You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							5969 lines
						
					
					
						
							156 KiB
						
					
					
				
			
		
		
		
			
			
			
		
		
	
	
							5969 lines
						
					
					
						
							156 KiB
						
					
					
				| /******************************************************************************* | |
| *                                                                              * | |
| * Author    :  Angus Johnson                                                   * | |
| * Version   :  6.4.2                                                           * | |
| * Date      :  27 February 2017                                                * | |
| * Website   :  http://www.angusj.com                                           * | |
| * Copyright :  Angus Johnson 2010-2017                                         * | |
| *                                                                              * | |
| * License:                                                                     * | |
| * Use, modification & distribution is subject to Boost Software License Ver 1. * | |
| * http://www.boost.org/LICENSE_1_0.txt                                         * | |
| *                                                                              * | |
| * Attributions:                                                                * | |
| * The code in this library is an extension of Bala Vatti's clipping algorithm: * | |
| * "A generic solution to polygon clipping"                                     * | |
| * Communications of the ACM, Vol 35, Issue 7 (July 1992) pp 56-63.             * | |
| * http://portal.acm.org/citation.cfm?id=129906                                 * | |
| *                                                                              * | |
| * Computer graphics and geometric modeling: implementation and algorithms      * | |
| * By Max K. Agoston                                                            * | |
| * Springer; 1 edition (January 4, 2005)                                        * | |
| * http://books.google.com/books?q=vatti+clipping+agoston                       * | |
| *                                                                              * | |
| * See also:                                                                    * | |
| * "Polygon Offsetting by Computing Winding Numbers"                            * | |
| * Paper no. DETC2005-85513 pp. 565-575                                         * | |
| * ASME 2005 International Design Engineering Technical Conferences             * | |
| * and Computers and Information in Engineering Conference (IDETC/CIE2005)      * | |
| * September 24-28, 2005 , Long Beach, California, USA                          * | |
| * http://www.me.berkeley.edu/~mcmains/pubs/DAC05OffsetPolygon.pdf              * | |
| *                                                                              * | |
| *******************************************************************************/ | |
| 
 | |
| /******************************************************************************* | |
| *                                                                              * | |
| * This is a translation of the Delphi Clipper library and the naming style     * | |
| * used has retained a Delphi flavour.                                          * | |
| *                                                                              * | |
| *******************************************************************************/ | |
| 
 | |
| #include "clipper.hpp" | |
| #include <cmath> | |
| #include <vector> | |
| #include <algorithm> | |
| #include <stdexcept> | |
| #include <cstring> | |
| #include <cstdlib> | |
| #include <ostream> | |
| #include <functional> | |
|  | |
| namespace ClipperLib { | |
| static double const pi = 3.141592653589793238; | |
| static double const two_pi = pi * 2; | |
| static double const def_arc_tolerance = 0.25; | |
| 
 | |
| enum Direction | |
| { | |
|     dRightToLeft, dLeftToRight | |
| }; | |
| 
 | |
| static int const Unassigned = -1;   // edge not currently 'owning' a solution | |
| static int const Skip = -2;         // edge that would otherwise close a path | |
|  | |
| #define HORIZONTAL  (-1.0E+40) | |
| #define TOLERANCE   (1.0e-20) | |
| #define NEAR_ZERO( val ) ( ( (val) > -TOLERANCE ) && ( (val) < TOLERANCE ) ) | |
|  | |
| struct TEdge | |
| { | |
|     IntPoint Bot; | |
|     IntPoint Curr; // current (updated for every new scanbeam) | |
|     IntPoint Top; | |
|     double Dx; | |
|     PolyType PolyTyp; | |
|     EdgeSide Side;  // side only refers to current side of solution poly | |
|     int WindDelta;  // 1 or -1 depending on winding direction | |
|     int WindCnt; | |
|     int WindCnt2;   // winding count of the opposite polytype | |
|     int OutIdx; | |
|     TEdge* Next; | |
|     TEdge* Prev; | |
|     TEdge* NextInLML; | |
|     TEdge* NextInAEL; | |
|     TEdge* PrevInAEL; | |
|     TEdge* NextInSEL; | |
|     TEdge* PrevInSEL; | |
| }; | |
| 
 | |
| struct IntersectNode | |
| { | |
|     TEdge* Edge1; | |
|     TEdge* Edge2; | |
|     IntPoint Pt; | |
| }; | |
| 
 | |
| struct LocalMinimum | |
| { | |
|     cInt Y; | |
|     TEdge* LeftBound; | |
|     TEdge* RightBound; | |
| }; | |
| 
 | |
| struct OutPt; | |
| 
 | |
| // OutRec: contains a path in the clipping solution. Edges in the AEL will | |
| // carry a pointer to an OutRec when they are part of the clipping solution. | |
| struct OutRec | |
| { | |
|     int Idx; | |
|     bool IsHole; | |
|     bool IsOpen; | |
|     OutRec* FirstLeft;  // see comments in clipper.pas | |
|     PolyNode*   PolyNd; | |
|     OutPt*  Pts; | |
|     OutPt*  BottomPt; | |
| }; | |
| 
 | |
| struct OutPt | |
| { | |
|     int Idx; | |
|     IntPoint Pt; | |
|     OutPt* Next; | |
|     OutPt* Prev; | |
| }; | |
| 
 | |
| struct Join | |
| { | |
|     OutPt* OutPt1; | |
|     OutPt* OutPt2; | |
|     IntPoint OffPt; | |
| }; | |
| 
 | |
| struct LocMinSorter | |
| { | |
|     inline bool operator()( const LocalMinimum& locMin1, const LocalMinimum& locMin2 ) | |
|     { | |
|         return locMin2.Y < locMin1.Y; | |
|     } | |
| }; | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
| // ------------------------------------------------------------------------------ | |
|  | |
| inline cInt Round( double val ) | |
| { | |
|     if( (val < 0) ) | |
|         return static_cast<cInt>(val - 0.5); | |
|     else | |
|         return static_cast<cInt>(val + 0.5); | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| inline cInt Abs( cInt val ) | |
| { | |
|     return val < 0 ? -val : val; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
| // PolyTree methods ... | |
| // ------------------------------------------------------------------------------ | |
|  | |
| void PolyTree::Clear() | |
| { | |
|     for( PolyNodes::size_type i = 0; i < AllNodes.size(); ++i ) | |
|         delete AllNodes[i]; | |
| 
 | |
|     AllNodes.resize( 0 ); | |
|     Childs.resize( 0 ); | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| PolyNode* PolyTree::GetFirst() const | |
| { | |
|     if( !Childs.empty() ) | |
|         return Childs[0]; | |
|     else | |
|         return 0; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| int PolyTree::Total() const | |
| { | |
|     int result = (int) AllNodes.size(); | |
| 
 | |
|     // with negative offsets, ignore the hidden outer polygon ... | |
|     if( result > 0 && Childs[0] != AllNodes[0] ) | |
|         result--; | |
| 
 | |
|     return result; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
| // PolyNode methods ... | |
| // ------------------------------------------------------------------------------ | |
|  | |
| PolyNode::PolyNode() : Parent( 0 ), Index( 0 ), m_IsOpen( false ) | |
| { | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| int PolyNode::ChildCount() const | |
| { | |
|     return (int) Childs.size(); | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| void PolyNode::AddChild( PolyNode& child ) | |
| { | |
|     unsigned cnt = (unsigned) Childs.size(); | |
| 
 | |
|     Childs.push_back( &child ); | |
|     child.Parent = this; | |
|     child.Index = cnt; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| PolyNode* PolyNode::GetNext() const | |
| { | |
|     if( !Childs.empty() ) | |
|         return Childs[0]; | |
|     else | |
|         return GetNextSiblingUp(); | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| PolyNode* PolyNode::GetNextSiblingUp() const | |
| { | |
|     if( !Parent ) // protects against PolyTree.GetNextSiblingUp() | |
|         return 0; | |
|     else if( Index == Parent->Childs.size() - 1 ) | |
|         return Parent->GetNextSiblingUp(); | |
|     else | |
|         return Parent->Childs[Index + 1]; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| bool PolyNode::IsHole() const | |
| { | |
|     bool result = true; | |
|     PolyNode* node = Parent; | |
| 
 | |
|     while( node ) | |
|     { | |
|         result = !result; | |
|         node = node->Parent; | |
|     } | |
| 
 | |
|     return result; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| bool PolyNode::IsOpen() const | |
| { | |
|     return m_IsOpen; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| #ifndef use_int32 | |
|  | |
| // ------------------------------------------------------------------------------ | |
| // Int128 class (enables safe math on signed 64bit integers) | |
| // eg Int128 val1((long64)9223372036854775807); //ie 2^63 -1 | |
| // Int128 val2((long64)9223372036854775807); | |
| // Int128 val3 = val1 * val2; | |
| // val3.AsString => "85070591730234615847396907784232501249" (8.5e+37) | |
| // ------------------------------------------------------------------------------ | |
|  | |
| class Int128 | |
| { | |
| public: | |
|     ulong64 lo; | |
|     long64  hi; | |
| 
 | |
|     Int128( long64 _lo = 0 ) | |
|     { | |
|         lo = (ulong64) _lo; | |
| 
 | |
|         if( _lo < 0 )  hi = -1; else hi = 0; | |
|     } | |
| 
 | |
|     Int128( const Int128& val ) : lo( val.lo ), hi( val.hi ) {} | |
| 
 | |
|     Int128( const long64& _hi, const ulong64& _lo ) : lo( _lo ), hi( _hi ) {} | |
| 
 | |
|     Int128& operator =( const long64& val ) | |
|     { | |
|         lo = (ulong64) val; | |
| 
 | |
|         if( val < 0 ) hi = -1; else hi = 0; | |
| 
 | |
|         return *this; | |
|     } | |
| 
 | |
|     bool operator ==( const Int128& val ) const | |
|     { return hi == val.hi && lo == val.lo; } | |
| 
 | |
|     bool operator !=( const Int128& val ) const | |
|     { return !(*this == val); } | |
| 
 | |
|     bool operator >( const Int128& val ) const | |
|     { | |
|         if( hi != val.hi ) | |
|             return hi > val.hi; | |
|         else | |
|             return lo > val.lo; | |
|     } | |
| 
 | |
|     bool operator <( const Int128& val ) const | |
|     { | |
|         if( hi != val.hi ) | |
|             return hi < val.hi; | |
|         else | |
|             return lo < val.lo; | |
|     } | |
| 
 | |
|     bool operator >=( const Int128& val ) const | |
|     { return !(*this < val); } | |
| 
 | |
|     bool operator <=( const Int128& val ) const | |
|     { return !(*this > val); } | |
| 
 | |
|     Int128& operator +=( const Int128& rhs ) | |
|     { | |
|         hi  += rhs.hi; | |
|         lo  += rhs.lo; | |
| 
 | |
|         if( lo < rhs.lo ) hi++; | |
| 
 | |
|         return *this; | |
|     } | |
| 
 | |
|     Int128 operator +( const Int128& rhs ) const | |
|     { | |
|         Int128 result( *this ); | |
| 
 | |
|         result += rhs; | |
|         return result; | |
|     } | |
| 
 | |
|     Int128& operator -=( const Int128& rhs ) | |
|     { | |
|         *this += -rhs; | |
|         return *this; | |
|     } | |
| 
 | |
|     Int128 operator -( const Int128& rhs ) const | |
|     { | |
|         Int128 result( *this ); | |
| 
 | |
|         result -= rhs; | |
|         return result; | |
|     } | |
| 
 | |
|     Int128 operator-() const    // unary negation | |
|     { | |
|         if( lo == 0 ) | |
|             return Int128( -hi, 0 ); | |
|         else | |
|             return Int128( ~hi, ~lo + 1 ); | |
|     } | |
| 
 | |
|     operator double() const | |
|     { | |
|         const double shift64 = 18446744073709551616.0; // 2^64 | |
|  | |
|         if( hi < 0 ) | |
|         { | |
|             if( lo == 0 ) return (double) hi * shift64; | |
|             else return -(double) (~lo + ~hi * shift64); | |
|         } | |
|         else | |
|             return (double) (lo + hi * shift64); | |
|     } | |
| }; | |
| // ------------------------------------------------------------------------------ | |
|  | |
| Int128 Int128Mul( long64 lhs, long64 rhs ) | |
| { | |
|     bool negate = (lhs < 0) != (rhs < 0); | |
| 
 | |
|     if( lhs < 0 ) | |
|         lhs = -lhs; | |
| 
 | |
|     ulong64 int1Hi  = ulong64( lhs ) >> 32; | |
|     ulong64 int1Lo  = ulong64( lhs & 0xFFFFFFFF ); | |
| 
 | |
|     if( rhs < 0 ) | |
|         rhs = -rhs; | |
| 
 | |
|     ulong64 int2Hi  = ulong64( rhs ) >> 32; | |
|     ulong64 int2Lo  = ulong64( rhs & 0xFFFFFFFF ); | |
| 
 | |
|     // nb: see comments in clipper.pas | |
|     ulong64 a = int1Hi * int2Hi; | |
|     ulong64 b = int1Lo * int2Lo; | |
|     ulong64 c = int1Hi * int2Lo + int1Lo * int2Hi; | |
| 
 | |
|     Int128 tmp; | |
|     tmp.hi  = long64( a + (c >> 32) ); | |
|     tmp.lo  = long64( c << 32 ); | |
|     tmp.lo  += long64( b ); | |
| 
 | |
|     if( tmp.lo < b ) | |
|         tmp.hi++; | |
| 
 | |
|     if( negate ) | |
|         tmp = -tmp; | |
| 
 | |
|     return tmp; | |
| } | |
| #endif | |
|  | |
| // ------------------------------------------------------------------------------ | |
| // Miscellaneous global functions | |
| // ------------------------------------------------------------------------------ | |
|  | |
| bool Orientation( const Path& poly ) | |
| { | |
|     return Area( poly ) >= 0; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| double Area( const Path& poly ) | |
| { | |
|     int size = (int) poly.size(); | |
| 
 | |
|     if( size < 3 ) | |
|         return 0; | |
| 
 | |
|     double a = 0; | |
| 
 | |
|     for( int i = 0, j = size - 1; i < size; ++i ) | |
|     { | |
|         a += ( (double) poly[j].X + poly[i].X ) * ( (double) poly[j].Y - poly[i].Y ); | |
|         j = i; | |
|     } | |
| 
 | |
|     return -a * 0.5; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| double Area( const OutPt* op ) | |
| { | |
|     const OutPt* startOp = op; | |
| 
 | |
|     if( !op ) | |
|         return 0; | |
| 
 | |
|     double a = 0; | |
| 
 | |
|     do { | |
|         a += (double) (op->Prev->Pt.X + op->Pt.X) * (double) (op->Prev->Pt.Y - op->Pt.Y); | |
|         op = op->Next; | |
|     } while( op != startOp ); | |
| 
 | |
|     return a * 0.5; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| double Area( const OutRec& outRec ) | |
| { | |
|     return Area( outRec.Pts ); | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| bool PointIsVertex( const IntPoint& Pt, OutPt* pp ) | |
| { | |
|     OutPt* pp2 = pp; | |
| 
 | |
|     do | |
|     { | |
|         if( pp2->Pt == Pt ) | |
|             return true; | |
| 
 | |
|         pp2 = pp2->Next; | |
|     } while( pp2 != pp ); | |
| 
 | |
|     return false; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| // See "The Point in Polygon Problem for Arbitrary Polygons" by Hormann & Agathos | |
| // http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.88.5498&rep=rep1&type=pdf | |
| int PointInPolygon( const IntPoint& pt, const Path& path ) | |
| { | |
|     // returns 0 if false, +1 if true, -1 if pt ON polygon boundary | |
|     int result  = 0; | |
|     size_t cnt  = path.size(); | |
| 
 | |
|     if( cnt < 3 ) | |
|         return 0; | |
| 
 | |
|     IntPoint ip = path[0]; | |
| 
 | |
|     for( size_t i = 1; i <= cnt; ++i ) | |
|     { | |
|         IntPoint ipNext = (i == cnt ? path[0] : path[i]); | |
| 
 | |
|         if( ipNext.Y == pt.Y ) | |
|         { | |
|             if( (ipNext.X == pt.X) || ( ip.Y == pt.Y | |
|                                         && ( (ipNext.X > pt.X) == (ip.X < pt.X) ) ) ) | |
|                 return -1; | |
|         } | |
| 
 | |
|         if( (ip.Y < pt.Y) != (ipNext.Y < pt.Y) ) | |
|         { | |
|             if( ip.X >= pt.X ) | |
|             { | |
|                 if( ipNext.X > pt.X ) | |
|                     result = 1 - result; | |
|                 else | |
|                 { | |
|                     double d = (double) (ip.X - pt.X) * (ipNext.Y - pt.Y) - | |
|                                (double) (ipNext.X - pt.X) * (ip.Y - pt.Y); | |
| 
 | |
|                     if( !d ) | |
|                         return -1; | |
| 
 | |
|                     if( (d > 0) == (ipNext.Y > ip.Y) ) | |
|                         result = 1 - result; | |
|                 } | |
|             } | |
|             else | |
|             { | |
|                 if( ipNext.X > pt.X ) | |
|                 { | |
|                     double d = (double) (ip.X - pt.X) * (ipNext.Y - pt.Y) - | |
|                                (double) (ipNext.X - pt.X) * (ip.Y - pt.Y); | |
| 
 | |
|                     if( !d ) | |
|                         return -1; | |
| 
 | |
|                     if( (d > 0) == (ipNext.Y > ip.Y) ) | |
|                         result = 1 - result; | |
|                 } | |
|             } | |
|         } | |
| 
 | |
|         ip = ipNext; | |
|     } | |
| 
 | |
|     return result; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| int PointInPolygon( const IntPoint& pt, OutPt* op ) | |
| { | |
|     // returns 0 if false, +1 if true, -1 if pt ON polygon boundary | |
|     int result = 0; | |
|     OutPt* startOp = op; | |
| 
 | |
|     for( ; ; ) | |
|     { | |
|         if( op->Next->Pt.Y == pt.Y ) | |
|         { | |
|             if( (op->Next->Pt.X == pt.X) || ( op->Pt.Y == pt.Y | |
|                                               && ( (op->Next->Pt.X > pt.X) == | |
|                                                    (op->Pt.X < pt.X) ) ) ) | |
|                 return -1; | |
|         } | |
| 
 | |
|         if( (op->Pt.Y < pt.Y) != (op->Next->Pt.Y < pt.Y) ) | |
|         { | |
|             if( op->Pt.X >= pt.X ) | |
|             { | |
|                 if( op->Next->Pt.X > pt.X ) | |
|                     result = 1 - result; | |
|                 else | |
|                 { | |
|                     double d = (double) (op->Pt.X - pt.X) * (op->Next->Pt.Y - pt.Y) - | |
|                                (double) (op->Next->Pt.X - pt.X) * (op->Pt.Y - pt.Y); | |
| 
 | |
|                     if( !d ) | |
|                         return -1; | |
| 
 | |
|                     if( (d > 0) == (op->Next->Pt.Y > op->Pt.Y) ) | |
|                         result = 1 - result; | |
|                 } | |
|             } | |
|             else | |
|             { | |
|                 if( op->Next->Pt.X > pt.X ) | |
|                 { | |
|                     double d = (double) (op->Pt.X - pt.X) * (op->Next->Pt.Y - pt.Y) - | |
|                                (double) (op->Next->Pt.X - pt.X) * (op->Pt.Y - pt.Y); | |
| 
 | |
|                     if( !d ) | |
|                         return -1; | |
| 
 | |
|                     if( (d > 0) == (op->Next->Pt.Y > op->Pt.Y) ) | |
|                         result = 1 - result; | |
|                 } | |
|             } | |
|         } | |
| 
 | |
|         op = op->Next; | |
| 
 | |
|         if( startOp == op ) | |
|             break; | |
|     } | |
| 
 | |
|     return result; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| bool Poly2ContainsPoly1( OutPt* OutPt1, OutPt* OutPt2 ) | |
| { | |
|     OutPt* op = OutPt1; | |
| 
 | |
|     do | |
|     { | |
|         // nb: PointInPolygon returns 0 if false, +1 if true, -1 if pt on polygon | |
|         int res = PointInPolygon( op->Pt, OutPt2 ); | |
| 
 | |
|         if( res >= 0 ) | |
|             return res > 0; | |
| 
 | |
|         op = op->Next; | |
|     } while( op != OutPt1 ); | |
| 
 | |
|     return true; | |
| } | |
| 
 | |
| 
 | |
| // ---------------------------------------------------------------------- | |
|  | |
| bool SlopesEqual( const TEdge& e1, const TEdge& e2, bool UseFullInt64Range ) | |
| { | |
| #ifndef use_int32 | |
|  | |
|     if( UseFullInt64Range ) | |
|         return Int128Mul( e1.Top.Y - e1.Bot.Y, e2.Top.X - e2.Bot.X ) == | |
|                Int128Mul( e1.Top.X - e1.Bot.X, e2.Top.Y - e2.Bot.Y ); | |
|     else | |
| #endif | |
|     return (e1.Top.Y - e1.Bot.Y) * (e2.Top.X - e2.Bot.X) == | |
|            (e1.Top.X - e1.Bot.X) * (e2.Top.Y - e2.Bot.Y); | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| bool SlopesEqual( const IntPoint pt1, const IntPoint pt2, | |
|         const IntPoint pt3, bool UseFullInt64Range ) | |
| { | |
| #ifndef use_int32 | |
|  | |
|     if( UseFullInt64Range ) | |
|         return Int128Mul( pt1.Y - pt2.Y, | |
|                 pt2.X - pt3.X ) == Int128Mul( pt1.X - pt2.X, pt2.Y - pt3.Y ); | |
|     else | |
| #endif | |
|     return (pt1.Y - pt2.Y) * (pt2.X - pt3.X) == (pt1.X - pt2.X) * (pt2.Y - pt3.Y); | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| bool SlopesEqual( const IntPoint pt1, const IntPoint pt2, | |
|         const IntPoint pt3, const IntPoint pt4, bool UseFullInt64Range ) | |
| { | |
| #ifndef use_int32 | |
|  | |
|     if( UseFullInt64Range ) | |
|         return Int128Mul( pt1.Y - pt2.Y, | |
|                 pt3.X - pt4.X ) == Int128Mul( pt1.X - pt2.X, pt3.Y - pt4.Y ); | |
|     else | |
| #endif | |
|     return (pt1.Y - pt2.Y) * (pt3.X - pt4.X) == (pt1.X - pt2.X) * (pt3.Y - pt4.Y); | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| inline bool IsHorizontal( TEdge& e ) | |
| { | |
|     return e.Dx == HORIZONTAL; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| inline double GetDx( const IntPoint pt1, const IntPoint pt2 ) | |
| { | |
|     return (pt1.Y == pt2.Y) ? | |
|            HORIZONTAL : (double) (pt2.X - pt1.X) / (pt2.Y - pt1.Y); | |
| } | |
| 
 | |
| 
 | |
| // --------------------------------------------------------------------------- | |
|  | |
| inline void SetDx( TEdge& e ) | |
| { | |
|     cInt dy = (e.Top.Y - e.Bot.Y); | |
| 
 | |
|     if( dy == 0 ) | |
|         e.Dx = HORIZONTAL; | |
|     else | |
|         e.Dx = (double) (e.Top.X - e.Bot.X) / dy; | |
| } | |
| 
 | |
| 
 | |
| // --------------------------------------------------------------------------- | |
|  | |
| inline void SwapSides( TEdge& Edge1, TEdge& Edge2 ) | |
| { | |
|     EdgeSide Side = Edge1.Side; | |
| 
 | |
|     Edge1.Side  = Edge2.Side; | |
|     Edge2.Side  = Side; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| inline void SwapPolyIndexes( TEdge& Edge1, TEdge& Edge2 ) | |
| { | |
|     int OutIdx = Edge1.OutIdx; | |
| 
 | |
|     Edge1.OutIdx = Edge2.OutIdx; | |
|     Edge2.OutIdx = OutIdx; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| inline cInt TopX( TEdge& edge, const cInt currentY ) | |
