13 changed files with 4689 additions and 0 deletions
-
93thirdparty/fast_float/CMakeLists.txt
-
190thirdparty/fast_float/LICENSE-APACHE
-
23thirdparty/fast_float/LICENSE-BOOST
-
27thirdparty/fast_float/LICENSE-MIT
-
588thirdparty/fast_float/include/fast_float/ascii_number.h
-
638thirdparty/fast_float/include/fast_float/bigint.h
-
53thirdparty/fast_float/include/fast_float/constexpr_feature_detect.h
-
212thirdparty/fast_float/include/fast_float/decimal_to_binary.h
-
457thirdparty/fast_float/include/fast_float/digit_comparison.h
-
59thirdparty/fast_float/include/fast_float/fast_float.h
-
708thirdparty/fast_float/include/fast_float/fast_table.h
-
1240thirdparty/fast_float/include/fast_float/float_common.h
-
401thirdparty/fast_float/include/fast_float/parse_number.h
@ -0,0 +1,93 @@ |
|||
cmake_minimum_required(VERSION 3.9) |
|||
|
|||
project(fast_float VERSION 8.0.2 LANGUAGES CXX) |
|||
set(FASTFLOAT_CXX_STANDARD 11 CACHE STRING "the C++ standard to use for fastfloat") |
|||
set(CMAKE_CXX_STANDARD ${FASTFLOAT_CXX_STANDARD}) |
|||
option(FASTFLOAT_TEST "Enable tests" OFF) |
|||
|
|||
if(FASTFLOAT_TEST) |
|||
enable_testing() |
|||
add_subdirectory(tests) |
|||
else(FASTFLOAT_TEST) |
|||
message(STATUS "Tests are disabled. Set FASTFLOAT_TEST to ON to run tests.") |
|||
endif(FASTFLOAT_TEST) |
|||
|
|||
option(FASTFLOAT_SANITIZE "Sanitize addresses" OFF) |
|||
|
|||
if (NOT CMAKE_BUILD_TYPE) |
|||
if(FASTFLOAT_SANITIZE) |
|||
set(CMAKE_BUILD_TYPE Debug CACHE STRING "Choose the type of build." FORCE) |
|||
else() |
|||
message(STATUS "No build type selected, default to Release") |
|||
set(CMAKE_BUILD_TYPE Release CACHE STRING "Choose the type of build." FORCE) |
|||
endif() |
|||
endif() |
|||
|
|||
option(FASTFLOAT_INSTALL "Enable install" ON) |
|||
|
|||
if(FASTFLOAT_INSTALL) |
|||
include(GNUInstallDirs) |
|||
endif() |
|||
|
|||
add_library(fast_float INTERFACE) |
|||
|
|||
|
|||
option(FASTFLOAT_BENCHMARKS "Enable benchmarks" OFF) |
|||
if(FASTFLOAT_BENCHMARKS) |
|||
add_subdirectory(benchmarks) |
|||
else(FASTFLOAT_BENCHMARKS) |
|||
message(STATUS "Benchmarks are disabled. Set FASTFLOAT_BENCHMARKS to ON to build benchmarks (assumes C++17).") |
|||
endif(FASTFLOAT_BENCHMARKS) |
|||
|
|||
|
|||
add_library(FastFloat::fast_float ALIAS fast_float) |
|||
target_include_directories( |
|||
fast_float |
|||
INTERFACE |
|||
$<BUILD_INTERFACE:${PROJECT_SOURCE_DIR}/include> |
|||
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}> |
|||
) |
|||
target_compile_features(fast_float INTERFACE cxx_std_11) |
|||
if(FASTFLOAT_SANITIZE) |
|||
target_compile_options(fast_float INTERFACE -fsanitize=address -fno-omit-frame-pointer -fsanitize=undefined -fno-sanitize-recover=all) |
|||
target_link_libraries(fast_float INTERFACE -fsanitize=address -fno-omit-frame-pointer -fsanitize=undefined -fno-sanitize-recover=all) |
|||
if (CMAKE_COMPILER_IS_GNUCC) |
|||
target_link_libraries(fast_float INTERFACE -fuse-ld=gold) |
|||
endif() |
|||
endif() |
|||
|
|||
include(CheckCXXCompilerFlag) |
|||
unset(FASTFLOAT_COMPILER_SUPPORTS_PERMISSIVE) |
|||
CHECK_CXX_COMPILER_FLAG(/permissive- FASTFLOAT_COMPILER_SUPPORTS_PERMISSIVE) |
|||
|
|||
if(FASTFLOAT_COMPILER_SUPPORTS_PERMISSIVE) |
|||
target_compile_options(fast_float INTERFACE /permissive-) |
|||
endif() |
|||
|
|||
if(FASTFLOAT_INSTALL) |
|||
include(CMakePackageConfigHelpers) |
|||
|
|||
set(FASTFLOAT_VERSION_CONFIG "${CMAKE_CURRENT_BINARY_DIR}/module/FastFloatConfigVersion.cmake") |
|||
set(FASTFLOAT_PROJECT_CONFIG "${CMAKE_CURRENT_BINARY_DIR}/module/FastFloatConfig.cmake") |
|||
set(FASTFLOAT_CONFIG_INSTALL_DIR "${CMAKE_INSTALL_DATAROOTDIR}/cmake/FastFloat") |
|||
|
|||
if(${CMAKE_VERSION} VERSION_LESS "3.14") |
|||
write_basic_package_version_file("${FASTFLOAT_VERSION_CONFIG}" VERSION ${PROJECT_VERSION} COMPATIBILITY SameMajorVersion) |
|||
else() |
|||
write_basic_package_version_file("${FASTFLOAT_VERSION_CONFIG}" VERSION ${PROJECT_VERSION} COMPATIBILITY SameMajorVersion ARCH_INDEPENDENT) |
|||
endif() |
|||
configure_package_config_file("cmake/config.cmake.in" |
|||
"${FASTFLOAT_PROJECT_CONFIG}" |
|||
INSTALL_DESTINATION "${FASTFLOAT_CONFIG_INSTALL_DIR}") |
|||
|
|||
install(DIRECTORY "${PROJECT_SOURCE_DIR}/include/fast_float" DESTINATION "${CMAKE_INSTALL_INCLUDEDIR}") |
|||
install(FILES "${FASTFLOAT_PROJECT_CONFIG}" "${FASTFLOAT_VERSION_CONFIG}" DESTINATION "${FASTFLOAT_CONFIG_INSTALL_DIR}") |
|||
install(EXPORT ${PROJECT_NAME}-targets NAMESPACE FastFloat:: DESTINATION "${FASTFLOAT_CONFIG_INSTALL_DIR}") |
|||
|
|||
install(TARGETS fast_float |
|||
EXPORT ${PROJECT_NAME}-targets |
|||
RUNTIME DESTINATION ${CMAKE_INSTALL_BINDIR} |
|||
ARCHIVE DESTINATION ${CMAKE_INSTALL_LIBDIR} |
|||
LIBRARY DESTINATION ${CMAKE_INSTALL_LIBDIR} |
|||
) |
|||
endif() |
|||
@ -0,0 +1,190 @@ |
|||
Apache License |
|||
Version 2.0, January 2004 |
|||
http://www.apache.org/licenses/ |
|||
|
|||
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION |
|||
|
|||
1. Definitions. |
|||
|
|||
"License" shall mean the terms and conditions for use, reproduction, |
|||
and distribution as defined by Sections 1 through 9 of this document. |
|||
|
|||
"Licensor" shall mean the copyright owner or entity authorized by |
|||
the copyright owner that is granting the License. |
|||
|
|||
"Legal Entity" shall mean the union of the acting entity and all |
|||
other entities that control, are controlled by, or are under common |
|||
control with that entity. For the purposes of this definition, |
|||
"control" means (i) the power, direct or indirect, to cause the |
|||
direction or management of such entity, whether by contract or |
|||
otherwise, or (ii) ownership of fifty percent (50%) or more of the |
|||
outstanding shares, or (iii) beneficial ownership of such entity. |
|||
|
|||
"You" (or "Your") shall mean an individual or Legal Entity |
|||
exercising permissions granted by this License. |
|||
|
|||
"Source" form shall mean the preferred form for making modifications, |
|||
including but not limited to software source code, documentation |
|||
source, and configuration files. |
|||
|
|||
"Object" form shall mean any form resulting from mechanical |
|||
transformation or translation of a Source form, including but |
|||
not limited to compiled object code, generated documentation, |
|||
and conversions to other media types. |
|||
|
|||
"Work" shall mean the work of authorship, whether in Source or |
|||
Object form, made available under the License, as indicated by a |
|||
copyright notice that is included in or attached to the work |
|||
(an example is provided in the Appendix below). |
|||
|
|||
"Derivative Works" shall mean any work, whether in Source or Object |
|||
form, that is based on (or derived from) the Work and for which the |
|||
editorial revisions, annotations, elaborations, or other modifications |
|||
represent, as a whole, an original work of authorship. For the purposes |
|||
of this License, Derivative Works shall not include works that remain |
|||
separable from, or merely link (or bind by name) to the interfaces of, |
|||
the Work and Derivative Works thereof. |
|||
|
|||
"Contribution" shall mean any work of authorship, including |
|||
the original version of the Work and any modifications or additions |
|||
to that Work or Derivative Works thereof, that is intentionally |
|||
submitted to Licensor for inclusion in the Work by the copyright owner |
|||
or by an individual or Legal Entity authorized to submit on behalf of |
|||
the copyright owner. For the purposes of this definition, "submitted" |
|||
means any form of electronic, verbal, or written communication sent |
|||
to the Licensor or its representatives, including but not limited to |
|||
communication on electronic mailing lists, source code control systems, |
|||
and issue tracking systems that are managed by, or on behalf of, the |
|||
Licensor for the purpose of discussing and improving the Work, but |
|||
excluding communication that is conspicuously marked or otherwise |
|||
designated in writing by the copyright owner as "Not a Contribution." |
|||
|
|||
"Contributor" shall mean Licensor and any individual or Legal Entity |
|||
on behalf of whom a Contribution has been received by Licensor and |
|||
subsequently incorporated within the Work. |
|||
|
|||
2. Grant of Copyright License. Subject to the terms and conditions of |
|||
this License, each Contributor hereby grants to You a perpetual, |
|||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable |
|||
copyright license to reproduce, prepare Derivative Works of, |
|||
publicly display, publicly perform, sublicense, and distribute the |
|||
Work and such Derivative Works in Source or Object form. |
|||
|
|||
3. Grant of Patent License. Subject to the terms and conditions of |
|||
this License, each Contributor hereby grants to You a perpetual, |
|||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable |
|||
(except as stated in this section) patent license to make, have made, |
|||
use, offer to sell, sell, import, and otherwise transfer the Work, |
|||
where such license applies only to those patent claims licensable |
|||
by such Contributor that are necessarily infringed by their |
|||
Contribution(s) alone or by combination of their Contribution(s) |
|||
with the Work to which such Contribution(s) was submitted. If You |
|||
institute patent litigation against any entity (including a |
|||
cross-claim or counterclaim in a lawsuit) alleging that the Work |
|||
or a Contribution incorporated within the Work constitutes direct |
|||
or contributory patent infringement, then any patent licenses |
|||
granted to You under this License for that Work shall terminate |
|||
as of the date such litigation is filed. |
|||
|
|||
4. Redistribution. You may reproduce and distribute copies of the |
|||
Work or Derivative Works thereof in any medium, with or without |
|||
modifications, and in Source or Object form, provided that You |
|||
meet the following conditions: |
|||
|
|||
(a) You must give any other recipients of the Work or |
|||
Derivative Works a copy of this License; and |
|||
|
|||
(b) You must cause any modified files to carry prominent notices |
|||
stating that You changed the files; and |
|||
|
|||
(c) You must retain, in the Source form of any Derivative Works |
|||
that You distribute, all copyright, patent, trademark, and |
|||
attribution notices from the Source form of the Work, |
|||
excluding those notices that do not pertain to any part of |
|||
the Derivative Works; and |
|||
|
|||
(d) If the Work includes a "NOTICE" text file as part of its |
|||
distribution, then any Derivative Works that You distribute must |
|||
include a readable copy of the attribution notices contained |
|||
within such NOTICE file, excluding those notices that do not |
|||
pertain to any part of the Derivative Works, in at least one |
|||
of the following places: within a NOTICE text file distributed |
|||
as part of the Derivative Works; within the Source form or |
|||
documentation, if provided along with the Derivative Works; or, |
|||
within a display generated by the Derivative Works, if and |
|||
wherever such third-party notices normally appear. The contents |
|||
of the NOTICE file are for informational purposes only and |
|||
do not modify the License. You may add Your own attribution |
|||
notices within Derivative Works that You distribute, alongside |
|||
or as an addendum to the NOTICE text from the Work, provided |
|||
that such additional attribution notices cannot be construed |
|||
as modifying the License. |
|||
|
|||
You may add Your own copyright statement to Your modifications and |
|||
may provide additional or different license terms and conditions |
|||
for use, reproduction, or distribution of Your modifications, or |
|||
for any such Derivative Works as a whole, provided Your use, |
|||
reproduction, and distribution of the Work otherwise complies with |
|||
the conditions stated in this License. |
|||
|
|||
5. Submission of Contributions. Unless You explicitly state otherwise, |
|||
any Contribution intentionally submitted for inclusion in the Work |
|||
by You to the Licensor shall be under the terms and conditions of |
|||
this License, without any additional terms or conditions. |
|||
Notwithstanding the above, nothing herein shall supersede or modify |
|||
the terms of any separate license agreement you may have executed |
|||
with Licensor regarding such Contributions. |
|||
|
|||
6. Trademarks. This License does not grant permission to use the trade |
|||
names, trademarks, service marks, or product names of the Licensor, |
|||
except as required for reasonable and customary use in describing the |
|||
origin of the Work and reproducing the content of the NOTICE file. |
|||
|
|||
7. Disclaimer of Warranty. Unless required by applicable law or |
|||
agreed to in writing, Licensor provides the Work (and each |
|||
Contributor provides its Contributions) on an "AS IS" BASIS, |
|||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or |
|||
implied, including, without limitation, any warranties or conditions |
|||
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A |
|||
PARTICULAR PURPOSE. You are solely responsible for determining the |
|||
appropriateness of using or redistributing the Work and assume any |
|||
risks associated with Your exercise of permissions under this License. |
|||
|
|||
8. Limitation of Liability. In no event and under no legal theory, |
|||
whether in tort (including negligence), contract, or otherwise, |
|||
unless required by applicable law (such as deliberate and grossly |
|||
negligent acts) or agreed to in writing, shall any Contributor be |
|||
liable to You for damages, including any direct, indirect, special, |
|||
incidental, or consequential damages of any character arising as a |
|||
result of this License or out of the use or inability to use the |
|||
Work (including but not limited to damages for loss of goodwill, |
|||
work stoppage, computer failure or malfunction, or any and all |
|||
other commercial damages or losses), even if such Contributor |
|||
has been advised of the possibility of such damages. |
|||
|
|||
9. Accepting Warranty or Additional Liability. While redistributing |
|||
the Work or Derivative Works thereof, You may choose to offer, |
|||
and charge a fee for, acceptance of support, warranty, indemnity, |
|||
or other liability obligations and/or rights consistent with this |
|||
License. However, in accepting such obligations, You may act only |
|||
on Your own behalf and on Your sole responsibility, not on behalf |
|||
of any other Contributor, and only if You agree to indemnify, |
|||
defend, and hold each Contributor harmless for any liability |
|||
incurred by, or claims asserted against, such Contributor by reason |
|||
of your accepting any such warranty or additional liability. |
|||
|
|||
END OF TERMS AND CONDITIONS |
|||
|
|||
Copyright 2021 The fast_float authors |
|||
|
|||
Licensed under the Apache License, Version 2.0 (the "License"); |
|||
you may not use this file except in compliance with the License. |
|||
You may obtain a copy of the License at |
|||
|
|||
http://www.apache.org/licenses/LICENSE-2.0 |
|||
|
|||
Unless required by applicable law or agreed to in writing, software |
|||
distributed under the License is distributed on an "AS IS" BASIS, |
|||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|||
See the License for the specific language governing permissions and |
|||
limitations under the License. |
|||
@ -0,0 +1,23 @@ |
|||
Boost Software License - Version 1.0 - August 17th, 2003 |
|||
|
|||
Permission is hereby granted, free of charge, to any person or organization |
|||
obtaining a copy of the software and accompanying documentation covered by |
|||
this license (the "Software") to use, reproduce, display, distribute, |
|||
execute, and transmit the Software, and to prepare derivative works of the |
|||
Software, and to permit third-parties to whom the Software is furnished to |
|||
do so, all subject to the following: |
|||
|
|||
The copyright notices in the Software and this entire statement, including |
|||
the above license grant, this restriction and the following disclaimer, |
|||
must be included in all copies of the Software, in whole or in part, and |
|||
all derivative works of the Software, unless such copies or derivative |
|||
works are solely in the form of machine-executable object code generated by |
|||
a source language processor. |
|||
|
|||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
|||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
|||
FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT |
|||
SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE |
|||
FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE, |
|||
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER |
|||
DEALINGS IN THE SOFTWARE. |
|||
@ -0,0 +1,27 @@ |
|||
MIT License |
|||
|
|||
Copyright (c) 2021 The fast_float authors |
|||
|
|||
Permission is hereby granted, free of charge, to any |
