 Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago  Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago  Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago  Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago  Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago  Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago  Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago  Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago  Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago  Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago  Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago  Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago  Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago  Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago  Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago  Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago  Introduction of Graphics Abstraction Layer based rendering for pcbnew.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
13 years ago |
|
/*
* This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2012 Torsten Hueter, torstenhtr <at> gmx.de * Copyright (C) 2013-2015 CERN * Copyright (C) 2012-2024 KiCad Developers, see AUTHORS.txt for contributors. * * @author Tomasz Wlostowski <tomasz.wlostowski@cern.ch> * @author Maciej Suminski <maciej.suminski@cern.ch> * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */
#include <pgm_base.h>
#include <core/profile.h>
#include <view/view.h>
#include <view/wx_view_controls.h>
#include <view/zoom_controller.h>
#include <gal/graphics_abstraction_layer.h>
#include <tool/tool_dispatcher.h>
#include <trace_helpers.h>
#include <settings/common_settings.h>
#include <math/util.h> // for KiROUND
#include <geometry/geometry_utils.h>
#include <widgets/ui_common.h>
#include <class_draw_panel_gal.h>
#include <eda_draw_frame.h>
#include <kiway.h>
#include <kiplatform/ui.h>
#include <wx/log.h>
#ifdef __WXMSW__
#define USE_MOUSE_CAPTURE
#endif
using namespace KIGFX;
const wxEventType WX_VIEW_CONTROLS::EVT_REFRESH_MOUSE = wxNewEventType();
static std::unique_ptr<ZOOM_CONTROLLER> GetZoomControllerForPlatform( bool aAcceleration ){#ifdef __WXMAC__
// On Apple pointer devices, wheel events occur frequently and with
// smaller rotation values. For those devices, let's handle zoom
// based on the rotation amount rather than the time difference.
return std::make_unique<CONSTANT_ZOOM_CONTROLLER>( CONSTANT_ZOOM_CONTROLLER::MAC_SCALE );#elif __WXGTK3__
// GTK3 is similar, but the scale constant is smaller
return std::make_unique<CONSTANT_ZOOM_CONTROLLER>( CONSTANT_ZOOM_CONTROLLER::GTK3_SCALE );#else
if( aAcceleration ) return std::make_unique<ACCELERATING_ZOOM_CONTROLLER>(); else return std::make_unique<CONSTANT_ZOOM_CONTROLLER>( CONSTANT_ZOOM_CONTROLLER::MSW_SCALE );#endif
}
WX_VIEW_CONTROLS::WX_VIEW_CONTROLS( VIEW* aView, EDA_DRAW_PANEL_GAL* aParentPanel ) : VIEW_CONTROLS( aView ), m_state( IDLE ), m_parentPanel( aParentPanel ), m_scrollScale( 1.0, 1.0 ),#ifdef __WXGTK3__
m_lastTimestamp( 0 ),#endif
m_cursorPos( 0, 0 ), m_updateCursor( true ), m_infinitePanWorks( false ), m_gestureLastZoomFactor( 1.0 ){ LoadSettings();
m_MotionEventCounter = std::make_unique<PROF_COUNTER>( "Mouse motion events" );
m_parentPanel->Connect( wxEVT_MOTION, wxMouseEventHandler( WX_VIEW_CONTROLS::onMotion ), nullptr, this ); m_parentPanel->Connect( wxEVT_MAGNIFY, wxMouseEventHandler( WX_VIEW_CONTROLS::onMagnify ), nullptr, this ); m_parentPanel->Connect( wxEVT_MOUSEWHEEL, wxMouseEventHandler( WX_VIEW_CONTROLS::onWheel ), nullptr, this ); m_parentPanel->Connect( wxEVT_MIDDLE_UP, wxMouseEventHandler( WX_VIEW_CONTROLS::onButton ), nullptr, this ); m_parentPanel->Connect( wxEVT_MIDDLE_DOWN, wxMouseEventHandler( WX_VIEW_CONTROLS::onButton ), nullptr, this ); m_parentPanel->Connect( wxEVT_LEFT_UP, wxMouseEventHandler( WX_VIEW_CONTROLS::onButton ), nullptr, this ); m_parentPanel->Connect( wxEVT_LEFT_DOWN, wxMouseEventHandler( WX_VIEW_CONTROLS::onButton ), nullptr, this ); m_parentPanel->Connect( wxEVT_RIGHT_UP, wxMouseEventHandler( WX_VIEW_CONTROLS::onButton ), nullptr, this ); m_parentPanel->Connect( wxEVT_RIGHT_DOWN, wxMouseEventHandler( WX_VIEW_CONTROLS::onButton ), nullptr, this );#if defined __WXMSW__
