 Pcbnew: major swig fix.
* Switched hashtables.h over to std::undordered_map from boost version.
* Added new macros DECL_VEC_FOR_SWIG() and DECL_MAP_FOR_SWIG() in macros.h.
These along with future DECL_HASH_FOR_SWIG() unify the declaration to swig
and C++ so that the resultant type name is common in both languages, and
the types AGREE.
* Fixed swigging of NETINFO_ITEM and NETINFO_LIST via magic.
* Newly exposed (python wrapped) are: D_PADS, TRACKS (was TRACK_PTRS),
NETNAME_MAP, NETCODE_MAP, wxString (without constructor purposely, read
comment in wx.i), MARKERS, ZONE_CONTAINERS, NETCLASSPTR, KICAD_T types.
* std::vector<SOMETHING*> tends to end up named SOMETHINGS in C++ and python.
Having the name consistent between like types is helpful, and between
languages. std::map<> ends up as SOMETHING_MAP.
* NETINFO_LIST::m_netNames and NETINFO_LIST::m_netCodes are now std::map
instead of hashtables, because swig does not yet support std::unordered_map.
* You can now get to any netclass or net info. NETNAMES_MAP and NETCODES_MAP
are traversable basically the same as a python dictionary using a python
string (not wsString) as the key! The wxString typemap converts python
string to wxString before the lookup happens. Iteration also works.
9 years ago  Pcbnew: major swig fix.
* Switched hashtables.h over to std::undordered_map from boost version.
* Added new macros DECL_VEC_FOR_SWIG() and DECL_MAP_FOR_SWIG() in macros.h.
These along with future DECL_HASH_FOR_SWIG() unify the declaration to swig
and C++ so that the resultant type name is common in both languages, and
the types AGREE.
* Fixed swigging of NETINFO_ITEM and NETINFO_LIST via magic.
* Newly exposed (python wrapped) are: D_PADS, TRACKS (was TRACK_PTRS),
NETNAME_MAP, NETCODE_MAP, wxString (without constructor purposely, read
comment in wx.i), MARKERS, ZONE_CONTAINERS, NETCLASSPTR, KICAD_T types.
* std::vector<SOMETHING*> tends to end up named SOMETHINGS in C++ and python.
Having the name consistent between like types is helpful, and between
languages. std::map<> ends up as SOMETHING_MAP.
* NETINFO_LIST::m_netNames and NETINFO_LIST::m_netCodes are now std::map
instead of hashtables, because swig does not yet support std::unordered_map.
* You can now get to any netclass or net info. NETNAMES_MAP and NETCODES_MAP
are traversable basically the same as a python dictionary using a python
string (not wsString) as the key! The wxString typemap converts python
string to wxString before the lookup happens. Iteration also works.
9 years ago  Pcbnew: major swig fix.
* Switched hashtables.h over to std::undordered_map from boost version.
* Added new macros DECL_VEC_FOR_SWIG() and DECL_MAP_FOR_SWIG() in macros.h.
These along with future DECL_HASH_FOR_SWIG() unify the declaration to swig
and C++ so that the resultant type name is common in both languages, and
the types AGREE.
* Fixed swigging of NETINFO_ITEM and NETINFO_LIST via magic.
* Newly exposed (python wrapped) are: D_PADS, TRACKS (was TRACK_PTRS),
NETNAME_MAP, NETCODE_MAP, wxString (without constructor purposely, read
comment in wx.i), MARKERS, ZONE_CONTAINERS, NETCLASSPTR, KICAD_T types.
* std::vector<SOMETHING*> tends to end up named SOMETHINGS in C++ and python.
Having the name consistent between like types is helpful, and between
languages. std::map<> ends up as SOMETHING_MAP.
* NETINFO_LIST::m_netNames and NETINFO_LIST::m_netCodes are now std::map
instead of hashtables, because swig does not yet support std::unordered_map.