| { | |
|     return ( currentY == edge.Top.Y ) ? | |
|            edge.Top.X : edge.Bot.X + Round( edge.Dx * (currentY - edge.Bot.Y) ); | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| void IntersectPoint( TEdge& Edge1, TEdge& Edge2, IntPoint& ip ) | |
| { | |
| #ifdef use_xyz | |
|     ip.Z = 0; | |
| #endif | |
|  | |
|     double b1, b2; | |
| 
 | |
|     if( Edge1.Dx == Edge2.Dx ) | |
|     { | |
|         ip.Y = Edge1.Curr.Y; | |
|         ip.X = TopX( Edge1, ip.Y ); | |
|         return; | |
|     } | |
|     else if( Edge1.Dx == 0 ) | |
|     { | |
|         ip.X = Edge1.Bot.X; | |
| 
 | |
|         if( IsHorizontal( Edge2 ) ) | |
|             ip.Y = Edge2.Bot.Y; | |
|         else | |
|         { | |
|             b2 = Edge2.Bot.Y - (Edge2.Bot.X / Edge2.Dx); | |
|             ip.Y = Round( ip.X / Edge2.Dx + b2 ); | |
|         } | |
|     } | |
|     else if( Edge2.Dx == 0 ) | |
|     { | |
|         ip.X = Edge2.Bot.X; | |
| 
 | |
|         if( IsHorizontal( Edge1 ) ) | |
|             ip.Y = Edge1.Bot.Y; | |
|         else | |
|         { | |
|             b1 = Edge1.Bot.Y - (Edge1.Bot.X / Edge1.Dx); | |
|             ip.Y = Round( ip.X / Edge1.Dx + b1 ); | |
|         } | |
|     } | |
|     else | |
|     { | |
|         b1  = Edge1.Bot.X - Edge1.Bot.Y * Edge1.Dx; | |
|         b2  = Edge2.Bot.X - Edge2.Bot.Y * Edge2.Dx; | |
|         double q = (b2 - b1) / (Edge1.Dx - Edge2.Dx); | |
|         ip.Y = Round( q ); | |
| 
 | |
|         if( std::fabs( Edge1.Dx ) < std::fabs( Edge2.Dx ) ) | |
|             ip.X = Round( Edge1.Dx * q + b1 ); | |
|         else | |
|             ip.X = Round( Edge2.Dx * q + b2 ); | |
|     } | |
| 
 | |
|     if( ip.Y < Edge1.Top.Y || ip.Y < Edge2.Top.Y ) | |
|     { | |
|         if( Edge1.Top.Y > Edge2.Top.Y ) | |
|             ip.Y = Edge1.Top.Y; | |
|         else | |
|             ip.Y = Edge2.Top.Y; | |
| 
 | |
|         if( std::fabs( Edge1.Dx ) < std::fabs( Edge2.Dx ) ) | |
|             ip.X = TopX( Edge1, ip.Y ); | |
|         else | |
|             ip.X = TopX( Edge2, ip.Y ); | |
|     } | |
| 
 | |
|     // finally, don't allow 'ip' to be BELOW curr.Y (ie bottom of scanbeam) ... | |
|     if( ip.Y > Edge1.Curr.Y ) | |
|     { | |
|         ip.Y = Edge1.Curr.Y; | |
| 
 | |
|         // use the more vertical edge to derive X ... | |
|         if( std::fabs( Edge1.Dx ) > std::fabs( Edge2.Dx ) ) | |
|             ip.X = TopX( Edge2, ip.Y ); | |
|         else | |
|             ip.X = TopX( Edge1, ip.Y ); | |
|     } | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| void ReversePolyPtLinks( OutPt* pp ) | |
| { | |
|     if( !pp ) | |
|         return; | |
| 
 | |
|     OutPt* pp1, * pp2; | |
|     pp1 = pp; | |
| 
 | |
|     do { | |
|         pp2 = pp1->Next; | |
|         pp1->Next = pp1->Prev; | |
|         pp1->Prev = pp2; | |
|         pp1 = pp2; | |
|     } while( pp1 != pp ); | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| void DisposeOutPts( OutPt*& pp ) | |
| { | |
|     if( pp == 0 ) | |
|         return; | |
| 
 | |
|     pp->Prev->Next = 0; | |
| 
 | |
|     while( pp ) | |
|     { | |
|         OutPt* tmpPp = pp; | |
|         pp = pp->Next; | |
|         delete tmpPp; | |
|     } | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| inline void InitEdge( TEdge* e, TEdge* eNext, TEdge* ePrev, const IntPoint& Pt ) | |
| { | |
|     std::memset( e, 0, sizeof(TEdge) ); | |
| 
 | |
|     e->Next = eNext; | |
|     e->Prev = ePrev; | |
|     e->Curr = Pt; | |
|     e->OutIdx = Unassigned; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| void InitEdge2( TEdge& e, PolyType Pt ) | |
| { | |
|     if( e.Curr.Y >= e.Next->Curr.Y ) | |
|     { | |
|         e.Bot = e.Curr; | |
|         e.Top = e.Next->Curr; | |
|     } | |
|     else | |
|     { | |
|         e.Top = e.Curr; | |
|         e.Bot = e.Next->Curr; | |
|     } | |
| 
 | |
|     SetDx( e ); | |
|     e.PolyTyp = Pt; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| TEdge* RemoveEdge( TEdge* e ) | |
| { | |
|     // removes e from double_linked_list (but without removing from memory) | |
|     e->Prev->Next = e->Next; | |
|     e->Next->Prev = e->Prev; | |
|     TEdge* result = e->Next; | |
|     e->Prev = 0; // flag as removed (see ClipperBase.Clear) | |
|     return result; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| inline void ReverseHorizontal( TEdge& e ) | |
| { | |
|     // swap horizontal edges' Top and Bottom x's so they follow the natural | |
|     // progression of the bounds - ie so their xbots will align with the | |
|     // adjoining lower edge. [Helpful in the ProcessHorizontal() method.] | |
|     std::swap( e.Top.X, e.Bot.X ); | |
| 
 | |
| #ifdef use_xyz | |
|     std::swap( e.Top.Z, e.Bot.Z ); | |
| #endif | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| void SwapPoints( IntPoint& pt1, IntPoint& pt2 ) | |
| { | |
|     IntPoint tmp = pt1; | |
| 
 | |
|     pt1 = pt2; | |
|     pt2 = tmp; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| bool GetOverlapSegment( IntPoint pt1a, IntPoint pt1b, IntPoint pt2a, | |
|         IntPoint pt2b, IntPoint& pt1, IntPoint& pt2 ) | |
| { | |
|     // precondition: segments are Collinear. | |
|     if( Abs( pt1a.X - pt1b.X ) > Abs( pt1a.Y - pt1b.Y ) ) | |
|     { | |
|         if( pt1a.X > pt1b.X ) | |
|             SwapPoints( pt1a, pt1b ); | |
| 
 | |
|         if( pt2a.X > pt2b.X ) | |
|             SwapPoints( pt2a, pt2b ); | |
| 
 | |
|         if( pt1a.X > pt2a.X ) | |
|             pt1 = pt1a; | |
|         else | |
|             pt1 = pt2a; | |
| 
 | |
|         if( pt1b.X < pt2b.X ) | |
|             pt2 = pt1b; | |
|         else | |
|             pt2 = pt2b; | |
| 
 | |
|         return pt1.X < pt2.X; | |
|     } | |
|     else | |
|     { | |
|         if( pt1a.Y < pt1b.Y ) | |
|             SwapPoints( pt1a, pt1b ); | |
| 
 | |
|         if( pt2a.Y < pt2b.Y ) | |
|             SwapPoints( pt2a, pt2b ); | |
| 
 | |
|         if( pt1a.Y < pt2a.Y ) | |
|             pt1 = pt1a; | |
|         else | |
|             pt1 = pt2a; | |
| 
 | |
|         if( pt1b.Y > pt2b.Y ) | |
|             pt2 = pt1b; | |
|         else | |
|             pt2 = pt2b; | |
| 
 | |
|         return pt1.Y > pt2.Y; | |
|     } | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| bool FirstIsBottomPt( const OutPt* btmPt1, const OutPt* btmPt2 ) | |
| { | |
|     OutPt* p = btmPt1->Prev; | |
| 
 | |
|     while( (p->Pt == btmPt1->Pt) && (p != btmPt1) ) | |
|         p = p->Prev; | |
| 
 | |
|     double dx1p = std::fabs( GetDx( btmPt1->Pt, p->Pt ) ); | |
|     p = btmPt1->Next; | |
| 
 | |
|     while( (p->Pt == btmPt1->Pt) && (p != btmPt1) ) | |
|         p = p->Next; | |
| 
 | |
|     double dx1n = std::fabs( GetDx( btmPt1->Pt, p->Pt ) ); | |
| 
 | |
|     p = btmPt2->Prev; | |
| 
 | |
|     while( (p->Pt == btmPt2->Pt) && (p != btmPt2) ) | |
|         p = p->Prev; | |
| 
 | |
|     double dx2p = std::fabs( GetDx( btmPt2->Pt, p->Pt ) ); | |
|     p = btmPt2->Next; | |
| 
 | |
|     while( (p->Pt == btmPt2->Pt) && (p != btmPt2) ) | |
|         p = p->Next; | |
| 
 | |
|     double dx2n = std::fabs( GetDx( btmPt2->Pt, p->Pt ) ); | |
| 
 | |
|     if( std::max( dx1p, dx1n ) == std::max( dx2p, dx2n ) | |
|         && std::min( dx1p, dx1n ) == std::min( dx2p, dx2n ) ) | |
|         return Area( btmPt1 ) > 0; // if otherwise identical use orientation | |
|     else | |
|         return (dx1p >= dx2p && dx1p >= dx2n) || (dx1n >= dx2p && dx1n >= dx2n); | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| OutPt* GetBottomPt( OutPt* pp ) | |
| { | |
|     OutPt* dups = 0; | |
|     OutPt* p = pp->Next; | |
| 
 | |
|     while( p != pp ) | |
|     { | |
|         if( p->Pt.Y > pp->Pt.Y ) | |
|         { | |
|             pp = p; | |
|             dups = 0; | |
|         } | |
|         else if( p->Pt.Y == pp->Pt.Y && p->Pt.X <= pp->Pt.X ) | |
|         { | |
|             if( p->Pt.X < pp->Pt.X ) | |
|             { | |
|                 dups = 0; | |
|                 pp = p; | |
|             } | |
|             else | |
|             { | |
|                 if( p->Next != pp && p->Prev != pp ) | |
|                     dups = p; | |
|             } | |
|         } | |
| 
 | |
|         p = p->Next; | |
|     } | |
| 
 | |
|     if( dups ) | |
|     { | |
|         // there appears to be at least 2 vertices at BottomPt so ... | |
|         while( dups != p ) | |
|         { | |
|             if( !FirstIsBottomPt( p, dups ) ) | |
|                 pp = dups; | |
| 
 | |
|             dups = dups->Next; | |
| 
 | |
|             while( dups->Pt != pp->Pt ) | |
|                 dups = dups->Next; | |
|         } | |
|     } | |
| 
 | |
|     return pp; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| bool Pt2IsBetweenPt1AndPt3( const IntPoint pt1, | |
|         const IntPoint pt2, const IntPoint pt3 ) | |
| { | |
|     if( (pt1 == pt3) || (pt1 == pt2) || (pt3 == pt2) ) | |
|         return false; | |
|     else if( pt1.X != pt3.X ) | |
|         return (pt2.X > pt1.X) == (pt2.X < pt3.X); | |
|     else | |
|         return (pt2.Y > pt1.Y) == (pt2.Y < pt3.Y); | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| bool HorzSegmentsOverlap( cInt seg1a, cInt seg1b, cInt seg2a, cInt seg2b ) | |
| { | |
|     if( seg1a > seg1b ) | |
|         std::swap( seg1a, seg1b ); | |
| 
 | |
|     if( seg2a > seg2b ) | |
|         std::swap( seg2a, seg2b ); | |
| 
 | |
|     return (seg1a < seg2b) && (seg2a < seg1b); | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
| // ClipperBase class methods ... | |
| // ------------------------------------------------------------------------------ | |
|  | |
| ClipperBase::ClipperBase()              // constructor | |
| { | |
|     m_CurrentLM = m_MinimaList.begin(); // begin() == end() here | |
|     m_UseFullRange = false; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| ClipperBase::~ClipperBase()    // destructor | |
| { | |
|     Clear(); | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| void RangeTest( const IntPoint& Pt, bool& useFullRange ) | |
| { | |
|     if( useFullRange ) | |
|     { | |
|         if( Pt.X > hiRange || Pt.Y > hiRange || -Pt.X > hiRange || -Pt.Y > hiRange ) | |
|             throw clipperException( "Coordinate outside allowed range" ); | |
|     } | |
|     else if( Pt.X > loRange|| Pt.Y > loRange || -Pt.X > loRange || -Pt.Y > loRange ) | |
|     { | |
|         useFullRange = true; | |
|         RangeTest( Pt, useFullRange ); | |
|     } | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| TEdge* FindNextLocMin( TEdge* E ) | |
| { | |
|     for( ; ; ) | |
|     { | |
|         while( E->Bot != E->Prev->Bot || E->Curr == E->Top ) | |
|             E = E->Next; | |
| 
 | |
|         if( !IsHorizontal( *E ) && !IsHorizontal( *E->Prev ) ) | |
|             break; | |
| 
 | |
|         while( IsHorizontal( *E->Prev ) ) | |
|             E = E->Prev; | |
| 
 | |
|         TEdge* E2 = E; | |
| 
 | |
|         while( IsHorizontal( *E ) ) | |
|             E = E->Next; | |
| 
 | |
|         if( E->Top.Y == E->Prev->Bot.Y ) | |
|             continue;                         // ie just an intermediate horz. | |
|  | |
|         if( E2->Prev->Bot.X < E->Bot.X ) | |
|             E = E2; | |
| 
 | |
|         break; | |
|     } | |
| 
 | |
|     return E; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| TEdge* ClipperBase::ProcessBound( TEdge* E, bool NextIsForward ) | |
| { | |
|     TEdge* Result = E; | |
|     TEdge* Horz = 0; | |
| 
 | |
|     if( E->OutIdx == Skip ) | |
|     { | |
|         // if edges still remain in the current bound beyond the skip edge then | |
|         // create another LocMin and call ProcessBound once more | |
|         if( NextIsForward ) | |
|         { | |
|             while( E->Top.Y == E->Next->Bot.Y ) | |
|                 E = E->Next; | |
| 
 | |
|             // don't include top horizontals when parsing a bound a second time, | |
|             // they will be contained in the opposite bound ... | |
|             while( E != Result && IsHorizontal( *E ) ) | |
|                 E = E->Prev; | |
|         } | |
|         else | |
|         { | |
|             while( E->Top.Y == E->Prev->Bot.Y ) | |
|                 E = E->Prev; | |
| 
 | |
|             while( E != Result && IsHorizontal( *E ) ) | |
|                 E = E->Next; | |
|         } | |
| 
 | |
|         if( E == Result ) | |
|         { | |
|             if( NextIsForward ) | |
|                 Result = E->Next; | |
|             else | |
|                 Result = E->Prev; | |
|         } | |
|         else | |
|         { | |
|             // there are more edges in the bound beyond result starting with E | |
|             if( NextIsForward ) | |
|                 E = Result->Next; | |
|             else | |
|                 E = Result->Prev; | |
| 
 | |
|             MinimaList::value_type locMin; | |
|             locMin.Y = E->Bot.Y; | |
|             locMin.LeftBound = 0; | |
|             locMin.RightBound = E; | |
|             E->WindDelta = 0; | |
|             Result = ProcessBound( E, NextIsForward ); | |
|             m_MinimaList.push_back( locMin ); | |
|         } | |
| 
 | |
|         return Result; | |
|     } | |
| 
 | |
|     TEdge* EStart; | |
| 
 | |
|     if( IsHorizontal( *E ) ) | |
|     { | |
|         // We need to be careful with open paths because this may not be a | |
|         // true local minima (ie E may be following a skip edge). | |
|         // Also, consecutive horz. edges may start heading left before going right. | |
|         if( NextIsForward ) | |
|             EStart = E->Prev; | |
|         else | |
|             EStart = E->Next; | |
| 
 | |
|         if( IsHorizontal( *EStart ) ) // ie an adjoining horizontal skip edge | |
|         { | |
|             if( EStart->Bot.X != E->Bot.X && EStart->Top.X != E->Bot.X ) | |
|                 ReverseHorizontal( *E ); | |
|         } | |
|         else if( EStart->Bot.X != E->Bot.X ) | |
|             ReverseHorizontal( *E ); | |
|     } | |
| 
 | |
|     EStart = E; | |
| 
 | |
|     if( NextIsForward ) | |
|     { | |
|         while( Result->Top.Y == Result->Next->Bot.Y && Result->Next->OutIdx != Skip ) | |
|             Result = Result->Next; | |
| 
 | |
|         if( IsHorizontal( *Result ) && Result->Next->OutIdx != Skip ) | |
|         { | |
|             // nb: at the top of a bound, horizontals are added to the bound | |
|             // only when the preceding edge attaches to the horizontal's left vertex | |
|             // unless a Skip edge is encountered when that becomes the top divide | |
|             Horz = Result; | |
| 
 | |
|             while( IsHorizontal( *Horz->Prev ) ) | |
|                 Horz = Horz->Prev; | |
| 
 | |
|             if( Horz->Prev->Top.X > Result->Next->Top.X ) | |
|                 Result = Horz->Prev; | |
|         } | |
| 
 | |
|         while( E != Result ) | |
|         { | |
|             E->NextInLML = E->Next; | |
| 
 | |
|             if( IsHorizontal( *E ) && E != EStart | |
|                 && E->Bot.X != E->Prev->Top.X ) | |
|                 ReverseHorizontal( *E ); | |
| 
 | |
|             E = E->Next; | |
|         } | |
| 
 | |
|         if( IsHorizontal( *E ) && E != EStart && E->Bot.X != E->Prev->Top.X ) | |
|             ReverseHorizontal( *E ); | |
| 
 | |
|         Result = Result->Next; // move to the edge just beyond current bound | |
|     } | |
|     else | |
|     { | |
|         while( Result->Top.Y == Result->Prev->Bot.Y && Result->Prev->OutIdx != Skip ) | |
|             Result = Result->Prev; | |
| 
 | |
|         if( IsHorizontal( *Result ) && Result->Prev->OutIdx != Skip ) | |
|         { | |
|             Horz = Result; | |
| 
 | |
|             while( IsHorizontal( *Horz->Next ) ) | |
|                 Horz = Horz->Next; | |
| 
 | |
|             if( Horz->Next->Top.X == Result->Prev->Top.X | |
|                 || Horz->Next->Top.X > Result->Prev->Top.X ) | |
|                 Result = Horz->Next; | |
|         } | |
| 
 | |
|         while( E != Result ) | |
|         { | |
|             E->NextInLML = E->Prev; | |
| 
 | |
|             if( IsHorizontal( *E ) && E != EStart && E->Bot.X != E->Next->Top.X ) | |
|                 ReverseHorizontal( *E ); | |
| 
 | |
|             E = E->Prev; | |
|         } | |
| 
 | |
|         if( IsHorizontal( *E ) && E != EStart && E->Bot.X != E->Next->Top.X ) | |
|             ReverseHorizontal( *E ); | |
| 
 | |
|         Result = Result->Prev; // move to the edge just beyond current bound | |
|     } | |
| 
 | |
|     return Result; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| bool ClipperBase::AddPath( const Path& pg, PolyType PolyTyp, bool Closed ) | |
| { | |
| #ifdef use_lines | |
|  | |
|     if( !Closed && PolyTyp == ptClip ) | |
|         throw clipperException( "AddPath: Open paths must be subject." ); | |
| 
 | |
| #else | |
|  | |
|     if( !Closed ) | |
|         throw clipperException( "AddPath: Open paths have been disabled." ); | |
| 
 | |
| #endif | |
|  | |
|     int highI = (int) pg.size() - 1; | |
| 
 | |
|     if( Closed ) | |
|         while( highI > 0 && (pg[highI] == pg[0]) ) | |
|             --highI; | |
| 
 | |
| 
 | |
|     while( highI > 0 && (pg[highI] == pg[highI - 1]) ) | |
|         --highI; | |
| 
 | |
|     if( (Closed && highI < 2) || (!Closed && highI < 1) ) | |
|         return false; | |
| 
 | |
|     // create a new edge array ... | |
|     TEdge* edges = new TEdge[highI + 1]; | |
| 
 | |
|     bool IsFlat = true; | |
|     // 1. Basic (first) edge initialization ... | |
|     try | |
|     { | |
|         edges[1].Curr = pg[1]; | |
|         RangeTest( pg[0], m_UseFullRange ); | |
|         RangeTest( pg[highI], m_UseFullRange ); | |
|         InitEdge( &edges[0], &edges[1], &edges[highI], pg[0] ); | |
|         InitEdge( &edges[highI], &edges[0], &edges[highI - 1], pg[highI] ); | |
| 
 | |
|         for( int i = highI - 1; i >= 1; --i ) | |
|         { | |
|             RangeTest( pg[i], m_UseFullRange ); | |
|             InitEdge( &edges[i], &edges[i + 1], &edges[i - 1], pg[i] ); | |
|         } | |
|     } | |
|     catch( ... ) | |
|     { | |
|         delete [] edges; | |
|         throw; // range test fails | |
|     } | |
|     TEdge* eStart = &edges[0]; | |
| 
 | |
|     // 2. Remove duplicate vertices, and (when closed) collinear edges ... | |
|     TEdge* E = eStart, * eLoopStop = eStart; | |
| 
 | |
|     for( ; ; ) | |
|     { | |
|         // nb: allows matching start and end points when not Closed ... | |
|         if( E->Curr == E->Next->Curr && (Closed || E->Next != eStart) ) | |
|         { | |
|             if( E == E->Next ) | |
|                 break; | |
| 
 | |
|             if( E == eStart ) | |
|                 eStart = E->Next; | |
| 
 | |
|             E = RemoveEdge( E ); | |
|             eLoopStop = E; | |
|             continue; | |
|         } | |
| 
 | |
|         if( E->Prev == E->Next ) | |
|             break; // only two vertices | |
|         else if( Closed | |
|                  && SlopesEqual( E->Prev->Curr, E->Curr, E->Next->Curr, m_UseFullRange ) | |
|                  && ( !m_PreserveCollinear | |
|                       || !Pt2IsBetweenPt1AndPt3( E->Prev->Curr, E->Curr, E->Next->Curr ) ) ) | |
|         { | |
|             // Collinear edges are allowed for open paths but in closed paths | |
|             // the default is to merge adjacent collinear edges into a single edge. | |
|             // However, if the PreserveCollinear property is enabled, only overlapping | |
|             // collinear edges (ie spikes) will be removed from closed paths. | |
|             if( E == eStart ) | |
|                 eStart = E->Next; | |
| 
 | |
|             E = RemoveEdge( E ); | |
|             E = E->Prev; | |
|             eLoopStop = E; | |
|             continue; | |
|         } | |
| 
 | |
|         E = E->Next; | |
| 
 | |
|         if( (E == eLoopStop) || (!Closed && E->Next == eStart) ) | |
|             break; | |
|     } | |
| 
 | |
|     if( ( !Closed && (E == E->Next) ) || ( Closed && (E->Prev == E->Next) ) ) | |
|     { | |
|         delete [] edges; | |
|         return false; | |
|     } | |
| 
 | |
|     if( !Closed ) | |
|     { | |
|         m_HasOpenPaths = true; | |
|         eStart->Prev->OutIdx = Skip; | |
|     } | |
| 
 | |
|     // 3. Do second stage of edge initialization ... | |
|     E = eStart; | |
| 
 | |
|     do | |
|     { | |
|         InitEdge2( *E, PolyTyp ); | |
|         E = E->Next; | |
| 
 | |
|         if( IsFlat && E->Curr.Y != eStart->Curr.Y ) | |
|             IsFlat = false; | |
|     } while( E != eStart ); | |
| 
 | |
|     // 4. Finally, add edge bounds to LocalMinima list ... | |
|  | |
|     // Totally flat paths must be handled differently when adding them | |
|     // to LocalMinima list to avoid endless loops etc ... | |
|     if( IsFlat ) | |
|     { | |
|         if( Closed ) | |
|         { | |
|             delete [] edges; | |
|             return false; | |
|         } | |
| 
 | |
|         E->Prev->OutIdx = Skip; | |
|         MinimaList::value_type locMin; | |
|         locMin.Y = E->Bot.Y; | |
|         locMin.LeftBound = 0; | |
|         locMin.RightBound = E; | |
|         locMin.RightBound->Side = esRight; | |
|         locMin.RightBound->WindDelta = 0; | |
| 
 | |
|         for( ; ; ) | |
|         { | |
|             if( E->Bot.X != E->Prev->Top.X ) | |
|                 ReverseHorizontal( *E ); | |
| 
 | |
|             if( E->Next->OutIdx == Skip ) | |
|                 break; | |
| 
 | |
|             E->NextInLML = E->Next; | |
|             E = E->Next; | |
|         } | |
| 
 | |
|         m_MinimaList.push_back( locMin ); | |
|         m_edges.push_back( edges ); | |
|         return true; | |
|     } | |
| 
 | |
|     m_edges.push_back( edges ); | |
|     bool leftBoundIsForward; | |
|     TEdge* EMin = 0; | |
| 
 | |
|     // workaround to avoid an endless loop in the while loop below when | |
|     // open paths have matching start and end points ... | |
|     if( E->Prev->Bot == E->Prev->Top ) | |
|         E = E->Next; | |
| 
 | |
|     for( ; ; ) | |
|     { | |
|         E = FindNextLocMin( E ); | |
| 
 | |
|         if( E == EMin ) | |
|             break; | |
|         else if( !EMin ) | |
|             EMin = E; | |
| 
 | |
|         // E and E.Prev now share a local minima (left aligned if horizontal). | |
|         // Compare their slopes to find which starts which bound ... | |
|         MinimaList::value_type locMin; | |
|         locMin.Y = E->Bot.Y; | |
| 
 | |
|         if( E->Dx < E->Prev->Dx ) | |
|         { | |
|             locMin.LeftBound = E->Prev; | |
|             locMin.RightBound = E; | |
|             leftBoundIsForward = false; // Q.nextInLML = Q.prev | |
|         } | |
|         else | |
|         { | |
|             locMin.LeftBound = E; | |
|             locMin.RightBound = E->Prev; | |
|             leftBoundIsForward = true; // Q.nextInLML = Q.next | |
|         } | |
| 
 | |
|         if( !Closed ) | |