m_parentPanel->Connect( wxEVT_ENTER_WINDOW, wxMouseEventHandler( WX_VIEW_CONTROLS::onEnter ), nullptr, this );#endif
m_parentPanel->Connect( wxEVT_LEAVE_WINDOW, wxMouseEventHandler( WX_VIEW_CONTROLS::onLeave ), nullptr, this ); m_parentPanel->Connect( wxEVT_SCROLLWIN_THUMBTRACK, wxScrollWinEventHandler( WX_VIEW_CONTROLS::onScroll ), nullptr, this ); m_parentPanel->Connect( wxEVT_SCROLLWIN_PAGEUP, wxScrollWinEventHandler( WX_VIEW_CONTROLS::onScroll ), nullptr, this ); m_parentPanel->Connect( wxEVT_SCROLLWIN_PAGEDOWN, wxScrollWinEventHandler( WX_VIEW_CONTROLS::onScroll ), nullptr, this );
m_parentPanel->Connect( wxEVT_SCROLLWIN_BOTTOM, wxScrollWinEventHandler( WX_VIEW_CONTROLS::onScroll ), nullptr, this ); m_parentPanel->Connect( wxEVT_SCROLLWIN_TOP, wxScrollWinEventHandler( WX_VIEW_CONTROLS::onScroll ), nullptr, this ); m_parentPanel->Connect( wxEVT_SCROLLWIN_LINEUP, wxScrollWinEventHandler( WX_VIEW_CONTROLS::onScroll ), nullptr, this ); m_parentPanel->Connect( wxEVT_SCROLLWIN_LINEDOWN, wxScrollWinEventHandler( WX_VIEW_CONTROLS::onScroll ), nullptr, this );#if defined USE_MOUSE_CAPTURE
m_parentPanel->Connect( wxEVT_MOUSE_CAPTURE_LOST, wxMouseEventHandler( WX_VIEW_CONTROLS::onCaptureLost ), nullptr, this );#endif
#ifdef __WXMSW__
if( m_parentPanel->EnableTouchEvents( wxTOUCH_ZOOM_GESTURE | wxTOUCH_PAN_GESTURES ) ) { m_parentPanel->Connect( wxEVT_GESTURE_ZOOM, wxZoomGestureEventHandler( WX_VIEW_CONTROLS::onZoomGesture ), nullptr, this );
m_parentPanel->Connect( wxEVT_GESTURE_PAN, wxPanGestureEventHandler( WX_VIEW_CONTROLS::onPanGesture ), nullptr, this ); }#endif
m_cursorWarped = false;
m_panTimer.SetOwner( this ); this->Connect( wxEVT_TIMER, wxTimerEventHandler( WX_VIEW_CONTROLS::onTimer ), nullptr, this );
m_settings.m_lastKeyboardCursorPositionValid = false; m_settings.m_lastKeyboardCursorPosition = { 0.0, 0.0 }; m_settings.m_lastKeyboardCursorCommand = 0;}
WX_VIEW_CONTROLS::~WX_VIEW_CONTROLS(){#if defined USE_MOUSE_CAPTURE
if( m_parentPanel->HasCapture() ) m_parentPanel->ReleaseMouse();#endif
}
void WX_VIEW_CONTROLS::LoadSettings(){ COMMON_SETTINGS* cfg = Pgm().GetCommonSettings();
m_settings.m_warpCursor = cfg->m_Input.center_on_zoom; m_settings.m_focusFollowSchPcb = cfg->m_Input.focus_follow_sch_pcb; m_settings.m_autoPanSettingEnabled = cfg->m_Input.auto_pan; m_settings.m_autoPanAcceleration = cfg->m_Input.auto_pan_acceleration; m_settings.m_horizontalPan = cfg->m_Input.horizontal_pan; m_settings.m_zoomAcceleration = cfg->m_Input.zoom_acceleration; m_settings.m_zoomSpeed = cfg->m_Input.zoom_speed; m_settings.m_zoomSpeedAuto = cfg->m_Input.zoom_speed_auto; m_settings.m_scrollModifierZoom = cfg->m_Input.scroll_modifier_zoom; m_settings.m_scrollModifierPanH = cfg->m_Input.scroll_modifier_pan_h; m_settings.m_scrollModifierPanV = cfg->m_Input.scroll_modifier_pan_v; m_settings.m_dragLeft = cfg->m_Input.drag_left; m_settings.m_dragMiddle = cfg->m_Input.drag_middle; m_settings.m_dragRight = cfg->m_Input.drag_right; m_settings.m_scrollReverseZoom = cfg->m_Input.reverse_scroll_zoom; m_settings.m_scrollReversePanH = cfg->m_Input.reverse_scroll_pan_h;
m_zoomController.reset();
if( cfg->m_Input.zoom_speed_auto ) { m_zoomController = GetZoomControllerForPlatform( cfg->m_Input.zoom_acceleration ); } else { if( cfg->m_Input.zoom_acceleration ) { m_zoomController = std::make_unique<ACCELERATING_ZOOM_CONTROLLER>( cfg->m_Input.zoom_speed ); } else { double scale = CONSTANT_ZOOM_CONTROLLER::MANUAL_SCALE_FACTOR * cfg->m_Input.zoom_speed;
m_zoomController = std::make_unique<CONSTANT_ZOOM_CONTROLLER>( scale ); } }}