|||
person obtaining a copy of this software and associated |
|||
documentation files (the "Software"), to deal in the |
|||
Software without restriction, including without |
|||
limitation the rights to use, copy, modify, merge, |
|||
publish, distribute, sublicense, and/or sell copies of |
|||
the Software, and to permit persons to whom the Software |
|||
is furnished to do so, subject to the following |
|||
conditions: |
|||
|
|||
The above copyright notice and this permission notice |
|||
shall be included in all copies or substantial portions |
|||
of the Software. |
|||
|
|||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF |
|||
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED |
|||
TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A |
|||
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT |
|||
SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY |
|||
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION |
|||
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR |
|||
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER |
|||
DEALINGS IN THE SOFTWARE. |
|||
@ -0,0 +1,588 @@ |
|||
#ifndef FASTFLOAT_ASCII_NUMBER_H |
|||
#define FASTFLOAT_ASCII_NUMBER_H |
|||
|
|||
#include <cctype> |
|||
#include <cstdint> |
|||
#include <cstring> |
|||
#include <iterator> |
|||
#include <limits> |
|||
#include <type_traits> |
|||
|
|||
#include "float_common.h" |
|||
|
|||
#ifdef FASTFLOAT_SSE2 |
|||
#include <emmintrin.h> |
|||
#endif |
|||
|
|||
#ifdef FASTFLOAT_NEON |
|||
#include <arm_neon.h> |
|||
#endif |
|||
|
|||
namespace fast_float { |
|||
|
|||
template <typename UC> fastfloat_really_inline constexpr bool has_simd_opt() { |
|||
#ifdef FASTFLOAT_HAS_SIMD |
|||
return std::is_same<UC, char16_t>::value; |
|||
#else |
|||
return false; |
|||
#endif |
|||
} |
|||
|
|||
// Next function can be micro-optimized, but compilers are entirely |
|||
// able to optimize it well. |
|||
template <typename UC> |
|||
fastfloat_really_inline constexpr bool is_integer(UC c) noexcept { |
|||
return !(c > UC('9') || c < UC('0')); |
|||
} |
|||
|
|||
fastfloat_really_inline constexpr uint64_t byteswap(uint64_t val) { |
|||
return (val & 0xFF00000000000000) >> 56 | (val & 0x00FF000000000000) >> 40 | |
|||
(val & 0x0000FF0000000000) >> 24 | (val & 0x000000FF00000000) >> 8 | |
|||
(val & 0x00000000FF000000) << 8 | (val & 0x0000000000FF0000) << 24 | |
|||
(val & 0x000000000000FF00) << 40 | (val & 0x00000000000000FF) << 56; |
|||
} |
|||
|
|||
// Read 8 UC into a u64. Truncates UC if not char. |
|||
template <typename UC> |
|||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t |
|||
read8_to_u64(UC const *chars) { |
|||
if (cpp20_and_in_constexpr() || !std::is_same<UC, char>::value) { |
|||
uint64_t val = 0; |
|||
for (int i = 0; i < 8; ++i) { |
|||
val |= uint64_t(uint8_t(*chars)) << (i * 8); |
|||
++chars; |
|||
} |
|||
return val; |
|||
} |
|||
uint64_t val; |
|||
::memcpy(&val, chars, sizeof(uint64_t)); |
|||
#if FASTFLOAT_IS_BIG_ENDIAN == 1 |
|||
// Need to read as-if the number was in little-endian order. |
|||
val = byteswap(val); |
|||
#endif |
|||
return val; |
|||
} |
|||
|
|||
#ifdef FASTFLOAT_SSE2 |
|||
|
|||
fastfloat_really_inline uint64_t simd_read8_to_u64(__m128i const data) { |
|||
FASTFLOAT_SIMD_DISABLE_WARNINGS |
|||
__m128i const packed = _mm_packus_epi16(data, data); |
|||
#ifdef FASTFLOAT_64BIT |
|||
return uint64_t(_mm_cvtsi128_si64(packed)); |
|||
#else |
|||
uint64_t value; |
|||
// Visual Studio + older versions of GCC don't support _mm_storeu_si64 |
|||
_mm_storel_epi64(reinterpret_cast<__m128i *>(&value), packed); |
|||
return value; |
|||
#endif |
|||
FASTFLOAT_SIMD_RESTORE_WARNINGS |
|||
} |
|||
|
|||
fastfloat_really_inline uint64_t simd_read8_to_u64(char16_t const *chars) { |
|||
FASTFLOAT_SIMD_DISABLE_WARNINGS |
|||
return simd_read8_to_u64( |
|||
_mm_loadu_si128(reinterpret_cast<__m128i const *>(chars))); |
|||
FASTFLOAT_SIMD_RESTORE_WARNINGS |
|||
} |
|||
|
|||
#elif defined(FASTFLOAT_NEON) |
|||
|
|||
fastfloat_really_inline uint64_t simd_read8_to_u64(uint16x8_t const data) { |
|||
FASTFLOAT_SIMD_DISABLE_WARNINGS |
|||
uint8x8_t utf8_packed = vmovn_u16(data); |
|||
return vget_lane_u64(vreinterpret_u64_u8(utf8_packed), 0); |
|||
FASTFLOAT_SIMD_RESTORE_WARNINGS |
|||
} |
|||
|
|||
fastfloat_really_inline uint64_t simd_read8_to_u64(char16_t const *chars) { |
|||
FASTFLOAT_SIMD_DISABLE_WARNINGS |
|||
return simd_read8_to_u64( |
|||
vld1q_u16(reinterpret_cast<uint16_t const *>(chars))); |
|||
FASTFLOAT_SIMD_RESTORE_WARNINGS |
|||
} |
|||
|
|||
#endif // FASTFLOAT_SSE2 |
|||
|
|||
// MSVC SFINAE is broken pre-VS2017 |
|||
#if defined(_MSC_VER) && _MSC_VER <= 1900 |
|||
template <typename UC> |
|||
#else |
|||
template <typename UC, FASTFLOAT_ENABLE_IF(!has_simd_opt<UC>()) = 0> |
|||
#endif |
|||
// dummy for compile |
|||
uint64_t simd_read8_to_u64(UC const *) { |
|||
return 0; |
|||
} |
|||
|
|||
// credit @aqrit |
|||
fastfloat_really_inline FASTFLOAT_CONSTEXPR14 uint32_t |
|||
parse_eight_digits_unrolled(uint64_t val) { |
|||
uint64_t const mask = 0x000000FF000000FF; |
|||
uint64_t const mul1 = 0x000F424000000064; // 100 + (1000000ULL << 32) |
|||
uint64_t const mul2 = 0x0000271000000001; // 1 + (10000ULL << 32) |
|||
val -= 0x3030303030303030; |
|||
val = (val * 10) + (val >> 8); // val = (val * 2561) >> 8; |
|||
val = (((val & mask) * mul1) + (((val >> 16) & mask) * mul2)) >> 32; |
|||
return uint32_t(val); |
|||
} |
|||
|
|||
// Call this if chars are definitely 8 digits. |
|||
template <typename UC> |
|||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint32_t |
|||
parse_eight_digits_unrolled(UC const *chars) noexcept { |
|||
if (cpp20_and_in_constexpr() || !has_simd_opt<UC>()) { |
|||
return parse_eight_digits_unrolled(read8_to_u64(chars)); // truncation okay |
|||
} |
|||
return parse_eight_digits_unrolled(simd_read8_to_u64(chars)); |
|||
} |
|||
|
|||
// credit @aqrit |
|||
fastfloat_really_inline constexpr bool |
|||
is_made_of_eight_digits_fast(uint64_t val) noexcept { |
|||
return !((((val + 0x4646464646464646) | (val - 0x3030303030303030)) & |
|||
0x8080808080808080)); |
|||
} |
|||
|
|||
#ifdef FASTFLOAT_HAS_SIMD |
|||
|
|||
// Call this if chars might not be 8 digits. |
|||
// Using this style (instead of is_made_of_eight_digits_fast() then |
|||
// parse_eight_digits_unrolled()) ensures we don't load SIMD registers twice. |
|||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 bool |
|||
simd_parse_if_eight_digits_unrolled(char16_t const *chars, |
|||
uint64_t &i) noexcept { |
|||
if (cpp20_and_in_constexpr()) { |
|||
return false; |
|||
} |
|||
#ifdef FASTFLOAT_SSE2 |
|||
FASTFLOAT_SIMD_DISABLE_WARNINGS |
|||
__m128i const data = |
|||
_mm_loadu_si128(reinterpret_cast<__m128i const *>(chars)); |
|||
|
|||
// (x - '0') <= 9 |
|||
// http://0x80.pl/articles/simd-parsing-int-sequences.html |
|||
__m128i const t0 = _mm_add_epi16(data, _mm_set1_epi16(32720)); |
|||
__m128i const t1 = _mm_cmpgt_epi16(t0, _mm_set1_epi16(-32759)); |
|||
|
|||
if (_mm_movemask_epi8(t1) == 0) { |
|||
i = i * 100000000 + parse_eight_digits_unrolled(simd_read8_to_u64(data)); |
|||
return true; |
|||
} else |
|||
return false; |
|||
FASTFLOAT_SIMD_RESTORE_WARNINGS |
|||
#elif defined(FASTFLOAT_NEON) |
|||
FASTFLOAT_SIMD_DISABLE_WARNINGS |
|||
uint16x8_t const data = vld1q_u16(reinterpret_cast<uint16_t const *>(chars)); |
|||
|
|||
// (x - '0') <= 9 |
|||
// http://0x80.pl/articles/simd-parsing-int-sequences.html |
|||
uint16x8_t const t0 = vsubq_u16(data, vmovq_n_u16('0')); |
|||
uint16x8_t const mask = vcltq_u16(t0, vmovq_n_u16('9' - '0' + 1)); |
|||
|
|||
if (vminvq_u16(mask) == 0xFFFF) { |
|||
i = i * 100000000 + parse_eight_digits_unrolled(simd_read8_to_u64(data)); |
|||
return true; |
|||
} else |
|||
return false; |
|||
FASTFLOAT_SIMD_RESTORE_WARNINGS |
|||
#else |
|||
(void)chars; |
|||
(void)i; |
|||
return false; |
|||
#endif // FASTFLOAT_SSE2 |
|||
} |
|||
|
|||
#endif // FASTFLOAT_HAS_SIMD |
|||
|
|||
// MSVC SFINAE is broken pre-VS2017 |
|||
#if defined(_MSC_VER) && _MSC_VER <= 1900 |
|||
template <typename UC> |
|||
#else |
|||
template <typename UC, FASTFLOAT_ENABLE_IF(!has_simd_opt<UC>()) = 0> |
|||
#endif |
|||
// dummy for compile |
|||
bool simd_parse_if_eight_digits_unrolled(UC const *, uint64_t &) { |
|||
return 0; |
|||
} |
|||
|
|||
template <typename UC, FASTFLOAT_ENABLE_IF(!std::is_same<UC, char>::value) = 0> |
|||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void |
|||
loop_parse_if_eight_digits(UC const *&p, UC const *const pend, uint64_t &i) { |
|||
if (!has_simd_opt<UC>()) { |
|||
return; |
|||
} |
|||
while ((std::distance(p, pend) >= 8) && |
|||
simd_parse_if_eight_digits_unrolled( |
|||
p, i)) { // in rare cases, this will overflow, but that's ok |
|||
p += 8; |
|||
} |
|||
} |
|||
|
|||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void |
|||
loop_parse_if_eight_digits(char const *&p, char const *const pend, |
|||
uint64_t &i) { |
|||
// optimizes better than parse_if_eight_digits_unrolled() for UC = char. |
|||
while ((std::distance(p, pend) >= 8) && |
|||
is_made_of_eight_digits_fast(read8_to_u64(p))) { |
|||
i = i * 100000000 + |
|||
parse_eight_digits_unrolled(read8_to_u64( |
|||
p)); // in rare cases, this will overflow, but that's ok |
|||
p += 8; |
|||
} |
|||
} |
|||
|
|||
enum class parse_error { |
|||
no_error, |
|||
// [JSON-only] The minus sign must be followed by an integer. |
|||
missing_integer_after_sign, |
|||
// A sign must be followed by an integer or dot. |
|||
missing_integer_or_dot_after_sign, |
|||
// [JSON-only] The integer part must not have leading zeros. |
|||
leading_zeros_in_integer_part, |
|||
// [JSON-only] The integer part must have at least one digit. |
|||
no_digits_in_integer_part, |
|||
// [JSON-only] If there is a decimal point, there must be digits in the |
|||
// fractional part. |
|||
no_digits_in_fractional_part, |
|||
// The mantissa must have at least one digit. |
|||
no_digits_in_mantissa, |
|||
// Scientific notation requires an exponential part. |
|||
missing_exponential_part, |
|||
}; |
|||
|
|||
template <typename UC> struct parsed_number_string_t { |
|||
int64_t exponent{0}; |
|||
uint64_t mantissa{0}; |
|||
UC const *lastmatch{nullptr}; |
|||
bool negative{false}; |
|||
bool valid{false}; |
|||
bool too_many_digits{false}; |
|||
// contains the range of the significant digits |
|||
span<UC const> integer{}; // non-nullable |
|||
span<UC const> fraction{}; // nullable |
|||
parse_error error{parse_error::no_error}; |
|||
}; |
|||
|
|||
using byte_span = span<char const>; |
|||
using parsed_number_string = parsed_number_string_t<char>; |
|||
|
|||
template <typename UC> |
|||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 parsed_number_string_t<UC> |
|||
report_parse_error(UC const *p, parse_error error) { |
|||
parsed_number_string_t<UC> answer; |
|||
answer.valid = false; |
|||
answer.lastmatch = p; |
|||
answer.error = error; |
|||
return answer; |
|||
} |
|||
|
|||
// Assuming that you use no more than 19 digits, this will |
|||
// parse an ASCII string. |
|||
template <bool basic_json_fmt, typename UC> |
|||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 parsed_number_string_t<UC> |
|||
parse_number_string(UC const *p, UC const *pend, |
|||
parse_options_t<UC> options) noexcept { |
|||
chars_format const fmt = detail::adjust_for_feature_macros(options.format); |
|||
UC const decimal_point = options.decimal_point; |
|||
|
|||
parsed_number_string_t<UC> answer; |
|||
answer.valid = false; |
|||
answer.too_many_digits = false; |
|||
// assume p < pend, so dereference without checks; |
|||
answer.negative = (*p == UC('-')); |
|||
// C++17 20.19.3.(7.1) explicitly forbids '+' sign here |
|||
if ((*p == UC('-')) || (uint64_t(fmt & chars_format::allow_leading_plus) && |
|||
!basic_json_fmt && *p == UC('+'))) { |
|||
++p; |
|||
if (p == pend) { |
|||
return report_parse_error<UC>( |
|||
p, parse_error::missing_integer_or_dot_after_sign); |
|||
} |
|||
FASTFLOAT_IF_CONSTEXPR17(basic_json_fmt) { |
|||
if (!is_integer(*p)) { // a sign must be followed by an integer |
|||
return report_parse_error<UC>(p, |
|||
parse_error::missing_integer_after_sign); |
|||
} |
|||
} |
|||
else { |
|||
if (!is_integer(*p) && |
|||
(*p != |
|||
decimal_point)) { // a sign must be followed by an integer or the dot |
|||
return report_parse_error<UC>( |
|||
p, parse_error::missing_integer_or_dot_after_sign); |
|||
} |
|||
} |
|||
} |
|||
UC const *const start_digits = p; |
|||
|
|||
uint64_t i = 0; // an unsigned int avoids signed overflows (which are bad) |
|||
|
|||
while ((p != pend) && is_integer(*p)) { |
|||
// a multiplication by 10 is cheaper than an arbitrary integer |
|||
// multiplication |
|||
i = 10 * i + |
|||
uint64_t(*p - |
|||
UC('0')); // might overflow, we will handle the overflow later |
|||
++p; |
|||
} |
|||
UC const *const end_of_integer_part = p; |
|||
int64_t digit_count = int64_t(end_of_integer_part - start_digits); |
|||
answer.integer = span<UC const>(start_digits, size_t(digit_count)); |
|||
FASTFLOAT_IF_CONSTEXPR17(basic_json_fmt) { |
|||
// at least 1 digit in integer part, without leading zeros |
|||
if (digit_count == 0) { |
|||
return report_parse_error<UC>(p, parse_error::no_digits_in_integer_part); |
|||
} |
|||
if ((start_digits[0] == UC('0') && digit_count > 1)) { |
|||
return report_parse_error<UC>(start_digits, |
|||
parse_error::leading_zeros_in_integer_part); |
|||
} |
|||
} |
|||
|
|||
int64_t exponent = 0; |
|||
bool const has_decimal_point = (p != pend) && (*p == decimal_point); |
|||
if (has_decimal_point) { |
|||
++p; |
|||
UC const *before = p; |
|||
// can occur at most twice without overflowing, but let it occur more, since |
|||
// for integers with many digits, digit parsing is the primary bottleneck. |
|||
loop_parse_if_eight_digits(p, pend, i); |
|||
|
|||
while ((p != pend) && is_integer(*p)) { |
|||
uint8_t digit = uint8_t(*p - UC('0')); |
|||
++p; |
|||
i = i * 10 + digit; // in rare cases, this will overflow, but that's ok |
|||
} |
|||
exponent = before - p; |
|||
answer.fraction = span<UC const>(before, size_t(p - before)); |
|||
digit_count -= exponent; |
|||
} |
|||
FASTFLOAT_IF_CONSTEXPR17(basic_json_fmt) { |
|||
// at least 1 digit in fractional part |
|||
if (has_decimal_point && exponent == 0) { |
|||
return report_parse_error<UC>(p, |
|||
parse_error::no_digits_in_fractional_part); |
|||
} |
|||
} |
|||
else if (digit_count == 0) { // we must have encountered at least one integer! |
|||
return report_parse_error<UC>(p, parse_error::no_digits_in_mantissa); |
|||
} |
|||
int64_t exp_number = 0; // explicit exponential part |
|||
if ((uint64_t(fmt & chars_format::scientific) && (p != pend) && |
|||
((UC('e') == *p) || (UC('E') == *p))) || |
|||
(uint64_t(fmt & detail::basic_fortran_fmt) && (p != pend) && |
|||
((UC('+') == *p) || (UC('-') == *p) || (UC('d') == *p) || |
|||
(UC('D') == *p)))) { |
|||
UC const *location_of_e = p; |
|||
if ((UC('e') == *p) || (UC('E') == *p) || (UC('d') == *p) || |
|||
(UC('D') == *p)) { |
|||
++p; |
|||
} |
|||
bool neg_exp = false; |
|||
if ((p != pend) && (UC('-') == *p)) { |
|||
neg_exp = true; |
|||
++p; |
|||
} else if ((p != pend) && |
|||
(UC('+') == |
|||
*p)) { // '+' on exponent is allowed by C++17 20.19.3.(7.1) |
|||
++p; |
|||
} |
|||
if ((p == pend) || !is_integer(*p)) { |
|||
if (!uint64_t(fmt & chars_format::fixed)) { |
|||
// The exponential part is invalid for scientific notation, so it must |
|||
// be a trailing token for fixed notation. However, fixed notation is |
|||
// disabled, so report a scientific notation error. |
|||
return report_parse_error<UC>(p, parse_error::missing_exponential_part); |
|||
} |
|||
// Otherwise, we will be ignoring the 'e'. |
|||
p = location_of_e; |
|||
} else { |
|||
while ((p != pend) && is_integer(*p)) { |
|||
uint8_t digit = uint8_t(*p - UC('0')); |
|||
if (exp_number < 0x10000000) { |
|||
exp_number = 10 * exp_number + digit; |
|||
} |
|||
++p; |
|||
} |
|||
if (neg_exp) { |
|||
exp_number = -exp_number; |
|||
} |
|||
exponent += exp_number; |
|||
} |
|||
} else { |
|||
// If it scientific and not fixed, we have to bail out. |
|||
if (uint64_t(fmt & chars_format::scientific) && |
|||
!uint64_t(fmt & chars_format::fixed)) { |
|||
return report_parse_error<UC>(p, parse_error::missing_exponential_part); |
|||
} |
|||
} |
|||
answer.lastmatch = p; |
|||
answer.valid = true; |
|||
|
|||
// If we frequently had to deal with long strings of digits, |
|||
// we could extend our code by using a 128-bit integer instead |
|||
// of a 64-bit integer. However, this is uncommon. |
|||
// |
|||
// We can deal with up to 19 digits. |
|||
if (digit_count > 19) { // this is uncommon |
|||
// It is possible that the integer had an overflow. |
|||
// We have to handle the case where we have 0.0000somenumber. |
|||
// We need to be mindful of the case where we only have zeroes... |
|||
// E.g., 0.000000000...000. |
|||
UC const *start = start_digits; |
|||