|             locMin.LeftBound->WindDelta = 0; | |
|         else if( locMin.LeftBound->Next == locMin.RightBound ) | |
|             locMin.LeftBound->WindDelta = -1; | |
|         else | |
|             locMin.LeftBound->WindDelta = 1; | |
| 
 | |
|         locMin.RightBound->WindDelta = -locMin.LeftBound->WindDelta; | |
| 
 | |
|         E = ProcessBound( locMin.LeftBound, leftBoundIsForward ); | |
| 
 | |
|         if( E->OutIdx == Skip ) | |
|             E = ProcessBound( E, leftBoundIsForward ); | |
| 
 | |
|         TEdge* E2 = ProcessBound( locMin.RightBound, !leftBoundIsForward ); | |
| 
 | |
|         if( E2->OutIdx == Skip ) | |
|             E2 = ProcessBound( E2, !leftBoundIsForward ); | |
| 
 | |
|         if( locMin.LeftBound->OutIdx == Skip ) | |
|             locMin.LeftBound = 0; | |
|         else if( locMin.RightBound->OutIdx == Skip ) | |
|             locMin.RightBound = 0; | |
| 
 | |
|         m_MinimaList.push_back( locMin ); | |
| 
 | |
|         if( !leftBoundIsForward ) | |
|             E = E2; | |
|     } | |
| 
 | |
|     return true; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| bool ClipperBase::AddPaths( const Paths& ppg, PolyType PolyTyp, bool Closed ) | |
| { | |
|     bool result = false; | |
| 
 | |
|     for( Paths::size_type i = 0; i < ppg.size(); ++i ) | |
|         if( AddPath( ppg[i], PolyTyp, Closed ) ) | |
|             result = true; | |
| 
 | |
| 
 | |
|     return result; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| void ClipperBase::Clear() | |
| { | |
|     DisposeLocalMinimaList(); | |
| 
 | |
|     for( EdgeList::size_type i = 0; i < m_edges.size(); ++i ) | |
|     { | |
|         TEdge* edges = m_edges[i]; | |
|         delete [] edges; | |
|     } | |
| 
 | |
|     m_edges.clear(); | |
|     m_UseFullRange  = false; | |
|     m_HasOpenPaths  = false; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| void ClipperBase::Reset() | |
| { | |
|     m_CurrentLM = m_MinimaList.begin(); | |
| 
 | |
|     if( m_CurrentLM == m_MinimaList.end() ) | |
|         return;                                  // ie nothing to process | |
|  | |
|     std::sort( m_MinimaList.begin(), m_MinimaList.end(), LocMinSorter() ); | |
| 
 | |
|     m_Scanbeam = ScanbeamList(); // clears/resets priority_queue | |
|  | |
|     // reset all edges ... | |
|     for( MinimaList::iterator lm = m_MinimaList.begin(); lm != m_MinimaList.end(); ++lm ) | |
|     { | |
|         InsertScanbeam( lm->Y ); | |
|         TEdge* e = lm->LeftBound; | |
| 
 | |
|         if( e ) | |
|         { | |
|             e->Curr = e->Bot; | |
|             e->Side = esLeft; | |
|             e->OutIdx = Unassigned; | |
|         } | |
| 
 | |
|         e = lm->RightBound; | |
| 
 | |
|         if( e ) | |
|         { | |
|             e->Curr = e->Bot; | |
|             e->Side = esRight; | |
|             e->OutIdx = Unassigned; | |
|         } | |
|     } | |
| 
 | |
|     m_ActiveEdges = 0; | |
|     m_CurrentLM = m_MinimaList.begin(); | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| void ClipperBase::DisposeLocalMinimaList() | |
| { | |
|     m_MinimaList.clear(); | |
|     m_CurrentLM = m_MinimaList.begin(); | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| bool ClipperBase::PopLocalMinima( cInt Y, const LocalMinimum*& locMin ) | |
| { | |
|     if( m_CurrentLM == m_MinimaList.end() || (*m_CurrentLM).Y != Y ) | |
|         return false; | |
| 
 | |
|     locMin = &(*m_CurrentLM); | |
|     ++m_CurrentLM; | |
|     return true; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| IntRect ClipperBase::GetBounds() | |
| { | |
|     IntRect result; | |
|     MinimaList::iterator lm = m_MinimaList.begin(); | |
| 
 | |
|     if( lm == m_MinimaList.end() ) | |
|     { | |
|         result.left = result.top = result.right = result.bottom = 0; | |
|         return result; | |
|     } | |
| 
 | |
|     result.left = lm->LeftBound->Bot.X; | |
|     result.top = lm->LeftBound->Bot.Y; | |
|     result.right = lm->LeftBound->Bot.X; | |
|     result.bottom = lm->LeftBound->Bot.Y; | |
| 
 | |
|     while( lm != m_MinimaList.end() ) | |
|     { | |
|         // todo - needs fixing for open paths | |
|         result.bottom = std::max( result.bottom, lm->LeftBound->Bot.Y ); | |
|         TEdge* e = lm->LeftBound; | |
| 
 | |
|         for( ; ; ) | |
|         { | |
|             TEdge* bottomE = e; | |
| 
 | |
|             while( e->NextInLML ) | |
|             { | |
|                 if( e->Bot.X < result.left ) | |
|                     result.left = e->Bot.X; | |
| 
 | |
|                 if( e->Bot.X > result.right ) | |
|                     result.right = e->Bot.X; | |
| 
 | |
|                 e = e->NextInLML; | |
|             } | |
| 
 | |
|             result.left = std::min( result.left, e->Bot.X ); | |
|             result.right = std::max( result.right, e->Bot.X ); | |
|             result.left = std::min( result.left, e->Top.X ); | |
|             result.right = std::max( result.right, e->Top.X ); | |
|             result.top = std::min( result.top, e->Top.Y ); | |
| 
 | |
|             if( bottomE == lm->LeftBound ) | |
|                 e = lm->RightBound; | |
|             else | |
|                 break; | |
|         } | |
| 
 | |
|         ++lm; | |
|     } | |
| 
 | |
|     return result; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| void ClipperBase::InsertScanbeam( const cInt Y ) | |
| { | |
|     m_Scanbeam.push( Y ); | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| bool ClipperBase::PopScanbeam( cInt& Y ) | |
| { | |
|     if( m_Scanbeam.empty() ) | |
|         return false; | |
| 
 | |
|     Y = m_Scanbeam.top(); | |
|     m_Scanbeam.pop(); | |
| 
 | |
|     while( !m_Scanbeam.empty() && Y == m_Scanbeam.top() ) | |
|     { | |
|         m_Scanbeam.pop(); | |
|     }                                                                        // Pop duplicates. | |
|  | |
|     return true; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| void ClipperBase::DisposeAllOutRecs() | |
| { | |
|     for( PolyOutList::size_type i = 0; i < m_PolyOuts.size(); ++i ) | |
|         DisposeOutRec( i ); | |
| 
 | |
|     m_PolyOuts.clear(); | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| void ClipperBase::DisposeOutRec( PolyOutList::size_type index ) | |
| { | |
|     OutRec* outRec = m_PolyOuts[index]; | |
| 
 | |
|     if( outRec->Pts ) | |
|         DisposeOutPts( outRec->Pts ); | |
| 
 | |
|     delete outRec; | |
|     m_PolyOuts[index] = 0; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| void ClipperBase::DeleteFromAEL( TEdge* e ) | |
| { | |
|     TEdge* AelPrev  = e->PrevInAEL; | |
|     TEdge* AelNext  = e->NextInAEL; | |
| 
 | |
|     if( !AelPrev &&  !AelNext && (e != m_ActiveEdges) ) | |
|         return;                                              // already deleted | |
|  | |
|     if( AelPrev ) | |
|         AelPrev->NextInAEL = AelNext; | |
|     else | |
|         m_ActiveEdges = AelNext; | |
| 
 | |
|     if( AelNext ) | |
|         AelNext->PrevInAEL = AelPrev; | |
| 
 | |
|     e->NextInAEL = 0; | |
|     e->PrevInAEL = 0; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| OutRec* ClipperBase::CreateOutRec() | |
| { | |
|     OutRec* result = new OutRec; | |
| 
 | |
|     result->IsHole  = false; | |
|     result->IsOpen  = false; | |
|     result->FirstLeft = 0; | |
|     result->Pts = 0; | |
|     result->BottomPt = 0; | |
|     result->PolyNd = 0; | |
|     m_PolyOuts.push_back( result ); | |
|     result->Idx = (int) m_PolyOuts.size() - 1; | |
|     return result; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| void ClipperBase::SwapPositionsInAEL( TEdge* Edge1, TEdge* Edge2 ) | |
| { | |
|     // check that one or other edge hasn't already been removed from AEL ... | |
|     if( Edge1->NextInAEL == Edge1->PrevInAEL | |
|         || Edge2->NextInAEL == Edge2->PrevInAEL ) | |
|         return; | |
| 
 | |
|     if( Edge1->NextInAEL == Edge2 ) | |
|     { | |
|         TEdge* Next = Edge2->NextInAEL; | |
| 
 | |
|         if( Next ) | |
|             Next->PrevInAEL = Edge1; | |
| 
 | |
|         TEdge* Prev = Edge1->PrevInAEL; | |
| 
 | |
|         if( Prev ) | |
|             Prev->NextInAEL = Edge2; | |
| 
 | |
|         Edge2->PrevInAEL = Prev; | |
|         Edge2->NextInAEL = Edge1; | |
|         Edge1->PrevInAEL = Edge2; | |
|         Edge1->NextInAEL = Next; | |
|     } | |
|     else if( Edge2->NextInAEL == Edge1 ) | |
|     { | |
|         TEdge* Next = Edge1->NextInAEL; | |
| 
 | |
|         if( Next ) | |
|             Next->PrevInAEL = Edge2; | |
| 
 | |
|         TEdge* Prev = Edge2->PrevInAEL; | |
| 
 | |
|         if( Prev ) | |
|             Prev->NextInAEL = Edge1; | |
| 
 | |
|         Edge1->PrevInAEL = Prev; | |
|         Edge1->NextInAEL = Edge2; | |
|         Edge2->PrevInAEL = Edge1; | |
|         Edge2->NextInAEL = Next; | |
|     } | |
|     else | |
|     { | |
|         TEdge* Next = Edge1->NextInAEL; | |
|         TEdge* Prev = Edge1->PrevInAEL; | |
|         Edge1->NextInAEL = Edge2->NextInAEL; | |
| 
 | |
|         if( Edge1->NextInAEL ) | |
|             Edge1->NextInAEL->PrevInAEL = Edge1; | |
| 
 | |
|         Edge1->PrevInAEL = Edge2->PrevInAEL; | |
| 
 | |
|         if( Edge1->PrevInAEL ) | |
|             Edge1->PrevInAEL->NextInAEL = Edge1; | |
| 
 | |
|         Edge2->NextInAEL = Next; | |
| 
 | |
|         if( Edge2->NextInAEL ) | |
|             Edge2->NextInAEL->PrevInAEL = Edge2; | |
| 
 | |
|         Edge2->PrevInAEL = Prev; | |
| 
 | |
|         if( Edge2->PrevInAEL ) | |
|             Edge2->PrevInAEL->NextInAEL = Edge2; | |
|     } | |
| 
 | |
|     if( !Edge1->PrevInAEL ) | |
|         m_ActiveEdges = Edge1; | |
|     else if( !Edge2->PrevInAEL ) | |
|         m_ActiveEdges = Edge2; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| void ClipperBase::UpdateEdgeIntoAEL( TEdge*& e ) | |
| { | |
|     if( !e->NextInLML ) | |
|         throw clipperException( "UpdateEdgeIntoAEL: invalid call" ); | |
| 
 | |
|     e->NextInLML->OutIdx = e->OutIdx; | |
|     TEdge* AelPrev  = e->PrevInAEL; | |
|     TEdge* AelNext  = e->NextInAEL; | |
| 
 | |
|     if( AelPrev ) | |
|         AelPrev->NextInAEL = e->NextInLML; | |
|     else | |
|         m_ActiveEdges = e->NextInLML; | |
| 
 | |
|     if( AelNext ) | |
|         AelNext->PrevInAEL = e->NextInLML; | |
| 
 | |
|     e->NextInLML->Side = e->Side; | |
|     e->NextInLML->WindDelta = e->WindDelta; | |
|     e->NextInLML->WindCnt   = e->WindCnt; | |
|     e->NextInLML->WindCnt2  = e->WindCnt2; | |
|     e = e->NextInLML; | |
|     e->Curr = e->Bot; | |
|     e->PrevInAEL = AelPrev; | |
|     e->NextInAEL = AelNext; | |
| 
 | |
|     if( !IsHorizontal( *e ) ) | |
|         InsertScanbeam( e->Top.Y ); | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| bool ClipperBase::LocalMinimaPending() | |
| { | |
|     return m_CurrentLM != m_MinimaList.end(); | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
| // TClipper methods ... | |
| // ------------------------------------------------------------------------------ | |
|  | |
| Clipper::Clipper( int initOptions ) : ClipperBase()    // constructor | |
| { | |
|     m_ExecuteLocked = false; | |
|     m_UseFullRange  = false; | |
|     m_ReverseOutput = ( (initOptions & ioReverseSolution) != 0 ); | |
|     m_StrictSimple  = ( (initOptions & ioStrictlySimple) != 0 ); | |
|     m_PreserveCollinear = ( (initOptions & ioPreserveCollinear) != 0 ); | |
|     m_HasOpenPaths = false; | |
| #ifdef use_xyz | |
|     m_ZFill = 0; | |
| #endif | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| #ifdef use_xyz | |
| void Clipper::ZFillFunction( ZFillCallback zFillFunc ) | |
| { | |
|     m_ZFill = zFillFunc; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
| #endif | |
|  | |
| bool Clipper::Execute( ClipType clipType, Paths& solution, PolyFillType fillType ) | |
| { | |
|     return Execute( clipType, solution, fillType, fillType ); | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| bool Clipper::Execute( ClipType clipType, PolyTree& polytree, PolyFillType fillType ) | |
| { | |
|     return Execute( clipType, polytree, fillType, fillType ); | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| bool Clipper::Execute( ClipType clipType, Paths& solution, | |
|         PolyFillType subjFillType, PolyFillType clipFillType ) | |
| { | |
|     if( m_ExecuteLocked ) | |
|         return false; | |
| 
 | |
|     if( m_HasOpenPaths ) | |
|         throw clipperException( "Error: PolyTree struct is needed for open path clipping." ); | |
| 
 | |
|     m_ExecuteLocked = true; | |
|     solution.resize( 0 ); | |
|     m_SubjFillType  = subjFillType; | |
|     m_ClipFillType  = clipFillType; | |
|     m_ClipType = clipType; | |
|     m_UsingPolyTree = false; | |
|     bool succeeded = ExecuteInternal(); | |
| 
 | |
|     if( succeeded ) | |
|         BuildResult( solution ); | |
| 
 | |
|     DisposeAllOutRecs(); | |
|     m_ExecuteLocked = false; | |
|     return succeeded; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| bool Clipper::Execute( ClipType clipType, PolyTree& polytree, | |
|         PolyFillType subjFillType, PolyFillType clipFillType ) | |
| { | |
|     if( m_ExecuteLocked ) | |
|         return false; | |
| 
 | |
|     m_ExecuteLocked = true; | |
|     m_SubjFillType  = subjFillType; | |
|     m_ClipFillType  = clipFillType; | |
|     m_ClipType = clipType; | |
|     m_UsingPolyTree = true; | |
|     bool succeeded = ExecuteInternal(); | |
| 
 | |
|     if( succeeded ) | |
|         BuildResult2( polytree ); | |
| 
 | |
|     DisposeAllOutRecs(); | |
|     m_ExecuteLocked = false; | |
|     return succeeded; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| void Clipper::FixHoleLinkage( OutRec& outrec ) | |
| { | |
|     // skip OutRecs that (a) contain outermost polygons or | |
|     // (b) already have the correct owner/child linkage ... | |
|     if( !outrec.FirstLeft | |
|         || (outrec.IsHole != outrec.FirstLeft->IsHole | |
|             && outrec.FirstLeft->Pts) ) | |
|         return; | |
| 
 | |
|     OutRec* orfl = outrec.FirstLeft; | |
| 
 | |
|     while( orfl && ( (orfl->IsHole == outrec.IsHole) || !orfl->Pts ) ) | |
|         orfl = orfl->FirstLeft; | |
| 
 | |
|     outrec.FirstLeft = orfl; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| bool Clipper::ExecuteInternal() | |
| { | |
|     bool succeeded = true; | |
| 
 | |
|     try | |
|     { | |
|         Reset(); | |
|         m_Maxima = MaximaList(); | |
|         m_SortedEdges = 0; | |
| 
 | |
|         succeeded = true; | |
|         cInt botY, topY; | |
| 
 | |
|         if( !PopScanbeam( botY ) ) | |
|             return false; | |
| 
 | |
|         InsertLocalMinimaIntoAEL( botY ); | |
| 
 | |
|         while( PopScanbeam( topY ) || LocalMinimaPending() ) | |
|         { | |
|             ProcessHorizontals(); | |
|             ClearGhostJoins(); | |
| 
 | |
|             if( !ProcessIntersections( topY ) ) | |
|             { | |
|                 succeeded = false; | |
|                 break; | |
|             } | |
| 
 | |
|             ProcessEdgesAtTopOfScanbeam( topY ); | |
|             botY = topY; | |
|             InsertLocalMinimaIntoAEL( botY ); | |
|         } | |
|     } | |
|     catch( ... ) | |
|     { | |
|         succeeded = false; | |
|     } | |
| 
 | |
|     if( succeeded ) | |
|     { | |
|         // fix orientations ... | |
|         for( PolyOutList::size_type i = 0; i < m_PolyOuts.size(); ++i ) | |
|         { | |
|             OutRec* outRec = m_PolyOuts[i]; | |
| 
 | |
|             if( !outRec->Pts || outRec->IsOpen ) | |
|                 continue; | |
| 
 | |
|             if( (outRec->IsHole ^ m_ReverseOutput) == (Area( *outRec ) > 0) ) | |
|                 ReversePolyPtLinks( outRec->Pts ); | |
|         } | |
| 
 | |
|         if( !m_Joins.empty() ) | |
|             JoinCommonEdges(); | |
| 
 | |
|         // unfortunately FixupOutPolygon() must be done after JoinCommonEdges() | |
|         for( PolyOutList::size_type i = 0; i < m_PolyOuts.size(); ++i ) | |
|         { | |
|             OutRec* outRec = m_PolyOuts[i]; | |
| 
 | |
|             if( !outRec->Pts ) | |
|                 continue; | |
| 
 | |
|             if( outRec->IsOpen ) | |
|                 FixupOutPolyline( *outRec ); | |
|             else | |
|                 FixupOutPolygon( *outRec ); | |
|         } | |
| 
 | |
|         if( m_StrictSimple ) | |
|             DoSimplePolygons(); | |
|     } | |
| 
 | |
|     ClearJoins(); | |
|     ClearGhostJoins(); | |
|     return succeeded; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| void Clipper::SetWindingCount( TEdge& edge ) | |
| { | |
|     TEdge* e = edge.PrevInAEL; | |
| 
 | |
|     // find the edge of the same polytype that immediately preceeds 'edge' in AEL | |
|     while( e  && ( (e->PolyTyp != edge.PolyTyp) || (e->WindDelta == 0) ) ) | |
|         e = e->PrevInAEL; | |
| 
 | |
|     if( !e ) | |
|     { | |
|         if( edge.WindDelta == 0 ) | |
|         { | |
|             PolyFillType pft = (edge.PolyTyp == ptSubject ? m_SubjFillType : m_ClipFillType); | |
|             edge.WindCnt = (pft == pftNegative ? -1 : 1); | |
|         } | |
|         else | |
|             edge.WindCnt = edge.WindDelta; | |
| 
 | |
|         edge.WindCnt2 = 0; | |
|         e = m_ActiveEdges; // ie get ready to calc WindCnt2 | |
|     } | |
|     else if( edge.WindDelta == 0 && m_ClipType != ctUnion ) | |
|     { | |
|         edge.WindCnt = 1; | |
|         edge.WindCnt2 = e->WindCnt2; | |
|         e = e->NextInAEL; // ie get ready to calc WindCnt2 | |
|     } | |
|     else if( IsEvenOddFillType( edge ) ) | |
|     { | |
|         // EvenOdd filling ... | |
|         if( edge.WindDelta == 0 ) | |
|         { | |
|             // are we inside a subj polygon ... | |
|             bool Inside = true; | |
|             TEdge* e2 = e->PrevInAEL; | |
| 
 | |
|             while( e2 ) | |
|             { | |
|                 if( e2->PolyTyp == e->PolyTyp && e2->WindDelta != 0 ) | |
|                     Inside = !Inside; | |
| 
 | |
|                 e2 = e2->PrevInAEL; | |
|             } | |
| 
 | |
|             edge.WindCnt = (Inside ? 0 : 1); | |
|         } | |
|         else | |
|         { | |
|             edge.WindCnt = edge.WindDelta; | |
|         } | |
| 
 | |
|         edge.WindCnt2 = e->WindCnt2; | |
|         e = e->NextInAEL; // ie get ready to calc WindCnt2 | |
|     } | |
|     else | |
|     { | |
|         // nonZero, Positive or Negative filling ... | |
|         if( e->WindCnt * e->WindDelta < 0 ) | |
|         { | |
|             // prev edge is 'decreasing' WindCount (WC) toward zero | |
|             // so we're outside the previous polygon ... | |
|             if( Abs( e->WindCnt ) > 1 ) | |
|             { | |
|                 // outside prev poly but still inside another. | |
|                 // when reversing direction of prev poly use the same WC | |
|                 if( e->WindDelta * edge.WindDelta < 0 ) | |
|                     edge.WindCnt = e->WindCnt; | |
|                 // otherwise continue to 'decrease' WC ... | |
|                 else | |
|                     edge.WindCnt = e->WindCnt + edge.WindDelta; | |
|             } | |
|             else | |
|                 // now outside all polys of same polytype so set own WC ... | |
|                 edge.WindCnt = (edge.WindDelta == 0 ? 1 : edge.WindDelta); | |
|         } | |
|         else | |
|         { | |
|             // prev edge is 'increasing' WindCount (WC) away from zero | |
|             // so we're inside the previous polygon ... | |
|             if( edge.WindDelta == 0 ) | |
|                 edge.WindCnt = (e->WindCnt < 0 ? e->WindCnt - 1 : e->WindCnt + 1); | |
|             // if wind direction is reversing prev then use same WC | |
|             else if( e->WindDelta * edge.WindDelta < 0 ) | |
|                 edge.WindCnt = e->WindCnt; | |
|             // otherwise add to WC ... | |
|             else | |
|                 edge.WindCnt = e->WindCnt + edge.WindDelta; | |
|         } | |
| 
 | |
|         edge.WindCnt2 = e->WindCnt2; | |
|         e = e->NextInAEL; // ie get ready to calc WindCnt2 | |
|     } | |
| 
 | |
|     // update WindCnt2 ... | |
|     if( IsEvenOddAltFillType( edge ) ) | |
|     { | |
|         // EvenOdd filling ... | |
|         while( e != &edge ) | |
|         { | |
|             if( e->WindDelta != 0 ) | |
|                 edge.WindCnt2 = (edge.WindCnt2 == 0 ? 1 : 0); | |
| 
 | |
|             e = e->NextInAEL; | |
|         } | |
|     } | |
|     else | |
|     { | |
|         // nonZero, Positive or Negative filling ... | |
|         while( e != &edge ) | |
|         { | |
|             edge.WindCnt2 += e->WindDelta; | |
|             e = e->NextInAEL; | |
|         } | |
|     } | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| bool Clipper::IsEvenOddFillType( const TEdge& edge ) const | |
| { | |
|     if( edge.PolyTyp == ptSubject ) | |
|         return m_SubjFillType == pftEvenOdd; | |
|     else | |
|         return m_ClipFillType == pftEvenOdd; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| bool Clipper::IsEvenOddAltFillType( const TEdge& edge ) const | |
| { | |
|     if( edge.PolyTyp == ptSubject ) | |
|         return m_ClipFillType == pftEvenOdd; | |
|     else | |
|         return m_SubjFillType == pftEvenOdd; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| bool Clipper::IsContributing( const TEdge& edge ) const | |
| { | |
|     PolyFillType pft, pft2; | |
| 
 | |
|     if( edge.PolyTyp == ptSubject ) | |
|     { | |
|         pft = m_SubjFillType; | |
|         pft2 = m_ClipFillType; | |
|     } | |
|     else | |
|     { | |
|         pft = m_ClipFillType; | |
|         pft2 = m_SubjFillType; | |
|     } | |
| 
 | |
|     switch( pft ) | |
|     { | |
|     case pftEvenOdd: | |
| 
 | |
|         // return false if a subj line has been flagged as inside a subj polygon | |
|         if( edge.WindDelta == 0 && edge.WindCnt != 1 ) | |
|             return false; | |
| 
 | |
|         break; | |
| 
 | |
|     case pftNonZero: | |
| 
 | |
|         if( Abs( edge.WindCnt ) != 1 ) | |
|             return false; | |
| 
 | |
|         break; | |
| 
 | |
|     case pftPositive: | |
| 
 | |
|         if( edge.WindCnt != 1 ) | |
|             return false; | |
| 
 | |
|         break; | |
| 
 | |
|     default:    // pftNegative | |
|  | |
|         if( edge.WindCnt != -1 ) | |
|             return false; | |
|     } | |
| 
 | |
|     switch( m_ClipType ) | |
|     { | |
|     case ctIntersection: | |
| 
 | |
|         switch( pft2 ) | |
|         { | |
|         case pftEvenOdd: | |
|         case pftNonZero: | |
|             return edge.WindCnt2 != 0; | |
| 
 | |
|         case pftPositive: | |
|             return edge.WindCnt2 > 0; | |
| 
 | |
|         default: | |
|             return edge.WindCnt2 < 0; | |
|         } | |
| 
 | |
|         break; | |
| 
 | |
|     case ctUnion: | |
| 
 | |
|         switch( pft2 ) | |
|         { | |
|         case pftEvenOdd: | |