void WX_VIEW_CONTROLS::onMotion( wxMouseEvent& aEvent ){ ( *m_MotionEventCounter )++;
// Because Weston sends a motion event to previous location after warping the pointer
wxPoint mouseRel = m_parentPanel->ScreenToClient( KIPLATFORM::UI::GetMousePosition() );
bool isAutoPanning = false; int x = mouseRel.x; int y = mouseRel.y; VECTOR2D mousePos( x, y );
// Automatic focus switching between SCH and PCB windows on canvas mouse motion
if( m_settings.m_focusFollowSchPcb ) { if( EDA_DRAW_FRAME* frame = m_parentPanel->GetParentEDAFrame() ) { KIWAY_PLAYER* otherFrame = nullptr;
if( frame->IsType( FRAME_PCB_EDITOR ) ) { otherFrame = frame->Kiway().Player( FRAME_SCH, false ); } else if( frame->IsType( FRAME_SCH ) ) { otherFrame = frame->Kiway().Player( FRAME_PCB_EDITOR, false ); }
if( otherFrame && KIPLATFORM::UI::IsWindowActive( otherFrame ) && !KIPLATFORM::UI::IsWindowActive( frame ) ) { frame->Raise(); } } }
if( m_state != DRAG_PANNING && m_state != DRAG_ZOOMING ) handleCursorCapture( x, y );
if( m_settings.m_autoPanEnabled && m_settings.m_autoPanSettingEnabled ) isAutoPanning = handleAutoPanning( aEvent );
if( !isAutoPanning && aEvent.Dragging() ) { if( m_state == DRAG_PANNING ) { static bool justWarped = false; int warpX = 0; int warpY = 0; wxSize parentSize = m_parentPanel->GetClientSize();
if( x < 0 ) { warpX = parentSize.x; } else if(x >= parentSize.x ) { warpX = -parentSize.x; }
if( y < 0 ) { warpY = parentSize.y; } else if( y >= parentSize.y ) { warpY = -parentSize.y; }
if( !justWarped ) { VECTOR2D d = m_dragStartPoint - mousePos; m_dragStartPoint = mousePos; VECTOR2D delta = m_view->ToWorld( d, false ); m_view->SetCenter( m_view->GetCenter() + delta ); aEvent.StopPropagation(); }
if( warpX || warpY ) { if( !justWarped ) { if( m_infinitePanWorks && KIPLATFORM::UI::WarpPointer( m_parentPanel, x + warpX, y + warpY ) ) { m_dragStartPoint += VECTOR2D( warpX, warpY ); justWarped = true; } } else justWarped = false; } else justWarped = false; } else if( m_state == DRAG_ZOOMING ) { static bool justWarped = false; int warpY = 0; wxSize parentSize = m_parentPanel->GetClientSize();
if( y < 0 ) { warpY = parentSize.y; } else if( y >= parentSize.y ) { warpY = -parentSize.y; }
if( !justWarped ) { VECTOR2D d = m_dragStartPoint - mousePos; m_dragStartPoint = mousePos;
double scale = exp( d.y * m_settings.m_zoomSpeed * 0.001 );
wxLogTrace( traceZoomScroll, wxString::Format( "dy: %f scale: %f", d.y, scale ) );
m_view->SetScale( m_view->GetScale() * scale, m_view->ToWorld( m_zoomStartPoint ) ); aEvent.StopPropagation(); }
if( warpY ) { if( !justWarped ) { KIPLATFORM::UI::WarpPointer( m_parentPanel, x, y + warpY ); m_dragStartPoint += VECTOR2D( 0, warpY ); justWarped = true; } else justWarped = false; } else justWarped = false; } }
if( m_updateCursor ) // do not update the cursor position if it was explicitly set
m_cursorPos = GetClampedCoords( m_view->ToWorld( mousePos ) ); else m_updateCursor = true;
aEvent.Skip();}
void WX_VIEW_CONTROLS::onWheel( wxMouseEvent& aEvent ){#ifdef __WXGTK3__
if( aEvent.GetTimestamp() == m_lastTimestamp ) { aEvent.Skip( false ); return; }
m_lastTimestamp = aEvent.GetTimestamp();#endif
const double wheelPanSpeed = 0.001; const int axis = aEvent.GetWheelAxis();
if( axis == wxMOUSE_WHEEL_HORIZONTAL && !m_settings.m_horizontalPan ) return;
// Pick the modifier, if any. Shift beats control beats alt, we don't support more than one.
int nMods = 0; int modifiers = 0; if( aEvent.ShiftDown() ) { nMods += 1; modifiers = WXK_SHIFT; } if( aEvent.ControlDown() ) { nMods += 1; modifiers = modifiers == 0 ? WXK_CONTROL : modifiers; } if( aEvent.AltDown() ) { nMods += 1; modifiers = modifiers == 0 ? WXK_ALT : modifiers; }
// Zero or one modifier is view control
if( nMods <= 1 ) { // Restrict zoom handling to the vertical axis, otherwise horizontal
// scrolling events (e.g. touchpads and some mice) end up interpreted
// as vertical scroll events and confuse the user.