* You can now get to any netclass or net info. NETNAMES_MAP and NETCODES_MAP
are traversable basically the same as a python dictionary using a python
string (not wsString) as the key! The wxString typemap converts python
string to wxString before the lookup happens. Iteration also works.
9 years ago  Pcbnew: major swig fix.
* Switched hashtables.h over to std::undordered_map from boost version.
* Added new macros DECL_VEC_FOR_SWIG() and DECL_MAP_FOR_SWIG() in macros.h.
These along with future DECL_HASH_FOR_SWIG() unify the declaration to swig
and C++ so that the resultant type name is common in both languages, and
the types AGREE.
* Fixed swigging of NETINFO_ITEM and NETINFO_LIST via magic.
* Newly exposed (python wrapped) are: D_PADS, TRACKS (was TRACK_PTRS),
NETNAME_MAP, NETCODE_MAP, wxString (without constructor purposely, read
comment in wx.i), MARKERS, ZONE_CONTAINERS, NETCLASSPTR, KICAD_T types.
* std::vector<SOMETHING*> tends to end up named SOMETHINGS in C++ and python.
Having the name consistent between like types is helpful, and between
languages. std::map<> ends up as SOMETHING_MAP.
* NETINFO_LIST::m_netNames and NETINFO_LIST::m_netCodes are now std::map
instead of hashtables, because swig does not yet support std::unordered_map.
* You can now get to any netclass or net info. NETNAMES_MAP and NETCODES_MAP
are traversable basically the same as a python dictionary using a python
string (not wsString) as the key! The wxString typemap converts python
string to wxString before the lookup happens. Iteration also works.
9 years ago  Pcbnew: major swig fix.
* Switched hashtables.h over to std::undordered_map from boost version.
* Added new macros DECL_VEC_FOR_SWIG() and DECL_MAP_FOR_SWIG() in macros.h.
These along with future DECL_HASH_FOR_SWIG() unify the declaration to swig
and C++ so that the resultant type name is common in both languages, and
the types AGREE.
* Fixed swigging of NETINFO_ITEM and NETINFO_LIST via magic.
* Newly exposed (python wrapped) are: D_PADS, TRACKS (was TRACK_PTRS),
NETNAME_MAP, NETCODE_MAP, wxString (without constructor purposely, read
comment in wx.i), MARKERS, ZONE_CONTAINERS, NETCLASSPTR, KICAD_T types.
* std::vector<SOMETHING*> tends to end up named SOMETHINGS in C++ and python.
Having the name consistent between like types is helpful, and between
languages. std::map<> ends up as SOMETHING_MAP.
* NETINFO_LIST::m_netNames and NETINFO_LIST::m_netCodes are now std::map
instead of hashtables, because swig does not yet support std::unordered_map.
* You can now get to any netclass or net info. NETNAMES_MAP and NETCODES_MAP
are traversable basically the same as a python dictionary using a python
string (not wsString) as the key! The wxString typemap converts python
string to wxString before the lookup happens. Iteration also works.