while ((start != pend) && (*start == UC('0') || *start == decimal_point)) { |
|||
if (*start == UC('0')) { |
|||
digit_count--; |
|||
} |
|||
start++; |
|||
} |
|||
|
|||
if (digit_count > 19) { |
|||
answer.too_many_digits = true; |
|||
// Let us start again, this time, avoiding overflows. |
|||
// We don't need to check if is_integer, since we use the |
|||
// pre-tokenized spans from above. |
|||
i = 0; |
|||
p = answer.integer.ptr; |
|||
UC const *int_end = p + answer.integer.len(); |
|||
uint64_t const minimal_nineteen_digit_integer{1000000000000000000}; |
|||
while ((i < minimal_nineteen_digit_integer) && (p != int_end)) { |
|||
i = i * 10 + uint64_t(*p - UC('0')); |
|||
++p; |
|||
} |
|||
if (i >= minimal_nineteen_digit_integer) { // We have a big integers |
|||
exponent = end_of_integer_part - p + exp_number; |
|||
} else { // We have a value with a fractional component. |
|||
p = answer.fraction.ptr; |
|||
UC const *frac_end = p + answer.fraction.len(); |
|||
while ((i < minimal_nineteen_digit_integer) && (p != frac_end)) { |
|||
i = i * 10 + uint64_t(*p - UC('0')); |
|||
++p; |
|||
} |
|||
exponent = answer.fraction.ptr - p + exp_number; |
|||
} |
|||
// We have now corrected both exponent and i, to a truncated value |
|||
} |
|||
} |
|||
answer.exponent = exponent; |
|||
answer.mantissa = i; |
|||
return answer; |
|||
} |
|||
|
|||
template <typename T, typename UC> |
|||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC> |
|||
parse_int_string(UC const *p, UC const *pend, T &value, |
|||
parse_options_t<UC> options) { |
|||
chars_format const fmt = detail::adjust_for_feature_macros(options.format); |
|||
int const base = options.base; |
|||
|
|||
from_chars_result_t<UC> answer; |
|||
|
|||
UC const *const first = p; |
|||
|
|||
bool const negative = (*p == UC('-')); |
|||
#ifdef FASTFLOAT_VISUAL_STUDIO |
|||
#pragma warning(push) |
|||
#pragma warning(disable : 4127) |
|||
#endif |
|||
if (!std::is_signed<T>::value && negative) { |
|||
#ifdef FASTFLOAT_VISUAL_STUDIO |
|||
#pragma warning(pop) |
|||
#endif |
|||
answer.ec = std::errc::invalid_argument; |
|||
answer.ptr = first; |
|||
return answer; |
|||
} |
|||
if ((*p == UC('-')) || |
|||
(uint64_t(fmt & chars_format::allow_leading_plus) && (*p == UC('+')))) { |
|||
++p; |
|||
} |
|||
|
|||
UC const *const start_num = p; |
|||
|
|||
while (p != pend && *p == UC('0')) { |
|||
++p; |
|||
} |
|||
|
|||
bool const has_leading_zeros = p > start_num; |
|||
|
|||
UC const *const start_digits = p; |
|||
|
|||
uint64_t i = 0; |
|||
if (base == 10) { |
|||
loop_parse_if_eight_digits(p, pend, i); // use SIMD if possible |
|||
} |
|||
while (p != pend) { |
|||
uint8_t digit = ch_to_digit(*p); |
|||
if (digit >= base) { |
|||
break; |
|||
} |
|||
i = uint64_t(base) * i + digit; // might overflow, check this later |
|||
p++; |
|||
} |
|||
|
|||
size_t digit_count = size_t(p - start_digits); |
|||
|
|||
if (digit_count == 0) { |
|||
if (has_leading_zeros) { |
|||
value = 0; |
|||
answer.ec = std::errc(); |
|||
answer.ptr = p; |
|||
} else { |
|||
answer.ec = std::errc::invalid_argument; |
|||
answer.ptr = first; |
|||
} |
|||
return answer; |
|||
} |
|||
|
|||
answer.ptr = p; |
|||
|
|||
// check u64 overflow |
|||
size_t max_digits = max_digits_u64(base); |
|||
if (digit_count > max_digits) { |
|||
answer.ec = std::errc::result_out_of_range; |
|||
return answer; |
|||
} |
|||
// this check can be eliminated for all other types, but they will all require |
|||
// a max_digits(base) equivalent |
|||
if (digit_count == max_digits && i < min_safe_u64(base)) { |
|||
answer.ec = std::errc::result_out_of_range; |
|||
return answer; |
|||
} |
|||
|
|||
// check other types overflow |
|||
if (!std::is_same<T, uint64_t>::value) { |
|||
if (i > uint64_t(std::numeric_limits<T>::max()) + uint64_t(negative)) { |
|||
answer.ec = std::errc::result_out_of_range; |
|||
return answer; |
|||
} |
|||
} |
|||
|
|||
if (negative) { |
|||
#ifdef FASTFLOAT_VISUAL_STUDIO |
|||
#pragma warning(push) |
|||
#pragma warning(disable : 4146) |
|||
#endif |
|||
// this weird workaround is required because: |
|||
// - converting unsigned to signed when its value is greater than signed max |
|||
// is UB pre-C++23. |
|||
// - reinterpret_casting (~i + 1) would work, but it is not constexpr |
|||
// this is always optimized into a neg instruction (note: T is an integer |
|||
// type) |
|||
value = T(-std::numeric_limits<T>::max() - |
|||
T(i - uint64_t(std::numeric_limits<T>::max()))); |
|||
#ifdef FASTFLOAT_VISUAL_STUDIO |
|||
#pragma warning(pop) |
|||
#endif |
|||
} else { |
|||
value = T(i); |
|||
} |
|||
|
|||
answer.ec = std::errc(); |
|||
return answer; |
|||
} |
|||
|
|||
} // namespace fast_float |
|||
|
|||
#endif |
|||
@ -0,0 +1,638 @@ |
|||
#ifndef FASTFLOAT_BIGINT_H |
|||
#define FASTFLOAT_BIGINT_H |
|||
|
|||
#include <algorithm> |
|||
#include <cstdint> |
|||
#include <climits> |
|||
#include <cstring> |
|||
|
|||
#include "float_common.h" |
|||
|
|||
namespace fast_float { |
|||
|
|||
// the limb width: we want efficient multiplication of double the bits in |
|||
// limb, or for 64-bit limbs, at least 64-bit multiplication where we can |
|||
// extract the high and low parts efficiently. this is every 64-bit |
|||
// architecture except for sparc, which emulates 128-bit multiplication. |
|||
// we might have platforms where `CHAR_BIT` is not 8, so let's avoid |
|||
// doing `8 * sizeof(limb)`. |
|||
#if defined(FASTFLOAT_64BIT) && !defined(__sparc) |
|||
#define FASTFLOAT_64BIT_LIMB 1 |
|||
typedef uint64_t limb; |
|||
constexpr size_t limb_bits = 64; |
|||
#else |
|||
#define FASTFLOAT_32BIT_LIMB |
|||
typedef uint32_t limb; |
|||
constexpr size_t limb_bits = 32; |
|||
#endif |
|||
|
|||
typedef span<limb> limb_span; |
|||
|
|||
// number of bits in a bigint. this needs to be at least the number |
|||
// of bits required to store the largest bigint, which is |
|||
// `log2(10**(digits + max_exp))`, or `log2(10**(767 + 342))`, or |
|||
// ~3600 bits, so we round to 4000. |
|||
constexpr size_t bigint_bits = 4000; |
|||
constexpr size_t bigint_limbs = bigint_bits / limb_bits; |
|||
|
|||
// vector-like type that is allocated on the stack. the entire |
|||
// buffer is pre-allocated, and only the length changes. |
|||
template <uint16_t size> struct stackvec { |
|||
limb data[size]; |
|||
// we never need more than 150 limbs |
|||
uint16_t length{0}; |
|||
|
|||
stackvec() = default; |
|||
stackvec(stackvec const &) = delete; |
|||
stackvec &operator=(stackvec const &) = delete; |
|||
stackvec(stackvec &&) = delete; |
|||
stackvec &operator=(stackvec &&other) = delete; |
|||
|
|||
// create stack vector from existing limb span. |
|||
FASTFLOAT_CONSTEXPR20 stackvec(limb_span s) { |
|||
FASTFLOAT_ASSERT(try_extend(s)); |
|||
} |
|||
|
|||
FASTFLOAT_CONSTEXPR14 limb &operator[](size_t index) noexcept { |
|||
FASTFLOAT_DEBUG_ASSERT(index < length); |
|||
return data[index]; |
|||
} |
|||
|
|||
FASTFLOAT_CONSTEXPR14 const limb &operator[](size_t index) const noexcept { |
|||
FASTFLOAT_DEBUG_ASSERT(index < length); |
|||
return data[index]; |
|||
} |
|||
|
|||
// index from the end of the container |
|||
FASTFLOAT_CONSTEXPR14 const limb &rindex(size_t index) const noexcept { |
|||
FASTFLOAT_DEBUG_ASSERT(index < length); |
|||
size_t rindex = length - index - 1; |
|||
return data[rindex]; |
|||
} |
|||
|
|||
// set the length, without bounds checking. |
|||
FASTFLOAT_CONSTEXPR14 void set_len(size_t len) noexcept { |
|||
length = uint16_t(len); |
|||
} |
|||
|
|||
constexpr size_t len() const noexcept { return length; } |
|||
|
|||
constexpr bool is_empty() const noexcept { return length == 0; } |
|||
|
|||
constexpr size_t capacity() const noexcept { return size; } |
|||
|
|||
// append item to vector, without bounds checking |
|||
FASTFLOAT_CONSTEXPR14 void push_unchecked(limb value) noexcept { |
|||
data[length] = value; |
|||
length++; |
|||
} |
|||
|
|||
// append item to vector, returning if item was added |
|||
FASTFLOAT_CONSTEXPR14 bool try_push(limb value) noexcept { |
|||
if (len() < capacity()) { |
|||
push_unchecked(value); |
|||
return true; |
|||
} else { |
|||
return false; |
|||
} |
|||
} |
|||
|
|||
// add items to the vector, from a span, without bounds checking |
|||
FASTFLOAT_CONSTEXPR20 void extend_unchecked(limb_span s) noexcept { |
|||
limb *ptr = data + length; |
|||
std::copy_n(s.ptr, s.len(), ptr); |
|||
set_len(len() + s.len()); |
|||
} |
|||
|
|||
// try to add items to the vector, returning if items were added |
|||
FASTFLOAT_CONSTEXPR20 bool try_extend(limb_span s) noexcept { |
|||
if (len() + s.len() <= capacity()) { |
|||
extend_unchecked(s); |
|||
return true; |
|||
} else { |
|||
return false; |
|||
} |
|||
} |
|||
|
|||
// resize the vector, without bounds checking |
|||
// if the new size is longer than the vector, assign value to each |
|||
// appended item. |
|||
FASTFLOAT_CONSTEXPR20 |
|||
void resize_unchecked(size_t new_len, limb value) noexcept { |
|||
if (new_len > len()) { |
|||
size_t count = new_len - len(); |
|||
limb *first = data + len(); |
|||
limb *last = first + count; |
|||
::std::fill(first, last, value); |
|||
set_len(new_len); |
|||
} else { |
|||
set_len(new_len); |
|||
} |
|||
} |
|||
|
|||
// try to resize the vector, returning if the vector was resized. |
|||
FASTFLOAT_CONSTEXPR20 bool try_resize(size_t new_len, limb value) noexcept { |
|||
if (new_len > capacity()) { |
|||
return false; |
|||
} else { |
|||
resize_unchecked(new_len, value); |
|||
return true; |
|||
} |
|||
} |
|||
|
|||
// check if any limbs are non-zero after the given index. |
|||
// this needs to be done in reverse order, since the index |
|||
// is relative to the most significant limbs. |
|||
FASTFLOAT_CONSTEXPR14 bool nonzero(size_t index) const noexcept { |
|||
while (index < len()) { |
|||
if (rindex(index) != 0) { |
|||
return true; |
|||
} |
|||
index++; |
|||
} |
|||
return false; |
|||
} |
|||
|
|||
// normalize the big integer, so most-significant zero limbs are removed. |
|||
FASTFLOAT_CONSTEXPR14 void normalize() noexcept { |
|||
while (len() > 0 && rindex(0) == 0) { |
|||
length--; |
|||
} |
|||
} |
|||
}; |
|||
|
|||
fastfloat_really_inline FASTFLOAT_CONSTEXPR14 uint64_t |
|||
empty_hi64(bool &truncated) noexcept { |
|||
truncated = false; |
|||
return 0; |
|||
} |
|||
|
|||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t |
|||
uint64_hi64(uint64_t r0, bool &truncated) noexcept { |
|||
truncated = false; |
|||
int shl = leading_zeroes(r0); |
|||
return r0 << shl; |
|||
} |
|||
|
|||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t |
|||
uint64_hi64(uint64_t r0, uint64_t r1, bool &truncated) noexcept { |
|||
int shl = leading_zeroes(r0); |
|||
if (shl == 0) { |
|||
truncated = r1 != 0; |
|||
return r0; |
|||
} else { |
|||
int shr = 64 - shl; |
|||
truncated = (r1 << shl) != 0; |
|||
return (r0 << shl) | (r1 >> shr); |
|||
} |
|||
} |
|||
|
|||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t |
|||
uint32_hi64(uint32_t r0, bool &truncated) noexcept { |
|||
return uint64_hi64(r0, truncated); |
|||
} |
|||
|
|||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t |
|||
uint32_hi64(uint32_t r0, uint32_t r1, bool &truncated) noexcept { |
|||
uint64_t x0 = r0; |
|||
uint64_t x1 = r1; |
|||
return uint64_hi64((x0 << 32) | x1, truncated); |
|||
} |
|||
|
|||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t |
|||
uint32_hi64(uint32_t r0, uint32_t r1, uint32_t r2, bool &truncated) noexcept { |
|||
uint64_t x0 = r0; |
|||
uint64_t x1 = r1; |
|||
uint64_t x2 = r2; |
|||
return uint64_hi64(x0, (x1 << 32) | x2, truncated); |
|||
} |
|||
|
|||
// add two small integers, checking for overflow. |
|||
// we want an efficient operation. for msvc, where |
|||
// we don't have built-in intrinsics, this is still |
|||
// pretty fast. |
|||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 limb |
|||
scalar_add(limb x, limb y, bool &overflow) noexcept { |
|||
limb z; |
|||
// gcc and clang |
|||
#if defined(__has_builtin) |
|||
#if __has_builtin(__builtin_add_overflow) |
|||
if (!cpp20_and_in_constexpr()) { |
|||
overflow = __builtin_add_overflow(x, y, &z); |
|||
return z; |
|||
} |
|||
#endif |
|||
#endif |
|||
|
|||
// generic, this still optimizes correctly on MSVC. |
|||
z = x + y; |
|||
overflow = z < x; |
|||
return z; |
|||
} |
|||
|
|||
// multiply two small integers, getting both the high and low bits. |
|||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 limb |
|||
scalar_mul(limb x, limb y, limb &carry) noexcept { |
|||
#ifdef FASTFLOAT_64BIT_LIMB |
|||
#if defined(__SIZEOF_INT128__) |
|||
// GCC and clang both define it as an extension. |
|||
__uint128_t z = __uint128_t(x) * __uint128_t(y) + __uint128_t(carry); |
|||
carry = limb(z >> limb_bits); |
|||
return limb(z); |
|||
#else |
|||
// fallback, no native 128-bit integer multiplication with carry. |
|||
// on msvc, this optimizes identically, somehow. |
|||
value128 z = full_multiplication(x, y); |
|||
bool overflow; |
|||
z.low = scalar_add(z.low, carry, overflow); |
|||
z.high += uint64_t(overflow); // cannot overflow |
|||
carry = z.high; |
|||
return z.low; |
|||
#endif |
|||
#else |
|||
uint64_t z = uint64_t(x) * uint64_t(y) + uint64_t(carry); |
|||
carry = limb(z >> limb_bits); |
|||
return limb(z); |
|||
#endif |
|||
} |
|||
|
|||
// add scalar value to bigint starting from offset. |
|||
// used in grade school multiplication |
|||
template <uint16_t size> |
|||
inline FASTFLOAT_CONSTEXPR20 bool small_add_from(stackvec<size> &vec, limb y, |
|||
size_t start) noexcept { |
|||
size_t index = start; |
|||
limb carry = y; |
|||
bool overflow; |
|||
while (carry != 0 && index < vec.len()) { |
|||
vec[index] = scalar_add(vec[index], carry, overflow); |
|||
carry = limb(overflow); |
|||
index += 1; |
|||
} |
|||
if (carry != 0) { |
|||
FASTFLOAT_TRY(vec.try_push(carry)); |
|||
} |
|||
return true; |
|||
} |
|||
|
|||
// add scalar value to bigint. |
|||
template <uint16_t size> |
|||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 bool |
|||
small_add(stackvec<size> &vec, limb y) noexcept { |
|||
return small_add_from(vec, y, 0); |
|||
} |
|||
|
|||
// multiply bigint by scalar value. |
|||
template <uint16_t size> |
|||
inline FASTFLOAT_CONSTEXPR20 bool small_mul(stackvec<size> &vec, |
|||
limb y) noexcept { |
|||
limb carry = 0; |
|||
for (size_t index = 0; index < vec.len(); index++) { |
|||
vec[index] = scalar_mul(vec[index], y, carry); |
|||
} |
|||
if (carry != 0) { |
|||
FASTFLOAT_TRY(vec.try_push(carry)); |
|||
} |
|||
return true; |
|||
} |
|||
|
|||
// add bigint to bigint starting from index. |
|||
// used in grade school multiplication |
|||
template <uint16_t size> |
|||
FASTFLOAT_CONSTEXPR20 bool large_add_from(stackvec<size> &x, limb_span y, |
|||
size_t start) noexcept { |
|||
// the effective x buffer is from `xstart..x.len()`, so exit early |
|||
// if we can't get that current range. |
|||
if (x.len() < start || y.len() > x.len() - start) { |
|||
FASTFLOAT_TRY(x.try_resize(y.len() + start, 0)); |
|||
} |
|||
|
|||
bool carry = false; |
|||
for (size_t index = 0; index < y.len(); index++) { |
|||
limb xi = x[index + start]; |
|||
limb yi = y[index]; |
|||
bool c1 = false; |
|||
bool c2 = false; |
|||
xi = scalar_add(xi, yi, c1); |
|||
if (carry) { |
|||
xi = scalar_add(xi, 1, c2); |
|||
} |
|||
x[index + start] = xi; |
|||
carry = c1 | c2; |
|||
} |
|||
|
|||
// handle overflow |
|||
if (carry) { |
|||
FASTFLOAT_TRY(small_add_from(x, 1, y.len() + start)); |
|||
} |
|||
return true; |
|||
} |
|||
|
|||
// add bigint to bigint. |
|||
template <uint16_t size> |
|||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 bool |
|||
large_add_from(stackvec<size> &x, limb_span y) noexcept { |
|||
return large_add_from(x, y, 0); |
|||
} |
|||
|
|||
// grade-school multiplication algorithm |
|||
template <uint16_t size> |
|||
FASTFLOAT_CONSTEXPR20 bool long_mul(stackvec<size> &x, limb_span y) noexcept { |
|||
limb_span xs = limb_span(x.data, x.len()); |
|||
stackvec<size> z(xs); |
|||
limb_span zs = limb_span(z.data, z.len()); |
|||
|
|||
if (y.len() != 0) { |
|||
limb y0 = y[0]; |
|||
FASTFLOAT_TRY(small_mul(x, y0)); |
|||
for (size_t index = 1; index < y.len(); index++) { |
|||
limb yi = y[index]; |
|||
stackvec<size> zi; |
|||
if (yi != 0) { |
|||
// re-use the same buffer throughout |
|||
zi.set_len(0); |
|||
FASTFLOAT_TRY(zi.try_extend(zs)); |
|||
FASTFLOAT_TRY(small_mul(zi, yi)); |
|||
limb_span zis = limb_span(zi.data, zi.len()); |
|||
FASTFLOAT_TRY(large_add_from(x, zis, index)); |
|||
} |
|||
} |
|||
} |
|||
|
|||
x.normalize(); |
|||
return true; |
|||
} |
|||
|
|||
// grade-school multiplication algorithm |
|||
template <uint16_t size> |
|||
FASTFLOAT_CONSTEXPR20 bool large_mul(stackvec<size> &x, limb_span y) noexcept { |
|||
if (y.len() == 1) { |
|||
FASTFLOAT_TRY(small_mul(x, y[0])); |
|||
} else { |
|||
FASTFLOAT_TRY(long_mul(x, y)); |
|||
} |
|||
return true; |
|||
} |
|||
|
|||
template <typename = void> struct pow5_tables { |
|||
static constexpr uint32_t large_step = 135; |
|||