if( modifiers == m_settings.m_scrollModifierZoom && axis == wxMOUSE_WHEEL_VERTICAL ) { const int rotation = aEvent.GetWheelRotation() * ( m_settings.m_scrollReverseZoom ? -1 : 1 ); const double zoomScale = m_zoomController->GetScaleForRotation( rotation );
if( IsCursorWarpingEnabled() ) { CenterOnCursor(); m_view->SetScale( m_view->GetScale() * zoomScale ); } else { const VECTOR2D anchor = m_view->ToWorld( VECTOR2D( aEvent.GetX(), aEvent.GetY() ) ); m_view->SetScale( m_view->GetScale() * zoomScale, anchor ); }
// Refresh the zoom level and mouse position on message panel
// (mouse position has not changed, only the zoom level has changed):
refreshMouse( true ); } else { // Scrolling
VECTOR2D scrollVec = m_view->ToWorld( m_view->GetScreenPixelSize(), false ) * ( (double) aEvent.GetWheelRotation() * wheelPanSpeed ); double scrollX = 0.0; double scrollY = 0.0; bool hReverse = false;
if( axis != wxMOUSE_WHEEL_HORIZONTAL ) hReverse = m_settings.m_scrollReversePanH;
if( axis == wxMOUSE_WHEEL_HORIZONTAL || modifiers == m_settings.m_scrollModifierPanH ) { if( hReverse ) scrollX = scrollVec.x; else scrollX = ( axis == wxMOUSE_WHEEL_HORIZONTAL ) ? scrollVec.x : -scrollVec.x; } else { scrollY = -scrollVec.y; }
VECTOR2D delta( scrollX, scrollY );
m_view->SetCenter( m_view->GetCenter() + delta ); refreshMouse( true ); }
// Do not skip this event, otherwise wxWidgets will fire
// 3 wxEVT_SCROLLWIN_LINEUP or wxEVT_SCROLLWIN_LINEDOWN (normal wxWidgets behavior)
// and we do not want that.
} else { // When we have muliple mods, forward it for tool handling
aEvent.Skip(); }}
void WX_VIEW_CONTROLS::onMagnify( wxMouseEvent& aEvent ){ // Scale based on the magnification from our underlying magnification event.
VECTOR2D anchor = m_view->ToWorld( VECTOR2D( aEvent.GetX(), aEvent.GetY() ) ); m_view->SetScale( m_view->GetScale() * ( aEvent.GetMagnification() + 1.0f ), anchor );
aEvent.Skip();}
void WX_VIEW_CONTROLS::setState( STATE aNewState ){ m_state = aNewState;}
void WX_VIEW_CONTROLS::onButton( wxMouseEvent& aEvent ){ switch( m_state ) { case IDLE: case AUTO_PANNING: if( ( aEvent.MiddleDown() && m_settings.m_dragMiddle == MOUSE_DRAG_ACTION::PAN ) || ( aEvent.RightDown() && m_settings.m_dragRight == MOUSE_DRAG_ACTION::PAN ) ) { m_dragStartPoint = VECTOR2D( aEvent.GetX(), aEvent.GetY() ); setState( DRAG_PANNING ); m_infinitePanWorks = KIPLATFORM::UI::InfiniteDragPrepareWindow( m_parentPanel );
#if defined USE_MOUSE_CAPTURE
if( !m_parentPanel->HasCapture() ) m_parentPanel->CaptureMouse();#endif
} else if( ( aEvent.MiddleDown() && m_settings.m_dragMiddle == MOUSE_DRAG_ACTION::ZOOM ) || ( aEvent.RightDown() && m_settings.m_dragRight == MOUSE_DRAG_ACTION::ZOOM ) ) { m_dragStartPoint = VECTOR2D( aEvent.GetX(), aEvent.GetY() ); m_zoomStartPoint = m_dragStartPoint; setState( DRAG_ZOOMING );
#if defined USE_MOUSE_CAPTURE
if( !m_parentPanel->HasCapture() ) m_parentPanel->CaptureMouse();#endif
}
if( aEvent.LeftUp() ) setState( IDLE ); // Stop autopanning when user release left mouse button
break;
case DRAG_ZOOMING: case DRAG_PANNING: if( aEvent.MiddleUp() || aEvent.LeftUp() || aEvent.RightUp() ) { setState( IDLE ); KIPLATFORM::UI::InfiniteDragReleaseWindow();
#if defined USE_MOUSE_CAPTURE
if( !m_settings.m_cursorCaptured && m_parentPanel->HasCapture() ) m_parentPanel->ReleaseMouse();#endif
}
break; }
aEvent.Skip();}
void WX_VIEW_CONTROLS::onEnter( wxMouseEvent& aEvent ){ // Avoid stealing focus from text controls
// This is particularly important for users using On-Screen-Keyboards
// They may move the mouse over the canvas to reach the keyboard
if( KIUI::IsInputControlFocused() ) { return; }
#if defined( _WIN32 ) || defined( __WXGTK__ )
// Win32 and some *nix WMs transmit mouse move and wheel events to all controls below the mouse regardless
// of focus. Forcing the focus here will cause the EDA FRAMES to immediately become the
// top level active window.