|         case pftNonZero: | |
|             return edge.WindCnt2 == 0; | |
| 
 | |
|         case pftPositive: | |
|             return edge.WindCnt2 <= 0; | |
| 
 | |
|         default: | |
|             return edge.WindCnt2 >= 0; | |
|         } | |
| 
 | |
|         break; | |
| 
 | |
|     case ctDifference: | |
| 
 | |
|         if( edge.PolyTyp == ptSubject ) | |
|             switch( pft2 ) | |
|             { | |
|             case pftEvenOdd: | |
|             case pftNonZero: | |
|                 return edge.WindCnt2 == 0; | |
| 
 | |
|             case pftPositive: | |
|                 return edge.WindCnt2 <= 0; | |
| 
 | |
|             default: | |
|                 return edge.WindCnt2 >= 0; | |
|             } | |
| 
 | |
| 
 | |
|         else | |
|             switch( pft2 ) | |
|             { | |
|             case pftEvenOdd: | |
|             case pftNonZero: | |
|                 return edge.WindCnt2 != 0; | |
| 
 | |
|             case pftPositive: | |
|                 return edge.WindCnt2 > 0; | |
| 
 | |
|             default: | |
|                 return edge.WindCnt2 < 0; | |
|             } | |
| 
 | |
| 
 | |
|         break; | |
| 
 | |
|     case ctXor: | |
| 
 | |
|         if( edge.WindDelta == 0 ) // XOr always contributing unless open | |
|             switch( pft2 ) | |
|             { | |
|             case pftEvenOdd: | |
|             case pftNonZero: | |
|                 return edge.WindCnt2 == 0; | |
| 
 | |
|             case pftPositive: | |
|                 return edge.WindCnt2 <= 0; | |
| 
 | |
|             default: | |
|                 return edge.WindCnt2 >= 0; | |
|             } | |
| 
 | |
| 
 | |
|         else | |
|             return true; | |
| 
 | |
|         break; | |
| 
 | |
|     default: | |
|         return true; | |
|     } | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| OutPt* Clipper::AddLocalMinPoly( TEdge* e1, TEdge* e2, const IntPoint& Pt ) | |
| { | |
|     OutPt* result; | |
|     TEdge* e, * prevE; | |
| 
 | |
|     if( IsHorizontal( *e2 ) || ( e1->Dx > e2->Dx ) ) | |
|     { | |
|         result = AddOutPt( e1, Pt ); | |
|         e2->OutIdx  = e1->OutIdx; | |
|         e1->Side    = esLeft; | |
|         e2->Side    = esRight; | |
|         e = e1; | |
| 
 | |
|         if( e->PrevInAEL == e2 ) | |
|             prevE = e2->PrevInAEL; | |
|         else | |
|             prevE = e->PrevInAEL; | |
|     } | |
|     else | |
|     { | |
|         result = AddOutPt( e2, Pt ); | |
|         e1->OutIdx  = e2->OutIdx; | |
|         e1->Side    = esRight; | |
|         e2->Side    = esLeft; | |
|         e = e2; | |
| 
 | |
|         if( e->PrevInAEL == e1 ) | |
|             prevE = e1->PrevInAEL; | |
|         else | |
|             prevE = e->PrevInAEL; | |
|     } | |
| 
 | |
|     if( prevE && prevE->OutIdx >= 0 && prevE->Top.Y < Pt.Y && e->Top.Y < Pt.Y ) | |
|     { | |
|         cInt xPrev = TopX( *prevE, Pt.Y ); | |
|         cInt xE = TopX( *e, Pt.Y ); | |
| 
 | |
|         if( xPrev == xE && (e->WindDelta != 0) && (prevE->WindDelta != 0) | |
|             && SlopesEqual( IntPoint( xPrev, Pt.Y ), prevE->Top, IntPoint( xE, Pt.Y ), e->Top, | |
|                     m_UseFullRange ) ) | |
|         { | |
|             OutPt* outPt = AddOutPt( prevE, Pt ); | |
|             AddJoin( result, outPt, e->Top ); | |
|         } | |
|     } | |
| 
 | |
|     return result; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| void Clipper::AddLocalMaxPoly( TEdge* e1, TEdge* e2, const IntPoint& Pt ) | |
| { | |
|     AddOutPt( e1, Pt ); | |
| 
 | |
|     if( e2->WindDelta == 0 ) | |
|         AddOutPt( e2, Pt ); | |
| 
 | |
|     if( e1->OutIdx == e2->OutIdx ) | |
|     { | |
|         e1->OutIdx  = Unassigned; | |
|         e2->OutIdx  = Unassigned; | |
|     } | |
|     else if( e1->OutIdx < e2->OutIdx ) | |
|         AppendPolygon( e1, e2 ); | |
|     else | |
|         AppendPolygon( e2, e1 ); | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| void Clipper::AddEdgeToSEL( TEdge* edge ) | |
| { | |
|     // SEL pointers in PEdge are reused to build a list of horizontal edges. | |
|     // However, we don't need to worry about order with horizontal edge processing. | |
|     if( !m_SortedEdges ) | |
|     { | |
|         m_SortedEdges = edge; | |
|         edge->PrevInSEL = 0; | |
|         edge->NextInSEL = 0; | |
|     } | |
|     else | |
|     { | |
|         edge->NextInSEL = m_SortedEdges; | |
|         edge->PrevInSEL = 0; | |
|         m_SortedEdges->PrevInSEL = edge; | |
|         m_SortedEdges = edge; | |
|     } | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| bool Clipper::PopEdgeFromSEL( TEdge*& edge ) | |
| { | |
|     if( !m_SortedEdges ) | |
|         return false; | |
| 
 | |
|     edge = m_SortedEdges; | |
|     DeleteFromSEL( m_SortedEdges ); | |
|     return true; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| void Clipper::CopyAELToSEL() | |
| { | |
|     TEdge* e = m_ActiveEdges; | |
| 
 | |
|     m_SortedEdges = e; | |
| 
 | |
|     while( e ) | |
|     { | |
|         e->PrevInSEL = e->PrevInAEL; | |
|         e->NextInSEL = e->NextInAEL; | |
|         e = e->NextInAEL; | |
|     } | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| void Clipper::AddJoin( OutPt* op1, OutPt* op2, const IntPoint OffPt ) | |
| { | |
|     Join* j = new Join; | |
| 
 | |
|     j->OutPt1 = op1; | |
|     j->OutPt2 = op2; | |
|     j->OffPt = OffPt; | |
|     m_Joins.push_back( j ); | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| void Clipper::ClearJoins() | |
| { | |
|     for( JoinList::size_type i = 0; i < m_Joins.size(); i++ ) | |
|         delete m_Joins[i]; | |
| 
 | |
|     m_Joins.resize( 0 ); | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| void Clipper::ClearGhostJoins() | |
| { | |
|     for( JoinList::size_type i = 0; i < m_GhostJoins.size(); i++ ) | |
|         delete m_GhostJoins[i]; | |
| 
 | |
|     m_GhostJoins.resize( 0 ); | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| void Clipper::AddGhostJoin( OutPt* op, const IntPoint OffPt ) | |
| { | |
|     Join* j = new Join; | |
| 
 | |
|     j->OutPt1 = op; | |
|     j->OutPt2 = 0; | |
|     j->OffPt = OffPt; | |
|     m_GhostJoins.push_back( j ); | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| void Clipper::InsertLocalMinimaIntoAEL( const cInt botY ) | |
| { | |
|     const LocalMinimum* lm; | |
| 
 | |
|     while( PopLocalMinima( botY, lm ) ) | |
|     { | |
|         TEdge* lb   = lm->LeftBound; | |
|         TEdge* rb   = lm->RightBound; | |
| 
 | |
|         OutPt* Op1 = 0; | |
| 
 | |
|         if( !lb ) | |
|         { | |
|             // nb: don't insert LB into either AEL or SEL | |
|             InsertEdgeIntoAEL( rb, 0 ); | |
|             SetWindingCount( *rb ); | |
| 
 | |
|             if( IsContributing( *rb ) ) | |
|                 Op1 = AddOutPt( rb, rb->Bot ); | |
|         } | |
|         else if( !rb ) | |
|         { | |
|             InsertEdgeIntoAEL( lb, 0 ); | |
|             SetWindingCount( *lb ); | |
| 
 | |
|             if( IsContributing( *lb ) ) | |
|                 Op1 = AddOutPt( lb, lb->Bot ); | |
| 
 | |
|             InsertScanbeam( lb->Top.Y ); | |
|         } | |
|         else | |
|         { | |
|             InsertEdgeIntoAEL( lb, 0 ); | |
|             InsertEdgeIntoAEL( rb, lb ); | |
|             SetWindingCount( *lb ); | |
|             rb->WindCnt = lb->WindCnt; | |
|             rb->WindCnt2 = lb->WindCnt2; | |
| 
 | |
|             if( IsContributing( *lb ) ) | |
|                 Op1 = AddLocalMinPoly( lb, rb, lb->Bot ); | |
| 
 | |
|             InsertScanbeam( lb->Top.Y ); | |
|         } | |
| 
 | |
|         if( rb ) | |
|         { | |
|             if( IsHorizontal( *rb ) ) | |
|             { | |
|                 AddEdgeToSEL( rb ); | |
| 
 | |
|                 if( rb->NextInLML ) | |
|                     InsertScanbeam( rb->NextInLML->Top.Y ); | |
|             } | |
|             else | |
|                 InsertScanbeam( rb->Top.Y ); | |
|         } | |
| 
 | |
|         if( !lb || !rb ) | |
|             continue; | |
| 
 | |
|         // if any output polygons share an edge, they'll need joining later ... | |
|         if( Op1 && IsHorizontal( *rb ) | |
|             && m_GhostJoins.size() > 0 && (rb->WindDelta != 0) ) | |
|         { | |
|             for( JoinList::size_type i = 0; i < m_GhostJoins.size(); ++i ) | |
|             { | |
|                 Join* jr = m_GhostJoins[i]; | |
| 
 | |
|                 // if the horizontal Rb and a 'ghost' horizontal overlap, then convert | |
|                 // the 'ghost' join to a real join ready for later ... | |
|                 if( HorzSegmentsOverlap( jr->OutPt1->Pt.X, jr->OffPt.X, rb->Bot.X, rb->Top.X ) ) | |
|                     AddJoin( jr->OutPt1, Op1, jr->OffPt ); | |
|             } | |
|         } | |
| 
 | |
|         if( lb->OutIdx >= 0 && lb->PrevInAEL | |
|             && lb->PrevInAEL->Curr.X == lb->Bot.X | |
|             && lb->PrevInAEL->OutIdx >= 0 | |
|             && SlopesEqual( lb->PrevInAEL->Bot, lb->PrevInAEL->Top, lb->Curr, lb->Top, | |
|                     m_UseFullRange ) | |
|             && (lb->WindDelta != 0) && (lb->PrevInAEL->WindDelta != 0) ) | |
|         { | |
|             OutPt* Op2 = AddOutPt( lb->PrevInAEL, lb->Bot ); | |
|             AddJoin( Op1, Op2, lb->Top ); | |
|         } | |
| 
 | |
|         if( lb->NextInAEL != rb ) | |
|         { | |
|             if( rb->OutIdx >= 0 && rb->PrevInAEL->OutIdx >= 0 | |
|                 && SlopesEqual( rb->PrevInAEL->Curr, rb->PrevInAEL->Top, rb->Curr, rb->Top, | |
|                         m_UseFullRange ) | |
|                 && (rb->WindDelta != 0) && (rb->PrevInAEL->WindDelta != 0) ) | |
|             { | |
|                 OutPt* Op2 = AddOutPt( rb->PrevInAEL, rb->Bot ); | |
|                 AddJoin( Op1, Op2, rb->Top ); | |
|             } | |
| 
 | |
|             TEdge* e = lb->NextInAEL; | |
| 
 | |
|             if( e ) | |
|             { | |
|                 while( e != rb ) | |
|                 { | |
|                     // nb: For calculating winding counts etc, IntersectEdges() assumes | |
|                     // that param1 will be to the Right of param2 ABOVE the intersection ... | |
|                     IntersectEdges( rb, e, lb->Curr ); // order important here | |
|                     e = e->NextInAEL; | |
|                 } | |
|             } | |
|         } | |
|     } | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| void Clipper::DeleteFromSEL( TEdge* e ) | |
| { | |
|     TEdge* SelPrev  = e->PrevInSEL; | |
|     TEdge* SelNext  = e->NextInSEL; | |
| 
 | |
|     if( !SelPrev &&  !SelNext && (e != m_SortedEdges) ) | |
|         return;                                               // already deleted | |
|  | |
|     if( SelPrev ) | |
|         SelPrev->NextInSEL = SelNext; | |
|     else | |
|         m_SortedEdges = SelNext; | |
| 
 | |
|     if( SelNext ) | |
|         SelNext->PrevInSEL = SelPrev; | |
| 
 | |
|     e->NextInSEL = 0; | |
|     e->PrevInSEL = 0; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| #ifdef use_xyz | |
| void Clipper::SetZ( IntPoint& pt, TEdge& e1, TEdge& e2 ) | |
| { | |
|     if( pt.Z != 0 || !m_ZFill ) | |
|         return; | |
|     else if( pt == e1.Bot ) | |
|         pt.Z = e1.Bot.Z; | |
|     else if( pt == e1.Top ) | |
|         pt.Z = e1.Top.Z; | |
|     else if( pt == e2.Bot ) | |
|         pt.Z = e2.Bot.Z; | |
|     else if( pt == e2.Top ) | |
|         pt.Z = e2.Top.Z; | |
|     else | |
|         (*m_ZFill)( e1.Bot, e1.Top, e2.Bot, e2.Top, pt ); | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
| #endif | |
|  | |
| void Clipper::IntersectEdges( TEdge* e1, TEdge* e2, IntPoint& Pt ) | |
| { | |
|     bool e1Contributing = ( e1->OutIdx >= 0 ); | |
|     bool e2Contributing = ( e2->OutIdx >= 0 ); | |
| 
 | |
| #ifdef use_xyz | |
|     SetZ( Pt, *e1, *e2 ); | |
| #endif | |
|  | |
| #ifdef use_lines | |
|  | |
|     // if either edge is on an OPEN path ... | |
|     if( e1->WindDelta == 0 || e2->WindDelta == 0 ) | |
|     { | |
|         // ignore subject-subject open path intersections UNLESS they | |
|         // are both open paths, AND they are both 'contributing maximas' ... | |
|         if( e1->WindDelta == 0 && e2->WindDelta == 0 ) | |
|             return; | |
| 
 | |
|         // if intersecting a subj line with a subj poly ... | |
|         else if( e1->PolyTyp == e2->PolyTyp | |
|                  && e1->WindDelta != e2->WindDelta && m_ClipType == ctUnion ) | |
|         { | |
|             if( e1->WindDelta == 0 ) | |
|             { | |
|                 if( e2Contributing ) | |
|                 { | |
|                     AddOutPt( e1, Pt ); | |
| 
 | |
|                     if( e1Contributing ) | |
|                         e1->OutIdx = Unassigned; | |
|                 } | |
|             } | |
|             else | |
|             { | |
|                 if( e1Contributing ) | |
|                 { | |
|                     AddOutPt( e2, Pt ); | |
| 
 | |
|                     if( e2Contributing ) | |
|                         e2->OutIdx = Unassigned; | |
|                 } | |
|             } | |
|         } | |
|         else if( e1->PolyTyp != e2->PolyTyp ) | |
|         { | |
|             // toggle subj open path OutIdx on/off when Abs(clip.WndCnt) == 1 ... | |
|             if( (e1->WindDelta == 0) && abs( e2->WindCnt ) == 1 | |
|                 && (m_ClipType != ctUnion || e2->WindCnt2 == 0) ) | |
|             { | |
|                 AddOutPt( e1, Pt ); | |
| 
 | |
|                 if( e1Contributing ) | |
|                     e1->OutIdx = Unassigned; | |
|             } | |
|             else if( (e2->WindDelta == 0) && (abs( e1->WindCnt ) == 1) | |
|                      && (m_ClipType != ctUnion || e1->WindCnt2 == 0) ) | |
|             { | |
|                 AddOutPt( e2, Pt ); | |
| 
 | |
|                 if( e2Contributing ) | |
|                     e2->OutIdx = Unassigned; | |
|             } | |
|         } | |
| 
 | |
|         return; | |
|     } | |
| 
 | |
| #endif | |
|  | |
|     // update winding counts... | |
|     // assumes that e1 will be to the Right of e2 ABOVE the intersection | |
|     if( e1->PolyTyp == e2->PolyTyp ) | |
|     { | |
|         if( IsEvenOddFillType( *e1 ) ) | |
|         { | |
|             int oldE1WindCnt = e1->WindCnt; | |
|             e1->WindCnt = e2->WindCnt; | |
|             e2->WindCnt = oldE1WindCnt; | |
|         } | |
|         else | |
|         { | |
|             if( e1->WindCnt + e2->WindDelta == 0 ) | |
|                 e1->WindCnt = -e1->WindCnt; | |
|             else | |
|                 e1->WindCnt += e2->WindDelta; | |
| 
 | |
|             if( e2->WindCnt - e1->WindDelta == 0 ) | |
|                 e2->WindCnt = -e2->WindCnt; | |
|             else | |
|                 e2->WindCnt -= e1->WindDelta; | |
|         } | |
|     } | |
|     else | |
|     { | |
|         if( !IsEvenOddFillType( *e2 ) ) | |
|             e1->WindCnt2 += e2->WindDelta; | |
|         else | |
|             e1->WindCnt2 = ( e1->WindCnt2 == 0 ) ? 1 : 0; | |
| 
 | |
|         if( !IsEvenOddFillType( *e1 ) ) | |
|             e2->WindCnt2 -= e1->WindDelta; | |
|         else | |
|             e2->WindCnt2 = ( e2->WindCnt2 == 0 ) ? 1 : 0; | |
|     } | |
| 
 | |
|     PolyFillType e1FillType, e2FillType, e1FillType2, e2FillType2; | |
| 
 | |
|     if( e1->PolyTyp == ptSubject ) | |
|     { | |
|         e1FillType  = m_SubjFillType; | |
|         e1FillType2 = m_ClipFillType; | |
|     } | |
|     else | |
|     { | |
|         e1FillType  = m_ClipFillType; | |
|         e1FillType2 = m_SubjFillType; | |
|     } | |
| 
 | |
|     if( e2->PolyTyp == ptSubject ) | |
|     { | |
|         e2FillType  = m_SubjFillType; | |
|         e2FillType2 = m_ClipFillType; | |
|     } | |
|     else | |
|     { | |
|         e2FillType  = m_ClipFillType; | |
|         e2FillType2 = m_SubjFillType; | |
|     } | |
| 
 | |
|     cInt e1Wc, e2Wc; | |
| 
 | |
|     switch( e1FillType ) | |
|     { | |
|     case pftPositive: | |
|         e1Wc = e1->WindCnt; break; | |
| 
 | |
|     case pftNegative: | |
|         e1Wc = -e1->WindCnt; break; | |
| 
 | |
|     default: | |
|         e1Wc = Abs( e1->WindCnt ); | |
|     } | |
| 
 | |
|     switch( e2FillType ) | |
|     { | |
|     case pftPositive: | |
|         e2Wc = e2->WindCnt; break; | |
| 
 | |
|     case pftNegative: | |
|         e2Wc = -e2->WindCnt; break; | |
| 
 | |
|     default: | |
|         e2Wc = Abs( e2->WindCnt ); | |
|     } | |
| 
 | |
|     if( e1Contributing && e2Contributing ) | |
|     { | |
|         if( (e1Wc != 0 && e1Wc != 1) || (e2Wc != 0 && e2Wc != 1) | |
|             || (e1->PolyTyp != e2->PolyTyp && m_ClipType != ctXor) ) | |
|         { | |
|             AddLocalMaxPoly( e1, e2, Pt ); | |
|         } | |
|         else | |
|         { | |
|             AddOutPt( e1, Pt ); | |
|             AddOutPt( e2, Pt ); | |
|             SwapSides( *e1, *e2 ); | |
|             SwapPolyIndexes( *e1, *e2 ); | |
|         } | |
|     } | |
|     else if( e1Contributing ) | |
|     { | |
|         if( e2Wc == 0 || e2Wc == 1 ) | |
|         { | |
|             AddOutPt( e1, Pt ); | |
|             SwapSides( *e1, *e2 ); | |
|             SwapPolyIndexes( *e1, *e2 ); | |
|         } | |
|     } | |
|     else if( e2Contributing ) | |
|     { | |
|         if( e1Wc == 0 || e1Wc == 1 ) | |
|         { | |
|             AddOutPt( e2, Pt ); | |
|             SwapSides( *e1, *e2 ); | |
|             SwapPolyIndexes( *e1, *e2 ); | |
|         } | |
|     } | |
|     else if( (e1Wc == 0 || e1Wc == 1) && (e2Wc == 0 || e2Wc == 1) ) | |
|     { | |
|         // neither edge is currently contributing ... | |
|  | |
|         cInt e1Wc2, e2Wc2; | |
| 
 | |
|         switch( e1FillType2 ) | |
|         { | |
|         case pftPositive: | |
|             e1Wc2 = e1->WindCnt2; break; | |
| 
 | |
|         case pftNegative: | |
|             e1Wc2 = -e1->WindCnt2; break; | |
| 
 | |
|         default: | |
|             e1Wc2 = Abs( e1->WindCnt2 ); | |
|         } | |
| 
 | |
|         switch( e2FillType2 ) | |
|         { | |
|         case pftPositive: | |
|             e2Wc2 = e2->WindCnt2; break; | |
| 
 | |
|         case pftNegative: | |
|             e2Wc2 = -e2->WindCnt2; break; | |
| 
 | |
|         default: | |
|             e2Wc2 = Abs( e2->WindCnt2 ); | |
|         } | |
| 
 | |
|         if( e1->PolyTyp != e2->PolyTyp ) | |
|         { | |
|             AddLocalMinPoly( e1, e2, Pt ); | |
|         } | |
|         else if( e1Wc == 1 && e2Wc == 1 ) | |
|             switch( m_ClipType ) | |
|             { | |
|             case ctIntersection: | |
| 
 | |
|                 if( e1Wc2 > 0 && e2Wc2 > 0 ) | |
|                     AddLocalMinPoly( e1, e2, Pt ); | |
| 
 | |
|                 break; | |
| 
 | |
|             case ctUnion: | |
| 
 | |
|                 if( e1Wc2 <= 0 && e2Wc2 <= 0 ) | |
|                     AddLocalMinPoly( e1, e2, Pt ); | |
| 
 | |
|                 break; | |
| 
 | |
|             case ctDifference: | |
| 
 | |
|                 if( ( (e1->PolyTyp == ptClip) && (e1Wc2 > 0) && (e2Wc2 > 0) ) | |
|                     || ( (e1->PolyTyp == ptSubject) && (e1Wc2 <= 0) && (e2Wc2 <= 0) ) ) | |
|                     AddLocalMinPoly( e1, e2, Pt ); | |
| 
 | |
|                 break; | |
| 
 | |
|             case ctXor: | |
|                 AddLocalMinPoly( e1, e2, Pt ); | |
|             } | |
| 
 | |
| 
 | |
|         else | |
|             SwapSides( *e1, *e2 ); | |
|     } | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| void Clipper::SetHoleState( TEdge* e, OutRec* outrec ) | |
| { | |
|     TEdge* e2 = e->PrevInAEL; | |
|     TEdge* eTmp = 0; | |
| 
 | |
|     while( e2 ) | |
|     { | |
|         if( e2->OutIdx >= 0 && e2->WindDelta != 0 ) | |
|         { | |
|             if( !eTmp ) | |
|                 eTmp = e2; | |
|             else if( eTmp->OutIdx == e2->OutIdx ) | |
|                 eTmp = 0; | |
|         } | |
| 
 | |
|         e2 = e2->PrevInAEL; | |
|     } | |
| 
 | |
|     if( !eTmp ) | |
|     { | |
|         outrec->FirstLeft = 0; | |
|         outrec->IsHole = false; | |
|     } | |
|     else | |
|     { | |
|         outrec->FirstLeft = m_PolyOuts[eTmp->OutIdx]; | |
|         outrec->IsHole = !outrec->FirstLeft->IsHole; | |
|     } | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| OutRec* GetLowermostRec( OutRec* outRec1, OutRec* outRec2 ) | |
| { | |
|     // work out which polygon fragment has the correct hole state ... | |
|     if( !outRec1->BottomPt ) | |
|         outRec1->BottomPt = GetBottomPt( outRec1->Pts ); | |
| 
 | |
|     if( !outRec2->BottomPt ) | |
|         outRec2->BottomPt = GetBottomPt( outRec2->Pts ); | |
| 
 | |
|     OutPt* OutPt1   = outRec1->BottomPt; | |
|     OutPt* OutPt2   = outRec2->BottomPt; | |
| 
 | |
|     if( OutPt1->Pt.Y > OutPt2->Pt.Y ) | |
|         return outRec1; | |
|     else if( OutPt1->Pt.Y < OutPt2->Pt.Y ) | |
|         return outRec2; | |
|     else if( OutPt1->Pt.X < OutPt2->Pt.X ) | |
|         return outRec1; | |
|     else if( OutPt1->Pt.X > OutPt2->Pt.X ) | |
|         return outRec2; | |
|     else if( OutPt1->Next == OutPt1 ) | |
|         return outRec2; | |
|     else if( OutPt2->Next == OutPt2 ) | |
|         return outRec1; | |
|     else if( FirstIsBottomPt( OutPt1, OutPt2 ) ) | |
|         return outRec1; | |
|     else | |
|         return outRec2; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| bool OutRec1RightOfOutRec2( OutRec* outRec1, OutRec* outRec2 ) | |
| { | |
|     do | |
|     { | |
|         outRec1 = outRec1->FirstLeft; | |
| 
 | |
|         if( outRec1 == outRec2 ) | |
|             return true; | |
|     } while( outRec1 ); | |
| 
 | |
|     return false; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| OutRec* Clipper::GetOutRec( int Idx ) | |
| { | |
|     OutRec* outrec = m_PolyOuts[Idx]; | |
| 
 | |
|     while( outrec != m_PolyOuts[outrec->Idx] ) | |
|         outrec = m_PolyOuts[outrec->Idx]; | |
| 
 | |
|     return outrec; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| void Clipper::AppendPolygon( TEdge* e1, TEdge* e2 ) | |
| { | |
|     // get the start and ends of both output polygons ... | |
|     OutRec* outRec1 = m_PolyOuts[e1->OutIdx]; | |
|     OutRec* outRec2 = m_PolyOuts[e2->OutIdx]; | |
| 
 | |
|     OutRec* holeStateRec; | |
| 
 | |
|     if( OutRec1RightOfOutRec2( outRec1, outRec2 ) ) | |
|         holeStateRec = outRec2; | |
|     else if( OutRec1RightOfOutRec2( outRec2, outRec1 ) ) | |
|         holeStateRec = outRec1; | |
|     else | |
|         holeStateRec = GetLowermostRec( outRec1, outRec2 ); | |
| 
 | |
|     // get the start and ends of both output polygons and | |
|     // join e2 poly onto e1 poly and delete pointers to e2 ... | |
|  | |
|     OutPt* p1_lft   = outRec1->Pts; | |
|     OutPt* p1_rt    = p1_lft->Prev; | |
|     OutPt* p2_lft   = outRec2->Pts; | |
|     OutPt* p2_rt    = p2_lft->Prev; | |
| 
 | |
