t size= buf_size - recv_sys.len) {#ifndef UNIV_DEBUG
lsn_t#endif
source_offset= log_sys.calc_lsn_offset(recv_sys.lsn + recv_sys.len - recv_sys.offset); ut_ad(!wrap || source_offset == log_t::START_OFFSET); source_offset&= ~block_size_1;
if (source_offset + size > log_sys.file_size) size= static_cast<size_t>(log_sys.file_size - source_offset);
if (dberr_t err= log_sys.log.read(source_offset, {log_sys.buf + recv_sys.len, size})) { mysql_mutex_unlock(&recv_sys.mutex); ib::error() << "Failed to read log at " << source_offset << ": " << err; recv_sys.set_corrupt_log(); mysql_mutex_lock(&recv_sys.mutex); } else recv_sys.len+= size; }
if (recv_sys.report(time(nullptr))) { sql_print_information("InnoDB: Read redo log up to LSN=" LSN_PF, recv_sys.lsn); service_manager_extend_timeout(INNODB_EXTEND_TIMEOUT_INTERVAL, "Read redo log up to LSN=" LSN_PF, recv_sys.lsn); }
recv_sys_t::parse_mtr_result r;
if (UNIV_UNLIKELY(!recv_needed_recovery)) { ut_ad(!last_phase); ut_ad(recv_sys.lsn >= log_sys.next_checkpoint_lsn);
if (!store) { ut_ad(!recv_sys.file_checkpoint); for (;;) { const byte& b{log_sys.buf[recv_sys.offset]}; r= recv_sys.parse_pmem<false>(false); switch (r) { case recv_sys_t::PREMATURE_EOF: goto read_more; default: ut_ad(r == recv_sys_t::GOT_EOF); break; case recv_sys_t::OK: if (b == FILE_CHECKPOINT + 2 + 8 || (b & 0xf0) == FILE_MODIFY) continue; }
const lsn_t end{recv_sys.file_checkpoint}; ut_ad(!end || end == recv_sys.lsn); bool corrupt_fs= recv_sys.is_corrupt_fs(); mysql_mutex_unlock(&recv_sys.mutex);
if (!end && !corrupt_fs) { recv_sys.set_corrupt_log(); sql_print_error("InnoDB: Missing FILE_CHECKPOINT(" LSN_PF ") at " LSN_PF, log_sys.next_checkpoint_lsn, recv_sys.lsn); } DBUG_RETURN(true); } } else { ut_ad(recv_sys.file_checkpoint != 0); switch ((r= recv_sys.parse_pmem<true>(false))) { case recv_sys_t::PREMATURE_EOF: goto read_more; case recv_sys_t::GOT_EOF: break; default: ut_ad(r == recv_sys_t::OK); recv_needed_recovery= true; if (srv_read_only_mode) { mysql_mutex_unlock(&recv_sys.mutex); DBUG_RETURN(false); } sql_print_information("InnoDB: Starting crash recovery from" " checkpoint LSN=" LSN_PF, log_sys.next_checkpoint_lsn); } } }
if (!store) skip_the_rest: while ((r= recv_sys.parse_pmem<false>(false)) == recv_sys_t::OK); else { uint16_t count= 0; while ((r= recv_sys.parse_pmem<true>(last_phase)) == recv_sys_t::OK) if (!++count && recv_sys.report(time(nullptr))) { const size_t n= recv_sys.pages.size(); sql_print_information("InnoDB: Parsed redo log up to LSN=" LSN_PF "; to recover: %zu pages", recv_sys.lsn, n); service_manager_extend_timeout(INNODB_EXTEND_TIMEOUT_INTERVAL, "Parsed redo log up to LSN=" LSN_PF "; to recover: %zu pages", recv_sys.lsn, n); } if (r == recv_sys_t::GOT_OOM) { ut_ad(!last_phase); rewound_lsn= recv_sys.lsn; store= false; if (recv_sys.scanned_lsn <= 1) goto skip_the_rest; ut_ad(recv_sys.file_checkpoint); goto func_exit; } }