if( m_parentPanel->GetParent() != nullptr ) { // this assumes the parent panel's parent is the eda window
if( KIPLATFORM::UI::IsWindowActive( m_parentPanel->GetParent() ) ) { m_parentPanel->SetFocus(); } }#else
m_parentPanel->SetFocus();#endif
}
void WX_VIEW_CONTROLS::onLeave( wxMouseEvent& aEvent ){#if !defined USE_MOUSE_CAPTURE
onMotion( aEvent );#endif
}
void WX_VIEW_CONTROLS::onCaptureLost( wxMouseEvent& aEvent ){ // This method must be present to suppress the capture-lost assertion
// Set the flag to allow calling m_parentPanel->CaptureMouse()
// Note: One cannot call m_parentPanel->CaptureMouse() twice, this is not accepted
// by wxWidgets (MSW specific) so we need this guard
m_parentPanel->m_MouseCapturedLost = true;}
void WX_VIEW_CONTROLS::onTimer( wxTimerEvent& aEvent ){ switch( m_state ) { case AUTO_PANNING: { if( !m_settings.m_autoPanEnabled ) { setState( IDLE ); return; }
#ifdef __WXMSW__
// Hackfix: It's possible for the mouse to leave the canvas
// without triggering any leave events on windows
// Use a MSW only wx function
if( !m_parentPanel->IsMouseInWindow() ) { m_panTimer.Stop(); setState( IDLE ); return; } #endif
if( !m_parentPanel->HasFocus() && !m_parentPanel->StatusPopupHasFocus() ) { setState( IDLE ); return; }
double borderSize = std::min( m_settings.m_autoPanMargin * m_view->GetScreenPixelSize().x, m_settings.m_autoPanMargin * m_view->GetScreenPixelSize().y );
// When the mouse cursor is outside the area with no pan,
// m_panDirection is the dist to this area limit ( in pixels )
// It will be used also as pan value (the pan speed depends on this dist).
VECTOR2D dir( m_panDirection );
// When the mouse cursor is outside the area with no pan, the pan value
// is accelerated depending on the dist between the area and the cursor
float accel = 0.5f + ( m_settings.m_autoPanAcceleration / 5.0f );
// For a small mouse cursor dist to area, just use the distance.
// But for a dist > borderSize / 2, use an accelerated pan value
if( dir.EuclideanNorm() >= borderSize ) // far from area limits
dir = dir.Resize( borderSize * accel ); else if( dir.EuclideanNorm() > borderSize / 2 ) // Near from area limits
dir = dir.Resize( borderSize );
dir = m_view->ToWorld( dir, false ); m_view->SetCenter( m_view->GetCenter() + dir );
refreshMouse( true );
m_panTimer.Start(); } break;
case IDLE: // Just remove unnecessary warnings
case DRAG_PANNING: case DRAG_ZOOMING: break; }}
void WX_VIEW_CONTROLS::onZoomGesture( wxZoomGestureEvent& aEvent ){ if( aEvent.IsGestureStart() ) { m_gestureLastZoomFactor = 1.0; m_gestureLastPos = VECTOR2D( aEvent.GetPosition().x, aEvent.GetPosition().y ); }
VECTOR2D evtPos( aEvent.GetPosition().x, aEvent.GetPosition().y ); VECTOR2D deltaWorld = m_view->ToWorld( evtPos - m_gestureLastPos, false );
m_view->SetCenter( m_view->GetCenter() - deltaWorld );
m_view->SetScale( m_view->GetScale() * aEvent.GetZoomFactor() / m_gestureLastZoomFactor, m_view->ToWorld( evtPos ) );
m_gestureLastZoomFactor = aEvent.GetZoomFactor(); m_gestureLastPos = evtPos;
refreshMouse( true );}
void WX_VIEW_CONTROLS::onPanGesture( wxPanGestureEvent& aEvent ){ VECTOR2I screenDelta( aEvent.GetDelta().x, aEvent.GetDelta().y ); VECTOR2D deltaWorld = m_view->ToWorld( screenDelta, false );
m_view->SetCenter( m_view->GetCenter() - deltaWorld );
refreshMouse( true );}
void WX_VIEW_CONTROLS::onScroll( wxScrollWinEvent& aEvent ){ const double linePanDelta = 0.05; const double pagePanDelta = 0.5;
int type = aEvent.GetEventType(); int dir = aEvent.GetOrientation();
if( type == wxEVT_SCROLLWIN_THUMBTRACK ) { auto center = m_view->GetCenter(); const auto& boundary = m_view->GetBoundary();
// Flip scroll direction in flipped view
const double xstart = ( m_view->IsMirroredX() ? boundary.GetRight() : boundary.GetLeft() ); const double xdelta = ( m_view->IsMirroredX() ? -1 : 1 );
if( dir == wxHORIZONTAL ) center.x = xstart + xdelta * ( aEvent.GetPosition() / m_scrollScale.x ); else center.y = boundary.GetTop() + aEvent.GetPosition() / m_scrollScale.y;
m_view->SetCenter( center ); } else if( type == wxEVT_SCROLLWIN_THUMBRELEASE || type == wxEVT_SCROLLWIN_TOP || type == wxEVT_SCROLLWIN_BOTTOM ) { // Do nothing on thumb release, we don't care about it.