9 years ago |
|
/*
* This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2007-2014 Jean-Pierre Charras, jp.charras at wanadoo.fr * Copyright (C) 1992-2015 KiCad Developers, see CHANGELOG.TXT for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */
/**
* @file macros.h * @brief This file contains miscellaneous commonly used macros and functions. */
#ifndef MACROS_H
#define MACROS_H
#include <wx/wx.h>
#include <vector>
#include <map>
#include <set>
#include <memory> // std::shared_ptr
/**
* Macro TO_UTF8 * converts a wxString to a UTF8 encoded C string for all wxWidgets build modes. * wxstring is a wxString, not a wxT() or _(). The scope of the return value * is very limited and volatile, but can be used with printf() style functions well. * NOTE: Trying to convert it to a function is tricky because of the * type of the parameter! */#define TO_UTF8( wxstring ) ( (const char*) (wxstring).utf8_str() )
/**
* function FROM_UTF8 * converts a UTF8 encoded C string to a wxString for all wxWidgets build modes. */static inline wxString FROM_UTF8( const char* cstring ){ wxString line = wxString::FromUTF8( cstring );
if( line.IsEmpty() ) // happens when cstring is not a valid UTF8 sequence
line = wxConvCurrent->cMB2WC( cstring ); // try to use locale conversion
return line;}
/// Utility to build comma separated lists in messages
inline void AccumulateDescription( wxString &aDesc, const wxString &aItem ){ if( !aDesc.IsEmpty() ) aDesc << wxT(", ");
aDesc << aItem;}
/**
* Function GetChars * returns a wxChar* to the actual wxChar* data within a wxString, and is * helpful for passing strings to wxString::Printf() and wxString::Format(). * It can also be passed a UTF8 parameter which will be converted to wxString * by the compiler. * <p> * Example: wxString::Format( wxT( "%s" ), GetChars( UTF( "some text" ) ) ); * <p> * When wxWidgets is properly built for KiCad, a const wxChar* points to either: * <ul> * <li> 32 bit unicode characters on linux/OSX or </li> * <li> 16 bit UTF16 characters on windows. </li> * </ul> * Note that you cannot pass 8 bit strings to wxString::Format() or Printf() so this * is a useful conversion function to wxChar*, which is needed by wxString::Format(). * * @return const wxChar* - a pointer to the UNICODE or UTF16 (on windows) text. */static inline const wxChar* GetChars( const wxString& s ){ return (const wxChar*) s.c_str();}
/// # of elements in an array
#define DIM( x ) unsigned( sizeof(x) / sizeof( (x)[0] ) ) // not size_t
/**
* Function MIRROR * Mirror @a aPoint in @a aMirrorRef. */template<typename T>T Mirror( T aPoint, T aMirrorRef ){ return -( aPoint - aMirrorRef ) + aMirrorRef;}template<typename T>void MIRROR( T& aPoint, const T& aMirrorRef ){ aPoint = Mirror( aPoint, aMirrorRef );}
/**
* Function Clamp * limits @a value within the range @a lower <= @a value <= @a upper. It will work * on temporary expressions, since they are evaluated only once, and it should work * on most if not all numeric types, string types, or any type for which "operator < ()" * is present. The arguments are accepted in this order so you can remember the * expression as a memory aid: * <p> * result is: lower <= value <= upper */template <typename T> inline const T& Clamp( const T& lower, const T& value, const T& upper ){ wxASSERT( lower <= upper ); if( value < lower ) return lower; else if( upper < value ) return upper; return value;}
#ifdef SWIG
/// Declare a std::vector and also the swig %template in unison
#define DECL_VEC_FOR_SWIG(TypeName, MemberType) namespace std { %template(TypeName) vector<MemberType>; } typedef std::vector<MemberType> TypeName;
#define DECL_MAP_FOR_SWIG(TypeName, KeyType, ValueType) namespace std { %template(TypeName) map<KeyType, ValueType>; } typedef std::map<KeyType, ValueType> TypeName;
#define DECL_SPTR_FOR_SWIG(TypeName, MemberType) %shared_ptr(MemberType) namespace std { %template(TypeName) shared_ptr<MemberType>; } typedef std::shared_ptr<MemberType> TypeName;
#define DECL_SET_FOR_SWIG(TypeName, MemberType) namespace std { %template(TypeName) set<MemberType>; } typedef std::set<MemberType> TypeName;
#else
/// Declare a std::vector but no swig %template
#define DECL_VEC_FOR_SWIG(TypeName, MemberType) typedef std::vector<MemberType> TypeName;
#define DECL_MAP_FOR_SWIG(TypeName, KeyType, ValueType) typedef std::map<KeyType, ValueType> TypeName;
#define DECL_SPTR_FOR_SWIG(TypeName, MemberType) typedef std::shared_ptr<MemberType> TypeName;
#define DECL_SET_FOR_SWIG(TypeName, MemberType) typedef std::set<MemberType> TypeName;
#endif
#endif // MACROS_H
|