static constexpr uint64_t small_power_of_5[] = { |
|||
1UL, |
|||
5UL, |
|||
25UL, |
|||
125UL, |
|||
625UL, |
|||
3125UL, |
|||
15625UL, |
|||
78125UL, |
|||
390625UL, |
|||
1953125UL, |
|||
9765625UL, |
|||
48828125UL, |
|||
244140625UL, |
|||
1220703125UL, |
|||
6103515625UL, |
|||
30517578125UL, |
|||
152587890625UL, |
|||
762939453125UL, |
|||
3814697265625UL, |
|||
19073486328125UL, |
|||
95367431640625UL, |
|||
476837158203125UL, |
|||
2384185791015625UL, |
|||
11920928955078125UL, |
|||
59604644775390625UL, |
|||
298023223876953125UL, |
|||
1490116119384765625UL, |
|||
7450580596923828125UL, |
|||
}; |
|||
#ifdef FASTFLOAT_64BIT_LIMB |
|||
constexpr static limb large_power_of_5[] = { |
|||
1414648277510068013UL, 9180637584431281687UL, 4539964771860779200UL, |
|||
10482974169319127550UL, 198276706040285095UL}; |
|||
#else |
|||
constexpr static limb large_power_of_5[] = { |
|||
4279965485U, 329373468U, 4020270615U, 2137533757U, 4287402176U, |
|||
1057042919U, 1071430142U, 2440757623U, 381945767U, 46164893U}; |
|||
#endif |
|||
}; |
|||
|
|||
#if FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE |
|||
|
|||
template <typename T> constexpr uint32_t pow5_tables<T>::large_step; |
|||
|
|||
template <typename T> constexpr uint64_t pow5_tables<T>::small_power_of_5[]; |
|||
|
|||
template <typename T> constexpr limb pow5_tables<T>::large_power_of_5[]; |
|||
|
|||
#endif |
|||
|
|||
// big integer type. implements a small subset of big integer |
|||
// arithmetic, using simple algorithms since asymptotically |
|||
// faster algorithms are slower for a small number of limbs. |
|||
// all operations assume the big-integer is normalized. |
|||
struct bigint : pow5_tables<> { |
|||
// storage of the limbs, in little-endian order. |
|||
stackvec<bigint_limbs> vec; |
|||
|
|||
FASTFLOAT_CONSTEXPR20 bigint() : vec() {} |
|||
|
|||
bigint(bigint const &) = delete; |
|||
bigint &operator=(bigint const &) = delete; |
|||
bigint(bigint &&) = delete; |
|||
bigint &operator=(bigint &&other) = delete; |
|||
|
|||
FASTFLOAT_CONSTEXPR20 bigint(uint64_t value) : vec() { |
|||
#ifdef FASTFLOAT_64BIT_LIMB |
|||
vec.push_unchecked(value); |
|||
#else |
|||
vec.push_unchecked(uint32_t(value)); |
|||
vec.push_unchecked(uint32_t(value >> 32)); |
|||
#endif |
|||
vec.normalize(); |
|||
} |
|||
|
|||
// get the high 64 bits from the vector, and if bits were truncated. |
|||
// this is to get the significant digits for the float. |
|||
FASTFLOAT_CONSTEXPR20 uint64_t hi64(bool &truncated) const noexcept { |
|||
#ifdef FASTFLOAT_64BIT_LIMB |
|||
if (vec.len() == 0) { |
|||
return empty_hi64(truncated); |
|||
} else if (vec.len() == 1) { |
|||
return uint64_hi64(vec.rindex(0), truncated); |
|||
} else { |
|||
uint64_t result = uint64_hi64(vec.rindex(0), vec.rindex(1), truncated); |
|||
truncated |= vec.nonzero(2); |
|||
return result; |
|||
} |
|||
#else |
|||
if (vec.len() == 0) { |
|||
return empty_hi64(truncated); |
|||
} else if (vec.len() == 1) { |
|||
return uint32_hi64(vec.rindex(0), truncated); |
|||
} else if (vec.len() == 2) { |
|||
return uint32_hi64(vec.rindex(0), vec.rindex(1), truncated); |
|||
} else { |
|||
uint64_t result = |
|||
uint32_hi64(vec.rindex(0), vec.rindex(1), vec.rindex(2), truncated); |
|||
truncated |= vec.nonzero(3); |
|||
return result; |
|||
} |
|||
#endif |
|||
} |
|||
|
|||
// compare two big integers, returning the large value. |
|||
// assumes both are normalized. if the return value is |
|||
// negative, other is larger, if the return value is |
|||
// positive, this is larger, otherwise they are equal. |
|||
// the limbs are stored in little-endian order, so we |
|||
// must compare the limbs in ever order. |
|||
FASTFLOAT_CONSTEXPR20 int compare(bigint const &other) const noexcept { |
|||
if (vec.len() > other.vec.len()) { |
|||
return 1; |
|||
} else if (vec.len() < other.vec.len()) { |
|||
return -1; |
|||
} else { |
|||
for (size_t index = vec.len(); index > 0; index--) { |
|||
limb xi = vec[index - 1]; |
|||
limb yi = other.vec[index - 1]; |
|||
if (xi > yi) { |
|||
return 1; |
|||
} else if (xi < yi) { |
|||
return -1; |
|||
} |
|||
} |
|||
return 0; |
|||
} |
|||
} |
|||
|
|||
// shift left each limb n bits, carrying over to the new limb |
|||
// returns true if we were able to shift all the digits. |
|||
FASTFLOAT_CONSTEXPR20 bool shl_bits(size_t n) noexcept { |
|||
// Internally, for each item, we shift left by n, and add the previous |
|||
// right shifted limb-bits. |
|||
// For example, we transform (for u8) shifted left 2, to: |
|||
// b10100100 b01000010 |
|||
// b10 b10010001 b00001000 |
|||
FASTFLOAT_DEBUG_ASSERT(n != 0); |
|||
FASTFLOAT_DEBUG_ASSERT(n < sizeof(limb) * 8); |
|||
|
|||
size_t shl = n; |
|||
size_t shr = limb_bits - shl; |
|||
limb prev = 0; |
|||
for (size_t index = 0; index < vec.len(); index++) { |
|||
limb xi = vec[index]; |
|||
vec[index] = (xi << shl) | (prev >> shr); |
|||
prev = xi; |
|||
} |
|||
|
|||
limb carry = prev >> shr; |
|||
if (carry != 0) { |
|||
return vec.try_push(carry); |
|||
} |
|||
return true; |
|||
} |
|||
|
|||
// move the limbs left by `n` limbs. |
|||
FASTFLOAT_CONSTEXPR20 bool shl_limbs(size_t n) noexcept { |
|||
FASTFLOAT_DEBUG_ASSERT(n != 0); |
|||
if (n + vec.len() > vec.capacity()) { |
|||
return false; |
|||
} else if (!vec.is_empty()) { |
|||
// move limbs |
|||
limb *dst = vec.data + n; |
|||
limb const *src = vec.data; |
|||
std::copy_backward(src, src + vec.len(), dst + vec.len()); |
|||
// fill in empty limbs |
|||
limb *first = vec.data; |
|||
limb *last = first + n; |
|||
::std::fill(first, last, 0); |
|||
vec.set_len(n + vec.len()); |
|||
return true; |
|||
} else { |
|||
return true; |
|||
} |
|||
} |
|||
|
|||
// move the limbs left by `n` bits. |
|||
FASTFLOAT_CONSTEXPR20 bool shl(size_t n) noexcept { |
|||
size_t rem = n % limb_bits; |
|||
size_t div = n / limb_bits; |
|||
if (rem != 0) { |
|||
FASTFLOAT_TRY(shl_bits(rem)); |
|||
} |
|||
if (div != 0) { |
|||
FASTFLOAT_TRY(shl_limbs(div)); |
|||
} |
|||
return true; |
|||
} |
|||
|
|||
// get the number of leading zeros in the bigint. |
|||
FASTFLOAT_CONSTEXPR20 int ctlz() const noexcept { |
|||
if (vec.is_empty()) { |
|||
return 0; |
|||
} else { |
|||
#ifdef FASTFLOAT_64BIT_LIMB |
|||
return leading_zeroes(vec.rindex(0)); |
|||
#else |
|||
// no use defining a specialized leading_zeroes for a 32-bit type. |
|||
uint64_t r0 = vec.rindex(0); |
|||
return leading_zeroes(r0 << 32); |
|||
#endif |
|||
} |
|||
} |
|||
|
|||
// get the number of bits in the bigint. |
|||
FASTFLOAT_CONSTEXPR20 int bit_length() const noexcept { |
|||
int lz = ctlz(); |
|||
return int(limb_bits * vec.len()) - lz; |
|||
} |
|||
|
|||
FASTFLOAT_CONSTEXPR20 bool mul(limb y) noexcept { return small_mul(vec, y); } |
|||
|
|||
FASTFLOAT_CONSTEXPR20 bool add(limb y) noexcept { return small_add(vec, y); } |
|||
|
|||
// multiply as if by 2 raised to a power. |
|||
FASTFLOAT_CONSTEXPR20 bool pow2(uint32_t exp) noexcept { return shl(exp); } |
|||
|
|||
// multiply as if by 5 raised to a power. |
|||
FASTFLOAT_CONSTEXPR20 bool pow5(uint32_t exp) noexcept { |
|||
// multiply by a power of 5 |
|||
size_t large_length = sizeof(large_power_of_5) / sizeof(limb); |
|||
limb_span large = limb_span(large_power_of_5, large_length); |
|||
while (exp >= large_step) { |
|||
FASTFLOAT_TRY(large_mul(vec, large)); |
|||
exp -= large_step; |
|||
} |
|||
#ifdef FASTFLOAT_64BIT_LIMB |
|||
uint32_t small_step = 27; |
|||
limb max_native = 7450580596923828125UL; |
|||
#else |
|||
uint32_t small_step = 13; |
|||
limb max_native = 1220703125U; |
|||
#endif |
|||
while (exp >= small_step) { |
|||
FASTFLOAT_TRY(small_mul(vec, max_native)); |
|||
exp -= small_step; |
|||
} |
|||
if (exp != 0) { |
|||
// Work around clang bug https://godbolt.org/z/zedh7rrhc |
|||
// This is similar to https://github.com/llvm/llvm-project/issues/47746, |
|||
// except the workaround described there don't work here |
|||
FASTFLOAT_TRY(small_mul( |
|||
vec, limb(((void)small_power_of_5[0], small_power_of_5[exp])))); |
|||
} |
|||
|
|||
return true; |
|||
} |
|||
|
|||
// multiply as if by 10 raised to a power. |
|||
FASTFLOAT_CONSTEXPR20 bool pow10(uint32_t exp) noexcept { |
|||
FASTFLOAT_TRY(pow5(exp)); |
|||
return pow2(exp); |
|||
} |
|||
}; |
|||
|
|||
} // namespace fast_float |
|||
|
|||
#endif |
|||
@ -0,0 +1,53 @@ |
|||
#ifndef FASTFLOAT_CONSTEXPR_FEATURE_DETECT_H |
|||
#define FASTFLOAT_CONSTEXPR_FEATURE_DETECT_H |
|||
|
|||
#ifdef __has_include |
|||
#if __has_include(<version>) |
|||
#include <version> |
|||
#endif |
|||
#endif |
|||
|
|||
// Testing for https://wg21.link/N3652, adopted in C++14 |
|||
#if defined(__cpp_constexpr) && __cpp_constexpr >= 201304 |
|||
#define FASTFLOAT_CONSTEXPR14 constexpr |
|||
#else |
|||
#define FASTFLOAT_CONSTEXPR14 |
|||
#endif |
|||
|
|||
#if defined(__cpp_lib_bit_cast) && __cpp_lib_bit_cast >= 201806L |
|||
#define FASTFLOAT_HAS_BIT_CAST 1 |
|||
#else |
|||
#define FASTFLOAT_HAS_BIT_CAST 0 |
|||
#endif |
|||
|
|||
#if defined(__cpp_lib_is_constant_evaluated) && \ |
|||
__cpp_lib_is_constant_evaluated >= 201811L |
|||
#define FASTFLOAT_HAS_IS_CONSTANT_EVALUATED 1 |
|||
#else |
|||
#define FASTFLOAT_HAS_IS_CONSTANT_EVALUATED 0 |
|||
#endif |
|||
|
|||
#if defined(__cpp_if_constexpr) && __cpp_if_constexpr >= 201606L |
|||
#define FASTFLOAT_IF_CONSTEXPR17(x) if constexpr (x) |
|||
#else |
|||
#define FASTFLOAT_IF_CONSTEXPR17(x) if (x) |
|||
#endif |
|||
|
|||
// Testing for relevant C++20 constexpr library features |
|||
#if FASTFLOAT_HAS_IS_CONSTANT_EVALUATED && FASTFLOAT_HAS_BIT_CAST && \ |
|||
defined(__cpp_lib_constexpr_algorithms) && \ |
|||
__cpp_lib_constexpr_algorithms >= 201806L /*For std::copy and std::fill*/ |
|||
#define FASTFLOAT_CONSTEXPR20 constexpr |
|||
#define FASTFLOAT_IS_CONSTEXPR 1 |
|||
#else |
|||
#define FASTFLOAT_CONSTEXPR20 |
|||
#define FASTFLOAT_IS_CONSTEXPR 0 |
|||
#endif |
|||
|
|||
#if __cplusplus >= 201703L || (defined(_MSVC_LANG) && _MSVC_LANG >= 201703L) |
|||
#define FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE 0 |
|||
#else |
|||
#define FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE 1 |
|||
#endif |
|||
|
|||
#endif // FASTFLOAT_CONSTEXPR_FEATURE_DETECT_H |
|||
@ -0,0 +1,212 @@ |
|||
#ifndef FASTFLOAT_DECIMAL_TO_BINARY_H |
|||
#define FASTFLOAT_DECIMAL_TO_BINARY_H |
|||
|
|||
#include "float_common.h" |
|||
#include "fast_table.h" |
|||
#include <cfloat> |
|||
#include <cinttypes> |
|||
#include <cmath> |
|||
#include <cstdint> |
|||
#include <cstdlib> |
|||
#include <cstring> |
|||
|
|||
namespace fast_float { |
|||
|
|||
// This will compute or rather approximate w * 5**q and return a pair of 64-bit |
|||
// words approximating the result, with the "high" part corresponding to the |
|||
// most significant bits and the low part corresponding to the least significant |
|||
// bits. |
|||
// |
|||
template <int bit_precision> |
|||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 value128 |
|||
compute_product_approximation(int64_t q, uint64_t w) { |
|||
int const index = 2 * int(q - powers::smallest_power_of_five); |
|||
// For small values of q, e.g., q in [0,27], the answer is always exact |
|||
// because The line value128 firstproduct = full_multiplication(w, |
|||
// power_of_five_128[index]); gives the exact answer. |
|||
value128 firstproduct = |
|||
full_multiplication(w, powers::power_of_five_128[index]); |
|||
static_assert((bit_precision >= 0) && (bit_precision <= 64), |
|||
" precision should be in (0,64]"); |
|||
constexpr uint64_t precision_mask = |
|||
(bit_precision < 64) ? (uint64_t(0xFFFFFFFFFFFFFFFF) >> bit_precision) |
|||
: uint64_t(0xFFFFFFFFFFFFFFFF); |
|||
if ((firstproduct.high & precision_mask) == |
|||
precision_mask) { // could further guard with (lower + w < lower) |
|||
// regarding the second product, we only need secondproduct.high, but our |
|||
// expectation is that the compiler will optimize this extra work away if |
|||
// needed. |
|||
value128 secondproduct = |
|||
full_multiplication(w, powers::power_of_five_128[index + 1]); |
|||
firstproduct.low += secondproduct.high; |
|||
if (secondproduct.high > firstproduct.low) { |
|||
firstproduct.high++; |
|||
} |
|||
} |
|||
return firstproduct; |
|||
} |
|||
|
|||
namespace detail { |
|||
/** |
|||
* For q in (0,350), we have that |
|||
* f = (((152170 + 65536) * q ) >> 16); |
|||
* is equal to |
|||
* floor(p) + q |
|||
* where |
|||
* p = log(5**q)/log(2) = q * log(5)/log(2) |
|||
* |
|||
* For negative values of q in (-400,0), we have that |
|||
* f = (((152170 + 65536) * q ) >> 16); |
|||
* is equal to |
|||
* -ceil(p) + q |
|||
* where |
|||
* p = log(5**-q)/log(2) = -q * log(5)/log(2) |
|||
*/ |
|||
constexpr fastfloat_really_inline int32_t power(int32_t q) noexcept { |
|||
return (((152170 + 65536) * q) >> 16) + 63; |
|||
} |
|||
} // namespace detail |
|||
|
|||
// create an adjusted mantissa, biased by the invalid power2 |
|||
// for significant digits already multiplied by 10 ** q. |
|||
template <typename binary> |
|||
fastfloat_really_inline FASTFLOAT_CONSTEXPR14 adjusted_mantissa |
|||
compute_error_scaled(int64_t q, uint64_t w, int lz) noexcept { |
|||
int hilz = int(w >> 63) ^ 1; |
|||
adjusted_mantissa answer; |
|||
answer.mantissa = w << hilz; |
|||
int bias = binary::mantissa_explicit_bits() - binary::minimum_exponent(); |
|||
answer.power2 = int32_t(detail::power(int32_t(q)) + bias - hilz - lz - 62 + |
|||
invalid_am_bias); |
|||
return answer; |
|||
} |
|||
|
|||
// w * 10 ** q, without rounding the representation up. |
|||
// the power2 in the exponent will be adjusted by invalid_am_bias. |
|||
template <typename binary> |
|||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa |
|||
compute_error(int64_t q, uint64_t w) noexcept { |
|||
int lz = leading_zeroes(w); |
|||
w <<= lz; |
|||
value128 product = |
|||
compute_product_approximation<binary::mantissa_explicit_bits() + 3>(q, w); |
|||
return compute_error_scaled<binary>(q, product.high, lz); |
|||
} |
|||
|
|||
// Computers w * 10 ** q. |
|||
// The returned value should be a valid number that simply needs to be |
|||
// packed. However, in some very rare cases, the computation will fail. In such |
|||
// cases, we return an adjusted_mantissa with a negative power of 2: the caller |
|||
// should recompute in such cases. |
|||
template <typename binary> |
|||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa |
|||
compute_float(int64_t q, uint64_t w) noexcept { |
|||
adjusted_mantissa answer; |
|||
if ((w == 0) || (q < binary::smallest_power_of_ten())) { |
|||
answer.power2 = 0; |
|||
answer.mantissa = 0; |
|||
// result should be zero |
|||
return answer; |
|||
} |
|||
if (q > binary::largest_power_of_ten()) { |
|||
// we want to get infinity: |
|||
answer.power2 = binary::infinite_power(); |
|||
answer.mantissa = 0; |
|||
return answer; |
|||
} |
|||
// At this point in time q is in [powers::smallest_power_of_five, |
|||
// powers::largest_power_of_five]. |
|||
|
|||
// We want the most significant bit of i to be 1. Shift if needed. |
|||
int lz = leading_zeroes(w); |
|||
w <<= lz; |
|||
|
|||
// The required precision is binary::mantissa_explicit_bits() + 3 because |
|||
// 1. We need the implicit bit |
|||
// 2. We need an extra bit for rounding purposes |
|||
// 3. We might lose a bit due to the "upperbit" routine (result too small, |
|||
// requiring a shift) |
|||
|
|||
value128 product = |
|||
compute_product_approximation<binary::mantissa_explicit_bits() + 3>(q, w); |
|||
// The computed 'product' is always sufficient. |
|||
// Mathematical proof: |
|||
// Noble Mushtak and Daniel Lemire, Fast Number Parsing Without Fallback (to |
|||
// appear) See script/mushtak_lemire.py |
|||
|
|||
// The "compute_product_approximation" function can be slightly slower than a |
|||
// branchless approach: value128 product = compute_product(q, w); but in |
|||
// practice, we can win big with the compute_product_approximation if its |
|||
// additional branch is easily predicted. Which is best is data specific. |
|||
int upperbit = int(product.high >> 63); |
|||
int shift = upperbit + 64 - binary::mantissa_explicit_bits() - 3; |
|||
|
|||
answer.mantissa = product.high >> shift; |
|||
|
|||
answer.power2 = int32_t(detail::power(int32_t(q)) + upperbit - lz - |
|||
binary::minimum_exponent()); |
|||
if (answer.power2 <= 0) { // we have a subnormal? |
|||
// Here have that answer.power2 <= 0 so -answer.power2 >= 0 |
|||
if (-answer.power2 + 1 >= |
|||
64) { // if we have more than 64 bits below the minimum exponent, you |
|||
// have a zero for sure. |
|||
answer.power2 = 0; |
|||
answer.mantissa = 0; |
|||
// result should be zero |
|||
return answer; |
|||
} |
|||
// next line is safe because -answer.power2 + 1 < 64 |
|||
answer.mantissa >>= -answer.power2 + 1; |
|||
// Thankfully, we can't have both "round-to-even" and subnormals because |
|||
// "round-to-even" only occurs for powers close to 0 in the 32-bit and |
|||
// and 64-bit case (with no more than 19 digits). |
|||
answer.mantissa += (answer.mantissa & 1); // round up |