if (r != recv_sys_t::PREMATURE_EOF) { ut_ad(r == recv_sys_t::GOT_EOF); got_eof: ut_ad(recv_sys.is_initialised()); if (recv_sys.scanned_lsn > 1) { ut_ad(recv_sys.scanned_lsn == recv_sys.lsn); break; } recv_sys.scanned_lsn= recv_sys.lsn; sql_print_information("InnoDB: End of log at LSN=" LSN_PF, recv_sys.lsn); break; }
read_more:#ifdef HAVE_PMEM
if (log_sys.is_pmem()) break;#endif
if (recv_sys.is_corrupt_log()) break;
if (recv_sys.offset < log_sys.write_size && recv_sys.lsn == recv_sys.scanned_lsn) goto got_eof;
if (recv_sys.offset > buf_size / 4 || (recv_sys.offset > block_size_1 && recv_sys.len >= buf_size - recv_sys.MTR_SIZE_MAX)) { const size_t ofs{recv_sys.offset & ~block_size_1}; memmove_aligned<64>(log_sys.buf, log_sys.buf + ofs, recv_sys.len - ofs); recv_sys.len-= ofs; recv_sys.offset&= block_size_1; } }
if (last_phase) { ut_ad(!rewound_lsn); ut_ad(recv_sys.lsn >= recv_sys.file_checkpoint); log_sys.set_recovered_lsn(recv_sys.lsn); } else if (rewound_lsn) { ut_ad(!store); ut_ad(recv_sys.file_checkpoint); recv_sys.lsn= rewound_lsn; }func_exit: ut_d(recv_sys.after_apply= last_phase); mysql_mutex_unlock(&recv_sys.mutex); DBUG_RETURN(!store);}
/** Report a missing tablespace for which page-redo log exists.
@param[in] err previous error code@param[in] i tablespace descriptor@return new error code */staticdberr_trecv_init_missing_space(dberr_t err, const recv_spaces_t::const_iterator& i){ switch (srv_operation) { default: break; case SRV_OPERATION_RESTORE: case SRV_OPERATION_RESTORE_EXPORT: if (i->second.name.find("/#sql") != std::string::npos) { sql_print_warning("InnoDB: Tablespace " UINT32PF " was not found at %.*s when" " restoring a (partial?) backup." " All redo log" " for this file will be ignored!", i->first, int(i->second.name.size()), i->second.name.data()); } return(err); }
if (srv_force_recovery == 0) { sql_print_error("InnoDB: Tablespace " UINT32PF " was not" " found at %.*s.", i->first, int(i->second.name.size()), i->second.name.data());
if (err == DB_SUCCESS) { sql_print_information( "InnoDB: Set innodb_force_recovery=1 to" " ignore this and to permanently lose" " all changes to the tablespace."); err = DB_TABLESPACE_NOT_FOUND; } } else { sql_print_warning("InnoDB: Tablespace " UINT32PF " was not found at %.*s" ", and innodb_force_recovery was set." " All redo log for this tablespace" " will be ignored!", i->first, int(i->second.name.size()), i->second.name.data()); }
return(err);}
/** Report the missing tablespace and discard the redo logs for the deleted
tablespace.@param[in] rescan rescan of redo logs is needed if hash table ran out of memory@param[out] missing_tablespace missing tablespace exists or not@return error code or DB_SUCCESS. */static MY_ATTRIBUTE((warn_unused_result))dberr_trecv_validate_tablespace(bool rescan, bool& missing_tablespace){ dberr_t err = DB_SUCCESS;
mysql_mutex_lock(&recv_sys.mutex);
for (recv_sys_t::map::iterator p = recv_sys.pages.begin(); p != recv_sys.pages.end();) { ut_ad(!p->second.log.empty()); const uint32_t space = p->first.space(); if (is_predefined_tablespace(space)) {next: p++; continue; }
recv_spaces_t::iterator i = recv_spaces.find(space); ut_ad(i != recv_spaces.end());