// We don't have a concept of top or bottom in our viewport, so ignore those events.
} else { double dist = 0;
if( type == wxEVT_SCROLLWIN_PAGEUP ) { dist = pagePanDelta; } else if( type == wxEVT_SCROLLWIN_PAGEDOWN ) { dist = -pagePanDelta; } else if( type == wxEVT_SCROLLWIN_LINEUP ) { dist = linePanDelta; } else if( type == wxEVT_SCROLLWIN_LINEDOWN ) { dist = -linePanDelta; } else { wxCHECK_MSG( false, /* void */, wxT( "Unhandled event type" ) ); }
VECTOR2D scroll = m_view->ToWorld( m_view->GetScreenPixelSize(), false ) * dist;
double scrollX = 0.0; double scrollY = 0.0;
if ( dir == wxHORIZONTAL ) scrollX = -scroll.x; else scrollY = -scroll.y;
VECTOR2D delta( scrollX, scrollY );
m_view->SetCenter( m_view->GetCenter() + delta ); }
m_parentPanel->Refresh();}
void WX_VIEW_CONTROLS::CaptureCursor( bool aEnabled ){#if defined USE_MOUSE_CAPTURE
// Note: for some reason, m_parentPanel->HasCapture() can be false even if CaptureMouse()
// was called (i.e. mouse was captured, so when need to test m_MouseCapturedLost to be
// sure a wxEVT_MOUSE_CAPTURE_LOST event was fired before. Otherwise wxMSW complains
// The IsModalDialogFocused is checked because it's possible to start a capture
// due to event ordering while a modal dialog was just opened, the mouse capture steels focus
// from the modal and causes odd behavior
if( aEnabled && !m_parentPanel->HasCapture() && m_parentPanel->m_MouseCapturedLost && !KIUI::IsModalDialogFocused() ) { m_parentPanel->CaptureMouse();
// Clear the flag to allow calling m_parentPanel->CaptureMouse()
// Calling it without calling ReleaseMouse() is not accepted by wxWidgets (MSW specific)
m_parentPanel->m_MouseCapturedLost = false; } else if( !aEnabled && m_parentPanel->HasCapture() && m_state != DRAG_PANNING && m_state != DRAG_ZOOMING ) { m_parentPanel->ReleaseMouse();
// Mouse is released, calling CaptureMouse() is allowed now:
m_parentPanel->m_MouseCapturedLost = true; }#endif
VIEW_CONTROLS::CaptureCursor( aEnabled );}
void WX_VIEW_CONTROLS::CancelDrag(){ if( m_state == DRAG_PANNING || m_state == DRAG_ZOOMING ) { setState( IDLE );#if defined USE_MOUSE_CAPTURE
if( !m_settings.m_cursorCaptured && m_parentPanel->HasCapture() ) m_parentPanel->ReleaseMouse();#endif
}}
VECTOR2D WX_VIEW_CONTROLS::GetMousePosition( bool aWorldCoordinates ) const{ wxPoint msp = getMouseScreenPosition(); VECTOR2D screenPos( msp.x, msp.y );
return aWorldCoordinates ? GetClampedCoords( m_view->ToWorld( screenPos ) ) : screenPos;}
VECTOR2D WX_VIEW_CONTROLS::GetRawCursorPosition( bool aEnableSnapping ) const{ GAL* gal = m_view->GetGAL();
if( aEnableSnapping && gal->GetGridSnapping() ) { return gal->GetGridPoint( m_cursorPos ); } else { return m_cursorPos; }}
VECTOR2D WX_VIEW_CONTROLS::GetCursorPosition( bool aEnableSnapping ) const{ if( m_settings.m_forceCursorPosition ) { return m_settings.m_forcedPosition; } else { return GetClampedCoords( GetRawCursorPosition( aEnableSnapping ) ); }}
void WX_VIEW_CONTROLS::SetCursorPosition( const VECTOR2D& aPosition, bool aWarpView, bool aTriggeredByArrows, long aArrowCommand ){ m_updateCursor = false;
VECTOR2D clampedPosition = GetClampedCoords( aPosition );
if( aTriggeredByArrows ) { m_settings.m_lastKeyboardCursorPositionValid = true; m_settings.m_lastKeyboardCursorPosition = clampedPosition; m_settings.m_lastKeyboardCursorCommand = aArrowCommand; m_cursorWarped = false; } else { m_settings.m_lastKeyboardCursorPositionValid = false; m_settings.m_lastKeyboardCursorPosition = { 0.0, 0.0 }; m_settings.m_lastKeyboardCursorCommand = 0; m_cursorWarped = true; }