|||
answer.mantissa >>= 1; |
|||
// There is a weird scenario where we don't have a subnormal but just. |
|||
// Suppose we start with 2.2250738585072013e-308, we end up |
|||
// with 0x3fffffffffffff x 2^-1023-53 which is technically subnormal |
|||
// whereas 0x40000000000000 x 2^-1023-53 is normal. Now, we need to round |
|||
// up 0x3fffffffffffff x 2^-1023-53 and once we do, we are no longer |
|||
// subnormal, but we can only know this after rounding. |
|||
// So we only declare a subnormal if we are smaller than the threshold. |
|||
answer.power2 = |
|||
(answer.mantissa < (uint64_t(1) << binary::mantissa_explicit_bits())) |
|||
? 0 |
|||
: 1; |
|||
return answer; |
|||
} |
|||
|
|||
// usually, we round *up*, but if we fall right in between and and we have an |
|||
// even basis, we need to round down |
|||
// We are only concerned with the cases where 5**q fits in single 64-bit word. |
|||
if ((product.low <= 1) && (q >= binary::min_exponent_round_to_even()) && |
|||
(q <= binary::max_exponent_round_to_even()) && |
|||
((answer.mantissa & 3) == 1)) { // we may fall between two floats! |
|||
// To be in-between two floats we need that in doing |
|||
// answer.mantissa = product.high >> (upperbit + 64 - |
|||
// binary::mantissa_explicit_bits() - 3); |
|||
// ... we dropped out only zeroes. But if this happened, then we can go |
|||
// back!!! |
|||
if ((answer.mantissa << shift) == product.high) { |
|||
answer.mantissa &= ~uint64_t(1); // flip it so that we do not round up |
|||
} |
|||
} |
|||
|
|||
answer.mantissa += (answer.mantissa & 1); // round up |
|||
answer.mantissa >>= 1; |
|||
if (answer.mantissa >= (uint64_t(2) << binary::mantissa_explicit_bits())) { |
|||
answer.mantissa = (uint64_t(1) << binary::mantissa_explicit_bits()); |
|||
answer.power2++; // undo previous addition |
|||
} |
|||
|
|||
answer.mantissa &= ~(uint64_t(1) << binary::mantissa_explicit_bits()); |
|||
if (answer.power2 >= binary::infinite_power()) { // infinity |
|||
answer.power2 = binary::infinite_power(); |
|||
answer.mantissa = 0; |
|||
} |
|||
return answer; |
|||
} |
|||
|
|||
} // namespace fast_float |
|||
|
|||
#endif |
|||
@ -0,0 +1,457 @@ |
|||
#ifndef FASTFLOAT_DIGIT_COMPARISON_H |
|||
#define FASTFLOAT_DIGIT_COMPARISON_H |
|||
|
|||
#include <algorithm> |
|||
#include <cstdint> |
|||
#include <cstring> |
|||
#include <iterator> |
|||
|
|||
#include "float_common.h" |
|||
#include "bigint.h" |
|||
#include "ascii_number.h" |
|||
|
|||
namespace fast_float { |
|||
|
|||
// 1e0 to 1e19 |
|||
constexpr static uint64_t powers_of_ten_uint64[] = {1UL, |
|||
10UL, |
|||
100UL, |
|||
1000UL, |
|||
10000UL, |
|||
100000UL, |
|||
1000000UL, |
|||
10000000UL, |
|||
100000000UL, |
|||
1000000000UL, |
|||
10000000000UL, |
|||
100000000000UL, |
|||
1000000000000UL, |
|||
10000000000000UL, |
|||
100000000000000UL, |
|||
1000000000000000UL, |
|||
10000000000000000UL, |
|||
100000000000000000UL, |
|||
1000000000000000000UL, |
|||
10000000000000000000UL}; |
|||
|
|||
// calculate the exponent, in scientific notation, of the number. |
|||
// this algorithm is not even close to optimized, but it has no practical |
|||
// effect on performance: in order to have a faster algorithm, we'd need |
|||
// to slow down performance for faster algorithms, and this is still fast. |
|||
template <typename UC> |
|||
fastfloat_really_inline FASTFLOAT_CONSTEXPR14 int32_t |
|||
scientific_exponent(parsed_number_string_t<UC> &num) noexcept { |
|||
uint64_t mantissa = num.mantissa; |
|||
int32_t exponent = int32_t(num.exponent); |
|||
while (mantissa >= 10000) { |
|||
mantissa /= 10000; |
|||
exponent += 4; |
|||
} |
|||
while (mantissa >= 100) { |
|||
mantissa /= 100; |
|||
exponent += 2; |
|||
} |
|||
while (mantissa >= 10) { |
|||
mantissa /= 10; |
|||
exponent += 1; |
|||
} |
|||
return exponent; |
|||
} |
|||
|
|||
// this converts a native floating-point number to an extended-precision float. |
|||
template <typename T> |
|||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa |
|||
to_extended(T value) noexcept { |
|||
using equiv_uint = equiv_uint_t<T>; |
|||
constexpr equiv_uint exponent_mask = binary_format<T>::exponent_mask(); |
|||
constexpr equiv_uint mantissa_mask = binary_format<T>::mantissa_mask(); |
|||
constexpr equiv_uint hidden_bit_mask = binary_format<T>::hidden_bit_mask(); |
|||
|
|||
adjusted_mantissa am; |
|||
int32_t bias = binary_format<T>::mantissa_explicit_bits() - |
|||
binary_format<T>::minimum_exponent(); |
|||
equiv_uint bits; |
|||
#if FASTFLOAT_HAS_BIT_CAST |
|||
bits = std::bit_cast<equiv_uint>(value); |
|||
#else |
|||
::memcpy(&bits, &value, sizeof(T)); |
|||
#endif |
|||
if ((bits & exponent_mask) == 0) { |
|||
// denormal |
|||
am.power2 = 1 - bias; |
|||
am.mantissa = bits & mantissa_mask; |
|||
} else { |
|||
// normal |
|||
am.power2 = int32_t((bits & exponent_mask) >> |
|||
binary_format<T>::mantissa_explicit_bits()); |
|||
am.power2 -= bias; |
|||
am.mantissa = (bits & mantissa_mask) | hidden_bit_mask; |
|||
} |
|||
|
|||
return am; |
|||
} |
|||
|
|||
// get the extended precision value of the halfway point between b and b+u. |
|||
// we are given a native float that represents b, so we need to adjust it |
|||
// halfway between b and b+u. |
|||
template <typename T> |
|||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa |
|||
to_extended_halfway(T value) noexcept { |
|||
adjusted_mantissa am = to_extended(value); |
|||
am.mantissa <<= 1; |
|||
am.mantissa += 1; |
|||
am.power2 -= 1; |
|||
return am; |
|||
} |
|||
|
|||
// round an extended-precision float to the nearest machine float. |
|||
template <typename T, typename callback> |
|||
fastfloat_really_inline FASTFLOAT_CONSTEXPR14 void round(adjusted_mantissa &am, |
|||
callback cb) noexcept { |
|||
int32_t mantissa_shift = 64 - binary_format<T>::mantissa_explicit_bits() - 1; |
|||
if (-am.power2 >= mantissa_shift) { |
|||
// have a denormal float |
|||
int32_t shift = -am.power2 + 1; |
|||
cb(am, std::min<int32_t>(shift, 64)); |
|||
// check for round-up: if rounding-nearest carried us to the hidden bit. |
|||
am.power2 = (am.mantissa < |
|||
(uint64_t(1) << binary_format<T>::mantissa_explicit_bits())) |
|||
? 0 |
|||
: 1; |
|||
return; |
|||
} |
|||
|
|||
// have a normal float, use the default shift. |
|||
cb(am, mantissa_shift); |
|||
|
|||
// check for carry |
|||
if (am.mantissa >= |
|||
(uint64_t(2) << binary_format<T>::mantissa_explicit_bits())) { |
|||
am.mantissa = (uint64_t(1) << binary_format<T>::mantissa_explicit_bits()); |
|||
am.power2++; |
|||
} |
|||
|
|||
// check for infinite: we could have carried to an infinite power |
|||
am.mantissa &= ~(uint64_t(1) << binary_format<T>::mantissa_explicit_bits()); |
|||
if (am.power2 >= binary_format<T>::infinite_power()) { |
|||
am.power2 = binary_format<T>::infinite_power(); |
|||
am.mantissa = 0; |
|||
} |
|||
} |
|||
|
|||
template <typename callback> |
|||
fastfloat_really_inline FASTFLOAT_CONSTEXPR14 void |
|||
round_nearest_tie_even(adjusted_mantissa &am, int32_t shift, |
|||
callback cb) noexcept { |
|||
uint64_t const mask = (shift == 64) ? UINT64_MAX : (uint64_t(1) << shift) - 1; |
|||
uint64_t const halfway = (shift == 0) ? 0 : uint64_t(1) << (shift - 1); |
|||
uint64_t truncated_bits = am.mantissa & mask; |
|||
bool is_above = truncated_bits > halfway; |
|||
bool is_halfway = truncated_bits == halfway; |
|||
|
|||
// shift digits into position |
|||
if (shift == 64) { |
|||
am.mantissa = 0; |
|||
} else { |
|||
am.mantissa >>= shift; |
|||
} |
|||
am.power2 += shift; |
|||
|
|||
bool is_odd = (am.mantissa & 1) == 1; |
|||
am.mantissa += uint64_t(cb(is_odd, is_halfway, is_above)); |
|||
} |
|||
|
|||
fastfloat_really_inline FASTFLOAT_CONSTEXPR14 void |
|||
round_down(adjusted_mantissa &am, int32_t shift) noexcept { |
|||
if (shift == 64) { |
|||
am.mantissa = 0; |
|||
} else { |
|||
am.mantissa >>= shift; |
|||
} |
|||
am.power2 += shift; |
|||
} |
|||
|
|||
template <typename UC> |
|||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void |
|||
skip_zeros(UC const *&first, UC const *last) noexcept { |
|||
uint64_t val; |
|||
while (!cpp20_and_in_constexpr() && |
|||
std::distance(first, last) >= int_cmp_len<UC>()) { |
|||
::memcpy(&val, first, sizeof(uint64_t)); |
|||
if (val != int_cmp_zeros<UC>()) { |
|||
break; |
|||
} |
|||
first += int_cmp_len<UC>(); |
|||
} |
|||
while (first != last) { |
|||
if (*first != UC('0')) { |
|||
break; |
|||
} |
|||
first++; |
|||
} |
|||
} |
|||
|
|||
// determine if any non-zero digits were truncated. |
|||
// all characters must be valid digits. |
|||
template <typename UC> |
|||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 bool |
|||
is_truncated(UC const *first, UC const *last) noexcept { |
|||
// do 8-bit optimizations, can just compare to 8 literal 0s. |
|||
uint64_t val; |
|||
while (!cpp20_and_in_constexpr() && |
|||
std::distance(first, last) >= int_cmp_len<UC>()) { |
|||
::memcpy(&val, first, sizeof(uint64_t)); |
|||
if (val != int_cmp_zeros<UC>()) { |
|||
return true; |
|||
} |
|||
first += int_cmp_len<UC>(); |
|||
} |
|||
while (first != last) { |
|||
if (*first != UC('0')) { |
|||
return true; |
|||
} |
|||
++first; |
|||
} |
|||
return false; |
|||
} |
|||
|
|||
template <typename UC> |
|||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 bool |
|||
is_truncated(span<UC const> s) noexcept { |
|||
return is_truncated(s.ptr, s.ptr + s.len()); |
|||
} |
|||
|
|||
template <typename UC> |
|||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void |
|||
parse_eight_digits(UC const *&p, limb &value, size_t &counter, |
|||
size_t &count) noexcept { |
|||
value = value * 100000000 + parse_eight_digits_unrolled(p); |
|||
p += 8; |
|||
counter += 8; |
|||
count += 8; |
|||
} |
|||
|
|||
template <typename UC> |
|||
fastfloat_really_inline FASTFLOAT_CONSTEXPR14 void |
|||
parse_one_digit(UC const *&p, limb &value, size_t &counter, |
|||
size_t &count) noexcept { |
|||
value = value * 10 + limb(*p - UC('0')); |
|||
p++; |
|||
counter++; |
|||
count++; |
|||
} |
|||
|
|||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void |
|||
add_native(bigint &big, limb power, limb value) noexcept { |
|||
big.mul(power); |
|||
big.add(value); |
|||
} |
|||
|
|||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void |
|||
round_up_bigint(bigint &big, size_t &count) noexcept { |
|||
// need to round-up the digits, but need to avoid rounding |
|||
// ....9999 to ...10000, which could cause a false halfway point. |
|||
add_native(big, 10, 1); |
|||
count++; |
|||
} |
|||
|
|||
// parse the significant digits into a big integer |
|||
template <typename UC> |
|||
inline FASTFLOAT_CONSTEXPR20 void |
|||
parse_mantissa(bigint &result, parsed_number_string_t<UC> &num, |
|||
size_t max_digits, size_t &digits) noexcept { |
|||
// try to minimize the number of big integer and scalar multiplication. |
|||
// therefore, try to parse 8 digits at a time, and multiply by the largest |
|||
// scalar value (9 or 19 digits) for each step. |
|||
size_t counter = 0; |
|||
digits = 0; |
|||
limb value = 0; |
|||
#ifdef FASTFLOAT_64BIT_LIMB |
|||
size_t step = 19; |
|||
#else |
|||
size_t step = 9; |
|||
#endif |
|||
|
|||
// process all integer digits. |
|||
UC const *p = num.integer.ptr; |
|||
UC const *pend = p + num.integer.len(); |
|||
skip_zeros(p, pend); |
|||
// process all digits, in increments of step per loop |
|||
while (p != pend) { |
|||
while ((std::distance(p, pend) >= 8) && (step - counter >= 8) && |
|||
(max_digits - digits >= 8)) { |
|||
parse_eight_digits(p, value, counter, digits); |
|||
} |
|||
while (counter < step && p != pend && digits < max_digits) { |
|||
parse_one_digit(p, value, counter, digits); |
|||
} |
|||
if (digits == max_digits) { |
|||
// add the temporary value, then check if we've truncated any digits |
|||
add_native(result, limb(powers_of_ten_uint64[counter]), value); |
|||
bool truncated = is_truncated(p, pend); |
|||
if (num.fraction.ptr != nullptr) { |
|||
truncated |= is_truncated(num.fraction); |
|||
} |
|||
if (truncated) { |
|||
round_up_bigint(result, digits); |
|||
} |
|||
return; |
|||
} else { |
|||
add_native(result, limb(powers_of_ten_uint64[counter]), value); |
|||
counter = 0; |
|||
value = 0; |
|||
} |
|||
} |
|||
|
|||
// add our fraction digits, if they're available. |
|||
if (num.fraction.ptr != nullptr) { |
|||
p = num.fraction.ptr; |
|||
pend = p + num.fraction.len(); |
|||
if (digits == 0) { |
|||
skip_zeros(p, pend); |
|||
} |
|||
// process all digits, in increments of step per loop |
|||
while (p != pend) { |
|||
while ((std::distance(p, pend) >= 8) && (step - counter >= 8) && |
|||
(max_digits - digits >= 8)) { |
|||
parse_eight_digits(p, value, counter, digits); |
|||
} |
|||
while (counter < step && p != pend && digits < max_digits) { |
|||
parse_one_digit(p, value, counter, digits); |
|||
} |
|||
if (digits == max_digits) { |
|||
// add the temporary value, then check if we've truncated any digits |
|||
add_native(result, limb(powers_of_ten_uint64[counter]), value); |
|||
bool truncated = is_truncated(p, pend); |
|||
if (truncated) { |
|||
round_up_bigint(result, digits); |
|||
} |
|||
return; |
|||
} else { |
|||
add_native(result, limb(powers_of_ten_uint64[counter]), value); |
|||
counter = 0; |
|||
value = 0; |
|||
} |
|||
} |
|||
} |
|||
|
|||
if (counter != 0) { |
|||
add_native(result, limb(powers_of_ten_uint64[counter]), value); |
|||
} |
|||
} |
|||
|
|||
template <typename T> |
|||
inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa |
|||
positive_digit_comp(bigint &bigmant, int32_t exponent) noexcept { |
|||
FASTFLOAT_ASSERT(bigmant.pow10(uint32_t(exponent))); |
|||
adjusted_mantissa answer; |
|||
bool truncated; |
|||
answer.mantissa = bigmant.hi64(truncated); |
|||
int bias = binary_format<T>::mantissa_explicit_bits() - |
|||
binary_format<T>::minimum_exponent(); |
|||
answer.power2 = bigmant.bit_length() - 64 + bias; |
|||
|
|||
round<T>(answer, [truncated](adjusted_mantissa &a, int32_t shift) { |
|||
round_nearest_tie_even( |
|||
a, shift, |
|||
[truncated](bool is_odd, bool is_halfway, bool is_above) -> bool { |
|||
return is_above || (is_halfway && truncated) || |
|||
(is_odd && is_halfway); |
|||
}); |
|||
}); |
|||
|
|||
return answer; |
|||
} |
|||
|
|||
// the scaling here is quite simple: we have, for the real digits `m * 10^e`, |
|||
// and for the theoretical digits `n * 2^f`. Since `e` is always negative, |
|||
// to scale them identically, we do `n * 2^f * 5^-f`, so we now have `m * 2^e`. |
|||
// we then need to scale by `2^(f- e)`, and then the two significant digits |
|||
// are of the same magnitude. |
|||
template <typename T> |
|||
inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa negative_digit_comp( |
|||
bigint &bigmant, adjusted_mantissa am, int32_t exponent) noexcept { |
|||
bigint &real_digits = bigmant; |
|||
int32_t real_exp = exponent; |
|||
|
|||
// get the value of `b`, rounded down, and get a bigint representation of b+h |
|||
adjusted_mantissa am_b = am; |
|||
// gcc7 buf: use a lambda to remove the noexcept qualifier bug with |
|||
// -Wnoexcept-type. |
|||
round<T>(am_b, |
|||
[](adjusted_mantissa &a, int32_t shift) { round_down(a, shift); }); |
|||
T b; |
|||
to_float(false, am_b, b); |
|||
adjusted_mantissa theor = to_extended_halfway(b); |
|||
bigint theor_digits(theor.mantissa); |
|||
int32_t theor_exp = theor.power2; |
|||
|
|||
// scale real digits and theor digits to be same power. |
|||
int32_t pow2_exp = theor_exp - real_exp; |
|||
uint32_t pow5_exp = uint32_t(-real_exp); |
|||
if (pow5_exp != 0) { |
|||
FASTFLOAT_ASSERT(theor_digits.pow5(pow5_exp)); |
|||
} |
|||
if (pow2_exp > 0) { |
|||
FASTFLOAT_ASSERT(theor_digits.pow2(uint32_t(pow2_exp))); |
|||
} else if (pow2_exp < 0) { |
|||
FASTFLOAT_ASSERT(real_digits.pow2(uint32_t(-pow2_exp))); |
|||
} |
|||
|
|||
// compare digits, and use it to director rounding |
|||
int ord = real_digits.compare(theor_digits); |
|||
adjusted_mantissa answer = am; |
|||
round<T>(answer, [ord](adjusted_mantissa &a, int32_t shift) { |
|||
round_nearest_tie_even( |
|||
a, shift, [ord](bool is_odd, bool _, bool __) -> bool { |
|||
(void)_; // not needed, since we've done our comparison |
|||
(void)__; // not needed, since we've done our comparison |
|||
if (ord > 0) { |
|||
return true; |
|||
} else if (ord < 0) { |
|||
return false; |
|||
} else { |
|||
return is_odd; |
|||
} |
|||
}); |
|||
}); |
|||
|
|||
return answer; |
|||
} |
|||
|
|||
// parse the significant digits as a big integer to unambiguously round the |
|||
// the significant digits. here, we are trying to determine how to round |
|||
// an extended float representation close to `b+h`, halfway between `b` |
|||
// (the float rounded-down) and `b+u`, the next positive float. this |
|||
// algorithm is always correct, and uses one of two approaches. when |
|||
// the exponent is positive relative to the significant digits (such as |
|||
// 1234), we create a big-integer representation, get the high 64-bits, |
|||