|     // join e2 poly onto e1 poly and delete pointers to e2 ... | |
|     if(  e1->Side == esLeft ) | |
|     { | |
|         if(  e2->Side == esLeft ) | |
|         { | |
|             // z y x a b c | |
|             ReversePolyPtLinks( p2_lft ); | |
|             p2_lft->Next = p1_lft; | |
|             p1_lft->Prev = p2_lft; | |
|             p1_rt->Next = p2_rt; | |
|             p2_rt->Prev = p1_rt; | |
|             outRec1->Pts = p2_rt; | |
|         } | |
|         else | |
|         { | |
|             // x y z a b c | |
|             p2_rt->Next = p1_lft; | |
|             p1_lft->Prev = p2_rt; | |
|             p2_lft->Prev = p1_rt; | |
|             p1_rt->Next = p2_lft; | |
|             outRec1->Pts = p2_lft; | |
|         } | |
|     } | |
|     else | |
|     { | |
|         if(  e2->Side == esRight ) | |
|         { | |
|             // a b c z y x | |
|             ReversePolyPtLinks( p2_lft ); | |
|             p1_rt->Next = p2_rt; | |
|             p2_rt->Prev = p1_rt; | |
|             p2_lft->Next = p1_lft; | |
|             p1_lft->Prev = p2_lft; | |
|         } | |
|         else | |
|         { | |
|             // a b c x y z | |
|             p1_rt->Next = p2_lft; | |
|             p2_lft->Prev = p1_rt; | |
|             p1_lft->Prev = p2_rt; | |
|             p2_rt->Next = p1_lft; | |
|         } | |
|     } | |
| 
 | |
|     outRec1->BottomPt = 0; | |
| 
 | |
|     if( holeStateRec == outRec2 ) | |
|     { | |
|         if( outRec2->FirstLeft != outRec1 ) | |
|             outRec1->FirstLeft = outRec2->FirstLeft; | |
| 
 | |
|         outRec1->IsHole = outRec2->IsHole; | |
|     } | |
| 
 | |
|     outRec2->Pts = 0; | |
|     outRec2->BottomPt = 0; | |
|     outRec2->FirstLeft = outRec1; | |
| 
 | |
|     int OKIdx = e1->OutIdx; | |
|     int ObsoleteIdx = e2->OutIdx; | |
| 
 | |
|     e1->OutIdx  = Unassigned; // nb: safe because we only get here via AddLocalMaxPoly | |
|     e2->OutIdx  = Unassigned; | |
| 
 | |
|     TEdge* e = m_ActiveEdges; | |
| 
 | |
|     while( e ) | |
|     { | |
|         if( e->OutIdx == ObsoleteIdx ) | |
|         { | |
|             e->OutIdx = OKIdx; | |
|             e->Side = e1->Side; | |
|             break; | |
|         } | |
| 
 | |
|         e = e->NextInAEL; | |
|     } | |
| 
 | |
|     outRec2->Idx = outRec1->Idx; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| OutPt* Clipper::AddOutPt( TEdge* e, const IntPoint& pt ) | |
| { | |
|     if(  e->OutIdx < 0 ) | |
|     { | |
|         OutRec* outRec = CreateOutRec(); | |
|         outRec->IsOpen = (e->WindDelta == 0); | |
|         OutPt* newOp = new OutPt; | |
|         outRec->Pts = newOp; | |
|         newOp->Idx  = outRec->Idx; | |
|         newOp->Pt = pt; | |
|         newOp->Next = newOp; | |
|         newOp->Prev = newOp; | |
| 
 | |
|         if( !outRec->IsOpen ) | |
|             SetHoleState( e, outRec ); | |
| 
 | |
|         e->OutIdx = outRec->Idx; | |
|         return newOp; | |
|     } | |
|     else | |
|     { | |
|         OutRec* outRec = m_PolyOuts[e->OutIdx]; | |
|         // OutRec.Pts is the 'Left-most' point & OutRec.Pts.Prev is the 'Right-most' | |
|         OutPt* op = outRec->Pts; | |
| 
 | |
|         bool ToFront = (e->Side == esLeft); | |
| 
 | |
|         if( ToFront && (pt == op->Pt) ) | |
|             return op; | |
|         else if( !ToFront && (pt == op->Prev->Pt) ) | |
|             return op->Prev; | |
| 
 | |
|         OutPt* newOp = new OutPt; | |
|         newOp->Idx  = outRec->Idx; | |
|         newOp->Pt   = pt; | |
|         newOp->Next = op; | |
|         newOp->Prev = op->Prev; | |
|         newOp->Prev->Next = newOp; | |
|         op->Prev = newOp; | |
| 
 | |
|         if( ToFront ) | |
|             outRec->Pts = newOp; | |
| 
 | |
|         return newOp; | |
|     } | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| OutPt* Clipper::GetLastOutPt( TEdge* e ) | |
| { | |
|     OutRec* outRec = m_PolyOuts[e->OutIdx]; | |
| 
 | |
|     if( e->Side == esLeft ) | |
|         return outRec->Pts; | |
|     else | |
|         return outRec->Pts->Prev; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| void Clipper::ProcessHorizontals() | |
| { | |
|     TEdge* horzEdge; | |
| 
 | |
|     while( PopEdgeFromSEL( horzEdge ) ) | |
|         ProcessHorizontal( horzEdge ); | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| inline bool IsMinima( TEdge* e ) | |
| { | |
|     return e  && (e->Prev->NextInLML != e) && (e->Next->NextInLML != e); | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| inline bool IsMaxima( TEdge* e, const cInt Y ) | |
| { | |
|     return e && e->Top.Y == Y && !e->NextInLML; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| inline bool IsIntermediate( TEdge* e, const cInt Y ) | |
| { | |
|     return e->Top.Y == Y && e->NextInLML; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| TEdge* GetMaximaPair( TEdge* e ) | |
| { | |
|     if( (e->Next->Top == e->Top) && !e->Next->NextInLML ) | |
|         return e->Next; | |
|     else if( (e->Prev->Top == e->Top) && !e->Prev->NextInLML ) | |
|         return e->Prev; | |
|     else | |
|         return 0; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| TEdge* GetMaximaPairEx( TEdge* e ) | |
| { | |
|     // as GetMaximaPair() but returns 0 if MaxPair isn't in AEL (unless it's horizontal) | |
|     TEdge* result = GetMaximaPair( e ); | |
| 
 | |
|     if( result && ( result->OutIdx == Skip | |
|                     || ( result->NextInAEL == result->PrevInAEL && !IsHorizontal( *result ) ) ) ) | |
|         return 0; | |
| 
 | |
|     return result; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| void Clipper::SwapPositionsInSEL( TEdge* Edge1, TEdge* Edge2 ) | |
| { | |
|     if( !( Edge1->NextInSEL ) &&  !( Edge1->PrevInSEL ) ) | |
|         return; | |
| 
 | |
|     if( !( Edge2->NextInSEL ) &&  !( Edge2->PrevInSEL ) ) | |
|         return; | |
| 
 | |
|     if(  Edge1->NextInSEL == Edge2 ) | |
|     { | |
|         TEdge* Next = Edge2->NextInSEL; | |
| 
 | |
|         if( Next ) | |
|             Next->PrevInSEL = Edge1; | |
| 
 | |
|         TEdge* Prev = Edge1->PrevInSEL; | |
| 
 | |
|         if( Prev ) | |
|             Prev->NextInSEL = Edge2; | |
| 
 | |
|         Edge2->PrevInSEL = Prev; | |
|         Edge2->NextInSEL = Edge1; | |
|         Edge1->PrevInSEL = Edge2; | |
|         Edge1->NextInSEL = Next; | |
|     } | |
|     else if(  Edge2->NextInSEL == Edge1 ) | |
|     { | |
|         TEdge* Next = Edge1->NextInSEL; | |
| 
 | |
|         if( Next ) | |
|             Next->PrevInSEL = Edge2; | |
| 
 | |
|         TEdge* Prev = Edge2->PrevInSEL; | |
| 
 | |
|         if( Prev ) | |
|             Prev->NextInSEL = Edge1; | |
| 
 | |
|         Edge1->PrevInSEL = Prev; | |
|         Edge1->NextInSEL = Edge2; | |
|         Edge2->PrevInSEL = Edge1; | |
|         Edge2->NextInSEL = Next; | |
|     } | |
|     else | |
|     { | |
|         TEdge* Next = Edge1->NextInSEL; | |
|         TEdge* Prev = Edge1->PrevInSEL; | |
|         Edge1->NextInSEL = Edge2->NextInSEL; | |
| 
 | |
|         if( Edge1->NextInSEL ) | |
|             Edge1->NextInSEL->PrevInSEL = Edge1; | |
| 
 | |
|         Edge1->PrevInSEL = Edge2->PrevInSEL; | |
| 
 | |
|         if( Edge1->PrevInSEL ) | |
|             Edge1->PrevInSEL->NextInSEL = Edge1; | |
| 
 | |
|         Edge2->NextInSEL = Next; | |
| 
 | |
|         if( Edge2->NextInSEL ) | |
|             Edge2->NextInSEL->PrevInSEL = Edge2; | |
| 
 | |
|         Edge2->PrevInSEL = Prev; | |
| 
 | |
|         if( Edge2->PrevInSEL ) | |
|             Edge2->PrevInSEL->NextInSEL = Edge2; | |
|     } | |
| 
 | |
|     if( !Edge1->PrevInSEL ) | |
|         m_SortedEdges = Edge1; | |
|     else if( !Edge2->PrevInSEL ) | |
|         m_SortedEdges = Edge2; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| TEdge* GetNextInAEL( TEdge* e, Direction dir ) | |
| { | |
|     return dir == dLeftToRight ? e->NextInAEL : e->PrevInAEL; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| void GetHorzDirection( TEdge& HorzEdge, Direction& Dir, cInt& Left, cInt& Right ) | |
| { | |
|     if( HorzEdge.Bot.X < HorzEdge.Top.X ) | |
|     { | |
|         Left = HorzEdge.Bot.X; | |
|         Right = HorzEdge.Top.X; | |
|         Dir = dLeftToRight; | |
|     } | |
|     else | |
|     { | |
|         Left = HorzEdge.Top.X; | |
|         Right = HorzEdge.Bot.X; | |
|         Dir = dRightToLeft; | |
|     } | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------ | |
|  | |
| /******************************************************************************* | |
| * Notes: Horizontal edges (HEs) at scanline intersections (ie at the Top or    * | |
| * Bottom of a scanbeam) are processed as if layered. The order in which HEs    * | |
| * are processed doesn't matter. HEs intersect with other HE Bot.Xs only [#]    * | |
| * (or they could intersect with Top.Xs only, ie EITHER Bot.Xs OR Top.Xs),      * | |
| * and with other non-horizontal edges [*]. Once these intersections are        * | |
| * processed, intermediate HEs then 'promote' the Edge above (NextInLML) into   * | |
| * the AEL. These 'promoted' edges may in turn intersect [%] with other HEs.    * | |
| *******************************************************************************/ | |
| 
 | |
| void Clipper::ProcessHorizontal( TEdge* horzEdge ) | |
| { | |
|     Direction   dir; | |
|     cInt    horzLeft, horzRight; | |
|     bool    IsOpen = (horzEdge->WindDelta == 0); | |
| 
 | |
|     GetHorzDirection( *horzEdge, dir, horzLeft, horzRight ); | |
| 
 | |
|     TEdge* eLastHorz = horzEdge, * eMaxPair = 0; | |
| 
 | |
|     while( eLastHorz->NextInLML && IsHorizontal( *eLastHorz->NextInLML ) ) | |
|         eLastHorz = eLastHorz->NextInLML; | |
| 
 | |
|     if( !eLastHorz->NextInLML ) | |
|         eMaxPair = GetMaximaPair( eLastHorz ); | |
| 
 | |
|     MaximaList::const_iterator maxIt; | |
|     MaximaList::const_reverse_iterator maxRit; | |
| 
 | |
|     if( m_Maxima.size() > 0 ) | |
|     { | |
|         // get the first maxima in range (X) ... | |
|         if( dir == dLeftToRight ) | |
|         { | |
|             maxIt = m_Maxima.begin(); | |
| 
 | |
|             while( maxIt != m_Maxima.end() && *maxIt <= horzEdge->Bot.X ) | |
|                 maxIt++; | |
| 
 | |
|             if( maxIt != m_Maxima.end() && *maxIt >= eLastHorz->Top.X ) | |
|                 maxIt = m_Maxima.end(); | |
|         } | |
|         else | |
|         { | |
|             maxRit = m_Maxima.rbegin(); | |
| 
 | |
|             while( maxRit != m_Maxima.rend() && *maxRit > horzEdge->Bot.X ) | |
|                 maxRit++; | |
| 
 | |
|             if( maxRit != m_Maxima.rend() && *maxRit <= eLastHorz->Top.X ) | |
|                 maxRit = m_Maxima.rend(); | |
|         } | |
|     } | |
| 
 | |
|     OutPt* op1 = 0; | |
| 
 | |
|     for( ; ; ) // loop through consec. horizontal edges | |
|     { | |
|         bool IsLastHorz = (horzEdge == eLastHorz); | |
|         TEdge* e = GetNextInAEL( horzEdge, dir ); | |
| 
 | |
|         while( e ) | |
|         { | |
|             // this code block inserts extra coords into horizontal edges (in output | |
|             // polygons) whereever maxima touch these horizontal edges. This helps | |
|             // 'simplifying' polygons (ie if the Simplify property is set). | |
|             if( m_Maxima.size() > 0 ) | |
|             { | |
|                 if( dir == dLeftToRight ) | |
|                 { | |
|                     while( maxIt != m_Maxima.end() && *maxIt < e->Curr.X ) | |
|                     { | |
|                         if( horzEdge->OutIdx >= 0 && !IsOpen ) | |
|                             AddOutPt( horzEdge, IntPoint( *maxIt, horzEdge->Bot.Y ) ); | |
| 
 | |
|                         maxIt++; | |
|                     } | |
|                 } | |
|                 else | |
|                 { | |
|                     while( maxRit != m_Maxima.rend() && *maxRit > e->Curr.X ) | |
|                     { | |
|                         if( horzEdge->OutIdx >= 0 && !IsOpen ) | |
|                             AddOutPt( horzEdge, IntPoint( *maxRit, horzEdge->Bot.Y ) ); | |
| 
 | |
|                         maxRit++; | |
|                     } | |
|                 } | |
|             } | |
| 
 | |
|             ; | |
| 
 | |
|             if( (dir == dLeftToRight && e->Curr.X > horzRight) | |
|                 || (dir == dRightToLeft && e->Curr.X < horzLeft) ) | |
|                 break; | |
| 
 | |
|             // Also break if we've got to the end of an intermediate horizontal edge ... | |
|             // nb: Smaller Dx's are to the right of larger Dx's ABOVE the horizontal. | |
|             if( e->Curr.X == horzEdge->Top.X && horzEdge->NextInLML | |
|                 && e->Dx < horzEdge->NextInLML->Dx ) | |
|                 break; | |
| 
 | |
|             if( horzEdge->OutIdx >= 0 && !IsOpen ) // note: may be done multiple times | |
|             { | |
| #ifdef use_xyz | |
|  | |
|                 if( dir == dLeftToRight ) | |
|                     SetZ( e->Curr, *horzEdge, *e ); | |
|                 else | |
|                     SetZ( e->Curr, *e, *horzEdge ); | |
| 
 | |
| #endif | |
|                 op1 = AddOutPt( horzEdge, e->Curr ); | |
|                 TEdge* eNextHorz = m_SortedEdges; | |
| 
 | |
|                 while( eNextHorz ) | |
|                 { | |
|                     if( eNextHorz->OutIdx >= 0 | |
|                         && HorzSegmentsOverlap( horzEdge->Bot.X, | |
|                                 horzEdge->Top.X, eNextHorz->Bot.X, eNextHorz->Top.X ) ) | |
|                     { | |
|                         OutPt* op2 = GetLastOutPt( eNextHorz ); | |
|                         AddJoin( op2, op1, eNextHorz->Top ); | |
|                     } | |
| 
 | |
|                     eNextHorz = eNextHorz->NextInSEL; | |
|                 } | |
| 
 | |
|                 AddGhostJoin( op1, horzEdge->Bot ); | |
|             } | |
| 
 | |
|             // OK, so far we're still in range of the horizontal Edge  but make sure | |
|             // we're at the last of consec. horizontals when matching with eMaxPair | |
|             if( e == eMaxPair && IsLastHorz ) | |
|             { | |
|                 if( horzEdge->OutIdx >= 0 ) | |
|                     AddLocalMaxPoly( horzEdge, eMaxPair, horzEdge->Top ); | |
| 
 | |
|                 DeleteFromAEL( horzEdge ); | |
|                 DeleteFromAEL( eMaxPair ); | |
|                 return; | |
|             } | |
| 
 | |
|             if( dir == dLeftToRight ) | |
|             { | |
|                 IntPoint Pt = IntPoint( e->Curr.X, horzEdge->Curr.Y ); | |
|                 IntersectEdges( horzEdge, e, Pt ); | |
|             } | |
|             else | |
|             { | |
|                 IntPoint Pt = IntPoint( e->Curr.X, horzEdge->Curr.Y ); | |
|                 IntersectEdges( e, horzEdge, Pt ); | |
|             } | |
| 
 | |
|             TEdge* eNext = GetNextInAEL( e, dir ); | |
|             SwapPositionsInAEL( horzEdge, e ); | |
|             e = eNext; | |
|         }   // end while(e) | |
|  | |
|         // Break out of loop if HorzEdge.NextInLML is not also horizontal ... | |
|         if( !horzEdge->NextInLML || !IsHorizontal( *horzEdge->NextInLML ) ) | |
|             break; | |
| 
 | |
|         UpdateEdgeIntoAEL( horzEdge ); | |
| 
 | |
|         if( horzEdge->OutIdx >= 0 ) | |
|             AddOutPt( horzEdge, horzEdge->Bot ); | |
| 
 | |
|         GetHorzDirection( *horzEdge, dir, horzLeft, horzRight ); | |
|     }   // end for (;;) | |
|  | |
|     if( horzEdge->OutIdx >= 0 && !op1 ) | |
|     { | |
|         op1 = GetLastOutPt( horzEdge ); | |
|         TEdge* eNextHorz = m_SortedEdges; | |
| 
 | |
|         while( eNextHorz ) | |
|         { | |
|             if( eNextHorz->OutIdx >= 0 | |
|                 && HorzSegmentsOverlap( horzEdge->Bot.X, | |
|                         horzEdge->Top.X, eNextHorz->Bot.X, eNextHorz->Top.X ) ) | |
|             { | |
|                 OutPt* op2 = GetLastOutPt( eNextHorz ); | |
|                 AddJoin( op2, op1, eNextHorz->Top ); | |
|             } | |
| 
 | |
|             eNextHorz = eNextHorz->NextInSEL; | |
|         } | |
| 
 | |
|         AddGhostJoin( op1, horzEdge->Top ); | |
|     } | |
| 
 | |
|     if( horzEdge->NextInLML ) | |
|     { | |
|         if( horzEdge->OutIdx >= 0 ) | |
|         { | |
|             op1 = AddOutPt( horzEdge, horzEdge->Top ); | |
|             UpdateEdgeIntoAEL( horzEdge ); | |
| 
 | |
|             if( horzEdge->WindDelta == 0 ) | |
|                 return; | |
| 
 | |
|             // nb: HorzEdge is no longer horizontal here | |
|             TEdge* ePrev = horzEdge->PrevInAEL; | |
|             TEdge* eNext = horzEdge->NextInAEL; | |
| 
 | |
|             if( ePrev && ePrev->Curr.X == horzEdge->Bot.X | |
|                 && ePrev->Curr.Y == horzEdge->Bot.Y && ePrev->WindDelta != 0 | |
|                 && ( ePrev->OutIdx >= 0 && ePrev->Curr.Y > ePrev->Top.Y | |
|                      && SlopesEqual( *horzEdge, *ePrev, m_UseFullRange ) ) ) | |
|             { | |
|                 OutPt* op2 = AddOutPt( ePrev, horzEdge->Bot ); | |
|                 AddJoin( op1, op2, horzEdge->Top ); | |
|             } | |
|             else if( eNext && eNext->Curr.X == horzEdge->Bot.X | |
|                      && eNext->Curr.Y == horzEdge->Bot.Y && eNext->WindDelta != 0 | |
|                      && eNext->OutIdx >= 0 && eNext->Curr.Y > eNext->Top.Y | |
|                      && SlopesEqual( *horzEdge, *eNext, m_UseFullRange ) ) | |
|             { | |
|                 OutPt* op2 = AddOutPt( eNext, horzEdge->Bot ); | |
|                 AddJoin( op1, op2, horzEdge->Top ); | |
|             } | |
|         } | |
|         else | |
|             UpdateEdgeIntoAEL( horzEdge ); | |
|     } | |
|     else | |
|     { | |
|         if( horzEdge->OutIdx >= 0 ) | |
|             AddOutPt( horzEdge, horzEdge->Top ); | |
| 
 | |
|         DeleteFromAEL( horzEdge ); | |
|     } | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| bool Clipper::ProcessIntersections( const cInt topY ) | |
| { | |
|     if( !m_ActiveEdges ) | |
|         return true; | |
| 
 | |
|     try | |
|     { | |
|         BuildIntersectList( topY ); | |
|         size_t IlSize = m_IntersectList.size(); | |
| 
 | |
|         if( IlSize == 0 ) | |
|             return true; | |
| 
 | |
|         if( IlSize == 1 || FixupIntersectionOrder() ) | |
|             ProcessIntersectList(); | |
|         else | |
|             return false; | |
|     } | |
|     catch( ... ) | |
|     { | |
|         m_SortedEdges = 0; | |
|         DisposeIntersectNodes(); | |
|         throw clipperException( "ProcessIntersections error" ); | |
|     } | |
|     m_SortedEdges = 0; | |
|     return true; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| void Clipper::DisposeIntersectNodes() | |
| { | |
|     for( size_t i = 0; i < m_IntersectList.size(); ++i ) | |
|         delete m_IntersectList[i]; | |
| 
 | |
|     m_IntersectList.clear(); | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| void Clipper::BuildIntersectList( const cInt topY ) | |
| { | |
|     if( !m_ActiveEdges ) | |
|         return; | |
| 
 | |
|     // prepare for sorting ... | |
|     TEdge* e = m_ActiveEdges; | |
|     m_SortedEdges = e; | |
| 
 | |
|     while( e ) | |
|     { | |
|         e->PrevInSEL = e->PrevInAEL; | |
|         e->NextInSEL = e->NextInAEL; | |
|         e->Curr.X = TopX( *e, topY ); | |
|         e = e->NextInAEL; | |
|     } | |
| 
 | |
|     // bubblesort ... | |
|     bool isModified; | |
| 
 | |
|     do | |
|     { | |
|         isModified = false; | |
|         e = m_SortedEdges; | |
| 
 | |
|         while( e->NextInSEL ) | |
|         { | |
|             TEdge* eNext = e->NextInSEL; | |
|             IntPoint Pt; | |
| 
 | |
|             if( e->Curr.X > eNext->Curr.X ) | |
|             { | |
|                 IntersectPoint( *e, *eNext, Pt ); | |
| 
 | |
|                 if( Pt.Y < topY ) | |
|                     Pt = IntPoint( TopX( *e, topY ), topY ); | |
| 
 | |
|                 IntersectNode* newNode = new IntersectNode; | |
|                 newNode->Edge1  = e; | |
|                 newNode->Edge2  = eNext; | |
|                 newNode->Pt = Pt; | |
|                 m_IntersectList.push_back( newNode ); | |
| 
 | |
|                 SwapPositionsInSEL( e, eNext ); | |
|                 isModified = true; | |
|             } | |
|             else | |
|                 e = eNext; | |
|         } | |
| 
 | |
|         if( e->PrevInSEL ) | |
|             e->PrevInSEL->NextInSEL = 0; | |
|         else | |
|             break; | |
|     } while( isModified ); | |
| 
 | |
|     m_SortedEdges = 0; // important | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| 
 | |
| void Clipper::ProcessIntersectList() | |
| { | |
|     for( size_t i = 0; i < m_IntersectList.size(); ++i ) | |
|     { | |
|         IntersectNode* iNode = m_IntersectList[i]; | |
|         { | |
|             IntersectEdges( iNode->Edge1, iNode->Edge2, iNode->Pt ); | |
|             SwapPositionsInAEL( iNode->Edge1, iNode->Edge2 ); | |
|         } | |
|         delete iNode; | |
|     } | |
| 
 | |
|     m_IntersectList.clear(); | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| bool IntersectListSort( IntersectNode* node1, IntersectNode* node2 ) | |
| { | |
|     return node2->Pt.Y < node1->Pt.Y; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| inline bool EdgesAdjacent( const IntersectNode& inode ) | |
| { | |
|     return (inode.Edge1->NextInSEL == inode.Edge2) | |
|            || (inode.Edge1->PrevInSEL == inode.Edge2); | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| bool Clipper::FixupIntersectionOrder() | |
| { | |
|     // pre-condition: intersections are sorted Bottom-most first. | |
|     // Now it's crucial that intersections are made only between adjacent edges, | |
|     // so to ensure this the order of intersections may need adjusting ... | |
|     CopyAELToSEL(); | |
|     std::sort( m_IntersectList.begin(), m_IntersectList.end(), IntersectListSort ); | |
|     size_t cnt = m_IntersectList.size(); | |
| 
 | |
|     for( size_t i = 0; i < cnt; ++i ) | |
|     { | |
|         if( !EdgesAdjacent( *m_IntersectList[i] ) ) | |
|         { | |
|             size_t j = i + 1; | |
| 
 | |
|             while( j < cnt && !EdgesAdjacent( *m_IntersectList[j] ) ) | |
|                 j++; | |
| 
 | |
|             if( j == cnt ) | |
|                 return false; | |
| 
 | |
|             std::swap( m_IntersectList[i], m_IntersectList[j] ); | |
|         } | |
| 
 | |
|         SwapPositionsInSEL( m_IntersectList[i]->Edge1, m_IntersectList[i]->Edge2 ); | |
|     } | |
| 
 | |
|     return true; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| void Clipper::DoMaxima( TEdge* e ) | |
| { | |
|     TEdge* eMaxPair = GetMaximaPairEx( e ); | |
| 
 | |
|     if( !eMaxPair ) | |
|     { | |
|         if( e->OutIdx >= 0 ) | |
|             AddOutPt( e, e->Top ); | |
| 
 | |
|         DeleteFromAEL( e ); | |
|         return; | |