WarpMouseCursor( clampedPosition, true, aWarpView ); m_cursorPos = clampedPosition;}
void WX_VIEW_CONTROLS::SetCrossHairCursorPosition( const VECTOR2D& aPosition, bool aWarpView = true ){ m_updateCursor = false;
VECTOR2D clampedPosition = GetClampedCoords( aPosition );
const VECTOR2I& screenSize = m_view->GetGAL()->GetScreenPixelSize(); BOX2I screen( VECTOR2I( 0, 0 ), screenSize ); VECTOR2D screenPos = m_view->ToScreen( clampedPosition );
if( aWarpView && !screen.Contains( screenPos ) ) m_view->SetCenter( clampedPosition );
m_cursorPos = clampedPosition;}
void WX_VIEW_CONTROLS::WarpMouseCursor( const VECTOR2D& aPosition, bool aWorldCoordinates, bool aWarpView ){ if( aWorldCoordinates ) { const VECTOR2I& screenSize = m_view->GetGAL()->GetScreenPixelSize(); BOX2I screen( VECTOR2I( 0, 0 ), screenSize ); VECTOR2D clampedPosition = GetClampedCoords( aPosition ); VECTOR2D screenPos = m_view->ToScreen( clampedPosition );
if( !screen.Contains( screenPos ) ) { if( aWarpView ) { m_view->SetCenter( clampedPosition ); KIPLATFORM::UI::WarpPointer( m_parentPanel, screenSize.x / 2, screenSize.y / 2 ); } } else { KIPLATFORM::UI::WarpPointer( m_parentPanel, screenPos.x, screenPos.y ); } } else { KIPLATFORM::UI::WarpPointer( m_parentPanel, aPosition.x, aPosition.y ); }
// If we are not refreshing because of mouse movement, don't set the modifiers
// because we are refreshing for keyboard movement, which uses the same modifiers for other actions
refreshMouse( m_updateCursor );}
void WX_VIEW_CONTROLS::CenterOnCursor(){ const VECTOR2I& screenSize = m_view->GetGAL()->GetScreenPixelSize(); VECTOR2D screenCenter( screenSize / 2 );
if( GetMousePosition( false ) != screenCenter ) { VECTOR2D newCenter = GetCursorPosition();
if( KIPLATFORM::UI::WarpPointer( m_parentPanel, screenCenter.x, screenCenter.y ) ) { m_view->SetCenter( newCenter ); m_dragStartPoint = screenCenter; } }}
void WX_VIEW_CONTROLS::PinCursorInsideNonAutoscrollArea( bool aWarpMouseCursor ){ int border = std::min( m_settings.m_autoPanMargin * m_view->GetScreenPixelSize().x, m_settings.m_autoPanMargin * m_view->GetScreenPixelSize().y ); border += 2;
VECTOR2D topLeft( border, border ); VECTOR2D botRight( m_view->GetScreenPixelSize().x - border, m_view->GetScreenPixelSize().y - border );
topLeft = m_view->ToWorld( topLeft ); botRight = m_view->ToWorld( botRight );
VECTOR2D pos = GetMousePosition( true );
if( pos.x < topLeft.x ) pos.x = topLeft.x; else if( pos.x > botRight.x ) pos.x = botRight.x;
if( pos.y < topLeft.y ) pos.y = topLeft.y; else if( pos.y > botRight.y ) pos.y = botRight.y;
SetCursorPosition( pos, false, false, 0 );
if( aWarpMouseCursor ) WarpMouseCursor( pos, true );}
bool WX_VIEW_CONTROLS::handleAutoPanning( const wxMouseEvent& aEvent ){ VECTOR2I p( aEvent.GetX(), aEvent.GetY() ); VECTOR2I pKey( m_view->ToScreen(m_settings.m_lastKeyboardCursorPosition ) );
if( m_cursorWarped || ( m_settings.m_lastKeyboardCursorPositionValid && p == pKey ) ) { // last cursor move event came from keyboard cursor control. If auto-panning is enabled
// and the next position is inside the autopan zone, check if it really came from a mouse
// event, otherwise disable autopan temporarily. Also temporarily disable autopan if the
// cursor is in the autopan zone because the application warped the cursor.