// determine if any lower bits are truncated, and use that to direct |
|||
// rounding. in case of a negative exponent relative to the significant |
|||
// digits (such as 1.2345), we create a theoretical representation of |
|||
// `b` as a big-integer type, scaled to the same binary exponent as |
|||
// the actual digits. we then compare the big integer representations |
|||
// of both, and use that to direct rounding. |
|||
template <typename T, typename UC> |
|||
inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa |
|||
digit_comp(parsed_number_string_t<UC> &num, adjusted_mantissa am) noexcept { |
|||
// remove the invalid exponent bias |
|||
am.power2 -= invalid_am_bias; |
|||
|
|||
int32_t sci_exp = scientific_exponent(num); |
|||
size_t max_digits = binary_format<T>::max_digits(); |
|||
size_t digits = 0; |
|||
bigint bigmant; |
|||
parse_mantissa(bigmant, num, max_digits, digits); |
|||
// can't underflow, since digits is at most max_digits. |
|||
int32_t exponent = sci_exp + 1 - int32_t(digits); |
|||
if (exponent >= 0) { |
|||
return positive_digit_comp<T>(bigmant, exponent); |
|||
} else { |
|||
return negative_digit_comp<T>(bigmant, am, exponent); |
|||
} |
|||
} |
|||
|
|||
} // namespace fast_float |
|||
|
|||
#endif |
|||
@ -0,0 +1,59 @@ |
|||
|
|||
#ifndef FASTFLOAT_FAST_FLOAT_H |
|||
#define FASTFLOAT_FAST_FLOAT_H |
|||
|
|||
#include "float_common.h" |
|||
|
|||
namespace fast_float { |
|||
/** |
|||
* This function parses the character sequence [first,last) for a number. It |
|||
* parses floating-point numbers expecting a locale-indepent format equivalent |
|||
* to what is used by std::strtod in the default ("C") locale. The resulting |
|||
* floating-point value is the closest floating-point values (using either float |
|||
* or double), using the "round to even" convention for values that would |
|||
* otherwise fall right in-between two values. That is, we provide exact parsing |
|||
* according to the IEEE standard. |
|||
* |
|||
* Given a successful parse, the pointer (`ptr`) in the returned value is set to |
|||
* point right after the parsed number, and the `value` referenced is set to the |
|||
* parsed value. In case of error, the returned `ec` contains a representative |
|||
* error, otherwise the default (`std::errc()`) value is stored. |
|||
* |
|||
* The implementation does not throw and does not allocate memory (e.g., with |
|||
* `new` or `malloc`). |
|||
* |
|||
* Like the C++17 standard, the `fast_float::from_chars` functions take an |
|||
* optional last argument of the type `fast_float::chars_format`. It is a bitset |
|||
* value: we check whether `fmt & fast_float::chars_format::fixed` and `fmt & |
|||
* fast_float::chars_format::scientific` are set to determine whether we allow |
|||
* the fixed point and scientific notation respectively. The default is |
|||
* `fast_float::chars_format::general` which allows both `fixed` and |
|||
* `scientific`. |
|||
*/ |
|||
template <typename T, typename UC = char, |
|||
typename = FASTFLOAT_ENABLE_IF(is_supported_float_type<T>::value)> |
|||
FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC> |
|||
from_chars(UC const *first, UC const *last, T &value, |
|||
chars_format fmt = chars_format::general) noexcept; |
|||
|
|||
/** |
|||
* Like from_chars, but accepts an `options` argument to govern number parsing. |
|||
* Both for floating-point types and integer types. |
|||
*/ |
|||
template <typename T, typename UC = char> |
|||
FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC> |
|||
from_chars_advanced(UC const *first, UC const *last, T &value, |
|||
parse_options_t<UC> options) noexcept; |
|||
|
|||
/** |
|||
* from_chars for integer types. |
|||
*/ |
|||
template <typename T, typename UC = char, |
|||
typename = FASTFLOAT_ENABLE_IF(is_supported_integer_type<T>::value)> |
|||
FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC> |
|||
from_chars(UC const *first, UC const *last, T &value, int base = 10) noexcept; |
|||
|
|||
} // namespace fast_float |
|||
|
|||
#include "parse_number.h" |
|||
#endif // FASTFLOAT_FAST_FLOAT_H |
|||
@ -0,0 +1,708 @@ |
|||
#ifndef FASTFLOAT_FAST_TABLE_H |
|||
#define FASTFLOAT_FAST_TABLE_H |
|||
|
|||
#include <cstdint> |
|||
|
|||
namespace fast_float { |
|||
|
|||
/** |
|||
* When mapping numbers from decimal to binary, |
|||
* we go from w * 10^q to m * 2^p but we have |
|||
* 10^q = 5^q * 2^q, so effectively |
|||
* we are trying to match |
|||
* w * 2^q * 5^q to m * 2^p. Thus the powers of two |
|||
* are not a concern since they can be represented |
|||
* exactly using the binary notation, only the powers of five |
|||
* affect the binary significand. |
|||
*/ |
|||
|
|||
/** |
|||
* The smallest non-zero float (binary64) is 2^-1074. |
|||
* We take as input numbers of the form w x 10^q where w < 2^64. |
|||
* We have that w * 10^-343 < 2^(64-344) 5^-343 < 2^-1076. |
|||
* However, we have that |
|||
* (2^64-1) * 10^-342 = (2^64-1) * 2^-342 * 5^-342 > 2^-1074. |
|||
* Thus it is possible for a number of the form w * 10^-342 where |
|||
* w is a 64-bit value to be a non-zero floating-point number. |
|||
********* |
|||
* Any number of form w * 10^309 where w>= 1 is going to be |
|||
* infinite in binary64 so we never need to worry about powers |
|||
* of 5 greater than 308. |
|||
*/ |
|||
template <class unused = void> struct powers_template { |
|||
|
|||
constexpr static int smallest_power_of_five = |
|||
binary_format<double>::smallest_power_of_ten(); |
|||
constexpr static int largest_power_of_five = |
|||
binary_format<double>::largest_power_of_ten(); |
|||
constexpr static int number_of_entries = |
|||
2 * (largest_power_of_five - smallest_power_of_five + 1); |
|||
// Powers of five from 5^-342 all the way to 5^308 rounded toward one. |
|||
constexpr static uint64_t power_of_five_128[number_of_entries] = { |
|||
0xeef453d6923bd65a, 0x113faa2906a13b3f, |
|||
0x9558b4661b6565f8, 0x4ac7ca59a424c507, |
|||
0xbaaee17fa23ebf76, 0x5d79bcf00d2df649, |
|||
0xe95a99df8ace6f53, 0xf4d82c2c107973dc, |
|||
0x91d8a02bb6c10594, 0x79071b9b8a4be869, |
|||
0xb64ec836a47146f9, 0x9748e2826cdee284, |
|||
0xe3e27a444d8d98b7, 0xfd1b1b2308169b25, |
|||
0x8e6d8c6ab0787f72, 0xfe30f0f5e50e20f7, |
|||
0xb208ef855c969f4f, 0xbdbd2d335e51a935, |
|||
0xde8b2b66b3bc4723, 0xad2c788035e61382, |
|||
0x8b16fb203055ac76, 0x4c3bcb5021afcc31, |
|||
0xaddcb9e83c6b1793, 0xdf4abe242a1bbf3d, |
|||
0xd953e8624b85dd78, 0xd71d6dad34a2af0d, |
|||
0x87d4713d6f33aa6b, 0x8672648c40e5ad68, |
|||
0xa9c98d8ccb009506, 0x680efdaf511f18c2, |
|||
0xd43bf0effdc0ba48, 0x212bd1b2566def2, |
|||
0x84a57695fe98746d, 0x14bb630f7604b57, |
|||
0xa5ced43b7e3e9188, 0x419ea3bd35385e2d, |
|||
0xcf42894a5dce35ea, 0x52064cac828675b9, |
|||
0x818995ce7aa0e1b2, 0x7343efebd1940993, |
|||
0xa1ebfb4219491a1f, 0x1014ebe6c5f90bf8, |
|||
0xca66fa129f9b60a6, 0xd41a26e077774ef6, |
|||
0xfd00b897478238d0, 0x8920b098955522b4, |
|||
0x9e20735e8cb16382, 0x55b46e5f5d5535b0, |
|||
0xc5a890362fddbc62, 0xeb2189f734aa831d, |
|||
0xf712b443bbd52b7b, 0xa5e9ec7501d523e4, |
|||
0x9a6bb0aa55653b2d, 0x47b233c92125366e, |
|||
0xc1069cd4eabe89f8, 0x999ec0bb696e840a, |
|||
0xf148440a256e2c76, 0xc00670ea43ca250d, |
|||
0x96cd2a865764dbca, 0x380406926a5e5728, |
|||
0xbc807527ed3e12bc, 0xc605083704f5ecf2, |
|||
0xeba09271e88d976b, 0xf7864a44c633682e, |
|||
0x93445b8731587ea3, 0x7ab3ee6afbe0211d, |
|||
0xb8157268fdae9e4c, 0x5960ea05bad82964, |
|||
0xe61acf033d1a45df, 0x6fb92487298e33bd, |
|||
0x8fd0c16206306bab, 0xa5d3b6d479f8e056, |
|||
0xb3c4f1ba87bc8696, 0x8f48a4899877186c, |
|||
0xe0b62e2929aba83c, 0x331acdabfe94de87, |
|||
0x8c71dcd9ba0b4925, 0x9ff0c08b7f1d0b14, |
|||
0xaf8e5410288e1b6f, 0x7ecf0ae5ee44dd9, |
|||
0xdb71e91432b1a24a, 0xc9e82cd9f69d6150, |
|||
0x892731ac9faf056e, 0xbe311c083a225cd2, |
|||
0xab70fe17c79ac6ca, 0x6dbd630a48aaf406, |
|||
0xd64d3d9db981787d, 0x92cbbccdad5b108, |
|||
0x85f0468293f0eb4e, 0x25bbf56008c58ea5, |
|||
0xa76c582338ed2621, 0xaf2af2b80af6f24e, |
|||
0xd1476e2c07286faa, 0x1af5af660db4aee1, |
|||
0x82cca4db847945ca, 0x50d98d9fc890ed4d, |
|||
0xa37fce126597973c, 0xe50ff107bab528a0, |
|||
0xcc5fc196fefd7d0c, 0x1e53ed49a96272c8, |
|||
0xff77b1fcbebcdc4f, 0x25e8e89c13bb0f7a, |
|||
0x9faacf3df73609b1, 0x77b191618c54e9ac, |
|||
0xc795830d75038c1d, 0xd59df5b9ef6a2417, |
|||
0xf97ae3d0d2446f25, 0x4b0573286b44ad1d, |
|||
0x9becce62836ac577, 0x4ee367f9430aec32, |
|||
0xc2e801fb244576d5, 0x229c41f793cda73f, |
|||
0xf3a20279ed56d48a, 0x6b43527578c1110f, |
|||
0x9845418c345644d6, 0x830a13896b78aaa9, |
|||
0xbe5691ef416bd60c, 0x23cc986bc656d553, |
|||
0xedec366b11c6cb8f, 0x2cbfbe86b7ec8aa8, |
|||
0x94b3a202eb1c3f39, 0x7bf7d71432f3d6a9, |
|||
0xb9e08a83a5e34f07, 0xdaf5ccd93fb0cc53, |
|||
0xe858ad248f5c22c9, 0xd1b3400f8f9cff68, |
|||
0x91376c36d99995be, 0x23100809b9c21fa1, |
|||
0xb58547448ffffb2d, 0xabd40a0c2832a78a, |
|||
0xe2e69915b3fff9f9, 0x16c90c8f323f516c, |
|||
0x8dd01fad907ffc3b, 0xae3da7d97f6792e3, |
|||
0xb1442798f49ffb4a, 0x99cd11cfdf41779c, |
|||
0xdd95317f31c7fa1d, 0x40405643d711d583, |
|||
0x8a7d3eef7f1cfc52, 0x482835ea666b2572, |
|||
0xad1c8eab5ee43b66, 0xda3243650005eecf, |
|||
0xd863b256369d4a40, 0x90bed43e40076a82, |
|||
0x873e4f75e2224e68, 0x5a7744a6e804a291, |
|||
0xa90de3535aaae202, 0x711515d0a205cb36, |
|||
0xd3515c2831559a83, 0xd5a5b44ca873e03, |
|||
0x8412d9991ed58091, 0xe858790afe9486c2, |
|||
0xa5178fff668ae0b6, 0x626e974dbe39a872, |
|||
0xce5d73ff402d98e3, 0xfb0a3d212dc8128f, |
|||
0x80fa687f881c7f8e, 0x7ce66634bc9d0b99, |
|||
0xa139029f6a239f72, 0x1c1fffc1ebc44e80, |
|||
0xc987434744ac874e, 0xa327ffb266b56220, |
|||
0xfbe9141915d7a922, 0x4bf1ff9f0062baa8, |
|||
0x9d71ac8fada6c9b5, 0x6f773fc3603db4a9, |
|||
0xc4ce17b399107c22, 0xcb550fb4384d21d3, |
|||
0xf6019da07f549b2b, 0x7e2a53a146606a48, |
|||
0x99c102844f94e0fb, 0x2eda7444cbfc426d, |
|||
0xc0314325637a1939, 0xfa911155fefb5308, |
|||
0xf03d93eebc589f88, 0x793555ab7eba27ca, |
|||
0x96267c7535b763b5, 0x4bc1558b2f3458de, |
|||
0xbbb01b9283253ca2, 0x9eb1aaedfb016f16, |
|||
0xea9c227723ee8bcb, 0x465e15a979c1cadc, |
|||
0x92a1958a7675175f, 0xbfacd89ec191ec9, |
|||
0xb749faed14125d36, 0xcef980ec671f667b, |
|||
0xe51c79a85916f484, 0x82b7e12780e7401a, |
|||
0x8f31cc0937ae58d2, 0xd1b2ecb8b0908810, |
|||
0xb2fe3f0b8599ef07, 0x861fa7e6dcb4aa15, |
|||
0xdfbdcece67006ac9, 0x67a791e093e1d49a, |
|||
0x8bd6a141006042bd, 0xe0c8bb2c5c6d24e0, |
|||
0xaecc49914078536d, 0x58fae9f773886e18, |
|||
0xda7f5bf590966848, 0xaf39a475506a899e, |
|||
0x888f99797a5e012d, 0x6d8406c952429603, |
|||
0xaab37fd7d8f58178, 0xc8e5087ba6d33b83, |
|||
0xd5605fcdcf32e1d6, 0xfb1e4a9a90880a64, |
|||
0x855c3be0a17fcd26, 0x5cf2eea09a55067f, |
|||
0xa6b34ad8c9dfc06f, 0xf42faa48c0ea481e, |
|||
0xd0601d8efc57b08b, 0xf13b94daf124da26, |
|||
0x823c12795db6ce57, 0x76c53d08d6b70858, |
|||
0xa2cb1717b52481ed, 0x54768c4b0c64ca6e, |
|||
0xcb7ddcdda26da268, 0xa9942f5dcf7dfd09, |
|||
0xfe5d54150b090b02, 0xd3f93b35435d7c4c, |
|||
0x9efa548d26e5a6e1, 0xc47bc5014a1a6daf, |
|||
0xc6b8e9b0709f109a, 0x359ab6419ca1091b, |
|||
0xf867241c8cc6d4c0, 0xc30163d203c94b62, |
|||
0x9b407691d7fc44f8, 0x79e0de63425dcf1d, |
|||
0xc21094364dfb5636, 0x985915fc12f542e4, |
|||
0xf294b943e17a2bc4, 0x3e6f5b7b17b2939d, |
|||
0x979cf3ca6cec5b5a, 0xa705992ceecf9c42, |
|||
0xbd8430bd08277231, 0x50c6ff782a838353, |
|||
0xece53cec4a314ebd, 0xa4f8bf5635246428, |
|||
0x940f4613ae5ed136, 0x871b7795e136be99, |
|||
0xb913179899f68584, 0x28e2557b59846e3f, |
|||
0xe757dd7ec07426e5, 0x331aeada2fe589cf, |
|||
0x9096ea6f3848984f, 0x3ff0d2c85def7621, |
|||
0xb4bca50b065abe63, 0xfed077a756b53a9, |
|||
0xe1ebce4dc7f16dfb, 0xd3e8495912c62894, |
|||
0x8d3360f09cf6e4bd, 0x64712dd7abbbd95c, |
|||
0xb080392cc4349dec, 0xbd8d794d96aacfb3, |
|||
0xdca04777f541c567, 0xecf0d7a0fc5583a0, |
|||
0x89e42caaf9491b60, 0xf41686c49db57244, |
|||
0xac5d37d5b79b6239, 0x311c2875c522ced5, |
|||
0xd77485cb25823ac7, 0x7d633293366b828b, |
|||
0x86a8d39ef77164bc, 0xae5dff9c02033197, |
|||
0xa8530886b54dbdeb, 0xd9f57f830283fdfc, |
|||
0xd267caa862a12d66, 0xd072df63c324fd7b, |
|||
0x8380dea93da4bc60, 0x4247cb9e59f71e6d, |
|||
0xa46116538d0deb78, 0x52d9be85f074e608, |
|||
0xcd795be870516656, 0x67902e276c921f8b, |
|||
0x806bd9714632dff6, 0xba1cd8a3db53b6, |
|||
0xa086cfcd97bf97f3, 0x80e8a40eccd228a4, |
|||
0xc8a883c0fdaf7df0, 0x6122cd128006b2cd, |
|||
0xfad2a4b13d1b5d6c, 0x796b805720085f81, |
|||
0x9cc3a6eec6311a63, 0xcbe3303674053bb0, |
|||
0xc3f490aa77bd60fc, 0xbedbfc4411068a9c, |
|||
0xf4f1b4d515acb93b, 0xee92fb5515482d44, |
|||
0x991711052d8bf3c5, 0x751bdd152d4d1c4a, |
|||
0xbf5cd54678eef0b6, 0xd262d45a78a0635d, |
|||
0xef340a98172aace4, 0x86fb897116c87c34, |
|||
0x9580869f0e7aac0e, 0xd45d35e6ae3d4da0, |
|||
0xbae0a846d2195712, 0x8974836059cca109, |
|||
0xe998d258869facd7, 0x2bd1a438703fc94b, |
|||
0x91ff83775423cc06, 0x7b6306a34627ddcf, |
|||
0xb67f6455292cbf08, 0x1a3bc84c17b1d542, |
|||
0xe41f3d6a7377eeca, 0x20caba5f1d9e4a93, |
|||
0x8e938662882af53e, 0x547eb47b7282ee9c, |
|||
0xb23867fb2a35b28d, 0xe99e619a4f23aa43, |
|||
0xdec681f9f4c31f31, 0x6405fa00e2ec94d4, |
|||
0x8b3c113c38f9f37e, 0xde83bc408dd3dd04, |
|||
0xae0b158b4738705e, 0x9624ab50b148d445, |
|||
0xd98ddaee19068c76, 0x3badd624dd9b0957, |
|||
0x87f8a8d4cfa417c9, 0xe54ca5d70a80e5d6, |
|||
0xa9f6d30a038d1dbc, 0x5e9fcf4ccd211f4c, |
|||
0xd47487cc8470652b, 0x7647c3200069671f, |
|||
0x84c8d4dfd2c63f3b, 0x29ecd9f40041e073, |
|||
0xa5fb0a17c777cf09, 0xf468107100525890, |
|||
0xcf79cc9db955c2cc, 0x7182148d4066eeb4, |
|||
0x81ac1fe293d599bf, 0xc6f14cd848405530, |
|||
0xa21727db38cb002f, 0xb8ada00e5a506a7c, |
|||
0xca9cf1d206fdc03b, 0xa6d90811f0e4851c, |
|||
0xfd442e4688bd304a, 0x908f4a166d1da663, |
|||
0x9e4a9cec15763e2e, 0x9a598e4e043287fe, |
|||
0xc5dd44271ad3cdba, 0x40eff1e1853f29fd, |
|||
0xf7549530e188c128, 0xd12bee59e68ef47c, |
|||
0x9a94dd3e8cf578b9, 0x82bb74f8301958ce, |
|||
0xc13a148e3032d6e7, 0xe36a52363c1faf01, |
|||
0xf18899b1bc3f8ca1, 0xdc44e6c3cb279ac1, |
|||
0x96f5600f15a7b7e5, 0x29ab103a5ef8c0b9, |
|||
0xbcb2b812db11a5de, 0x7415d448f6b6f0e7, |
|||
0xebdf661791d60f56, 0x111b495b3464ad21, |
|||
0x936b9fcebb25c995, 0xcab10dd900beec34, |
|||
0xb84687c269ef3bfb, 0x3d5d514f40eea742, |
|||
0xe65829b3046b0afa, 0xcb4a5a3112a5112, |
|||
0x8ff71a0fe2c2e6dc, 0x47f0e785eaba72ab, |
|||
0xb3f4e093db73a093, 0x59ed216765690f56, |
|||
0xe0f218b8d25088b8, 0x306869c13ec3532c, |
|||
0x8c974f7383725573, 0x1e414218c73a13fb, |
|||
0xafbd2350644eeacf, 0xe5d1929ef90898fa, |
|||
0xdbac6c247d62a583, 0xdf45f746b74abf39, |
|||
0x894bc396ce5da772, 0x6b8bba8c328eb783, |
|||
0xab9eb47c81f5114f, 0x66ea92f3f326564, |
|||
0xd686619ba27255a2, 0xc80a537b0efefebd, |
|||
0x8613fd0145877585, 0xbd06742ce95f5f36, |
|||
0xa798fc4196e952e7, 0x2c48113823b73704, |
|||
0xd17f3b51fca3a7a0, 0xf75a15862ca504c5, |
|||
0x82ef85133de648c4, 0x9a984d73dbe722fb, |
|||
0xa3ab66580d5fdaf5, 0xc13e60d0d2e0ebba, |
|||
0xcc963fee10b7d1b3, 0x318df905079926a8, |
|||
0xffbbcfe994e5c61f, 0xfdf17746497f7052, |
|||
0x9fd561f1fd0f9bd3, 0xfeb6ea8bedefa633, |
|||
0xc7caba6e7c5382c8, 0xfe64a52ee96b8fc0, |
|||
0xf9bd690a1b68637b, 0x3dfdce7aa3c673b0, |
|||
0x9c1661a651213e2d, 0x6bea10ca65c084e, |
|||
0xc31bfa0fe5698db8, 0x486e494fcff30a62, |
|||
0xf3e2f893dec3f126, 0x5a89dba3c3efccfa, |
|||
0x986ddb5c6b3a76b7, 0xf89629465a75e01c, |
|||
0xbe89523386091465, 0xf6bbb397f1135823, |
|||
0xee2ba6c0678b597f, 0x746aa07ded582e2c, |
|||
0x94db483840b717ef, 0xa8c2a44eb4571cdc, |
|||
0xba121a4650e4ddeb, 0x92f34d62616ce413, |
|||
0xe896a0d7e51e1566, 0x77b020baf9c81d17, |
|||
0x915e2486ef32cd60, 0xace1474dc1d122e, |
|||
0xb5b5ada8aaff80b8, 0xd819992132456ba, |
|||
0xe3231912d5bf60e6, 0x10e1fff697ed6c69, |
|||
0x8df5efabc5979c8f, 0xca8d3ffa1ef463c1, |
|||
0xb1736b96b6fd83b3, 0xbd308ff8a6b17cb2, |
|||
0xddd0467c64bce4a0, 0xac7cb3f6d05ddbde, |
|||
0x8aa22c0dbef60ee4, 0x6bcdf07a423aa96b, |
|||
0xad4ab7112eb3929d, 0x86c16c98d2c953c6, |
|||
0xd89d64d57a607744, 0xe871c7bf077ba8b7, |
|||
0x87625f056c7c4a8b, 0x11471cd764ad4972, |
|||
0xa93af6c6c79b5d2d, 0xd598e40d3dd89bcf, |
|||
0xd389b47879823479, 0x4aff1d108d4ec2c3, |
|||
0x843610cb4bf160cb, 0xcedf722a585139ba, |
|||
0xa54394fe1eedb8fe, 0xc2974eb4ee658828, |
|||
0xce947a3da6a9273e, 0x733d226229feea32, |
|||
0x811ccc668829b887, 0x806357d5a3f525f, |
|||
0xa163ff802a3426a8, 0xca07c2dcb0cf26f7, |
|||
0xc9bcff6034c13052, 0xfc89b393dd02f0b5, |
|||
0xfc2c3f3841f17c67, 0xbbac2078d443ace2, |
|||
0x9d9ba7832936edc0, 0xd54b944b84aa4c0d, |
|||
0xc5029163f384a931, 0xa9e795e65d4df11, |
|||
0xf64335bcf065d37d, 0x4d4617b5ff4a16d5, |
|||
0x99ea0196163fa42e, 0x504bced1bf8e4e45, |
|||
0xc06481fb9bcf8d39, 0xe45ec2862f71e1d6, |
|||
0xf07da27a82c37088, 0x5d767327bb4e5a4c, |
|||
0x964e858c91ba2655, 0x3a6a07f8d510f86f, |
|||
0xbbe226efb628afea, 0x890489f70a55368b, |
|||
0xeadab0aba3b2dbe5, 0x2b45ac74ccea842e, |
|||
0x92c8ae6b464fc96f, 0x3b0b8bc90012929d, |
|||
0xb77ada0617e3bbcb, 0x9ce6ebb40173744, |
|||
0xe55990879ddcaabd, 0xcc420a6a101d0515, |
|||
0x8f57fa54c2a9eab6, 0x9fa946824a12232d, |
|||
0xb32df8e9f3546564, 0x47939822dc96abf9, |
|||
0xdff9772470297ebd, 0x59787e2b93bc56f7, |
|||
0x8bfbea76c619ef36, 0x57eb4edb3c55b65a, |
|||
0xaefae51477a06b03, 0xede622920b6b23f1, |