if (deferred_spaces.find(static_cast<uint32_t>(space))) { /* Skip redo logs belonging to
incomplete tablespaces */ goto next; }
switch (i->second.status) { case file_name_t::NORMAL: goto next; case file_name_t::MISSING: err = recv_init_missing_space(err, i); i->second.status = file_name_t::DELETED; /* fall through */ case file_name_t::DELETED: recv_sys_t::map::iterator r = p++; recv_sys.pages_it_invalidate(r); recv_sys.erase(r); continue; } ut_ad(0); }
if (err != DB_SUCCESS) {func_exit: mysql_mutex_unlock(&recv_sys.mutex); return(err); }
/* When rescan is not needed, recv_sys.pages will contain the
entire redo log. If rescan is needed or innodb_force_recovery is set, we can ignore missing tablespaces. */ for (const recv_spaces_t::value_type& rs : recv_spaces) { if (UNIV_LIKELY(rs.second.status != file_name_t::MISSING)) { continue; }
if (deferred_spaces.find(static_cast<uint32_t>(rs.first))) { continue; }
if (srv_force_recovery) { sql_print_warning("InnoDB: Tablespace " UINT32PF " was not found at %.*s," " and innodb_force_recovery was set." " All redo log for this tablespace" " will be ignored!", rs.first, int(rs.second.name.size()), rs.second.name.data()); continue; }
if (!rescan) { sql_print_information("InnoDB: Tablespace " UINT32PF " was not found at '%.*s'," " but there were" " no modifications either.", rs.first, int(rs.second.name.size()), rs.second.name.data()); } else { missing_tablespace = true; } }
goto func_exit;}
/** Check if all tablespaces were found for crash recovery.
@param[in] rescan rescan of redo logs is needed@param[out] missing_tablespace missing table exists@return error code or DB_SUCCESS */static MY_ATTRIBUTE((warn_unused_result))dberr_trecv_init_crash_recovery_spaces(bool rescan, bool& missing_tablespace){ bool flag_deleted = false;
ut_ad(!srv_read_only_mode); ut_ad(recv_needed_recovery);
for (recv_spaces_t::value_type& rs : recv_spaces) { ut_ad(!is_predefined_tablespace(rs.first)); ut_ad(rs.second.status != file_name_t::DELETED || !rs.second.space);
if (rs.second.status == file_name_t::DELETED) { /* The tablespace was deleted,
so we can ignore any redo log for it. */ flag_deleted = true; } else if (rs.second.space != NULL) { /* The tablespace was found, and there
are some redo log records for it. */ fil_names_dirty(rs.second.space);
/* Add the freed page ranges in the respective
tablespace */ if (!rs.second.freed_ranges.empty() && (srv_immediate_scrub_data_uncompressed || rs.second.space->is_compressed())) {
rs.second.space->add_free_ranges( std::move(rs.second.freed_ranges)); } } else if (rs.second.name == "") { sql_print_error("InnoDB: Missing FILE_CREATE," " FILE_DELETE or FILE_MODIFY" " before FILE_CHECKPOINT" " for tablespace " UINT32PF, rs.first); recv_sys.set_corrupt_log(); return(DB_CORRUPTION); } else { rs.second.status = file_name_t::MISSING; flag_deleted = true; }
ut_ad(rs.second.status == file_name_t::DELETED || rs.second.name != ""); }
if (flag_deleted) { return recv_validate_tablespace(rescan, missing_tablespace); }
return DB_SUCCESS;}
