One test has pads of a bunch of different shapes and provokes some
errors to make sure they're caught.
The others are all past issues with the zone filler to make sure we
don't suffer any regressions. (They should all just pass with no DRC
errors.)
The use of printf, wxLogDebug, and std::err/std::out causes excessive
debugging output which makes finding specific debugging messages more
difficult than it needs to be.
There is still some debugging output in test code that really needs to
be moved into a unit test.
Add debugging output section to the coding policy regarding debugging
output.
Move into own include directory for clarity. Also allows qa_utils
to use its own private headers in qa/qa_utils without exposing them
through the target_include_directories directive.
Several pcbnew_tools utilities read a file from the command line.
Instead of replicating this code, centralise the code in
qa_pcbnew_utils, which allows simpler reuse.
THe utilities are:
* polygon_triangulation
* polygon_generator
* drc_tool
pcb_parser keeps its own function, as that is the focus of the tool,
and its likely to have its own instrumention.
This also adds the ability to read from stdin for the above tools,
which means fuzz testers could theoretically work with them, and it
also can make life easier if you can pipe a board to the executable
directly.
Introduce the concept of a DRC_PROVIDER which allows
to separate the various DRC functions to their own
areas. This allows, amongst other things, a slimmer core
DRC class, and allows DRC functions to be separately testable.
The courtyard DRCs (overlap, missing and malformed)
are the first victims, so instrumentation can be added to this function.
Add some unit tests on this DRC function, as well a few re-usable PCB-based
utility functions in a library (qa_pcbnew_utils) that could be shared between
unit tests and other utilities.
- ratsnest is updated now when undoing in legacy view
- select whole net regression
- local ratsnest in the GAL regression
- pick correct zone net for stitching vias
- mark nets as dirty on net propagation to force ratsnest update
Todo:
- cleanup board algorithm is still broken
2) Change from legacy Cu stack to counting down from top=(F_Cu or 0).
The old Cu stack required knowing the count of Cu layers to make
sense of the layer number when converting to many exported file types.
The new Cu stack is more commonly used, although ours still gives
B_Cu a fixed number.
3) Introduce class LSET and enum LAYER_ID.
4) Change *.kicad_pcb file format version to 4 from 3.
5) Change fixed names Inner1_Cu-Inner14_Cu to In1_Cu-In30_Cu and their
meanings are typically flipped.
6) Moved the #define LAYER_N_* stuff into legacy_plugin.cpp where they
can die a quiet death, and switch to enum LAYER_ID symbols throughout.
7) Removed the LEGACY_PLUGIN::Save() and FootprintSave() functions.
You will need to convert to the format immediately, *.kicad_pcb and
*.kicad_mod (=pretty) since legacy format was never going to know
about 32 Cu layers and additional technical layers and the reversed Cu
stack.
! The initial testing of this commit should be done using a Debug build so that
all the wxASSERT()s are enabled. Also, be sure and keep enabled the
USE_KIWAY_DLLs option. The tree won't likely build without it. Turning it
off is senseless anyways. If you want stable code, go back to a prior version,
the one tagged with "stable".
* Relocate all functionality out of the wxApp derivative into more finely
targeted purposes:
a) DLL/DSO specific
b) PROJECT specific
c) EXE or process specific
d) configuration file specific data
e) configuration file manipulations functions.
All of this functionality was blended into an extremely large wxApp derivative
and that was incompatible with the desire to support multiple concurrently
loaded DLL/DSO's ("KIFACE")s and multiple concurrently open projects.
An amazing amount of organization come from simply sorting each bit of
functionality into the proper box.
* Switch to wxConfigBase from wxConfig everywhere except instantiation.
* Add classes KIWAY, KIFACE, KIFACE_I, SEARCH_STACK, PGM_BASE, PGM_KICAD,
PGM_SINGLE_TOP,
* Remove "Return" prefix on many function names.
* Remove obvious comments from CMakeLists.txt files, and from else() and endif()s.
* Fix building boost for use in a DSO on linux.
* Remove some of the assumptions in the CMakeLists.txt files that windows had
to be the host platform when building windows binaries.
* Reduce the number of wxStrings being constructed at program load time via
static construction.
* Pass wxConfigBase* to all SaveSettings() and LoadSettings() functions so that
these functions are useful even when the wxConfigBase comes from another
source, as is the case in the KICAD_MANAGER_FRAME.
* Move the setting of the KIPRJMOD environment variable into class PROJECT,
so that it can be moved into a project variable soon, and out of FP_LIB_TABLE.
* Add the KIWAY_PLAYER which is associated with a particular PROJECT, and all
its child wxFrames and wxDialogs now have a Kiway() member function which
returns a KIWAY& that that window tree branch is in support of. This is like
wxWindows DNA in that child windows get this member with proper value at time
of construction.
* Anticipate some of the needs for milestones B) and C) and make code
adjustments now in an effort to reduce work in those milestones.
* No testing has been done for python scripting, since milestone C) has that
being largely reworked and re-thought-out.
Renamed BOARD_CONNECTED_ITEM::SetNet() -> SetNetCode()
Added BOARD_CONNECTED_ITEM::GetNet() for accessing NETINFO_ITEM* of a given item.
Fixed module editor crash when launched to edit a module from a PCB.
Replaced some BOARD::FindNet( item->GetNet() ) calls with BOARD_CONNECTED_ITEM::GetNet().
Renamed BOARD_CONNECTED_ITEM::SetNet() -> SetNetCode()
Added BOARD_CONNECTED_ITEM::GetNet() for accessing NETINFO_ITEM* of a given item.
Fixed module editor crash when launched to edit a module from a PCB.
Replaced some BOARD::FindNet( item->GetNet() ) calls with BOARD_CONNECTED_ITEM::GetNet().
- Removed spurious int casts (these are truncated anyway and will break
doubles)
- Applied the Distance, GetLineLength, EuclideanNorm, DEG2RAD, RAD2DEG
ArcTangente and NORMALIZE* functions where possible
- ArcTangente now returns double and handles the 0,0 case like atan2, so
it's no longer necessary to check for it before calling
- Small functions in trigo moved as inline
Until now, 2 tracks were seen as connected only if one end of the first track is *exactly* on one end of the other track.
Now the 2 ends are seen as connected when they are "near" i.e. the distance between the 2 ends is < track width/2
and therefore tracks are now dragged when a end point is inside a pad, not necessary on the pad position.
However, drag functions still need more cleanup.
therefore tracks which have a end point inside a pad, but not necessaryexactly to the pad position are seen as connected, and are no more removed.
Side effect: reconnect to pads option is removed, because it is useless.
TODO: use this algorithm in drag functions.
Minor other fixes
* A track is seen connected to a pad if the track end is inside the pad shape.
* Pads inside pads are now seen connected, if the center of the pad is *inside* the other pad.
* this is made to be sure a large copper area is shared by the 2 pads, and to keep algorithm fast.