|||
0xdab99e59958885c4, 0xe95fab368e45eced, |
|||
0x88b402f7fd75539b, 0x11dbcb0218ebb414, |
|||
0xaae103b5fcd2a881, 0xd652bdc29f26a119, |
|||
0xd59944a37c0752a2, 0x4be76d3346f0495f, |
|||
0x857fcae62d8493a5, 0x6f70a4400c562ddb, |
|||
0xa6dfbd9fb8e5b88e, 0xcb4ccd500f6bb952, |
|||
0xd097ad07a71f26b2, 0x7e2000a41346a7a7, |
|||
0x825ecc24c873782f, 0x8ed400668c0c28c8, |
|||
0xa2f67f2dfa90563b, 0x728900802f0f32fa, |
|||
0xcbb41ef979346bca, 0x4f2b40a03ad2ffb9, |
|||
0xfea126b7d78186bc, 0xe2f610c84987bfa8, |
|||
0x9f24b832e6b0f436, 0xdd9ca7d2df4d7c9, |
|||
0xc6ede63fa05d3143, 0x91503d1c79720dbb, |
|||
0xf8a95fcf88747d94, 0x75a44c6397ce912a, |
|||
0x9b69dbe1b548ce7c, 0xc986afbe3ee11aba, |
|||
0xc24452da229b021b, 0xfbe85badce996168, |
|||
0xf2d56790ab41c2a2, 0xfae27299423fb9c3, |
|||
0x97c560ba6b0919a5, 0xdccd879fc967d41a, |
|||
0xbdb6b8e905cb600f, 0x5400e987bbc1c920, |
|||
0xed246723473e3813, 0x290123e9aab23b68, |
|||
0x9436c0760c86e30b, 0xf9a0b6720aaf6521, |
|||
0xb94470938fa89bce, 0xf808e40e8d5b3e69, |
|||
0xe7958cb87392c2c2, 0xb60b1d1230b20e04, |
|||
0x90bd77f3483bb9b9, 0xb1c6f22b5e6f48c2, |
|||
0xb4ecd5f01a4aa828, 0x1e38aeb6360b1af3, |
|||
0xe2280b6c20dd5232, 0x25c6da63c38de1b0, |
|||
0x8d590723948a535f, 0x579c487e5a38ad0e, |
|||
0xb0af48ec79ace837, 0x2d835a9df0c6d851, |
|||
0xdcdb1b2798182244, 0xf8e431456cf88e65, |
|||
0x8a08f0f8bf0f156b, 0x1b8e9ecb641b58ff, |
|||
0xac8b2d36eed2dac5, 0xe272467e3d222f3f, |
|||
0xd7adf884aa879177, 0x5b0ed81dcc6abb0f, |
|||
0x86ccbb52ea94baea, 0x98e947129fc2b4e9, |
|||
0xa87fea27a539e9a5, 0x3f2398d747b36224, |
|||
0xd29fe4b18e88640e, 0x8eec7f0d19a03aad, |
|||
0x83a3eeeef9153e89, 0x1953cf68300424ac, |
|||
0xa48ceaaab75a8e2b, 0x5fa8c3423c052dd7, |
|||
0xcdb02555653131b6, 0x3792f412cb06794d, |
|||
0x808e17555f3ebf11, 0xe2bbd88bbee40bd0, |
|||
0xa0b19d2ab70e6ed6, 0x5b6aceaeae9d0ec4, |
|||
0xc8de047564d20a8b, 0xf245825a5a445275, |
|||
0xfb158592be068d2e, 0xeed6e2f0f0d56712, |
|||
0x9ced737bb6c4183d, 0x55464dd69685606b, |
|||
0xc428d05aa4751e4c, 0xaa97e14c3c26b886, |
|||
0xf53304714d9265df, 0xd53dd99f4b3066a8, |
|||
0x993fe2c6d07b7fab, 0xe546a8038efe4029, |
|||
0xbf8fdb78849a5f96, 0xde98520472bdd033, |
|||
0xef73d256a5c0f77c, 0x963e66858f6d4440, |
|||
0x95a8637627989aad, 0xdde7001379a44aa8, |
|||
0xbb127c53b17ec159, 0x5560c018580d5d52, |
|||
0xe9d71b689dde71af, 0xaab8f01e6e10b4a6, |
|||
0x9226712162ab070d, 0xcab3961304ca70e8, |
|||
0xb6b00d69bb55c8d1, 0x3d607b97c5fd0d22, |
|||
0xe45c10c42a2b3b05, 0x8cb89a7db77c506a, |
|||
0x8eb98a7a9a5b04e3, 0x77f3608e92adb242, |
|||
0xb267ed1940f1c61c, 0x55f038b237591ed3, |
|||
0xdf01e85f912e37a3, 0x6b6c46dec52f6688, |
|||
0x8b61313bbabce2c6, 0x2323ac4b3b3da015, |
|||
0xae397d8aa96c1b77, 0xabec975e0a0d081a, |
|||
0xd9c7dced53c72255, 0x96e7bd358c904a21, |
|||
0x881cea14545c7575, 0x7e50d64177da2e54, |
|||
0xaa242499697392d2, 0xdde50bd1d5d0b9e9, |
|||
0xd4ad2dbfc3d07787, 0x955e4ec64b44e864, |
|||
0x84ec3c97da624ab4, 0xbd5af13bef0b113e, |
|||
0xa6274bbdd0fadd61, 0xecb1ad8aeacdd58e, |
|||
0xcfb11ead453994ba, 0x67de18eda5814af2, |
|||
0x81ceb32c4b43fcf4, 0x80eacf948770ced7, |
|||
0xa2425ff75e14fc31, 0xa1258379a94d028d, |
|||
0xcad2f7f5359a3b3e, 0x96ee45813a04330, |
|||
0xfd87b5f28300ca0d, 0x8bca9d6e188853fc, |
|||
0x9e74d1b791e07e48, 0x775ea264cf55347e, |
|||
0xc612062576589dda, 0x95364afe032a819e, |
|||
0xf79687aed3eec551, 0x3a83ddbd83f52205, |
|||
0x9abe14cd44753b52, 0xc4926a9672793543, |
|||
0xc16d9a0095928a27, 0x75b7053c0f178294, |
|||
0xf1c90080baf72cb1, 0x5324c68b12dd6339, |
|||
0x971da05074da7bee, 0xd3f6fc16ebca5e04, |
|||
0xbce5086492111aea, 0x88f4bb1ca6bcf585, |
|||
0xec1e4a7db69561a5, 0x2b31e9e3d06c32e6, |
|||
0x9392ee8e921d5d07, 0x3aff322e62439fd0, |
|||
0xb877aa3236a4b449, 0x9befeb9fad487c3, |
|||
0xe69594bec44de15b, 0x4c2ebe687989a9b4, |
|||
0x901d7cf73ab0acd9, 0xf9d37014bf60a11, |
|||
0xb424dc35095cd80f, 0x538484c19ef38c95, |
|||
0xe12e13424bb40e13, 0x2865a5f206b06fba, |
|||
0x8cbccc096f5088cb, 0xf93f87b7442e45d4, |
|||
0xafebff0bcb24aafe, 0xf78f69a51539d749, |
|||
0xdbe6fecebdedd5be, 0xb573440e5a884d1c, |
|||
0x89705f4136b4a597, 0x31680a88f8953031, |
|||
0xabcc77118461cefc, 0xfdc20d2b36ba7c3e, |
|||
0xd6bf94d5e57a42bc, 0x3d32907604691b4d, |
|||
0x8637bd05af6c69b5, 0xa63f9a49c2c1b110, |
|||
0xa7c5ac471b478423, 0xfcf80dc33721d54, |
|||
0xd1b71758e219652b, 0xd3c36113404ea4a9, |
|||
0x83126e978d4fdf3b, 0x645a1cac083126ea, |
|||
0xa3d70a3d70a3d70a, 0x3d70a3d70a3d70a4, |
|||
0xcccccccccccccccc, 0xcccccccccccccccd, |
|||
0x8000000000000000, 0x0, |
|||
0xa000000000000000, 0x0, |
|||
0xc800000000000000, 0x0, |
|||
0xfa00000000000000, 0x0, |
|||
0x9c40000000000000, 0x0, |
|||
0xc350000000000000, 0x0, |
|||
0xf424000000000000, 0x0, |
|||
0x9896800000000000, 0x0, |
|||
0xbebc200000000000, 0x0, |
|||
0xee6b280000000000, 0x0, |
|||
0x9502f90000000000, 0x0, |
|||
0xba43b74000000000, 0x0, |
|||
0xe8d4a51000000000, 0x0, |
|||
0x9184e72a00000000, 0x0, |
|||
0xb5e620f480000000, 0x0, |
|||
0xe35fa931a0000000, 0x0, |
|||
0x8e1bc9bf04000000, 0x0, |
|||
0xb1a2bc2ec5000000, 0x0, |
|||
0xde0b6b3a76400000, 0x0, |
|||
0x8ac7230489e80000, 0x0, |
|||
0xad78ebc5ac620000, 0x0, |
|||
0xd8d726b7177a8000, 0x0, |
|||
0x878678326eac9000, 0x0, |
|||
0xa968163f0a57b400, 0x0, |
|||
0xd3c21bcecceda100, 0x0, |
|||
0x84595161401484a0, 0x0, |
|||
0xa56fa5b99019a5c8, 0x0, |
|||
0xcecb8f27f4200f3a, 0x0, |
|||
0x813f3978f8940984, 0x4000000000000000, |
|||
0xa18f07d736b90be5, 0x5000000000000000, |
|||
0xc9f2c9cd04674ede, 0xa400000000000000, |
|||
0xfc6f7c4045812296, 0x4d00000000000000, |
|||
0x9dc5ada82b70b59d, 0xf020000000000000, |
|||
0xc5371912364ce305, 0x6c28000000000000, |
|||
0xf684df56c3e01bc6, 0xc732000000000000, |
|||
0x9a130b963a6c115c, 0x3c7f400000000000, |
|||
0xc097ce7bc90715b3, 0x4b9f100000000000, |
|||
0xf0bdc21abb48db20, 0x1e86d40000000000, |
|||
0x96769950b50d88f4, 0x1314448000000000, |
|||
0xbc143fa4e250eb31, 0x17d955a000000000, |
|||
0xeb194f8e1ae525fd, 0x5dcfab0800000000, |
|||
0x92efd1b8d0cf37be, 0x5aa1cae500000000, |
|||
0xb7abc627050305ad, 0xf14a3d9e40000000, |
|||
0xe596b7b0c643c719, 0x6d9ccd05d0000000, |
|||
0x8f7e32ce7bea5c6f, 0xe4820023a2000000, |
|||
0xb35dbf821ae4f38b, 0xdda2802c8a800000, |
|||
0xe0352f62a19e306e, 0xd50b2037ad200000, |
|||
0x8c213d9da502de45, 0x4526f422cc340000, |
|||
0xaf298d050e4395d6, 0x9670b12b7f410000, |
|||
0xdaf3f04651d47b4c, 0x3c0cdd765f114000, |
|||
0x88d8762bf324cd0f, 0xa5880a69fb6ac800, |
|||
0xab0e93b6efee0053, 0x8eea0d047a457a00, |
|||
0xd5d238a4abe98068, 0x72a4904598d6d880, |
|||
0x85a36366eb71f041, 0x47a6da2b7f864750, |
|||
0xa70c3c40a64e6c51, 0x999090b65f67d924, |
|||
0xd0cf4b50cfe20765, 0xfff4b4e3f741cf6d, |
|||
0x82818f1281ed449f, 0xbff8f10e7a8921a4, |
|||
0xa321f2d7226895c7, 0xaff72d52192b6a0d, |
|||
0xcbea6f8ceb02bb39, 0x9bf4f8a69f764490, |
|||
0xfee50b7025c36a08, 0x2f236d04753d5b4, |
|||
0x9f4f2726179a2245, 0x1d762422c946590, |
|||
0xc722f0ef9d80aad6, 0x424d3ad2b7b97ef5, |
|||
0xf8ebad2b84e0d58b, 0xd2e0898765a7deb2, |
|||
0x9b934c3b330c8577, 0x63cc55f49f88eb2f, |
|||
0xc2781f49ffcfa6d5, 0x3cbf6b71c76b25fb, |
|||
0xf316271c7fc3908a, 0x8bef464e3945ef7a, |
|||
0x97edd871cfda3a56, 0x97758bf0e3cbb5ac, |
|||
0xbde94e8e43d0c8ec, 0x3d52eeed1cbea317, |
|||
0xed63a231d4c4fb27, 0x4ca7aaa863ee4bdd, |
|||
0x945e455f24fb1cf8, 0x8fe8caa93e74ef6a, |
|||
0xb975d6b6ee39e436, 0xb3e2fd538e122b44, |
|||
0xe7d34c64a9c85d44, 0x60dbbca87196b616, |
|||
0x90e40fbeea1d3a4a, 0xbc8955e946fe31cd, |
|||
0xb51d13aea4a488dd, 0x6babab6398bdbe41, |
|||
0xe264589a4dcdab14, 0xc696963c7eed2dd1, |
|||
0x8d7eb76070a08aec, 0xfc1e1de5cf543ca2, |
|||
0xb0de65388cc8ada8, 0x3b25a55f43294bcb, |
|||
0xdd15fe86affad912, 0x49ef0eb713f39ebe, |
|||
0x8a2dbf142dfcc7ab, 0x6e3569326c784337, |
|||
0xacb92ed9397bf996, 0x49c2c37f07965404, |
|||
0xd7e77a8f87daf7fb, 0xdc33745ec97be906, |
|||
0x86f0ac99b4e8dafd, 0x69a028bb3ded71a3, |
|||
0xa8acd7c0222311bc, 0xc40832ea0d68ce0c, |
|||
0xd2d80db02aabd62b, 0xf50a3fa490c30190, |
|||
0x83c7088e1aab65db, 0x792667c6da79e0fa, |
|||
0xa4b8cab1a1563f52, 0x577001b891185938, |
|||
0xcde6fd5e09abcf26, 0xed4c0226b55e6f86, |
|||
0x80b05e5ac60b6178, 0x544f8158315b05b4, |
|||
0xa0dc75f1778e39d6, 0x696361ae3db1c721, |
|||
0xc913936dd571c84c, 0x3bc3a19cd1e38e9, |
|||
0xfb5878494ace3a5f, 0x4ab48a04065c723, |
|||
0x9d174b2dcec0e47b, 0x62eb0d64283f9c76, |
|||
0xc45d1df942711d9a, 0x3ba5d0bd324f8394, |
|||
0xf5746577930d6500, 0xca8f44ec7ee36479, |
|||
0x9968bf6abbe85f20, 0x7e998b13cf4e1ecb, |
|||
0xbfc2ef456ae276e8, 0x9e3fedd8c321a67e, |
|||
0xefb3ab16c59b14a2, 0xc5cfe94ef3ea101e, |
|||
0x95d04aee3b80ece5, 0xbba1f1d158724a12, |
|||
0xbb445da9ca61281f, 0x2a8a6e45ae8edc97, |
|||
0xea1575143cf97226, 0xf52d09d71a3293bd, |
|||
0x924d692ca61be758, 0x593c2626705f9c56, |
|||
0xb6e0c377cfa2e12e, 0x6f8b2fb00c77836c, |
|||
0xe498f455c38b997a, 0xb6dfb9c0f956447, |
|||
0x8edf98b59a373fec, 0x4724bd4189bd5eac, |
|||
0xb2977ee300c50fe7, 0x58edec91ec2cb657, |
|||
0xdf3d5e9bc0f653e1, 0x2f2967b66737e3ed, |
|||
0x8b865b215899f46c, 0xbd79e0d20082ee74, |
|||
0xae67f1e9aec07187, 0xecd8590680a3aa11, |
|||
0xda01ee641a708de9, 0xe80e6f4820cc9495, |
|||
0x884134fe908658b2, 0x3109058d147fdcdd, |
|||
0xaa51823e34a7eede, 0xbd4b46f0599fd415, |
|||
0xd4e5e2cdc1d1ea96, 0x6c9e18ac7007c91a, |
|||
0x850fadc09923329e, 0x3e2cf6bc604ddb0, |
|||
0xa6539930bf6bff45, 0x84db8346b786151c, |
|||
0xcfe87f7cef46ff16, 0xe612641865679a63, |
|||
0x81f14fae158c5f6e, 0x4fcb7e8f3f60c07e, |
|||
0xa26da3999aef7749, 0xe3be5e330f38f09d, |
|||
0xcb090c8001ab551c, 0x5cadf5bfd3072cc5, |
|||
0xfdcb4fa002162a63, 0x73d9732fc7c8f7f6, |
|||
0x9e9f11c4014dda7e, 0x2867e7fddcdd9afa, |
|||
0xc646d63501a1511d, 0xb281e1fd541501b8, |
|||
0xf7d88bc24209a565, 0x1f225a7ca91a4226, |
|||
0x9ae757596946075f, 0x3375788de9b06958, |
|||
0xc1a12d2fc3978937, 0x52d6b1641c83ae, |
|||
0xf209787bb47d6b84, 0xc0678c5dbd23a49a, |
|||
0x9745eb4d50ce6332, 0xf840b7ba963646e0, |
|||
0xbd176620a501fbff, 0xb650e5a93bc3d898, |
|||
0xec5d3fa8ce427aff, 0xa3e51f138ab4cebe, |
|||
0x93ba47c980e98cdf, 0xc66f336c36b10137, |
|||
0xb8a8d9bbe123f017, 0xb80b0047445d4184, |
|||
0xe6d3102ad96cec1d, 0xa60dc059157491e5, |
|||
0x9043ea1ac7e41392, 0x87c89837ad68db2f, |
|||
0xb454e4a179dd1877, 0x29babe4598c311fb, |
|||
0xe16a1dc9d8545e94, 0xf4296dd6fef3d67a, |
|||
0x8ce2529e2734bb1d, 0x1899e4a65f58660c, |
|||
0xb01ae745b101e9e4, 0x5ec05dcff72e7f8f, |
|||
0xdc21a1171d42645d, 0x76707543f4fa1f73, |
|||
0x899504ae72497eba, 0x6a06494a791c53a8, |
|||
0xabfa45da0edbde69, 0x487db9d17636892, |
|||
0xd6f8d7509292d603, 0x45a9d2845d3c42b6, |
|||
0x865b86925b9bc5c2, 0xb8a2392ba45a9b2, |
|||
0xa7f26836f282b732, 0x8e6cac7768d7141e, |
|||
0xd1ef0244af2364ff, 0x3207d795430cd926, |
|||
0x8335616aed761f1f, 0x7f44e6bd49e807b8, |
|||
0xa402b9c5a8d3a6e7, 0x5f16206c9c6209a6, |
|||
0xcd036837130890a1, 0x36dba887c37a8c0f, |
|||
0x802221226be55a64, 0xc2494954da2c9789, |
|||
0xa02aa96b06deb0fd, 0xf2db9baa10b7bd6c, |
|||
0xc83553c5c8965d3d, 0x6f92829494e5acc7, |
|||
0xfa42a8b73abbf48c, 0xcb772339ba1f17f9, |
|||
0x9c69a97284b578d7, 0xff2a760414536efb, |
|||
0xc38413cf25e2d70d, 0xfef5138519684aba, |
|||
0xf46518c2ef5b8cd1, 0x7eb258665fc25d69, |
|||
0x98bf2f79d5993802, 0xef2f773ffbd97a61, |
|||
0xbeeefb584aff8603, 0xaafb550ffacfd8fa, |
|||
0xeeaaba2e5dbf6784, 0x95ba2a53f983cf38, |
|||
0x952ab45cfa97a0b2, 0xdd945a747bf26183, |
|||
0xba756174393d88df, 0x94f971119aeef9e4, |
|||
0xe912b9d1478ceb17, 0x7a37cd5601aab85d, |
|||
0x91abb422ccb812ee, 0xac62e055c10ab33a, |
|||
0xb616a12b7fe617aa, 0x577b986b314d6009, |
|||
0xe39c49765fdf9d94, 0xed5a7e85fda0b80b, |
|||
0x8e41ade9fbebc27d, 0x14588f13be847307, |
|||
0xb1d219647ae6b31c, 0x596eb2d8ae258fc8, |
|||
0xde469fbd99a05fe3, 0x6fca5f8ed9aef3bb, |
|||
0x8aec23d680043bee, 0x25de7bb9480d5854, |
|||
0xada72ccc20054ae9, 0xaf561aa79a10ae6a, |
|||
0xd910f7ff28069da4, 0x1b2ba1518094da04, |
|||
0x87aa9aff79042286, 0x90fb44d2f05d0842, |
|||
0xa99541bf57452b28, 0x353a1607ac744a53, |
|||
0xd3fa922f2d1675f2, 0x42889b8997915ce8, |
|||
0x847c9b5d7c2e09b7, 0x69956135febada11, |
|||
0xa59bc234db398c25, 0x43fab9837e699095, |
|||
0xcf02b2c21207ef2e, 0x94f967e45e03f4bb, |
|||
0x8161afb94b44f57d, 0x1d1be0eebac278f5, |
|||
0xa1ba1ba79e1632dc, 0x6462d92a69731732, |
|||
0xca28a291859bbf93, 0x7d7b8f7503cfdcfe, |
|||
0xfcb2cb35e702af78, 0x5cda735244c3d43e, |
|||
0x9defbf01b061adab, 0x3a0888136afa64a7, |
|||
0xc56baec21c7a1916, 0x88aaa1845b8fdd0, |
|||
0xf6c69a72a3989f5b, 0x8aad549e57273d45, |
|||
0x9a3c2087a63f6399, 0x36ac54e2f678864b, |
|||
0xc0cb28a98fcf3c7f, 0x84576a1bb416a7dd, |
|||
0xf0fdf2d3f3c30b9f, 0x656d44a2a11c51d5, |
|||
0x969eb7c47859e743, 0x9f644ae5a4b1b325, |
|||
0xbc4665b596706114, 0x873d5d9f0dde1fee, |
|||
0xeb57ff22fc0c7959, 0xa90cb506d155a7ea, |
|||
0x9316ff75dd87cbd8, 0x9a7f12442d588f2, |
|||
0xb7dcbf5354e9bece, 0xc11ed6d538aeb2f, |
|||
0xe5d3ef282a242e81, 0x8f1668c8a86da5fa, |
|||
0x8fa475791a569d10, 0xf96e017d694487bc, |
|||
0xb38d92d760ec4455, 0x37c981dcc395a9ac, |
|||
0xe070f78d3927556a, 0x85bbe253f47b1417, |
|||
0x8c469ab843b89562, 0x93956d7478ccec8e, |
|||
0xaf58416654a6babb, 0x387ac8d1970027b2, |
|||
0xdb2e51bfe9d0696a, 0x6997b05fcc0319e, |
|||
0x88fcf317f22241e2, 0x441fece3bdf81f03, |
|||
0xab3c2fddeeaad25a, 0xd527e81cad7626c3, |
|||
0xd60b3bd56a5586f1, 0x8a71e223d8d3b074, |
|||
0x85c7056562757456, 0xf6872d5667844e49, |
|||
0xa738c6bebb12d16c, 0xb428f8ac016561db, |
|||
0xd106f86e69d785c7, 0xe13336d701beba52, |
|||
0x82a45b450226b39c, 0xecc0024661173473, |
|||
0xa34d721642b06084, 0x27f002d7f95d0190, |
|||
0xcc20ce9bd35c78a5, 0x31ec038df7b441f4, |
|||
0xff290242c83396ce, 0x7e67047175a15271, |
|||
0x9f79a169bd203e41, 0xf0062c6e984d386, |
|||
0xc75809c42c684dd1, 0x52c07b78a3e60868, |
|||
0xf92e0c3537826145, 0xa7709a56ccdf8a82, |
|||
0x9bbcc7a142b17ccb, 0x88a66076400bb691, |
|||
0xc2abf989935ddbfe, 0x6acff893d00ea435, |
|||
0xf356f7ebf83552fe, 0x583f6b8c4124d43, |
|||
0x98165af37b2153de, 0xc3727a337a8b704a, |
|||
0xbe1bf1b059e9a8d6, 0x744f18c0592e4c5c, |
|||
0xeda2ee1c7064130c, 0x1162def06f79df73, |
|||
0x9485d4d1c63e8be7, 0x8addcb5645ac2ba8, |
|||
0xb9a74a0637ce2ee1, 0x6d953e2bd7173692, |
|||
0xe8111c87c5c1ba99, 0xc8fa8db6ccdd0437, |
|||
0x910ab1d4db9914a0, 0x1d9c9892400a22a2, |
|||
0xb54d5e4a127f59c8, 0x2503beb6d00cab4b, |
|||
0xe2a0b5dc971f303a, 0x2e44ae64840fd61d, |
|||
0x8da471a9de737e24, 0x5ceaecfed289e5d2, |
|||
0xb10d8e1456105dad, 0x7425a83e872c5f47, |
|||
0xdd50f1996b947518, 0xd12f124e28f77719, |
|||
0x8a5296ffe33cc92f, 0x82bd6b70d99aaa6f, |
|||
0xace73cbfdc0bfb7b, 0x636cc64d1001550b, |
|||
0xd8210befd30efa5a, 0x3c47f7e05401aa4e, |
|||
0x8714a775e3e95c78, 0x65acfaec34810a71, |
|||
0xa8d9d1535ce3b396, 0x7f1839a741a14d0d, |
|||
0xd31045a8341ca07c, 0x1ede48111209a050, |
|||
0x83ea2b892091e44d, 0x934aed0aab460432, |
|||
0xa4e4b66b68b65d60, 0xf81da84d5617853f, |
|||
0xce1de40642e3f4b9, 0x36251260ab9d668e, |
|||
0x80d2ae83e9ce78f3, 0xc1d72b7c6b426019, |
|||
0xa1075a24e4421730, 0xb24cf65b8612f81f, |
|||
0xc94930ae1d529cfc, 0xdee033f26797b627, |
|||
0xfb9b7cd9a4a7443c, 0x169840ef017da3b1, |
|||
0x9d412e0806e88aa5, 0x8e1f289560ee864e, |
|||
0xc491798a08a2ad4e, 0xf1a6f2bab92a27e2, |
|||
0xf5b5d7ec8acb58a2, 0xae10af696774b1db, |
|||
0x9991a6f3d6bf1765, 0xacca6da1e0a8ef29, |
|||
0xbff610b0cc6edd3f, 0x17fd090a58d32af3, |
|||
0xeff394dcff8a948e, 0xddfc4b4cef07f5b0, |
|||
0x95f83d0a1fb69cd9, 0x4abdaf101564f98e, |
|||
0xbb764c4ca7a4440f, 0x9d6d1ad41abe37f1, |
|||
0xea53df5fd18d5513, 0x84c86189216dc5ed, |
|||
0x92746b9be2f8552c, 0x32fd3cf5b4e49bb4, |
|||
0xb7118682dbb66a77, 0x3fbc8c33221dc2a1, |
|||
0xe4d5e82392a40515, 0xfabaf3feaa5334a, |
|||
0x8f05b1163ba6832d, 0x29cb4d87f2a7400e, |
|||
0xb2c71d5bca9023f8, 0x743e20e9ef511012, |
|||
0xdf78e4b2bd342cf6, 0x914da9246b255416, |
|||
0x8bab8eefb6409c1a, 0x1ad089b6c2f7548e, |
|||
0xae9672aba3d0c320, 0xa184ac2473b529b1, |
|||
0xda3c0f568cc4f3e8, 0xc9e5d72d90a2741e, |
|||
0x8865899617fb1871, 0x7e2fa67c7a658892, |
|||
0xaa7eebfb9df9de8d, 0xddbb901b98feeab7, |
|||
0xd51ea6fa85785631, 0x552a74227f3ea565, |
|||
0x8533285c936b35de, 0xd53a88958f87275f, |
|||
0xa67ff273b8460356, 0x8a892abaf368f137, |
|||
0xd01fef10a657842c, 0x2d2b7569b0432d85, |
|||
0x8213f56a67f6b29b, 0x9c3b29620e29fc73, |
|||
0xa298f2c501f45f42, 0x8349f3ba91b47b8f, |
|||
0xcb3f2f7642717713, 0x241c70a936219a73, |
|||
0xfe0efb53d30dd4d7, 0xed238cd383aa0110, |
|||
0x9ec95d1463e8a506, 0xf4363804324a40aa, |
|||
0xc67bb4597ce2ce48, 0xb143c6053edcd0d5, |
|||
0xf81aa16fdc1b81da, 0xdd94b7868e94050a, |
|||
0x9b10a4e5e9913128, 0xca7cf2b4191c8326, |
|||
0xc1d4ce1f63f57d72, 0xfd1c2f611f63a3f0, |
|||
0xf24a01a73cf2dccf, 0xbc633b39673c8cec, |
|||
0x976e41088617ca01, 0xd5be0503e085d813, |
|||
0xbd49d14aa79dbc82, 0x4b2d8644d8a74e18, |
|||
0xec9c459d51852ba2, 0xddf8e7d60ed1219e, |
|||
0x93e1ab8252f33b45, 0xcabb90e5c942b503, |
|||
0xb8da1662e7b00a17, 0x3d6a751f3b936243, |
|||
0xe7109bfba19c0c9d, 0xcc512670a783ad4, |
|||
0x906a617d450187e2, 0x27fb2b80668b24c5, |
|||
0xb484f9dc9641e9da, 0xb1f9f660802dedf6, |
|||
0xe1a63853bbd26451, 0x5e7873f8a0396973, |
|||
0x8d07e33455637eb2, 0xdb0b487b6423e1e8, |
|||
0xb049dc016abc5e5f, 0x91ce1a9a3d2cda62, |
|||
0xdc5c5301c56b75f7, 0x7641a140cc7810fb, |
|||