m_cursorWarped = false; return true; }
m_cursorWarped = false;
// Compute areas where autopanning is active
int borderStart = std::min( m_settings.m_autoPanMargin * m_view->GetScreenPixelSize().x, m_settings.m_autoPanMargin * m_view->GetScreenPixelSize().y ); borderStart = std::max( borderStart, 2 ); int borderEndX = m_view->GetScreenPixelSize().x - borderStart; int borderEndY = m_view->GetScreenPixelSize().y - borderStart;
if( p.x < borderStart ) m_panDirection.x = -( borderStart - p.x ); else if( p.x > borderEndX ) m_panDirection.x = ( p.x - borderEndX ); else m_panDirection.x = 0;
if( p.y < borderStart ) m_panDirection.y = -( borderStart - p.y ); else if( p.y > borderEndY ) m_panDirection.y = ( p.y - borderEndY ); else m_panDirection.y = 0;
bool borderHit = ( m_panDirection.x != 0 || m_panDirection.y != 0 );
switch( m_state ) { case AUTO_PANNING: if( !borderHit ) { m_panTimer.Stop(); setState( IDLE );
return false; }
return true;
case IDLE: if( borderHit ) { setState( AUTO_PANNING ); m_panTimer.Start( (int) ( 250.0 / 60.0 ), true );
return true; }
return false;
case DRAG_PANNING: case DRAG_ZOOMING: return false; }
wxCHECK_MSG( false, false, wxT( "This line should never be reached" ) );
return false;}
void WX_VIEW_CONTROLS::handleCursorCapture( int x, int y ){ if( m_settings.m_cursorCaptured ) { bool warp = false; wxSize parentSize = m_parentPanel->GetClientSize();
if( x < 0 ) { x = 0; warp = true; } else if( x >= parentSize.x ) { x = parentSize.x - 1; warp = true; }
if( y < 0 ) { y = 0; warp = true; } else if( y >= parentSize.y ) { y = parentSize.y - 1; warp = true; }
if( warp ) KIPLATFORM::UI::WarpPointer( m_parentPanel, x, y ); }}
void WX_VIEW_CONTROLS::refreshMouse( bool aSetModifiers ){ // Notify tools that the cursor position has changed in the world coordinates
wxMouseEvent moveEvent( EVT_REFRESH_MOUSE ); wxPoint msp = getMouseScreenPosition(); moveEvent.SetX( msp.x ); moveEvent.SetY( msp.y );
if( aSetModifiers ) { // Set the modifiers state
moveEvent.SetControlDown( wxGetKeyState( WXK_CONTROL ) ); moveEvent.SetShiftDown( wxGetKeyState( WXK_SHIFT ) ); moveEvent.SetAltDown( wxGetKeyState( WXK_ALT ) ); }
m_cursorPos = GetClampedCoords( m_view->ToWorld( VECTOR2D( msp.x, msp.y ) ) ); wxPostEvent( m_parentPanel, moveEvent );}
wxPoint WX_VIEW_CONTROLS::getMouseScreenPosition() const{ wxPoint msp = KIPLATFORM::UI::GetMousePosition(); m_parentPanel->ScreenToClient( &msp.x, &msp.y ); return msp;}
void WX_VIEW_CONTROLS::UpdateScrollbars(){ const BOX2D viewport = m_view->GetViewport(); const BOX2D& boundary = m_view->GetBoundary();
m_scrollScale.x = 2e3 / viewport.GetWidth(); // TODO it does not have to be updated so often
m_scrollScale.y = 2e3 / viewport.GetHeight(); VECTOR2I newScroll( ( viewport.Centre().x - boundary.GetLeft() ) * m_scrollScale.x, ( viewport.Centre().y - boundary.GetTop() ) * m_scrollScale.y );
// We add the width of the scroll bar thumb to the range because the scroll range is given by
// the full bar while the position is given by the left/top position of the thumb
VECTOR2I newRange( m_scrollScale.x * boundary.GetWidth() + m_parentPanel->GetScrollThumb( wxSB_HORIZONTAL ), m_scrollScale.y * boundary.GetHeight() + m_parentPanel->GetScrollThumb( wxSB_VERTICAL ) );
// Flip scroll direction in flipped view
if( m_view->IsMirroredX() ) newScroll.x = ( boundary.GetRight() - viewport.Centre().x ) * m_scrollScale.x;
// Adjust scrollbars only if it is needed. Otherwise there are cases when canvas is continuously
// refreshed (Windows)
if( m_scrollPos != newScroll || newRange.x != m_parentPanel->GetScrollRange( wxSB_HORIZONTAL ) || newRange.y != m_parentPanel->GetScrollRange( wxSB_VERTICAL ) ) { m_parentPanel->SetScrollbars( 1, 1, newRange.x, newRange.y, newScroll.x, newScroll.y, true ); m_scrollPos = newScroll;
#if !defined( __APPLE__ ) && !defined( WIN32 )
// Trigger a mouse refresh to get the canvas update in GTK (re-draws the scrollbars).
// Note that this causes an infinite loop on OSX and Windows (in certain cases) as it
// generates a paint event.
refreshMouse( false );#endif
}}
void WX_VIEW_CONTROLS::ForceCursorPosition( bool aEnabled, const VECTOR2D& aPosition ){ VECTOR2D clampedPosition = GetClampedCoords( aPosition );
m_settings.m_forceCursorPosition = aEnabled; m_settings.m_forcedPosition = clampedPosition;}
|