/** Apply any FILE_RENAME records */static dberr_t recv_rename_files(){ mysql_mutex_assert_owner(&recv_sys.mutex); ut_ad(log_sys.latch_have_wr());
dberr_t err= DB_SUCCESS;
for (auto i= renamed_spaces.begin(); i != renamed_spaces.end(); ) { const auto &r= *i; const uint32_t id= r.first; fil_space_t *space= fil_space_t::get(id); if (!space) { i++; continue; } ut_ad(UT_LIST_GET_LEN(space->chain) == 1); char *old= space->chain.start->name; if (r.second != old) { bool exists; os_file_type_t ftype; const char *new_name= r.second.c_str(); mysql_mutex_lock(&fil_system.mutex); const fil_space_t *other= nullptr; if (!space->chain.start->is_open() && space->chain.start->deferred && (other= fil_system.find(new_name)) && (other->chain.start->is_open() || !other->chain.start->deferred)) other= nullptr;
if (other) { /* Multiple tablespaces use the same file name. This should
only be possible if the recovery of both files was deferred (no valid page 0 is contained in either file). We shall not rename the file, just rename the metadata. */ sql_print_information("InnoDB: Renaming tablespace metadata " UINT32PF " from '%s' to '%s' that is also associated" " with tablespace " UINT32PF, id, old, new_name, other->id); space->chain.start->name= mem_strdup(new_name); ut_free(old); } else if (!os_file_status(new_name, &exists, &ftype) || exists) { sql_print_error("InnoDB: Cannot replay rename of tablespace " UINT32PF " from '%s' to '%s'%s", id, old, new_name, exists ? " because the target file exists" : ""); err= DB_TABLESPACE_EXISTS; } else { mysql_mutex_unlock(&fil_system.mutex); err= space->rename(new_name, false); if (err != DB_SUCCESS) sql_print_error("InnoDB: Cannot replay rename of tablespace " UINT32PF " to '%s: %s", new_name, ut_strerr(err)); goto done; } mysql_mutex_unlock(&fil_system.mutex); }done: space->release(); if (err != DB_SUCCESS) { recv_sys.set_corrupt_fs(); break; } renamed_spaces.erase(i++); } return err;}
dberr_t recv_recovery_read_checkpoint(){ ut_ad(srv_operation <= SRV_OPERATION_EXPORT_RESTORED || srv_operation == SRV_OPERATION_RESTORE || srv_operation == SRV_OPERATION_RESTORE_EXPORT); ut_d(mysql_mutex_lock(&buf_pool.mutex)); ut_ad(UT_LIST_GET_LEN(buf_pool.LRU) == 0); ut_ad(UT_LIST_GET_LEN(buf_pool.unzip_LRU) == 0); ut_d(mysql_mutex_unlock(&buf_pool.mutex));
if (srv_force_recovery >= SRV_FORCE_NO_LOG_REDO) { sql_print_information("InnoDB: innodb_force_recovery=6" " skips redo log apply"); return DB_SUCCESS; }
log_sys.latch.wr_lock(SRW_LOCK_CALL); dberr_t err= recv_sys.find_checkpoint(); log_sys.latch.wr_unlock(); return err;}
inline void log_t::set_recovered() noexcept{ ut_ad(get_flushed_lsn() == get_lsn()); ut_ad(recv_sys.lsn == get_lsn()); ut_ad(!old_write_size_1); size_t ro{recv_sys.offset}; if (!is_pmem()) { const size_t bs{log_sys.get_block_size()}, bs_1{bs - 1}; memmove_aligned<512>(buf, buf + (ro & ~bs_1), bs); ro&= bs_1; old_write_size_1= uint32_t(bs_1); }#ifdef HAVE_PMEM
else mprotect(buf, size_t(file_size), PROT_READ | PROT_WRITE);#endif
set_buf_free(ro);}
/** Start recovering from a redo log checkpoint.