0x89b9b3e11b6329ba, 0xa9e904c87fcb0a9d, |
|||
0xac2820d9623bf429, 0x546345fa9fbdcd44, |
|||
0xd732290fbacaf133, 0xa97c177947ad4095, |
|||
0x867f59a9d4bed6c0, 0x49ed8eabcccc485d, |
|||
0xa81f301449ee8c70, 0x5c68f256bfff5a74, |
|||
0xd226fc195c6a2f8c, 0x73832eec6fff3111, |
|||
0x83585d8fd9c25db7, 0xc831fd53c5ff7eab, |
|||
0xa42e74f3d032f525, 0xba3e7ca8b77f5e55, |
|||
0xcd3a1230c43fb26f, 0x28ce1bd2e55f35eb, |
|||
0x80444b5e7aa7cf85, 0x7980d163cf5b81b3, |
|||
0xa0555e361951c366, 0xd7e105bcc332621f, |
|||
0xc86ab5c39fa63440, 0x8dd9472bf3fefaa7, |
|||
0xfa856334878fc150, 0xb14f98f6f0feb951, |
|||
0x9c935e00d4b9d8d2, 0x6ed1bf9a569f33d3, |
|||
0xc3b8358109e84f07, 0xa862f80ec4700c8, |
|||
0xf4a642e14c6262c8, 0xcd27bb612758c0fa, |
|||
0x98e7e9cccfbd7dbd, 0x8038d51cb897789c, |
|||
0xbf21e44003acdd2c, 0xe0470a63e6bd56c3, |
|||
0xeeea5d5004981478, 0x1858ccfce06cac74, |
|||
0x95527a5202df0ccb, 0xf37801e0c43ebc8, |
|||
0xbaa718e68396cffd, 0xd30560258f54e6ba, |
|||
0xe950df20247c83fd, 0x47c6b82ef32a2069, |
|||
0x91d28b7416cdd27e, 0x4cdc331d57fa5441, |
|||
0xb6472e511c81471d, 0xe0133fe4adf8e952, |
|||
0xe3d8f9e563a198e5, 0x58180fddd97723a6, |
|||
0x8e679c2f5e44ff8f, 0x570f09eaa7ea7648, |
|||
}; |
|||
}; |
|||
|
|||
#if FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE |
|||
|
|||
template <class unused> |
|||
constexpr uint64_t |
|||
powers_template<unused>::power_of_five_128[number_of_entries]; |
|||
|
|||
#endif |
|||
|
|||
using powers = powers_template<>; |
|||
|
|||
} // namespace fast_float |
|||
|
|||
#endif |
|||
1240
thirdparty/fast_float/include/fast_float/float_common.h
File diff suppressed because it is too large
View File
File diff suppressed because it is too large
View File
@ -0,0 +1,401 @@ |
|||
#ifndef FASTFLOAT_PARSE_NUMBER_H |
|||
#define FASTFLOAT_PARSE_NUMBER_H |
|||
|
|||
#include "ascii_number.h" |
|||
#include "decimal_to_binary.h" |
|||
#include "digit_comparison.h" |
|||
#include "float_common.h" |
|||
|
|||
#include <cmath> |
|||
#include <cstring> |
|||
#include <limits> |
|||
#include <system_error> |
|||
|
|||
namespace fast_float { |
|||
|
|||
namespace detail { |
|||
/** |
|||
* Special case +inf, -inf, nan, infinity, -infinity. |
|||
* The case comparisons could be made much faster given that we know that the |
|||
* strings a null-free and fixed. |
|||
**/ |
|||
template <typename T, typename UC> |
|||
from_chars_result_t<UC> |
|||
FASTFLOAT_CONSTEXPR14 parse_infnan(UC const *first, UC const *last, |
|||
T &value, chars_format fmt) noexcept { |
|||
from_chars_result_t<UC> answer{}; |
|||
answer.ptr = first; |
|||
answer.ec = std::errc(); // be optimistic |
|||
// assume first < last, so dereference without checks; |
|||
bool const minusSign = (*first == UC('-')); |
|||
// C++17 20.19.3.(7.1) explicitly forbids '+' sign here |
|||
if ((*first == UC('-')) || |
|||
(uint64_t(fmt & chars_format::allow_leading_plus) && |
|||
(*first == UC('+')))) { |
|||
++first; |
|||
} |
|||
if (last - first >= 3) { |
|||
if (fastfloat_strncasecmp(first, str_const_nan<UC>(), 3)) { |
|||
answer.ptr = (first += 3); |
|||
value = minusSign ? -std::numeric_limits<T>::quiet_NaN() |
|||
: std::numeric_limits<T>::quiet_NaN(); |
|||
// Check for possible nan(n-char-seq-opt), C++17 20.19.3.7, |
|||
// C11 7.20.1.3.3. At least MSVC produces nan(ind) and nan(snan). |
|||
if (first != last && *first == UC('(')) { |
|||
for (UC const *ptr = first + 1; ptr != last; ++ptr) { |
|||
if (*ptr == UC(')')) { |
|||
answer.ptr = ptr + 1; // valid nan(n-char-seq-opt) |
|||
break; |
|||
} else if (!((UC('a') <= *ptr && *ptr <= UC('z')) || |
|||
(UC('A') <= *ptr && *ptr <= UC('Z')) || |
|||
(UC('0') <= *ptr && *ptr <= UC('9')) || *ptr == UC('_'))) |
|||
break; // forbidden char, not nan(n-char-seq-opt) |
|||
} |
|||
} |
|||
return answer; |
|||
} |
|||
if (fastfloat_strncasecmp(first, str_const_inf<UC>(), 3)) { |
|||
if ((last - first >= 8) && |
|||
fastfloat_strncasecmp(first + 3, str_const_inf<UC>() + 3, 5)) { |
|||
answer.ptr = first + 8; |
|||
} else { |
|||
answer.ptr = first + 3; |
|||
} |
|||
value = minusSign ? -std::numeric_limits<T>::infinity() |
|||
: std::numeric_limits<T>::infinity(); |
|||
return answer; |
|||
} |
|||
} |
|||
answer.ec = std::errc::invalid_argument; |
|||
return answer; |
|||
} |
|||
|
|||
/** |
|||
* Returns true if the floating-pointing rounding mode is to 'nearest'. |
|||
* It is the default on most system. This function is meant to be inexpensive. |
|||
* Credit : @mwalcott3 |
|||
*/ |
|||
fastfloat_really_inline bool rounds_to_nearest() noexcept { |
|||
// https://lemire.me/blog/2020/06/26/gcc-not-nearest/ |
|||
#if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0) |
|||
return false; |
|||
#endif |
|||
// See |
|||
// A fast function to check your floating-point rounding mode |
|||
// https://lemire.me/blog/2022/11/16/a-fast-function-to-check-your-floating-point-rounding-mode/ |
|||
// |
|||
// This function is meant to be equivalent to : |
|||
// prior: #include <cfenv> |
|||
// return fegetround() == FE_TONEAREST; |
|||
// However, it is expected to be much faster than the fegetround() |
|||
// function call. |
|||
// |
|||
// The volatile keyword prevents the compiler from computing the function |
|||
// at compile-time. |
|||
// There might be other ways to prevent compile-time optimizations (e.g., |
|||
// asm). The value does not need to be std::numeric_limits<float>::min(), any |
|||
// small value so that 1 + x should round to 1 would do (after accounting for |
|||
// excess precision, as in 387 instructions). |
|||
static float volatile fmin = std::numeric_limits<float>::min(); |
|||
float fmini = fmin; // we copy it so that it gets loaded at most once. |
|||
// |
|||
// Explanation: |
|||
// Only when fegetround() == FE_TONEAREST do we have that |
|||
// fmin + 1.0f == 1.0f - fmin. |
|||
// |
|||
// FE_UPWARD: |
|||
// fmin + 1.0f > 1 |
|||
// 1.0f - fmin == 1 |
|||
// |
|||
// FE_DOWNWARD or FE_TOWARDZERO: |
|||
// fmin + 1.0f == 1 |
|||
// 1.0f - fmin < 1 |
|||
// |
|||
// Note: This may fail to be accurate if fast-math has been |
|||
// enabled, as rounding conventions may not apply. |
|||
#ifdef FASTFLOAT_VISUAL_STUDIO |
|||
#pragma warning(push) |
|||
// todo: is there a VS warning? |
|||
// see |
|||
// https://stackoverflow.com/questions/46079446/is-there-a-warning-for-floating-point-equality-checking-in-visual-studio-2013 |
|||
#elif defined(__clang__) |
|||
#pragma clang diagnostic push |
|||
#pragma clang diagnostic ignored "-Wfloat-equal" |
|||
#elif defined(__GNUC__) |
|||
#pragma GCC diagnostic push |
|||
#pragma GCC diagnostic ignored "-Wfloat-equal" |
|||
#endif |
|||
return (fmini + 1.0f == 1.0f - fmini); |
|||
#ifdef FASTFLOAT_VISUAL_STUDIO |
|||
#pragma warning(pop) |
|||
#elif defined(__clang__) |
|||
#pragma clang diagnostic pop |
|||
#elif defined(__GNUC__) |
|||
#pragma GCC diagnostic pop |
|||
#endif |
|||
} |
|||
|
|||
} // namespace detail |
|||
|
|||
template <typename T> struct from_chars_caller { |
|||
template <typename UC> |
|||
FASTFLOAT_CONSTEXPR20 static from_chars_result_t<UC> |
|||
call(UC const *first, UC const *last, T &value, |
|||
parse_options_t<UC> options) noexcept { |
|||
return from_chars_advanced(first, last, value, options); |
|||
} |
|||
}; |
|||
|
|||
#ifdef __STDCPP_FLOAT32_T__ |
|||
template <> struct from_chars_caller<std::float32_t> { |
|||
template <typename UC> |
|||
FASTFLOAT_CONSTEXPR20 static from_chars_result_t<UC> |
|||
call(UC const *first, UC const *last, std::float32_t &value, |
|||
parse_options_t<UC> options) noexcept { |
|||
// if std::float32_t is defined, and we are in C++23 mode; macro set for |
|||
// float32; set value to float due to equivalence between float and |
|||
// float32_t |
|||
float val; |
|||
auto ret = from_chars_advanced(first, last, val, options); |
|||
value = val; |
|||
return ret; |
|||
} |
|||
}; |
|||
#endif |
|||
|
|||
#ifdef __STDCPP_FLOAT64_T__ |
|||
template <> struct from_chars_caller<std::float64_t> { |
|||
template <typename UC> |
|||
FASTFLOAT_CONSTEXPR20 static from_chars_result_t<UC> |
|||
call(UC const *first, UC const *last, std::float64_t &value, |
|||
parse_options_t<UC> options) noexcept { |
|||
// if std::float64_t is defined, and we are in C++23 mode; macro set for |
|||
// float64; set value as double due to equivalence between double and |
|||
// float64_t |
|||
double val; |
|||
auto ret = from_chars_advanced(first, last, val, options); |
|||
value = val; |
|||
return ret; |
|||
} |
|||
}; |
|||
#endif |
|||
|
|||
template <typename T, typename UC, typename> |
|||
FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC> |
|||
from_chars(UC const *first, UC const *last, T &value, |
|||
chars_format fmt /*= chars_format::general*/) noexcept { |
|||
return from_chars_caller<T>::call(first, last, value, |
|||
parse_options_t<UC>(fmt)); |
|||
} |
|||
|
|||
/** |
|||
* This function overload takes parsed_number_string_t structure that is created |
|||
* and populated either by from_chars_advanced function taking chars range and |
|||
* parsing options or other parsing custom function implemented by user. |
|||
*/ |
|||
template <typename T, typename UC> |
|||
FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC> |
|||
from_chars_advanced(parsed_number_string_t<UC> &pns, T &value) noexcept { |
|||
|
|||
static_assert(is_supported_float_type<T>::value, |
|||
"only some floating-point types are supported"); |
|||
static_assert(is_supported_char_type<UC>::value, |
|||
"only char, wchar_t, char16_t and char32_t are supported"); |
|||
|
|||
from_chars_result_t<UC> answer; |
|||
|
|||
answer.ec = std::errc(); // be optimistic |
|||
answer.ptr = pns.lastmatch; |
|||
// The implementation of the Clinger's fast path is convoluted because |
|||
// we want round-to-nearest in all cases, irrespective of the rounding mode |
|||
// selected on the thread. |
|||
// We proceed optimistically, assuming that detail::rounds_to_nearest() |
|||
// returns true. |
|||
if (binary_format<T>::min_exponent_fast_path() <= pns.exponent && |
|||
pns.exponent <= binary_format<T>::max_exponent_fast_path() && |
|||
!pns.too_many_digits) { |
|||
// Unfortunately, the conventional Clinger's fast path is only possible |
|||
// when the system rounds to the nearest float. |
|||
// |
|||
// We expect the next branch to almost always be selected. |
|||
// We could check it first (before the previous branch), but |
|||
// there might be performance advantages at having the check |
|||
// be last. |
|||
if (!cpp20_and_in_constexpr() && detail::rounds_to_nearest()) { |
|||
// We have that fegetround() == FE_TONEAREST. |
|||
// Next is Clinger's fast path. |
|||
if (pns.mantissa <= binary_format<T>::max_mantissa_fast_path()) { |
|||
value = T(pns.mantissa); |
|||
if (pns.exponent < 0) { |
|||
value = value / binary_format<T>::exact_power_of_ten(-pns.exponent); |
|||
} else { |
|||
value = value * binary_format<T>::exact_power_of_ten(pns.exponent); |
|||
} |
|||
if (pns.negative) { |
|||
value = -value; |
|||
} |
|||
return answer; |
|||
} |
|||
} else { |
|||
// We do not have that fegetround() == FE_TONEAREST. |
|||
// Next is a modified Clinger's fast path, inspired by Jakub Jelínek's |
|||
// proposal |
|||
if (pns.exponent >= 0 && |
|||
pns.mantissa <= |
|||
binary_format<T>::max_mantissa_fast_path(pns.exponent)) { |
|||
#if defined(__clang__) || defined(FASTFLOAT_32BIT) |
|||
// Clang may map 0 to -0.0 when fegetround() == FE_DOWNWARD |
|||
if (pns.mantissa == 0) { |
|||
value = pns.negative ? T(-0.) : T(0.); |
|||
return answer; |
|||
} |
|||
#endif |
|||
value = T(pns.mantissa) * |
|||
binary_format<T>::exact_power_of_ten(pns.exponent); |
|||
if (pns.negative) { |
|||
value = -value; |
|||
} |
|||
return answer; |
|||
} |
|||
} |
|||
} |
|||
adjusted_mantissa am = |
|||
compute_float<binary_format<T>>(pns.exponent, pns.mantissa); |
|||
if (pns.too_many_digits && am.power2 >= 0) { |
|||
if (am != compute_float<binary_format<T>>(pns.exponent, pns.mantissa + 1)) { |
|||
am = compute_error<binary_format<T>>(pns.exponent, pns.mantissa); |
|||
} |
|||
} |
|||
// If we called compute_float<binary_format<T>>(pns.exponent, pns.mantissa) |
|||
// and we have an invalid power (am.power2 < 0), then we need to go the long |
|||
// way around again. This is very uncommon. |
|||
if (am.power2 < 0) { |
|||
am = digit_comp<T>(pns, am); |
|||
} |
|||
to_float(pns.negative, am, value); |
|||
// Test for over/underflow. |
|||
if ((pns.mantissa != 0 && am.mantissa == 0 && am.power2 == 0) || |
|||
am.power2 == binary_format<T>::infinite_power()) { |
|||
answer.ec = std::errc::result_out_of_range; |
|||
} |
|||
return answer; |
|||
} |
|||
|
|||
template <typename T, typename UC> |
|||
FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC> |
|||
from_chars_float_advanced(UC const *first, UC const *last, T &value, |
|||
parse_options_t<UC> options) noexcept { |
|||
|
|||
static_assert(is_supported_float_type<T>::value, |
|||
"only some floating-point types are supported"); |
|||
static_assert(is_supported_char_type<UC>::value, |
|||
"only char, wchar_t, char16_t and char32_t are supported"); |
|||
|
|||
chars_format const fmt = detail::adjust_for_feature_macros(options.format); |
|||
|
|||
from_chars_result_t<UC> answer; |
|||
if (uint64_t(fmt & chars_format::skip_white_space)) { |
|||
while ((first != last) && fast_float::is_space(*first)) { |
|||
first++; |
|||
} |
|||
} |
|||
if (first == last) { |
|||
answer.ec = std::errc::invalid_argument; |
|||
answer.ptr = first; |
|||
return answer; |
|||
} |
|||
parsed_number_string_t<UC> pns = |
|||
uint64_t(fmt & detail::basic_json_fmt) |
|||
? parse_number_string<true, UC>(first, last, options) |
|||
: parse_number_string<false, UC>(first, last, options); |
|||
if (!pns.valid) { |
|||
if (uint64_t(fmt & chars_format::no_infnan)) { |
|||
answer.ec = std::errc::invalid_argument; |
|||
answer.ptr = first; |
|||
return answer; |
|||
} else { |
|||
return detail::parse_infnan(first, last, value, fmt); |
|||
} |
|||
} |
|||
|
|||
// call overload that takes parsed_number_string_t directly. |
|||
return from_chars_advanced(pns, value); |
|||
} |
|||
|
|||
template <typename T, typename UC, typename> |
|||
FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC> |
|||
from_chars(UC const *first, UC const *last, T &value, int base) noexcept { |
|||
|
|||
static_assert(is_supported_integer_type<T>::value, |
|||
"only integer types are supported"); |
|||
static_assert(is_supported_char_type<UC>::value, |
|||
"only char, wchar_t, char16_t and char32_t are supported"); |
|||
|
|||
parse_options_t<UC> options; |
|||
options.base = base; |
|||
return from_chars_advanced(first, last, value, options); |
|||
} |
|||
|
|||
template <typename T, typename UC> |
|||
FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC> |
|||
from_chars_int_advanced(UC const *first, UC const *last, T &value, |
|||
parse_options_t<UC> options) noexcept { |
|||
|
|||
static_assert(is_supported_integer_type<T>::value, |
|||
"only integer types are supported"); |
|||
static_assert(is_supported_char_type<UC>::value, |
|||
"only char, wchar_t, char16_t and char32_t are supported"); |
|||
|
|||
chars_format const fmt = detail::adjust_for_feature_macros(options.format); |
|||
int const base = options.base; |
|||
|
|||
from_chars_result_t<UC> answer; |
|||
if (uint64_t(fmt & chars_format::skip_white_space)) { |
|||
while ((first != last) && fast_float::is_space(*first)) { |
|||
first++; |
|||
} |
|||
} |
|||
if (first == last || base < 2 || base > 36) { |
|||
answer.ec = std::errc::invalid_argument; |
|||
answer.ptr = first; |
|||
return answer; |
|||
} |
|||
|
|||
return parse_int_string(first, last, value, options); |
|||
} |
|||
|
|||
template <size_t TypeIx> struct from_chars_advanced_caller { |
|||
static_assert(TypeIx > 0, "unsupported type"); |
|||
}; |
|||
|
|||
template <> struct from_chars_advanced_caller<1> { |
|||
template <typename T, typename UC> |
|||
FASTFLOAT_CONSTEXPR20 static from_chars_result_t<UC> |
|||
call(UC const *first, UC const *last, T &value, |
|||
parse_options_t<UC> options) noexcept { |
|||
return from_chars_float_advanced(first, last, value, options); |
|||
} |
|||
}; |
|||
|
|||
template <> struct from_chars_advanced_caller<2> { |
|||
template <typename T, typename UC> |
|||
FASTFLOAT_CONSTEXPR20 static from_chars_result_t<UC> |
|||
call(UC const *first, UC const *last, T &value, |
|||
parse_options_t<UC> options) noexcept { |
|||
return from_chars_int_advanced(first, last, value, options); |
|||
} |
|||
}; |
|||
|
|||
template <typename T, typename UC> |
|||
FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC> |
|||
from_chars_advanced(UC const *first, UC const *last, T &value, |
|||
parse_options_t<UC> options) noexcept { |
|||
return from_chars_advanced_caller< |
|||
size_t(is_supported_float_type<T>::value) + |
|||
2 * size_t(is_supported_integer_type<T>::value)>::call(first, last, value, |
|||
options); |
|||
} |
|||
|
|||
} // namespace fast_float |
|||
|
|||
#endif |
|||
Write
Preview
Loading…
Cancel
Save
Reference in new issue