|     } | |
| 
 | |
|     TEdge* eNext = e->NextInAEL; | |
| 
 | |
|     while( eNext && eNext != eMaxPair ) | |
|     { | |
|         IntersectEdges( e, eNext, e->Top ); | |
|         SwapPositionsInAEL( e, eNext ); | |
|         eNext = e->NextInAEL; | |
|     } | |
| 
 | |
|     if( e->OutIdx == Unassigned && eMaxPair->OutIdx == Unassigned ) | |
|     { | |
|         DeleteFromAEL( e ); | |
|         DeleteFromAEL( eMaxPair ); | |
|     } | |
|     else if( e->OutIdx >= 0 && eMaxPair->OutIdx >= 0 ) | |
|     { | |
|         if( e->OutIdx >= 0 ) | |
|             AddLocalMaxPoly( e, eMaxPair, e->Top ); | |
| 
 | |
|         DeleteFromAEL( e ); | |
|         DeleteFromAEL( eMaxPair ); | |
|     } | |
| 
 | |
| #ifdef use_lines | |
|     else if( e->WindDelta == 0 ) | |
|     { | |
|         if( e->OutIdx >= 0 ) | |
|         { | |
|             AddOutPt( e, e->Top ); | |
|             e->OutIdx = Unassigned; | |
|         } | |
| 
 | |
|         DeleteFromAEL( e ); | |
| 
 | |
|         if( eMaxPair->OutIdx >= 0 ) | |
|         { | |
|             AddOutPt( eMaxPair, e->Top ); | |
|             eMaxPair->OutIdx = Unassigned; | |
|         } | |
| 
 | |
|         DeleteFromAEL( eMaxPair ); | |
|     } | |
| #endif | |
|     else | |
|         throw clipperException( "DoMaxima error" ); | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| void Clipper::ProcessEdgesAtTopOfScanbeam( const cInt topY ) | |
| { | |
|     TEdge* e = m_ActiveEdges; | |
| 
 | |
|     while( e ) | |
|     { | |
|         // 1. process maxima, treating them as if they're 'bent' horizontal edges, | |
|         // but exclude maxima with horizontal edges. nb: e can't be a horizontal. | |
|         bool IsMaximaEdge = IsMaxima( e, topY ); | |
| 
 | |
|         if( IsMaximaEdge ) | |
|         { | |
|             TEdge* eMaxPair = GetMaximaPairEx( e ); | |
|             IsMaximaEdge = ( !eMaxPair || !IsHorizontal( *eMaxPair ) ); | |
|         } | |
| 
 | |
|         if( IsMaximaEdge ) | |
|         { | |
|             if( m_StrictSimple ) | |
|                 m_Maxima.push_back( e->Top.X ); | |
| 
 | |
|             TEdge* ePrev = e->PrevInAEL; | |
|             DoMaxima( e ); | |
| 
 | |
|             if( !ePrev ) | |
|                 e = m_ActiveEdges; | |
|             else | |
|                 e = ePrev->NextInAEL; | |
|         } | |
|         else | |
|         { | |
|             // 2. promote horizontal edges, otherwise update Curr.X and Curr.Y ... | |
|             if( IsIntermediate( e, topY ) && IsHorizontal( *e->NextInLML ) ) | |
|             { | |
|                 UpdateEdgeIntoAEL( e ); | |
| 
 | |
|                 if( e->OutIdx >= 0 ) | |
|                     AddOutPt( e, e->Bot ); | |
| 
 | |
|                 AddEdgeToSEL( e ); | |
|             } | |
|             else | |
|             { | |
|                 e->Curr.X = TopX( *e, topY ); | |
|                 e->Curr.Y = topY; | |
| #ifdef use_xyz | |
|                 e->Curr.Z = topY == e->Top.Y ? e->Top.Z : (topY == e->Bot.Y ? e->Bot.Z : 0); | |
| #endif | |
|             } | |
| 
 | |
|             // When StrictlySimple and 'e' is being touched by another edge, then | |
|             // make sure both edges have a vertex here ... | |
|             if( m_StrictSimple ) | |
|             { | |
|                 TEdge* ePrev = e->PrevInAEL; | |
| 
 | |
|                 if( (e->OutIdx >= 0) && (e->WindDelta != 0) && ePrev && (ePrev->OutIdx >= 0) | |
|                     && (ePrev->Curr.X == e->Curr.X) && (ePrev->WindDelta != 0) ) | |
|                 { | |
|                     IntPoint pt = e->Curr; | |
| #ifdef use_xyz | |
|                     SetZ( pt, *ePrev, *e ); | |
| #endif | |
|                     OutPt* op   = AddOutPt( ePrev, pt ); | |
|                     OutPt* op2  = AddOutPt( e, pt ); | |
|                     AddJoin( op, op2, pt ); // StrictlySimple (type-3) join | |
|                 } | |
|             } | |
| 
 | |
|             e = e->NextInAEL; | |
|         } | |
|     } | |
| 
 | |
|     // 3. Process horizontals at the Top of the scanbeam ... | |
|     m_Maxima.sort(); | |
|     ProcessHorizontals(); | |
|     m_Maxima.clear(); | |
| 
 | |
|     // 4. Promote intermediate vertices ... | |
|     e = m_ActiveEdges; | |
| 
 | |
|     while( e ) | |
|     { | |
|         if( IsIntermediate( e, topY ) ) | |
|         { | |
|             OutPt* op = 0; | |
| 
 | |
|             if( e->OutIdx >= 0 ) | |
|                 op = AddOutPt( e, e->Top ); | |
| 
 | |
|             UpdateEdgeIntoAEL( e ); | |
| 
 | |
|             // if output polygons share an edge, they'll need joining later ... | |
|             TEdge* ePrev = e->PrevInAEL; | |
|             TEdge* eNext = e->NextInAEL; | |
| 
 | |
|             if( ePrev && ePrev->Curr.X == e->Bot.X | |
|                 && ePrev->Curr.Y == e->Bot.Y && op | |
|                 && ePrev->OutIdx >= 0 && ePrev->Curr.Y > ePrev->Top.Y | |
|                 && SlopesEqual( e->Curr, e->Top, ePrev->Curr, ePrev->Top, m_UseFullRange ) | |
|                 && (e->WindDelta != 0) && (ePrev->WindDelta != 0) ) | |
|             { | |
|                 OutPt* op2 = AddOutPt( ePrev, e->Bot ); | |
|                 AddJoin( op, op2, e->Top ); | |
|             } | |
|             else if( eNext && eNext->Curr.X == e->Bot.X | |
|                      && eNext->Curr.Y == e->Bot.Y && op | |
|                      && eNext->OutIdx >= 0 && eNext->Curr.Y > eNext->Top.Y | |
|                      && SlopesEqual( e->Curr, e->Top, eNext->Curr, eNext->Top, m_UseFullRange ) | |
|                      && (e->WindDelta != 0) && (eNext->WindDelta != 0) ) | |
|             { | |
|                 OutPt* op2 = AddOutPt( eNext, e->Bot ); | |
|                 AddJoin( op, op2, e->Top ); | |
|             } | |
|         } | |
| 
 | |
|         e = e->NextInAEL; | |
|     } | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| void Clipper::FixupOutPolyline( OutRec& outrec ) | |
| { | |
|     OutPt* pp = outrec.Pts; | |
|     OutPt* lastPP = pp->Prev; | |
| 
 | |
|     while( pp != lastPP ) | |
|     { | |
|         pp = pp->Next; | |
| 
 | |
|         if( pp->Pt == pp->Prev->Pt ) | |
|         { | |
|             if( pp == lastPP ) | |
|                 lastPP = pp->Prev; | |
| 
 | |
|             OutPt* tmpPP = pp->Prev; | |
|             tmpPP->Next = pp->Next; | |
|             pp->Next->Prev = tmpPP; | |
|             delete pp; | |
|             pp = tmpPP; | |
|         } | |
|     } | |
| 
 | |
|     if( pp == pp->Prev ) | |
|     { | |
|         DisposeOutPts( pp ); | |
|         outrec.Pts = 0; | |
|         return; | |
|     } | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| void Clipper::FixupOutPolygon( OutRec& outrec ) | |
| { | |
|     // FixupOutPolygon() - removes duplicate points and simplifies consecutive | |
|     // parallel edges by removing the middle vertex. | |
|     OutPt* lastOK = 0; | |
| 
 | |
|     outrec.BottomPt = 0; | |
|     OutPt* pp = outrec.Pts; | |
|     bool preserveCol = m_PreserveCollinear || m_StrictSimple; | |
| 
 | |
|     for( ; ; ) | |
|     { | |
|         if( pp->Prev == pp || pp->Prev == pp->Next ) | |
|         { | |
|             DisposeOutPts( pp ); | |
|             outrec.Pts = 0; | |
|             return; | |
|         } | |
| 
 | |
|         // test for duplicate points and collinear edges ... | |
|         if( (pp->Pt == pp->Next->Pt) || (pp->Pt == pp->Prev->Pt) | |
|             || ( SlopesEqual( pp->Prev->Pt, pp->Pt, pp->Next->Pt, m_UseFullRange ) | |
|                  && ( !preserveCol | |
|                       || !Pt2IsBetweenPt1AndPt3( pp->Prev->Pt, pp->Pt, pp->Next->Pt ) ) ) ) | |
|         { | |
|             lastOK = 0; | |
|             OutPt* tmp = pp; | |
|             pp->Prev->Next  = pp->Next; | |
|             pp->Next->Prev  = pp->Prev; | |
|             pp = pp->Prev; | |
|             delete tmp; | |
|         } | |
|         else if( pp == lastOK ) | |
|             break; | |
|         else | |
|         { | |
|             if( !lastOK ) | |
|                 lastOK = pp; | |
| 
 | |
|             pp = pp->Next; | |
|         } | |
|     } | |
| 
 | |
|     outrec.Pts = pp; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| int PointCount( OutPt* Pts ) | |
| { | |
|     if( !Pts ) | |
|         return 0; | |
| 
 | |
|     int result = 0; | |
|     OutPt* p = Pts; | |
| 
 | |
|     do | |
|     { | |
|         result++; | |
|         p = p->Next; | |
|     } while( p != Pts ); | |
| 
 | |
|     return result; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| void Clipper::BuildResult( Paths& polys ) | |
| { | |
|     polys.reserve( m_PolyOuts.size() ); | |
| 
 | |
|     for( PolyOutList::size_type ii = 0; ii < m_PolyOuts.size(); ++ii ) | |
|     { | |
|         if( !m_PolyOuts[ii]->Pts ) | |
|             continue; | |
| 
 | |
|         Path pg; | |
|         OutPt* p = m_PolyOuts[ii]->Pts->Prev; | |
|         int cnt = PointCount( p ); | |
| 
 | |
|         if( cnt < 2 ) | |
|             continue; | |
| 
 | |
|         pg.reserve( cnt ); | |
| 
 | |
|         for( int jj = 0; jj < cnt; ++jj ) | |
|         { | |
|             pg.push_back( p->Pt ); | |
|             p = p->Prev; | |
|         } | |
| 
 | |
|         polys.push_back( pg ); | |
|     } | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| void Clipper::BuildResult2( PolyTree& polytree ) | |
| { | |
|     polytree.Clear(); | |
|     polytree.AllNodes.reserve( m_PolyOuts.size() ); | |
| 
 | |
|     // add each output polygon/contour to polytree ... | |
|     for( PolyOutList::size_type i = 0; i < m_PolyOuts.size(); i++ ) | |
|     { | |
|         OutRec* outRec = m_PolyOuts[i]; | |
|         int cnt = PointCount( outRec->Pts ); | |
| 
 | |
|         if( (outRec->IsOpen && cnt < 2) || (!outRec->IsOpen && cnt < 3) ) | |
|             continue; | |
| 
 | |
|         FixHoleLinkage( *outRec ); | |
|         PolyNode* pn = new PolyNode(); | |
|         // nb: polytree takes ownership of all the PolyNodes | |
|         polytree.AllNodes.push_back( pn ); | |
|         outRec->PolyNd = pn; | |
|         pn->Parent  = 0; | |
|         pn->Index   = 0; | |
|         pn->Contour.reserve( cnt ); | |
|         OutPt* op = outRec->Pts->Prev; | |
| 
 | |
|         for( int j = 0; j < cnt; j++ ) | |
|         { | |
|             pn->Contour.push_back( op->Pt ); | |
|             op = op->Prev; | |
|         } | |
|     } | |
| 
 | |
|     // fixup PolyNode links etc ... | |
|     polytree.Childs.reserve( m_PolyOuts.size() ); | |
| 
 | |
|     for( PolyOutList::size_type i = 0; i < m_PolyOuts.size(); i++ ) | |
|     { | |
|         OutRec* outRec = m_PolyOuts[i]; | |
| 
 | |
|         if( !outRec->PolyNd ) | |
|             continue; | |
| 
 | |
|         if( outRec->IsOpen ) | |
|         { | |
|             outRec->PolyNd->m_IsOpen = true; | |
|             polytree.AddChild( *outRec->PolyNd ); | |
|         } | |
|         else if( outRec->FirstLeft && outRec->FirstLeft->PolyNd ) | |
|             outRec->FirstLeft->PolyNd->AddChild( *outRec->PolyNd ); | |
|         else | |
|             polytree.AddChild( *outRec->PolyNd ); | |
|     } | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| void SwapIntersectNodes( IntersectNode& int1, IntersectNode& int2 ) | |
| { | |
|     // just swap the contents (because fIntersectNodes is a single-linked-list) | |
|     IntersectNode inode = int1; // gets a copy of Int1 | |
|  | |
|     int1.Edge1  = int2.Edge1; | |
|     int1.Edge2  = int2.Edge2; | |
|     int1.Pt = int2.Pt; | |
|     int2.Edge1  = inode.Edge1; | |
|     int2.Edge2  = inode.Edge2; | |
|     int2.Pt = inode.Pt; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| inline bool E2InsertsBeforeE1( TEdge& e1, TEdge& e2 ) | |
| { | |
|     if( e2.Curr.X == e1.Curr.X ) | |
|     { | |
|         if( e2.Top.Y > e1.Top.Y ) | |
|             return e2.Top.X < TopX( e1, e2.Top.Y ); | |
|         else | |
|             return e1.Top.X > TopX( e2, e1.Top.Y ); | |
|     } | |
|     else | |
|         return e2.Curr.X < e1.Curr.X; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| bool GetOverlap( const cInt a1, const cInt a2, const cInt b1, const cInt b2, | |
|         cInt& Left, cInt& Right ) | |
| { | |
|     if( a1 < a2 ) | |
|     { | |
|         if( b1 < b2 ) | |
|         { | |
|             Left = std::max( a1, b1 ); Right = std::min( a2, b2 ); | |
|         } | |
|         else | |
|         { | |
|             Left = std::max( a1, b2 ); Right = std::min( a2, b1 ); | |
|         } | |
|     } | |
|     else | |
|     { | |
|         if( b1 < b2 ) | |
|         { | |
|             Left = std::max( a2, b1 ); Right = std::min( a1, b2 ); | |
|         } | |
|         else | |
|         { | |
|             Left = std::max( a2, b2 ); Right = std::min( a1, b1 ); | |
|         } | |
|     } | |
| 
 | |
|     return Left < Right; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| inline void UpdateOutPtIdxs( OutRec& outrec ) | |
| { | |
|     OutPt* op = outrec.Pts; | |
| 
 | |
|     do | |
|     { | |
|         op->Idx = outrec.Idx; | |
|         op = op->Prev; | |
|     } while( op != outrec.Pts ); | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| void Clipper::InsertEdgeIntoAEL( TEdge* edge, TEdge* startEdge ) | |
| { | |
|     if( !m_ActiveEdges ) | |
|     { | |
|         edge->PrevInAEL = 0; | |
|         edge->NextInAEL = 0; | |
|         m_ActiveEdges = edge; | |
|     } | |
|     else if( !startEdge && E2InsertsBeforeE1( *m_ActiveEdges, *edge ) ) | |
|     { | |
|         edge->PrevInAEL = 0; | |
|         edge->NextInAEL = m_ActiveEdges; | |
|         m_ActiveEdges->PrevInAEL = edge; | |
|         m_ActiveEdges = edge; | |
|     } | |
|     else | |
|     { | |
|         if( !startEdge ) | |
|             startEdge = m_ActiveEdges; | |
| 
 | |
|         while( startEdge->NextInAEL | |
|                && !E2InsertsBeforeE1( *startEdge->NextInAEL, *edge ) ) | |
|             startEdge = startEdge->NextInAEL; | |
| 
 | |
|         edge->NextInAEL = startEdge->NextInAEL; | |
| 
 | |
|         if( startEdge->NextInAEL ) | |
|             startEdge->NextInAEL->PrevInAEL = edge; | |
| 
 | |
|         edge->PrevInAEL = startEdge; | |
|         startEdge->NextInAEL = edge; | |
|     } | |
| } | |
| 
 | |
| 
 | |
| // ---------------------------------------------------------------------- | |
|  | |
| OutPt* DupOutPt( OutPt* outPt, bool InsertAfter ) | |
| { | |
|     OutPt* result = new OutPt; | |
| 
 | |
|     result->Pt  = outPt->Pt; | |
|     result->Idx = outPt->Idx; | |
| 
 | |
|     if( InsertAfter ) | |
|     { | |
|         result->Next = outPt->Next; | |
|         result->Prev = outPt; | |
|         outPt->Next->Prev = result; | |
|         outPt->Next = result; | |
|     } | |
|     else | |
|     { | |
|         result->Prev = outPt->Prev; | |
|         result->Next = outPt; | |
|         outPt->Prev->Next = result; | |
|         outPt->Prev = result; | |
|     } | |
| 
 | |
|     return result; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| bool JoinHorz( OutPt* op1, OutPt* op1b, OutPt* op2, OutPt* op2b, | |
|         const IntPoint Pt, bool DiscardLeft ) | |
| { | |
|     Direction Dir1 = (op1->Pt.X > op1b->Pt.X ? dRightToLeft : dLeftToRight); | |
|     Direction Dir2 = (op2->Pt.X > op2b->Pt.X ? dRightToLeft : dLeftToRight); | |
| 
 | |
|     if( Dir1 == Dir2 ) | |
|         return false; | |
| 
 | |
|     // When DiscardLeft, we want Op1b to be on the Left of Op1, otherwise we | |
|     // want Op1b to be on the Right. (And likewise with Op2 and Op2b.) | |
|     // So, to facilitate this while inserting Op1b and Op2b ... | |
|     // when DiscardLeft, make sure we're AT or RIGHT of Pt before adding Op1b, | |
|     // otherwise make sure we're AT or LEFT of Pt. (Likewise with Op2b.) | |
|     if( Dir1 == dLeftToRight ) | |
|     { | |
|         while( op1->Next->Pt.X <= Pt.X | |
|                && op1->Next->Pt.X >= op1->Pt.X && op1->Next->Pt.Y == Pt.Y ) | |
|             op1 = op1->Next; | |
| 
 | |
|         if( DiscardLeft && (op1->Pt.X != Pt.X) ) | |
|             op1 = op1->Next; | |
| 
 | |
|         op1b = DupOutPt( op1, !DiscardLeft ); | |
| 
 | |
|         if( op1b->Pt != Pt ) | |
|         { | |
|             op1 = op1b; | |
|             op1->Pt = Pt; | |
|             op1b = DupOutPt( op1, !DiscardLeft ); | |
|         } | |
|     } | |
|     else | |
|     { | |
|         while( op1->Next->Pt.X >= Pt.X | |
|                && op1->Next->Pt.X <= op1->Pt.X && op1->Next->Pt.Y == Pt.Y ) | |
|             op1 = op1->Next; | |
| 
 | |
|         if( !DiscardLeft && (op1->Pt.X != Pt.X) ) | |
|             op1 = op1->Next; | |
| 
 | |
|         op1b = DupOutPt( op1, DiscardLeft ); | |
| 
 | |
|         if( op1b->Pt != Pt ) | |
|         { | |
|             op1 = op1b; | |
|             op1->Pt = Pt; | |
|             op1b = DupOutPt( op1, DiscardLeft ); | |
|         } | |
|     } | |
| 
 | |
|     if( Dir2 == dLeftToRight ) | |
|     { | |
|         while( op2->Next->Pt.X <= Pt.X | |
|                && op2->Next->Pt.X >= op2->Pt.X && op2->Next->Pt.Y == Pt.Y ) | |
|             op2 = op2->Next; | |
| 
 | |
|         if( DiscardLeft && (op2->Pt.X != Pt.X) ) | |
|             op2 = op2->Next; | |
| 
 | |
|         op2b = DupOutPt( op2, !DiscardLeft ); | |
| 
 | |
|         if( op2b->Pt != Pt ) | |
|         { | |
|             op2 = op2b; | |
|             op2->Pt = Pt; | |
|             op2b = DupOutPt( op2, !DiscardLeft ); | |
|         } | |
| 
 | |
|         ; | |
|     } | |
|     else | |
|     { | |
|         while( op2->Next->Pt.X >= Pt.X | |
|                && op2->Next->Pt.X <= op2->Pt.X && op2->Next->Pt.Y == Pt.Y ) | |
|             op2 = op2->Next; | |
| 
 | |
|         if( !DiscardLeft && (op2->Pt.X != Pt.X) ) | |
|             op2 = op2->Next; | |
| 
 | |
|         op2b = DupOutPt( op2, DiscardLeft ); | |
| 
 | |
|         if( op2b->Pt != Pt ) | |
|         { | |
|             op2 = op2b; | |
|             op2->Pt = Pt; | |
|             op2b = DupOutPt( op2, DiscardLeft ); | |
|         } | |
| 
 | |
|         ; | |
|     } | |
| 
 | |
|     ; | |
| 
 | |
|     if( (Dir1 == dLeftToRight) == DiscardLeft ) | |
|     { | |
|         op1->Prev = op2; | |
|         op2->Next = op1; | |
|         op1b->Next  = op2b; | |
|         op2b->Prev  = op1b; | |
|     } | |
|     else | |
|     { | |
|         op1->Next = op2; | |
|         op2->Prev = op1; | |
|         op1b->Prev  = op2b; | |
|         op2b->Next  = op1b; | |
|     } | |
| 
 | |
|     return true; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| bool Clipper::JoinPoints( Join* j, OutRec* outRec1, OutRec* outRec2 ) | |
| { | |
|     OutPt* op1  = j->OutPt1, * op1b; | |
|     OutPt* op2  = j->OutPt2, * op2b; | |
| 
 | |
|     // There are 3 kinds of joins for output polygons ... | |
|     // 1. Horizontal joins where Join.OutPt1 & Join.OutPt2 are vertices anywhere | |
|     // along (horizontal) collinear edges (& Join.OffPt is on the same horizontal). | |
|     // 2. Non-horizontal joins where Join.OutPt1 & Join.OutPt2 are at the same | |
|     // location at the Bottom of the overlapping segment (& Join.OffPt is above). | |
|     // 3. StrictSimple joins where edges touch but are not collinear and where | |
|     // Join.OutPt1, Join.OutPt2 & Join.OffPt all share the same point. | |
|     bool isHorizontal = (j->OutPt1->Pt.Y == j->OffPt.Y); | |
| 
 | |
|     if( isHorizontal  && (j->OffPt == j->OutPt1->Pt) | |
|         && (j->OffPt == j->OutPt2->Pt) ) | |
|     { | |
|         // Strictly Simple join ... | |
|         if( outRec1 != outRec2 ) | |
|             return false; | |
| 
 | |
|         op1b = j->OutPt1->Next; | |
| 
 | |
|         while( op1b != op1 && (op1b->Pt == j->OffPt) ) | |
|             op1b = op1b->Next; | |
| 
 | |
|         bool reverse1 = (op1b->Pt.Y > j->OffPt.Y); | |
|         op2b = j->OutPt2->Next; | |
| 
 | |
|         while( op2b != op2 && (op2b->Pt == j->OffPt) ) | |
|             op2b = op2b->Next; | |
| 
 | |
|         bool reverse2 = (op2b->Pt.Y > j->OffPt.Y); | |
| 
 | |
|         if( reverse1 == reverse2 ) | |
|             return false; | |
| 
 | |
|         if( reverse1 ) | |
|         { | |
|             op1b = DupOutPt( op1, false ); | |
|             op2b = DupOutPt( op2, true ); | |
|             op1->Prev = op2; | |
|             op2->Next = op1; | |
|             op1b->Next  = op2b; | |
|             op2b->Prev  = op1b; | |
|             j->OutPt1   = op1; | |
|             j->OutPt2   = op1b; | |
|             return true; | |
|         } | |
|         else | |
|         { | |
|             op1b = DupOutPt( op1, true ); | |
|             op2b = DupOutPt( op2, false ); | |
|             op1->Next = op2; | |
|             op2->Prev = op1; | |
|             op1b->Prev  = op2b; | |
|             op2b->Next  = op1b; | |
|             j->OutPt1   = op1; | |
|             j->OutPt2   = op1b; | |
|             return true; | |
|         } | |
|     } | |
|     else if( isHorizontal ) | |
|     { | |
|         // treat horizontal joins differently to non-horizontal joins since with | |
|         // them we're not yet sure where the overlapping is. OutPt1.Pt & OutPt2.Pt | |
|         // may be anywhere along the horizontal edge. | |
|         op1b = op1; | |
| 
 | |
|         while( op1->Prev->Pt.Y == op1->Pt.Y && op1->Prev != op1b && op1->Prev != op2 ) | |
|             op1 = op1->Prev; | |
| 
 | |
|         while( op1b->Next->Pt.Y == op1b->Pt.Y && op1b->Next != op1 && op1b->Next != op2 ) | |
|             op1b = op1b->Next; | |
| 
 | |
|         if( op1b->Next == op1 || op1b->Next == op2 ) | |
|             return false;                                     // a flat 'polygon' | |
|  | |
|         op2b = op2; | |
| 
 | |
|         while( op2->Prev->Pt.Y == op2->Pt.Y && op2->Prev != op2b && op2->Prev != op1b ) | |
|             op2 = op2->Prev; | |
| 
 | |
|         while( op2b->Next->Pt.Y == op2b->Pt.Y && op2b->Next != op2 && op2b->Next != op1 ) | |
|             op2b = op2b->Next; | |
| 
 | |
|         if( op2b->Next == op2 || op2b->Next == op1 ) | |
|             return false;                                     // a flat 'polygon' | |
|  | |
|         cInt Left, Right; | |
| 
 | |
|         // Op1 --> Op1b & Op2 --> Op2b are the extremites of the horizontal edges | |
|         if( !GetOverlap( op1->Pt.X, op1b->Pt.X, op2->Pt.X, op2b->Pt.X, Left, Right ) ) | |
|             return false; | |
| 
 | |
|         // DiscardLeftSide: when overlapping edges are joined, a spike will created | |
|         // which needs to be cleaned up. However, we don't want Op1 or Op2 caught up | |
|         // on the discard Side as either may still be needed for other joins ... | |
|         IntPoint Pt; | |
|         bool DiscardLeftSide; | |
| 
 | |
|         if( op1->Pt.X >= Left && op1->Pt.X <= Right ) | |
|         { | |
|             Pt = op1->Pt; DiscardLeftSide = (op1->Pt.X > op1b->Pt.X); | |
|         } | |
|         else if( op2->Pt.X >= Left&& op2->Pt.X <= Right ) | |
|         { | |
|             Pt = op2->Pt; DiscardLeftSide = (op2->Pt.X > op2b->Pt.X); | |