of first system tablespace page@return error code or DB_SUCCESS */dberr_t recv_recovery_from_checkpoint_start(){ bool rescan = false; dberr_t err = DB_SUCCESS;
ut_ad(srv_operation <= SRV_OPERATION_EXPORT_RESTORED || srv_operation == SRV_OPERATION_RESTORE || srv_operation == SRV_OPERATION_RESTORE_EXPORT); ut_d(mysql_mutex_lock(&buf_pool.flush_list_mutex)); ut_ad(UT_LIST_GET_LEN(buf_pool.LRU) == 0); ut_ad(UT_LIST_GET_LEN(buf_pool.unzip_LRU) == 0); ut_d(mysql_mutex_unlock(&buf_pool.flush_list_mutex));
if (srv_force_recovery >= SRV_FORCE_NO_LOG_REDO) { sql_print_information("InnoDB: innodb_force_recovery=6" " skips redo log apply"); return err; }
recv_sys.recovery_on = true;
log_sys.latch.wr_lock(SRW_LOCK_CALL); log_sys.set_capacity();
/* Start reading the log from the checkpoint lsn. The variable
contiguous_lsn contains an lsn up to which the log is known to be contiguously written. */
ut_ad(recv_sys.pages.empty());
if (log_sys.format == log_t::FORMAT_3_23) {early_exit: log_sys.latch.wr_unlock(); return err; }
if (log_sys.is_latest()) { const bool rewind = recv_sys.lsn != log_sys.next_checkpoint_lsn; log_sys.last_checkpoint_lsn = log_sys.next_checkpoint_lsn;
recv_scan_log(false); if (recv_needed_recovery) {read_only_recovery: sql_print_warning("InnoDB: innodb_read_only" " prevents crash recovery"); err = DB_READ_ONLY; goto early_exit; } if (recv_sys.is_corrupt_log()) { sql_print_error("InnoDB: Log scan aborted at LSN " LSN_PF, recv_sys.lsn); goto err_exit; } if (recv_sys.is_corrupt_fs()) { goto err_exit; } ut_ad(recv_sys.file_checkpoint); if (rewind) { recv_sys.lsn = log_sys.next_checkpoint_lsn; recv_sys.offset = 0; recv_sys.len = 0; } ut_ad(!recv_max_page_lsn); rescan = recv_scan_log(false);
if (srv_read_only_mode && recv_needed_recovery) { goto read_only_recovery; }
if ((recv_sys.is_corrupt_log() && !srv_force_recovery) || recv_sys.is_corrupt_fs()) { goto err_exit; } }
log_sys.set_recovered_lsn(recv_sys.lsn);
if (recv_needed_recovery) { bool missing_tablespace = false;
err = recv_init_crash_recovery_spaces( rescan, missing_tablespace);
if (err != DB_SUCCESS) { goto early_exit; }
if (missing_tablespace) { ut_ad(rescan); /* If any tablespaces seem to be missing,
validate the remaining log records. */
do { rescan = recv_scan_log(false);
if (recv_sys.is_corrupt_log() || recv_sys.is_corrupt_fs()) { goto err_exit; }
missing_tablespace = false;
err = recv_validate_tablespace( rescan, missing_tablespace);
if (err != DB_SUCCESS) { goto early_exit; } } while (missing_tablespace);
rescan = true; /* Because in the loop above we overwrote the
initially stored recv_sys.pages, we must restart parsing the log from the very beginning. */
/* FIXME: Use a separate loop for checking for
tablespaces (not individual pages), while retaining the initial recv_sys.pages. */ mysql_mutex_lock(&recv_sys.mutex); recv_sys.clear(); recv_sys.lsn = log_sys.next_checkpoint_lsn; mysql_mutex_unlock(&recv_sys.mutex); }
if (srv_operation <= SRV_OPERATION_EXPORT_RESTORED) { deferred_spaces.deferred_dblwr(); buf_dblwr.recover(); }
ut_ad(srv_force_recovery <= SRV_FORCE_NO_UNDO_LOG_SCAN);
if (rescan) { recv_scan_log(true); if ((recv_sys.is_corrupt_log() && !srv_force_recovery) || recv_sys.is_corrupt_fs()) { goto err_exit; }
/* In case of multi-batch recovery,
redo log for the last batch is not applied yet. */ ut_d(recv_sys.after_apply = false); } } else { ut_ad(recv_sys.pages.empty()); }
if (log_sys.is_latest() && (recv_sys.lsn < log_sys.next_checkpoint_lsn || recv_sys.lsn < recv_max_page_lsn)) {
sql_print_error("InnoDB: We scanned the log up to " LSN_PF "." " A checkpoint was at " LSN_PF " and the maximum LSN on a database page was " LSN_PF ". It is possible that the" " database is now corrupt!", recv_sys.lsn, log_sys.next_checkpoint_lsn, recv_max_page_lsn); }
if (recv_sys.lsn < log_sys.next_checkpoint_lsn) {err_exit: err = DB_ERROR; goto early_exit; }
if (!srv_read_only_mode && log_sys.is_latest()) { log_sys.set_recovered(); if (recv_needed_recovery && srv_operation <= SRV_OPERATION_EXPORT_RESTORED) { /* Write a FILE_CHECKPOINT marker as the first thing,
before generating any other redo log. This ensures that subsequent crash recovery will be possible even if the server were killed soon after this. */ fil_names_clear(log_sys.next_checkpoint_lsn); } }
mysql_mutex_lock(&recv_sys.mutex); if (UNIV_UNLIKELY(recv_sys.scanned_lsn != recv_sys.lsn) && log_sys.is_latest()) { ut_ad("log parsing error" == 0); mysql_mutex_unlock(&recv_sys.mutex); err = DB_CORRUPTION; goto early_exit; } recv_sys.apply_log_recs = true; recv_no_ibuf_operations = false; ut_d(recv_no_log_write = srv_operation == SRV_OPERATION_RESTORE || srv_operation == SRV_OPERATION_RESTORE_EXPORT); if (srv_operation == SRV_OPERATION_NORMAL) { err = recv_rename_files(); } mysql_mutex_unlock(&recv_sys.mutex);
recv_lsn_checks_on = true;
/* The database is now ready to start almost normal processing of user
transactions: transaction rollbacks and the application of the log records in the hash table can be run in background. */ if (err == DB_SUCCESS && deferred_spaces.reinit_all() && !srv_force_recovery) { err = DB_CORRUPTION; }
log_sys.latch.wr_unlock(); return err;}
bool recv_dblwr_t::validate_page(const page_id_t page_id, const byte *page, const fil_space_t *space, byte *tmp_buf){ if (page_id.page_no() == 0) { uint32_t flags= fsp_header_get_flags(page); if (!fil_space_t::is_valid_flags(flags, page_id.space())) { uint32_t cflags= fsp_flags_convert_from_101(flags); if (cflags == UINT32_MAX) { ib::warn() << "Ignoring a doublewrite copy of page " << page_id << "due to invalid flags " << ib::hex(flags); return false; }
flags= cflags; }
/* Page 0 is never page_compressed or encrypted. */ return !buf_page_is_corrupted(true, page, flags); }
ut_ad(tmp_buf); byte *tmp_frame= tmp_buf; byte *tmp_page= tmp_buf + srv_page_size; const uint16_t page_type= mach_read_from_2(page + FIL_PAGE_TYPE); const bool expect_encrypted= space->crypt_data && space->crypt_data->type != CRYPT_SCHEME_UNENCRYPTED;
if (space->full_crc32()) return !buf_page_is_corrupted(true, page, space->flags);
if (expect_encrypted && mach_read_from_4(page + FIL_PAGE_FILE_FLUSH_LSN_OR_KEY_VERSION)) { if (!fil_space_verify_crypt_checksum(page, space->zip_size())) return false; if (page_type != FIL_PAGE_PAGE_COMPRESSED_ENCRYPTED) return true; if (space->zip_size()) return false; memcpy(tmp_page, page, space->physical_size()); if (!fil_space_decrypt(space, tmp_frame, tmp_page)) return false; }
switch (page_type) { case FIL_PAGE_PAGE_COMPRESSED: memcpy(tmp_page, page, space->physical_size()); /* fall through */ case FIL_PAGE_PAGE_COMPRESSED_ENCRYPTED: if (space->zip_size()) return false; /* ROW_FORMAT=COMPRESSED cannot be page_compressed */ ulint decomp= fil_page_decompress(tmp_frame, tmp_page, space->flags); if (!decomp) return false; /* decompression failed */ if (decomp == srv_page_size) return false; /* the page was not compressed (invalid page type) */ return !buf_page_is_corrupted(true, tmp_page, space->flags); }