|         } | |
|         else if( op1b->Pt.X >= Left && op1b->Pt.X <= Right ) | |
|         { | |
|             Pt = op1b->Pt; DiscardLeftSide = op1b->Pt.X > op1->Pt.X; | |
|         } | |
|         else | |
|         { | |
|             Pt = op2b->Pt; DiscardLeftSide = (op2b->Pt.X > op2->Pt.X); | |
|         } | |
| 
 | |
|         j->OutPt1 = op1; j->OutPt2 = op2; | |
|         return JoinHorz( op1, op1b, op2, op2b, Pt, DiscardLeftSide ); | |
|     } | |
|     else | |
|     { | |
|         // nb: For non-horizontal joins ... | |
|         // 1. Jr.OutPt1.Pt.Y == Jr.OutPt2.Pt.Y | |
|         // 2. Jr.OutPt1.Pt > Jr.OffPt.Y | |
|  | |
|         // make sure the polygons are correctly oriented ... | |
|         op1b = op1->Next; | |
| 
 | |
|         while( (op1b->Pt == op1->Pt) && (op1b != op1) ) | |
|             op1b = op1b->Next; | |
| 
 | |
|         bool Reverse1 = ( (op1b->Pt.Y > op1->Pt.Y) | |
|                           || !SlopesEqual( op1->Pt, op1b->Pt, j->OffPt, m_UseFullRange ) ); | |
| 
 | |
|         if( Reverse1 ) | |
|         { | |
|             op1b = op1->Prev; | |
| 
 | |
|             while( (op1b->Pt == op1->Pt) && (op1b != op1) ) | |
|                 op1b = op1b->Prev; | |
| 
 | |
|             if( (op1b->Pt.Y > op1->Pt.Y) | |
|                 || !SlopesEqual( op1->Pt, op1b->Pt, j->OffPt, m_UseFullRange ) ) | |
|                 return false; | |
|         } | |
| 
 | |
|         ; | |
|         op2b = op2->Next; | |
| 
 | |
|         while( (op2b->Pt == op2->Pt) && (op2b != op2) ) | |
|             op2b = op2b->Next; | |
| 
 | |
|         bool Reverse2 = ( (op2b->Pt.Y > op2->Pt.Y) | |
|                           || !SlopesEqual( op2->Pt, op2b->Pt, j->OffPt, m_UseFullRange ) ); | |
| 
 | |
|         if( Reverse2 ) | |
|         { | |
|             op2b = op2->Prev; | |
| 
 | |
|             while( (op2b->Pt == op2->Pt) && (op2b != op2) ) | |
|                 op2b = op2b->Prev; | |
| 
 | |
|             if( (op2b->Pt.Y > op2->Pt.Y) | |
|                 || !SlopesEqual( op2->Pt, op2b->Pt, j->OffPt, m_UseFullRange ) ) | |
|                 return false; | |
|         } | |
| 
 | |
|         if( (op1b == op1) || (op2b == op2) || (op1b == op2b) | |
|             || ( (outRec1 == outRec2) && (Reverse1 == Reverse2) ) ) | |
|             return false; | |
| 
 | |
|         if( Reverse1 ) | |
|         { | |
|             op1b = DupOutPt( op1, false ); | |
|             op2b = DupOutPt( op2, true ); | |
|             op1->Prev = op2; | |
|             op2->Next = op1; | |
|             op1b->Next  = op2b; | |
|             op2b->Prev  = op1b; | |
|             j->OutPt1   = op1; | |
|             j->OutPt2   = op1b; | |
|             return true; | |
|         } | |
|         else | |
|         { | |
|             op1b = DupOutPt( op1, true ); | |
|             op2b = DupOutPt( op2, false ); | |
|             op1->Next = op2; | |
|             op2->Prev = op1; | |
|             op1b->Prev  = op2b; | |
|             op2b->Next  = op1b; | |
|             j->OutPt1   = op1; | |
|             j->OutPt2   = op1b; | |
|             return true; | |
|         } | |
|     } | |
| } | |
| 
 | |
| 
 | |
| // ---------------------------------------------------------------------- | |
|  | |
| static OutRec* ParseFirstLeft( OutRec* FirstLeft ) | |
| { | |
|     while( FirstLeft && !FirstLeft->Pts ) | |
|         FirstLeft = FirstLeft->FirstLeft; | |
| 
 | |
|     return FirstLeft; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| void Clipper::FixupFirstLefts1( OutRec* OldOutRec, OutRec* NewOutRec ) | |
| { | |
|     // tests if NewOutRec contains the polygon before reassigning FirstLeft | |
|     for( PolyOutList::size_type i = 0; i < m_PolyOuts.size(); ++i ) | |
|     { | |
|         OutRec* outRec = m_PolyOuts[i]; | |
|         OutRec* firstLeft = ParseFirstLeft( outRec->FirstLeft ); | |
| 
 | |
|         if( outRec->Pts  && firstLeft == OldOutRec ) | |
|         { | |
|             if( Poly2ContainsPoly1( outRec->Pts, NewOutRec->Pts ) ) | |
|                 outRec->FirstLeft = NewOutRec; | |
|         } | |
|     } | |
| } | |
| 
 | |
| 
 | |
| // ---------------------------------------------------------------------- | |
|  | |
| void Clipper::FixupFirstLefts2( OutRec* InnerOutRec, OutRec* OuterOutRec ) | |
| { | |
|     // A polygon has split into two such that one is now the inner of the other. | |
|     // It's possible that these polygons now wrap around other polygons, so check | |
|     // every polygon that's also contained by OuterOutRec's FirstLeft container | |
|     // (including 0) to see if they've become inner to the new inner polygon ... | |
|     OutRec* orfl = OuterOutRec->FirstLeft; | |
| 
 | |
|     for( PolyOutList::size_type i = 0; i < m_PolyOuts.size(); ++i ) | |
|     { | |
|         OutRec* outRec = m_PolyOuts[i]; | |
| 
 | |
|         if( !outRec->Pts || outRec == OuterOutRec || outRec == InnerOutRec ) | |
|             continue; | |
| 
 | |
|         OutRec* firstLeft = ParseFirstLeft( outRec->FirstLeft ); | |
| 
 | |
|         if( firstLeft != orfl && firstLeft != InnerOutRec && firstLeft != OuterOutRec ) | |
|             continue; | |
| 
 | |
|         if( Poly2ContainsPoly1( outRec->Pts, InnerOutRec->Pts ) ) | |
|             outRec->FirstLeft = InnerOutRec; | |
|         else if( Poly2ContainsPoly1( outRec->Pts, OuterOutRec->Pts ) ) | |
|             outRec->FirstLeft = OuterOutRec; | |
|         else if( outRec->FirstLeft == InnerOutRec || outRec->FirstLeft == OuterOutRec ) | |
|             outRec->FirstLeft = orfl; | |
|     } | |
| } | |
| 
 | |
| 
 | |
| // ---------------------------------------------------------------------- | |
| void Clipper::FixupFirstLefts3( OutRec* OldOutRec, OutRec* NewOutRec ) | |
| { | |
|     // reassigns FirstLeft WITHOUT testing if NewOutRec contains the polygon | |
|     for( PolyOutList::size_type i = 0; i < m_PolyOuts.size(); ++i ) | |
|     { | |
|         OutRec* outRec = m_PolyOuts[i]; | |
|         OutRec* firstLeft = ParseFirstLeft( outRec->FirstLeft ); | |
| 
 | |
|         if( outRec->Pts && firstLeft == OldOutRec ) | |
|             outRec->FirstLeft = NewOutRec; | |
|     } | |
| } | |
| 
 | |
| 
 | |
| // ---------------------------------------------------------------------- | |
|  | |
| void Clipper::JoinCommonEdges() | |
| { | |
|     for( JoinList::size_type i = 0; i < m_Joins.size(); i++ ) | |
|     { | |
|         Join* join = m_Joins[i]; | |
| 
 | |
|         OutRec* outRec1 = GetOutRec( join->OutPt1->Idx ); | |
|         OutRec* outRec2 = GetOutRec( join->OutPt2->Idx ); | |
| 
 | |
|         if( !outRec1->Pts || !outRec2->Pts ) | |
|             continue; | |
| 
 | |
|         if( outRec1->IsOpen || outRec2->IsOpen ) | |
|             continue; | |
| 
 | |
|         // get the polygon fragment with the correct hole state (FirstLeft) | |
|         // before calling JoinPoints() ... | |
|         OutRec* holeStateRec; | |
| 
 | |
|         if( outRec1 == outRec2 ) | |
|             holeStateRec = outRec1; | |
|         else if( OutRec1RightOfOutRec2( outRec1, outRec2 ) ) | |
|             holeStateRec = outRec2; | |
|         else if( OutRec1RightOfOutRec2( outRec2, outRec1 ) ) | |
|             holeStateRec = outRec1; | |
|         else | |
|             holeStateRec = GetLowermostRec( outRec1, outRec2 ); | |
| 
 | |
|         if( !JoinPoints( join, outRec1, outRec2 ) ) | |
|             continue; | |
| 
 | |
|         if( outRec1 == outRec2 ) | |
|         { | |
|             // instead of joining two polygons, we've just created a new one by | |
|             // splitting one polygon into two. | |
|             outRec1->Pts = join->OutPt1; | |
|             outRec1->BottomPt = 0; | |
|             outRec2 = CreateOutRec(); | |
|             outRec2->Pts = join->OutPt2; | |
| 
 | |
|             // update all OutRec2.Pts Idx's ... | |
|             UpdateOutPtIdxs( *outRec2 ); | |
| 
 | |
|             if( Poly2ContainsPoly1( outRec2->Pts, outRec1->Pts ) ) | |
|             { | |
|                 // outRec1 contains outRec2 ... | |
|                 outRec2->IsHole = !outRec1->IsHole; | |
|                 outRec2->FirstLeft = outRec1; | |
| 
 | |
|                 if( m_UsingPolyTree ) | |
|                     FixupFirstLefts2( outRec2, outRec1 ); | |
| 
 | |
|                 if( (outRec2->IsHole ^ m_ReverseOutput) == (Area( *outRec2 ) > 0) ) | |
|                     ReversePolyPtLinks( outRec2->Pts ); | |
|             } | |
|             else if( Poly2ContainsPoly1( outRec1->Pts, outRec2->Pts ) ) | |
|             { | |
|                 // outRec2 contains outRec1 ... | |
|                 outRec2->IsHole = outRec1->IsHole; | |
|                 outRec1->IsHole = !outRec2->IsHole; | |
|                 outRec2->FirstLeft  = outRec1->FirstLeft; | |
|                 outRec1->FirstLeft  = outRec2; | |
| 
 | |
|                 if( m_UsingPolyTree ) | |
|                     FixupFirstLefts2( outRec1, outRec2 ); | |
| 
 | |
|                 if( (outRec1->IsHole ^ m_ReverseOutput) == (Area( *outRec1 ) > 0) ) | |
|                     ReversePolyPtLinks( outRec1->Pts ); | |
|             } | |
|             else | |
|             { | |
|                 // the 2 polygons are completely separate ... | |
|                 outRec2->IsHole = outRec1->IsHole; | |
|                 outRec2->FirstLeft = outRec1->FirstLeft; | |
| 
 | |
|                 // fixup FirstLeft pointers that may need reassigning to OutRec2 | |
|                 if( m_UsingPolyTree ) | |
|                     FixupFirstLefts1( outRec1, outRec2 ); | |
|             } | |
|         } | |
|         else | |
|         { | |
|             // joined 2 polygons together ... | |
|  | |
|             outRec2->Pts = 0; | |
|             outRec2->BottomPt = 0; | |
|             outRec2->Idx = outRec1->Idx; | |
| 
 | |
|             outRec1->IsHole = holeStateRec->IsHole; | |
| 
 | |
|             if( holeStateRec == outRec2 ) | |
|                 outRec1->FirstLeft = outRec2->FirstLeft; | |
| 
 | |
|             outRec2->FirstLeft = outRec1; | |
| 
 | |
|             if( m_UsingPolyTree ) | |
|                 FixupFirstLefts3( outRec2, outRec1 ); | |
|         } | |
|     } | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
| // ClipperOffset support functions ... | |
| // ------------------------------------------------------------------------------ | |
|  | |
| DoublePoint GetUnitNormal( const IntPoint& pt1, const IntPoint& pt2 ) | |
| { | |
|     if( pt2.X == pt1.X && pt2.Y == pt1.Y ) | |
|         return DoublePoint( 0, 0 ); | |
| 
 | |
|     double Dx   = (double) (pt2.X - pt1.X); | |
|     double dy   = (double) (pt2.Y - pt1.Y); | |
|     double f    = 1 * 1.0 / std::sqrt( Dx * Dx + dy * dy ); | |
|     Dx  *= f; | |
|     dy  *= f; | |
|     return DoublePoint( dy, -Dx ); | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
| // ClipperOffset class | |
| // ------------------------------------------------------------------------------ | |
|  | |
| ClipperOffset::ClipperOffset( double miterLimit, double arcTolerance ) | |
| { | |
|     this->MiterLimit = miterLimit; | |
|     this->ArcTolerance = arcTolerance; | |
|     m_lowest.X = -1; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| ClipperOffset::~ClipperOffset() | |
| { | |
|     Clear(); | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| void ClipperOffset::Clear() | |
| { | |
|     for( int i = 0; i < m_polyNodes.ChildCount(); ++i ) | |
|         delete m_polyNodes.Childs[i]; | |
| 
 | |
|     m_polyNodes.Childs.clear(); | |
|     m_lowest.X = -1; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| void ClipperOffset::AddPath( const Path& path, JoinType joinType, EndType endType ) | |
| { | |
|     int highI = (int) path.size() - 1; | |
| 
 | |
|     if( highI < 0 ) | |
|         return; | |
| 
 | |
|     PolyNode* newNode = new PolyNode(); | |
|     newNode->m_jointype = joinType; | |
|     newNode->m_endtype  = endType; | |
| 
 | |
|     // strip duplicate points from path and also get index to the lowest point ... | |
|     if( endType == etClosedLine || endType == etClosedPolygon ) | |
|         while( highI > 0 && path[0] == path[highI] ) | |
|             highI--; | |
| 
 | |
| 
 | |
|     newNode->Contour.reserve( highI + 1 ); | |
|     newNode->Contour.push_back( path[0] ); | |
|     int j = 0, k = 0; | |
| 
 | |
|     for( int i = 1; i <= highI; i++ ) | |
|         if( newNode->Contour[j] != path[i] ) | |
|         { | |
|             j++; | |
|             newNode->Contour.push_back( path[i] ); | |
| 
 | |
|             if( path[i].Y > newNode->Contour[k].Y | |
|                 || (path[i].Y == newNode->Contour[k].Y | |
|                     && path[i].X < newNode->Contour[k].X) ) | |
|                 k = j; | |
|         } | |
| 
 | |
| 
 | |
|     if( endType == etClosedPolygon && j < 2 ) | |
|     { | |
|         delete newNode; | |
|         return; | |
|     } | |
| 
 | |
|     m_polyNodes.AddChild( *newNode ); | |
| 
 | |
|     // if this path's lowest pt is lower than all the others then update m_lowest | |
|     if( endType != etClosedPolygon ) | |
|         return; | |
| 
 | |
|     if( m_lowest.X < 0 ) | |
|         m_lowest = IntPoint( m_polyNodes.ChildCount() - 1, k ); | |
|     else | |
|     { | |
|         IntPoint ip = m_polyNodes.Childs[(int) m_lowest.X]->Contour[(int) m_lowest.Y]; | |
| 
 | |
|         if( newNode->Contour[k].Y > ip.Y | |
|             || (newNode->Contour[k].Y == ip.Y | |
|                 && newNode->Contour[k].X < ip.X) ) | |
|             m_lowest = IntPoint( m_polyNodes.ChildCount() - 1, k ); | |
|     } | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| void ClipperOffset::AddPaths( const Paths& paths, JoinType joinType, EndType endType ) | |
| { | |
|     for( Paths::size_type i = 0; i < paths.size(); ++i ) | |
|         AddPath( paths[i], joinType, endType ); | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| void ClipperOffset::FixOrientations() | |
| { | |
|     // fixup orientations of all closed paths if the orientation of the | |
|     // closed path with the lowermost vertex is wrong ... | |
|     if( m_lowest.X >= 0 | |
|         && !Orientation( m_polyNodes.Childs[(int) m_lowest.X]->Contour ) ) | |
|     { | |
|         for( int i = 0; i < m_polyNodes.ChildCount(); ++i ) | |
|         { | |
|             PolyNode& node = *m_polyNodes.Childs[i]; | |
| 
 | |
|             if( node.m_endtype == etClosedPolygon | |
|                 || ( node.m_endtype == etClosedLine && Orientation( node.Contour ) ) ) | |
|                 ReversePath( node.Contour ); | |
|         } | |
|     } | |
|     else | |
|     { | |
|         for( int i = 0; i < m_polyNodes.ChildCount(); ++i ) | |
|         { | |
|             PolyNode& node = *m_polyNodes.Childs[i]; | |
| 
 | |
|             if( node.m_endtype == etClosedLine && !Orientation( node.Contour ) ) | |
|                 ReversePath( node.Contour ); | |
|         } | |
|     } | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| void ClipperOffset::Execute( Paths& solution, double delta ) | |
| { | |
|     solution.clear(); | |
|     FixOrientations(); | |
|     DoOffset( delta ); | |
| 
 | |
|     // now clean up 'corners' ... | |
|     Clipper clpr; | |
|     clpr.AddPaths( m_destPolys, ptSubject, true ); | |
| 
 | |
|     if( delta > 0 ) | |
|     { | |
|         clpr.Execute( ctUnion, solution, pftPositive, pftPositive ); | |
|     } | |
|     else | |
|     { | |
|         IntRect r = clpr.GetBounds(); | |
|         Path outer( 4 ); | |
|         outer[0] = IntPoint( r.left - 10, r.bottom + 10 ); | |
|         outer[1] = IntPoint( r.right + 10, r.bottom + 10 ); | |
|         outer[2] = IntPoint( r.right + 10, r.top - 10 ); | |
|         outer[3] = IntPoint( r.left - 10, r.top - 10 ); | |
| 
 | |
|         clpr.AddPath( outer, ptSubject, true ); | |
|         clpr.ReverseSolution( true ); | |
|         clpr.Execute( ctUnion, solution, pftNegative, pftNegative ); | |
| 
 | |
|         if( solution.size() > 0 ) | |
|             solution.erase( solution.begin() ); | |
|     } | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| void ClipperOffset::Execute( PolyTree& solution, double delta ) | |
| { | |
|     solution.Clear(); | |
|     FixOrientations(); | |
|     DoOffset( delta ); | |
| 
 | |
|     // now clean up 'corners' ... | |
|     Clipper clpr; | |
|     clpr.AddPaths( m_destPolys, ptSubject, true ); | |
| 
 | |
|     if( delta > 0 ) | |
|     { | |
|         clpr.Execute( ctUnion, solution, pftPositive, pftPositive ); | |
|     } | |
|     else | |
|     { | |
|         IntRect r = clpr.GetBounds(); | |
|         Path outer( 4 ); | |
|         outer[0] = IntPoint( r.left - 10, r.bottom + 10 ); | |
|         outer[1] = IntPoint( r.right + 10, r.bottom + 10 ); | |
|         outer[2] = IntPoint( r.right + 10, r.top - 10 ); | |
|         outer[3] = IntPoint( r.left - 10, r.top - 10 ); | |
| 
 | |
|         clpr.AddPath( outer, ptSubject, true ); | |
|         clpr.ReverseSolution( true ); | |
|         clpr.Execute( ctUnion, solution, pftNegative, pftNegative ); | |
| 
 | |
|         // remove the outer PolyNode rectangle ... | |
|         if( solution.ChildCount() == 1 && solution.Childs[0]->ChildCount() > 0 ) | |
|         { | |
|             PolyNode* outerNode = solution.Childs[0]; | |
|             solution.Childs.reserve( outerNode->ChildCount() ); | |
|             solution.Childs[0] = outerNode->Childs[0]; | |
|             solution.Childs[0]->Parent = outerNode->Parent; | |
| 
 | |
|             for( int i = 1; i < outerNode->ChildCount(); ++i ) | |
|                 solution.AddChild( *outerNode->Childs[i] ); | |
|         } | |
|         else | |
|             solution.Clear(); | |
|     } | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| void ClipperOffset::DoOffset( double delta ) | |
| { | |
|     m_destPolys.clear(); | |
|     m_delta = delta; | |
| 
 | |
|     // if Zero offset, just copy any CLOSED polygons to m_p and return ... | |
|     if( NEAR_ZERO( delta ) ) | |
|     { | |
|         m_destPolys.reserve( m_polyNodes.ChildCount() ); | |
| 
 | |
|         for( int i = 0; i < m_polyNodes.ChildCount(); i++ ) | |
|         { | |
|             PolyNode& node = *m_polyNodes.Childs[i]; | |
| 
 | |
|             if( node.m_endtype == etClosedPolygon ) | |
|                 m_destPolys.push_back( node.Contour ); | |
|         } | |
| 
 | |
|         return; | |
|     } | |
| 
 | |
|     // see offset_triginometry3.svg in the documentation folder ... | |
|     if( MiterLimit > 2 ) | |
|         m_miterLim = 2 / (MiterLimit * MiterLimit); | |
|     else | |
|         m_miterLim = 0.5; | |
| 
 | |
|     double y; | |
| 
 | |
|     if( ArcTolerance <= 0.0 ) | |
|         y = def_arc_tolerance; | |
|     else if( ArcTolerance > std::fabs( delta ) * def_arc_tolerance ) | |
|         y = std::fabs( delta ) * def_arc_tolerance; | |
|     else | |
|         y = ArcTolerance; | |
| 
 | |
|     // see offset_triginometry2.svg in the documentation folder ... | |
|     double steps = pi / std::acos( 1 - y / std::fabs( delta ) ); | |
| 
 | |
|     if( steps > std::fabs( delta ) * pi ) | |
|         steps = std::fabs( delta ) * pi; // ie excessive precision check | |
|  | |
|     m_sin = std::sin( two_pi / steps ); | |
|     m_cos = std::cos( two_pi / steps ); | |
|     m_StepsPerRad = steps / two_pi; | |
| 
 | |
|     if( delta < 0.0 ) | |
|         m_sin = -m_sin; | |
| 
 | |
|     m_destPolys.reserve( m_polyNodes.ChildCount() * 2 ); | |
| 
 | |
|     for( int i = 0; i < m_polyNodes.ChildCount(); i++ ) | |
|     { | |
|         PolyNode& node = *m_polyNodes.Childs[i]; | |
|         m_srcPoly = node.Contour; | |
| 
 | |
|         int len = (int) m_srcPoly.size(); | |
| 
 | |
|         if( len == 0 || ( delta <= 0 && (len < 3 || node.m_endtype != etClosedPolygon) ) ) | |
|             continue; | |
| 
 | |
|         m_destPoly.clear(); | |
| 
 | |
|         if( len == 1 ) | |
|         { | |
|             if( node.m_jointype == jtRound ) | |
|             { | |
|                 double X = 1.0, Y = 0.0; | |
| 
 | |
|                 for( cInt j = 1; j <= steps; j++ ) | |
|                 { | |
|                     m_destPoly.push_back( IntPoint( | |
|                                     Round( m_srcPoly[0].X + X * delta ), | |
|                                     Round( m_srcPoly[0].Y + Y * delta ) ) ); | |
|                     double X2 = X; | |
|                     X = X * m_cos - m_sin * Y; | |
|                     Y = X2 * m_sin + Y * m_cos; | |
|                 } | |
|             } | |
|             else | |
|             { | |
|                 double X = -1.0, Y = -1.0; | |
| 
 | |
|                 for( int j = 0; j < 4; ++j ) | |
|                 { | |
|                     m_destPoly.push_back( IntPoint( | |
|                                     Round( m_srcPoly[0].X + X * delta ), | |
|                                     Round( m_srcPoly[0].Y + Y * delta ) ) ); | |
| 
 | |
|                     if( X < 0 ) | |
|                         X = 1; | |
|                     else if( Y < 0 ) | |
|                         Y = 1; | |
|                     else | |
|                         X = -1; | |
|                 } | |
|             } | |
| 
 | |
|             m_destPolys.push_back( m_destPoly ); | |
|             continue; | |
|         } | |
| 
 | |
|         // build m_normals ... | |
|         m_normals.clear(); | |
|         m_normals.reserve( len ); | |
| 
 | |
|         for( int j = 0; j < len - 1; ++j ) | |
|             m_normals.push_back( GetUnitNormal( m_srcPoly[j], m_srcPoly[j + 1] ) ); | |
| 
 | |
|         if( node.m_endtype == etClosedLine || node.m_endtype == etClosedPolygon ) | |
|             m_normals.push_back( GetUnitNormal( m_srcPoly[len - 1], m_srcPoly[0] ) ); | |
|         else | |
|             m_normals.push_back( DoublePoint( m_normals[len - 2] ) ); | |
| 
 | |
|         if( node.m_endtype == etClosedPolygon ) | |
|         { | |
|             int k = len - 1; | |
| 
 | |
|             for( int j = 0; j < len; ++j ) | |
|                 OffsetPoint( j, k, node.m_jointype ); | |
| 
 | |
|             m_destPolys.push_back( m_destPoly ); | |
|         } | |
|         else if( node.m_endtype == etClosedLine ) | |
|         { | |
|             int k = len - 1; | |
| 
 | |
|             for( int j = 0; j < len; ++j ) | |
|                 OffsetPoint( j, k, node.m_jointype ); | |
| 
 | |
|             m_destPolys.push_back( m_destPoly ); | |
|             m_destPoly.clear(); | |
|             // re-build m_normals ... | |
|             DoublePoint n = m_normals[len - 1]; | |
| 
 | |
|             for( int j = len - 1; j > 0; j-- ) | |
|                 m_normals[j] = DoublePoint( -m_normals[j - 1].X, -m_normals[j - 1].Y ); | |
| 
 | |
|             m_normals[0] = DoublePoint( -n.X, -n.Y ); | |
|             k = 0; | |
| 
 | |
|             for( int j = len - 1; j >= 0; j-- ) | |
|                 OffsetPoint( j, k, node.m_jointype ); | |
| 
 | |
|             m_destPolys.push_back( m_destPoly ); | |