return !buf_page_is_corrupted(true, page, space->flags);}
byte *recv_dblwr_t::find_page(const page_id_t page_id, const fil_space_t *space, byte *tmp_buf){ byte *result= NULL; lsn_t max_lsn= 0;
for (byte *page : pages) { if (page_get_page_no(page) != page_id.page_no() || page_get_space_id(page) != page_id.space()) continue; if (page_id.page_no() == 0) { uint32_t flags= mach_read_from_4( FSP_HEADER_OFFSET + FSP_SPACE_FLAGS + page); if (!fil_space_t::is_valid_flags(flags, page_id.space())) continue; }
const lsn_t lsn= mach_read_from_8(page + FIL_PAGE_LSN); if (lsn <= max_lsn || !validate_page(page_id, page, space, tmp_buf)) { /* Mark processed for subsequent iterations in buf_dblwr_t::recover() */ memset(page + FIL_PAGE_LSN, 0, 8); continue; }
ut_a(page_get_page_no(page) == page_id.page_no()); max_lsn= lsn; result= page; }
return result;}
bool recv_dblwr_t::restore_first_page(uint32_t space_id, const char *name, pfs_os_file_t file){ const page_id_t page_id(space_id, 0); const byte* page= find_page(page_id); if (!page) { /* If the first page of the given user tablespace is not there
in the doublewrite buffer, then the recovery is going to fail now. Report error only when doublewrite buffer is not empty */ if (pages.size()) ib::error() << "Corrupted page " << page_id << " of datafile '" << name << "' could not be found in the doublewrite buffer."; return true; }
ulint physical_size= fil_space_t::physical_size( mach_read_from_4(page + FSP_HEADER_OFFSET + FSP_SPACE_FLAGS)); ib::info() << "Restoring page " << page_id << " of datafile '" << name << "' from the doublewrite buffer. Writing " << physical_size << " bytes into file '" << name << "'";
return os_file_write( IORequestWrite, name, file, page, 0, physical_size) != DB_SUCCESS;}
uint32_t recv_dblwr_t::find_first_page(const char *name, pfs_os_file_t file){ os_offset_t file_size= os_file_get_size(file); if (file_size != (os_offset_t) -1) { for (const page_t *page : pages) { uint32_t space_id= page_get_space_id(page); byte *read_page= nullptr; if (page_get_page_no(page) > 0 || space_id == 0) {next_page: aligned_free(read_page); continue; } uint32_t flags= mach_read_from_4( FSP_HEADER_OFFSET + FSP_SPACE_FLAGS + page); page_id_t page_id(space_id, 0); size_t page_size= fil_space_t::physical_size(flags); if (file_size < 4 * page_size) goto next_page; read_page= static_cast<byte*>(aligned_malloc(3 * page_size, page_size)); /* Read 3 pages from the file and match the space id
with the space id which is stored in doublewrite buffer page. */ if (os_file_read(IORequestRead, file, read_page, page_size, 3 * page_size, nullptr) != DB_SUCCESS) goto next_page; for (ulint j= 0; j <= 2; j++) { byte *cur_page= read_page + j * page_size; if (buf_is_zeroes(span<const byte>(cur_page, page_size))) { space_id= 0; goto early_exit; } if (mach_read_from_4(cur_page + FIL_PAGE_OFFSET) != j + 1 || memcmp(cur_page + FIL_PAGE_SPACE_ID, page + FIL_PAGE_SPACE_ID, 4) || buf_page_is_corrupted(false, cur_page, flags)) goto next_page; } if (!restore_first_page(space_id, name, file)) {early_exit: aligned_free(read_page); return space_id; } break; } } return 0;}
|