|         } | |
|         else | |
|         { | |
|             int k = 0; | |
| 
 | |
|             for( int j = 1; j < len - 1; ++j ) | |
|                 OffsetPoint( j, k, node.m_jointype ); | |
| 
 | |
|             IntPoint pt1; | |
| 
 | |
|             if( node.m_endtype == etOpenButt ) | |
|             { | |
|                 int j = len - 1; | |
|                 pt1 = IntPoint( (cInt) Round( m_srcPoly[j].X + m_normals[j].X * | |
|                                 delta ), (cInt) Round( m_srcPoly[j].Y + m_normals[j].Y * delta ) ); | |
|                 m_destPoly.push_back( pt1 ); | |
|                 pt1 = IntPoint( (cInt) Round( m_srcPoly[j].X - m_normals[j].X * | |
|                                 delta ), (cInt) Round( m_srcPoly[j].Y - m_normals[j].Y * delta ) ); | |
|                 m_destPoly.push_back( pt1 ); | |
|             } | |
|             else | |
|             { | |
|                 int j = len - 1; | |
|                 k = len - 2; | |
|                 m_sinA = 0; | |
|                 m_normals[j] = DoublePoint( -m_normals[j].X, -m_normals[j].Y ); | |
| 
 | |
|                 if( node.m_endtype == etOpenSquare ) | |
|                     DoSquare( j, k ); | |
|                 else | |
|                     DoRound( j, k ); | |
|             } | |
| 
 | |
|             // re-build m_normals ... | |
|             for( int j = len - 1; j > 0; j-- ) | |
|                 m_normals[j] = DoublePoint( -m_normals[j - 1].X, -m_normals[j - 1].Y ); | |
| 
 | |
|             m_normals[0] = DoublePoint( -m_normals[1].X, -m_normals[1].Y ); | |
| 
 | |
|             k = len - 1; | |
| 
 | |
|             for( int j = k - 1; j > 0; --j ) | |
|                 OffsetPoint( j, k, node.m_jointype ); | |
| 
 | |
|             if( node.m_endtype == etOpenButt ) | |
|             { | |
|                 pt1 = IntPoint( (cInt) Round( m_srcPoly[0].X - m_normals[0].X * delta ), | |
|                         (cInt) Round( m_srcPoly[0].Y - m_normals[0].Y * delta ) ); | |
|                 m_destPoly.push_back( pt1 ); | |
|                 pt1 = IntPoint( (cInt) Round( m_srcPoly[0].X + m_normals[0].X * delta ), | |
|                         (cInt) Round( m_srcPoly[0].Y + m_normals[0].Y * delta ) ); | |
|                 m_destPoly.push_back( pt1 ); | |
|             } | |
|             else | |
|             { | |
|                 k = 1; | |
|                 m_sinA = 0; | |
| 
 | |
|                 if( node.m_endtype == etOpenSquare ) | |
|                     DoSquare( 0, 1 ); | |
|                 else | |
|                     DoRound( 0, 1 ); | |
|             } | |
| 
 | |
|             m_destPolys.push_back( m_destPoly ); | |
|         } | |
|     } | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| void ClipperOffset::OffsetPoint( int j, int& k, JoinType jointype ) | |
| { | |
|     // cross product ... | |
|     m_sinA = (m_normals[k].X * m_normals[j].Y - m_normals[j].X * m_normals[k].Y); | |
| 
 | |
|     if( std::fabs( m_sinA * m_delta ) < 1.0 ) | |
|     { | |
|         // dot product ... | |
|         double cosA = (m_normals[k].X * m_normals[j].X + m_normals[j].Y * m_normals[k].Y ); | |
| 
 | |
|         if( cosA > 0 ) // angle => 0 degrees | |
|         { | |
|             m_destPoly.push_back( IntPoint( Round( m_srcPoly[j].X + m_normals[k].X * m_delta ), | |
|                             Round( m_srcPoly[j].Y + m_normals[k].Y * m_delta ) ) ); | |
|             return; | |
|         } | |
| 
 | |
|         // else angle => 180 degrees | |
|     } | |
|     else if( m_sinA > 1.0 ) | |
|         m_sinA = 1.0; | |
|     else if( m_sinA < -1.0 ) | |
|         m_sinA = -1.0; | |
| 
 | |
|     if( m_sinA * m_delta < 0 ) | |
|     { | |
|         m_destPoly.push_back( IntPoint( Round( m_srcPoly[j].X + m_normals[k].X * m_delta ), | |
|                         Round( m_srcPoly[j].Y + m_normals[k].Y * m_delta ) ) ); | |
|         m_destPoly.push_back( m_srcPoly[j] ); | |
|         m_destPoly.push_back( IntPoint( Round( m_srcPoly[j].X + m_normals[j].X * m_delta ), | |
|                         Round( m_srcPoly[j].Y + m_normals[j].Y * m_delta ) ) ); | |
|     } | |
|     else | |
|         switch( jointype ) | |
|         { | |
|         case jtMiter: | |
|         { | |
|             double r = 1 + (m_normals[j].X * m_normals[k].X + | |
|                             m_normals[j].Y * m_normals[k].Y); | |
| 
 | |
|             if( r >= m_miterLim ) | |
|                 DoMiter( j, k, r ); | |
|             else | |
|                 DoSquare( j, k ); | |
| 
 | |
|             break; | |
|         } | |
| 
 | |
|         case jtSquare: | |
|             DoSquare( j, k ); break; | |
| 
 | |
|         case jtRound: | |
|             DoRound( j, k ); break; | |
|         } | |
| 
 | |
| 
 | |
|     k = j; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| void ClipperOffset::DoSquare( int j, int k ) | |
| { | |
|     double dx = std::tan( std::atan2( m_sinA, | |
|                     m_normals[k].X * m_normals[j].X + m_normals[k].Y * m_normals[j].Y ) / 4 ); | |
| 
 | |
|     m_destPoly.push_back( IntPoint( | |
|                     Round( m_srcPoly[j].X + m_delta * (m_normals[k].X - m_normals[k].Y * dx) ), | |
|                     Round( m_srcPoly[j].Y + m_delta * (m_normals[k].Y + m_normals[k].X * dx) ) ) ); | |
|     m_destPoly.push_back( IntPoint( | |
|                     Round( m_srcPoly[j].X + m_delta * (m_normals[j].X + m_normals[j].Y * dx) ), | |
|                     Round( m_srcPoly[j].Y + m_delta * (m_normals[j].Y - m_normals[j].X * dx) ) ) ); | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| void ClipperOffset::DoMiter( int j, int k, double r ) | |
| { | |
|     double q = m_delta / r; | |
| 
 | |
|     m_destPoly.push_back( IntPoint( Round( m_srcPoly[j].X + (m_normals[k].X + m_normals[j].X) * q ), | |
|                     Round( m_srcPoly[j].Y + (m_normals[k].Y + m_normals[j].Y) * q ) ) ); | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| void ClipperOffset::DoRound( int j, int k ) | |
| { | |
|     double a = std::atan2( m_sinA, | |
|             m_normals[k].X * m_normals[j].X + m_normals[k].Y * m_normals[j].Y ); | |
|     int steps = std::max( (int) Round( m_StepsPerRad * std::fabs( a ) ), 1 ); | |
| 
 | |
|     double X = m_normals[k].X, Y = m_normals[k].Y, X2; | |
| 
 | |
|     for( int i = 0; i < steps; ++i ) | |
|     { | |
|         m_destPoly.push_back( IntPoint( | |
|                         Round( m_srcPoly[j].X + X * m_delta ), | |
|                         Round( m_srcPoly[j].Y + Y * m_delta ) ) ); | |
|         X2  = X; | |
|         X   = X * m_cos - m_sin * Y; | |
|         Y   = X2 * m_sin + Y * m_cos; | |
|     } | |
| 
 | |
|     m_destPoly.push_back( IntPoint( | |
|                     Round( m_srcPoly[j].X + m_normals[j].X * m_delta ), | |
|                     Round( m_srcPoly[j].Y + m_normals[j].Y * m_delta ) ) ); | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
| // Miscellaneous public functions | |
| // ------------------------------------------------------------------------------ | |
|  | |
| void Clipper::DoSimplePolygons() | |
| { | |
|     PolyOutList::size_type i = 0; | |
| 
 | |
|     while( i < m_PolyOuts.size() ) | |
|     { | |
|         OutRec* outrec = m_PolyOuts[i++]; | |
|         OutPt*  op = outrec->Pts; | |
| 
 | |
|         if( !op || outrec->IsOpen ) | |
|             continue; | |
| 
 | |
|         do  // for each Pt in Polygon until duplicate found do ... | |
|         { | |
|             OutPt* op2 = op->Next; | |
| 
 | |
|             while( op2 != outrec->Pts ) | |
|             { | |
|                 if( (op->Pt == op2->Pt) && op2->Next != op && op2->Prev != op ) | |
|                 { | |
|                     // split the polygon into two ... | |
|                     OutPt* op3  = op->Prev; | |
|                     OutPt* op4  = op2->Prev; | |
|                     op->Prev = op4; | |
|                     op4->Next = op; | |
|                     op2->Prev = op3; | |
|                     op3->Next = op2; | |
| 
 | |
|                     outrec->Pts = op; | |
|                     OutRec* outrec2 = CreateOutRec(); | |
|                     outrec2->Pts = op2; | |
|                     UpdateOutPtIdxs( *outrec2 ); | |
| 
 | |
|                     if( Poly2ContainsPoly1( outrec2->Pts, outrec->Pts ) ) | |
|                     { | |
|                         // OutRec2 is contained by OutRec1 ... | |
|                         outrec2->IsHole = !outrec->IsHole; | |
|                         outrec2->FirstLeft = outrec; | |
| 
 | |
|                         if( m_UsingPolyTree ) | |
|                             FixupFirstLefts2( outrec2, outrec ); | |
|                     } | |
|                     else | |
|                         if( Poly2ContainsPoly1( outrec->Pts, outrec2->Pts ) ) | |
|                         { | |
|                             // OutRec1 is contained by OutRec2 ... | |
|                             outrec2->IsHole = outrec->IsHole; | |
|                             outrec->IsHole  = !outrec2->IsHole; | |
|                             outrec2->FirstLeft  = outrec->FirstLeft; | |
|                             outrec->FirstLeft   = outrec2; | |
| 
 | |
|                             if( m_UsingPolyTree ) | |
|                                 FixupFirstLefts2( outrec, outrec2 ); | |
|                         } | |
|                         else | |
|                         { | |
|                             // the 2 polygons are separate ... | |
|                             outrec2->IsHole = outrec->IsHole; | |
|                             outrec2->FirstLeft = outrec->FirstLeft; | |
| 
 | |
|                             if( m_UsingPolyTree ) | |
|                                 FixupFirstLefts1( outrec, outrec2 ); | |
|                         } | |
| 
 | |
| 
 | |
|                     op2 = op; // ie get ready for the Next iteration | |
|                 } | |
| 
 | |
|                 op2 = op2->Next; | |
|             } | |
| 
 | |
|             op = op->Next; | |
|         } while( op != outrec->Pts ); | |
|     } | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| void ReversePath( Path& p ) | |
| { | |
|     std::reverse( p.begin(), p.end() ); | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| void ReversePaths( Paths& p ) | |
| { | |
|     for( Paths::size_type i = 0; i < p.size(); ++i ) | |
|         ReversePath( p[i] ); | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| void SimplifyPolygon( const Path& in_poly, Paths& out_polys, PolyFillType fillType ) | |
| { | |
|     Clipper c; | |
| 
 | |
|     c.StrictlySimple( true ); | |
|     c.AddPath( in_poly, ptSubject, true ); | |
|     c.Execute( ctUnion, out_polys, fillType, fillType ); | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| void SimplifyPolygons( const Paths& in_polys, Paths& out_polys, PolyFillType fillType ) | |
| { | |
|     Clipper c; | |
| 
 | |
|     c.StrictlySimple( true ); | |
|     c.AddPaths( in_polys, ptSubject, true ); | |
|     c.Execute( ctUnion, out_polys, fillType, fillType ); | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| void SimplifyPolygons( Paths& polys, PolyFillType fillType ) | |
| { | |
|     SimplifyPolygons( polys, polys, fillType ); | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| inline double DistanceSqrd( const IntPoint& pt1, const IntPoint& pt2 ) | |
| { | |
|     double Dx   = ( (double) pt1.X - pt2.X ); | |
|     double dy   = ( (double) pt1.Y - pt2.Y ); | |
| 
 | |
|     return Dx * Dx + dy * dy; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| double DistanceFromLineSqrd( const IntPoint& pt, const IntPoint& ln1, const IntPoint& ln2 ) | |
| { | |
|     // The equation of a line in general form (Ax + By + C = 0) | |
|     // given 2 points (x¹,y¹) & (x²,y²) is ... | |
|     // (y¹ - y²)x + (x² - x¹)y + (y² - y¹)x¹ - (x² - x¹)y¹ = 0 | |
|     // A = (y¹ - y²); B = (x² - x¹); C = (y² - y¹)x¹ - (x² - x¹)y¹ | |
|     // perpendicular distance of point (x³,y³) = (Ax³ + By³ + C)/Sqrt(A² + B²) | |
|     // see http://en.wikipedia.org/wiki/Perpendicular_distance | |
|     double A = double(ln1.Y - ln2.Y); | |
|     double B = double(ln2.X - ln1.X); | |
|     double C = A * ln1.X + B * ln1.Y; | |
| 
 | |
|     C = A * pt.X + B * pt.Y - C; | |
|     return (C * C) / (A * A + B * B); | |
| } | |
| 
 | |
| 
 | |
| // --------------------------------------------------------------------------- | |
|  | |
| bool SlopesNearCollinear( const IntPoint& pt1, | |
|         const IntPoint& pt2, const IntPoint& pt3, double distSqrd ) | |
| { | |
|     // this function is more accurate when the point that's geometrically | |
|     // between the other 2 points is the one that's tested for distance. | |
|     // ie makes it more likely to pick up 'spikes' ... | |
|     if( Abs( pt1.X - pt2.X ) > Abs( pt1.Y - pt2.Y ) ) | |
|     { | |
|         if( (pt1.X > pt2.X) == (pt1.X < pt3.X) ) | |
|             return DistanceFromLineSqrd( pt1, pt2, pt3 ) < distSqrd; | |
|         else if( (pt2.X > pt1.X) == (pt2.X < pt3.X) ) | |
|             return DistanceFromLineSqrd( pt2, pt1, pt3 ) < distSqrd; | |
|         else | |
|             return DistanceFromLineSqrd( pt3, pt1, pt2 ) < distSqrd; | |
|     } | |
|     else | |
|     { | |
|         if( (pt1.Y > pt2.Y) == (pt1.Y < pt3.Y) ) | |
|             return DistanceFromLineSqrd( pt1, pt2, pt3 ) < distSqrd; | |
|         else if( (pt2.Y > pt1.Y) == (pt2.Y < pt3.Y) ) | |
|             return DistanceFromLineSqrd( pt2, pt1, pt3 ) < distSqrd; | |
|         else | |
|             return DistanceFromLineSqrd( pt3, pt1, pt2 ) < distSqrd; | |
|     } | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| bool PointsAreClose( IntPoint pt1, IntPoint pt2, double distSqrd ) | |
| { | |
|     double Dx   = (double) pt1.X - pt2.X; | |
|     double dy   = (double) pt1.Y - pt2.Y; | |
| 
 | |
|     return (Dx * Dx) + (dy * dy) <= distSqrd; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| OutPt* ExcludeOp( OutPt* op ) | |
| { | |
|     OutPt* result = op->Prev; | |
| 
 | |
|     result->Next = op->Next; | |
|     op->Next->Prev = result; | |
|     result->Idx = 0; | |
|     return result; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| void CleanPolygon( const Path& in_poly, Path& out_poly, double distance ) | |
| { | |
|     // distance = proximity in units/pixels below which vertices | |
|     // will be stripped. Default ~= sqrt(2). | |
|  | |
|     size_t size = in_poly.size(); | |
| 
 | |
|     if( size == 0 ) | |
|     { | |
|         out_poly.clear(); | |
|         return; | |
|     } | |
| 
 | |
|     OutPt* outPts = new OutPt[size]; | |
| 
 | |
|     for( size_t i = 0; i < size; ++i ) | |
|     { | |
|         outPts[i].Pt = in_poly[i]; | |
|         outPts[i].Next = &outPts[(i + 1) % size]; | |
|         outPts[i].Next->Prev = &outPts[i]; | |
|         outPts[i].Idx = 0; | |
|     } | |
| 
 | |
|     double distSqrd = distance * distance; | |
|     OutPt* op = &outPts[0]; | |
| 
 | |
|     while( op->Idx == 0 && op->Next != op->Prev ) | |
|     { | |
|         if( PointsAreClose( op->Pt, op->Prev->Pt, distSqrd ) ) | |
|         { | |
|             op = ExcludeOp( op ); | |
|             size--; | |
|         } | |
|         else if( PointsAreClose( op->Prev->Pt, op->Next->Pt, distSqrd ) ) | |
|         { | |
|             ExcludeOp( op->Next ); | |
|             op = ExcludeOp( op ); | |
|             size -= 2; | |
|         } | |
|         else if( SlopesNearCollinear( op->Prev->Pt, op->Pt, op->Next->Pt, distSqrd ) ) | |
|         { | |
|             op = ExcludeOp( op ); | |
|             size--; | |
|         } | |
|         else | |
|         { | |
|             op->Idx = 1; | |
|             op = op->Next; | |
|         } | |
|     } | |
| 
 | |
|     if( size < 3 ) | |
|         size = 0; | |
| 
 | |
|     out_poly.resize( size ); | |
| 
 | |
|     for( size_t i = 0; i < size; ++i ) | |
|     { | |
|         out_poly[i] = op->Pt; | |
|         op = op->Next; | |
|     } | |
| 
 | |
|     delete [] outPts; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| void CleanPolygon( Path& poly, double distance ) | |
| { | |
|     CleanPolygon( poly, poly, distance ); | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| void CleanPolygons( const Paths& in_polys, Paths& out_polys, double distance ) | |
| { | |
|     out_polys.resize( in_polys.size() ); | |
| 
 | |
|     for( Paths::size_type i = 0; i < in_polys.size(); ++i ) | |
|         CleanPolygon( in_polys[i], out_polys[i], distance ); | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| void CleanPolygons( Paths& polys, double distance ) | |
| { | |
|     CleanPolygons( polys, polys, distance ); | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| void Minkowski( const Path& poly, const Path& path, | |
|         Paths& solution, bool isSum, bool isClosed ) | |
| { | |
|     int delta = (isClosed ? 1 : 0); | |
|     size_t polyCnt  = poly.size(); | |
|     size_t pathCnt  = path.size(); | |
|     Paths pp; | |
| 
 | |
|     pp.reserve( pathCnt ); | |
| 
 | |
|     if( isSum ) | |
|         for( size_t i = 0; i < pathCnt; ++i ) | |
|         { | |
|             Path p; | |
|             p.reserve( polyCnt ); | |
| 
 | |
|             for( size_t j = 0; j < poly.size(); ++j ) | |
|                 p.push_back( IntPoint( path[i].X + poly[j].X, path[i].Y + poly[j].Y ) ); | |
| 
 | |
|             pp.push_back( p ); | |
|         } | |
| 
 | |
| 
 | |
|     else | |
|         for( size_t i = 0; i < pathCnt; ++i ) | |
|         { | |
|             Path p; | |
|             p.reserve( polyCnt ); | |
| 
 | |
|             for( size_t j = 0; j < poly.size(); ++j ) | |
|                 p.push_back( IntPoint( path[i].X - poly[j].X, path[i].Y - poly[j].Y ) ); | |
| 
 | |
|             pp.push_back( p ); | |
|         } | |
| 
 | |
| 
 | |
| 
 | |
|     solution.clear(); | |
|     solution.reserve( (pathCnt + delta) * (polyCnt + 1) ); | |
| 
 | |
|     for( size_t i = 0; i < pathCnt - 1 + delta; ++i ) | |
|         for( size_t j = 0; j < polyCnt; ++j ) | |
|         { | |
|             Path quad; | |
|             quad.reserve( 4 ); | |
|             quad.push_back( pp[i % pathCnt][j % polyCnt] ); | |
|             quad.push_back( pp[(i + 1) % pathCnt][j % polyCnt] ); | |
|             quad.push_back( pp[(i + 1) % pathCnt][(j + 1) % polyCnt] ); | |
|             quad.push_back( pp[i % pathCnt][(j + 1) % polyCnt] ); | |
| 
 | |
|             if( !Orientation( quad ) ) | |
|                 ReversePath( quad ); | |
| 
 | |
|             solution.push_back( quad ); | |
|         } | |
| 
 | |
| 
 | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| void MinkowskiSum( const Path& pattern, const Path& path, Paths& solution, bool pathIsClosed ) | |
| { | |
|     Minkowski( pattern, path, solution, true, pathIsClosed ); | |
|     Clipper c; | |
|     c.AddPaths( solution, ptSubject, true ); | |
|     c.Execute( ctUnion, solution, pftNonZero, pftNonZero ); | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| void TranslatePath( const Path& input, Path& output, const IntPoint delta ) | |
| { | |
|     // precondition: input != output | |
|     output.resize( input.size() ); | |
| 
 | |
|     for( size_t i = 0; i < input.size(); ++i ) | |
|         output[i] = IntPoint( input[i].X + delta.X, input[i].Y + delta.Y ); | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| void MinkowskiSum( const Path& pattern, const Paths& paths, Paths& solution, bool pathIsClosed ) | |
| { | |
|     Clipper c; | |
| 
 | |
|     for( size_t i = 0; i < paths.size(); ++i ) | |
|     { | |
|         Paths tmp; | |
|         Minkowski( pattern, paths[i], tmp, true, pathIsClosed ); | |
|         c.AddPaths( tmp, ptSubject, true ); | |
| 
 | |
|         if( pathIsClosed ) | |
|         { | |
|             Path tmp2; | |
|             TranslatePath( paths[i], tmp2, pattern[0] ); | |
|             c.AddPath( tmp2, ptClip, true ); | |
|         } | |
|     } | |
| 
 | |
|     c.Execute( ctUnion, solution, pftNonZero, pftNonZero ); | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| void MinkowskiDiff( const Path& poly1, const Path& poly2, Paths& solution ) | |
| { | |
|     Minkowski( poly1, poly2, solution, false, true ); | |
|     Clipper c; | |
|     c.AddPaths( solution, ptSubject, true ); | |
|     c.Execute( ctUnion, solution, pftNonZero, pftNonZero ); | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| enum NodeType | |
| { | |
|     ntAny, ntOpen, ntClosed | |
| }; | |
| 
 | |
| void AddPolyNodeToPaths( const PolyNode& polynode, NodeType nodetype, Paths& paths ) | |
| { | |
|     bool match = true; | |
| 
 | |
|     if( nodetype == ntClosed ) | |
|         match = !polynode.IsOpen(); | |
|     else if( nodetype == ntOpen ) | |
|         return; | |
| 
 | |
|     if( !polynode.Contour.empty() && match ) | |
|         paths.push_back( polynode.Contour ); | |
| 
 | |
|     for( int i = 0; i < polynode.ChildCount(); ++i ) | |
|         AddPolyNodeToPaths( *polynode.Childs[i], nodetype, paths ); | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| void PolyTreeToPaths( const PolyTree& polytree, Paths& paths ) | |
| { | |
|     paths.resize( 0 ); | |
|     paths.reserve( polytree.Total() ); | |
|     AddPolyNodeToPaths( polytree, ntAny, paths ); | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| void ClosedPathsFromPolyTree( const PolyTree& polytree, Paths& paths ) | |
| { | |
|     paths.resize( 0 ); | |
|     paths.reserve( polytree.Total() ); | |
|     AddPolyNodeToPaths( polytree, ntClosed, paths ); | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| void OpenPathsFromPolyTree( PolyTree& polytree, Paths& paths ) | |
| { | |
|     paths.resize( 0 ); | |
|     paths.reserve( polytree.Total() ); | |
| 
 | |
|     // Open paths are top level only, so ... | |
|     for( int i = 0; i < polytree.ChildCount(); ++i ) | |
|         if( polytree.Childs[i]->IsOpen() ) | |
|             paths.push_back( polytree.Childs[i]->Contour ); | |
| 
 | |
| 
 | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| std::ostream& operator <<( std::ostream& s, const IntPoint& p ) | |
| { | |
|     s << "(" << p.X << "," << p.Y << ")"; | |
|     return s; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| std::ostream& operator <<( std::ostream& s, const Path& p ) | |
| { | |
|     if( p.empty() ) | |
|         return s; | |
| 
 | |
|     Path::size_type last = p.size() - 1; | |
| 
 | |
|     for( Path::size_type i = 0; i < last; i++ ) | |
|         s << "(" << p[i].X << "," << p[i].Y << "), "; | |
| 
 | |
|     s << "(" << p[last].X << "," << p[last].Y << ")\n"; | |
|     return s; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
|  | |
| std::ostream& operator <<( std::ostream& s, const Paths& p ) | |
| { | |
|     for( Paths::size_type i = 0; i < p.size(); i++ ) | |
|         s << p[i]; | |
| 
 | |
|     s << "\n"; | |
|     return s; | |
| } | |
| 
 | |
| 
 | |
| // ------------------------------------------------------------------------------ | |
| }    // ClipperLib namespace
 |