|
|
/*
* This program source code file is part of KICAD, a free EDA CAD application. * * Copyright (C) 2016-2017 CERN * @author Tomasz Wlostowski <tomasz.wlostowski@cern.ch> * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */
#ifndef __POLY_GRID_PARTITION_H
#define __POLY_GRID_PARTITION_H
#include <geometry/seg.h>
#include <geometry/shape_line_chain.h>
#include <geometry/shape_rect.h>
#include <vector>
#include <algorithm>
#include <unordered_map>
#include <set>
/**
* Class POLY_GRID_PARTITION * * Provides a fast test for point inside polygon by splitting the edges * of the polygon into a rectangular grid. */class POLY_GRID_PARTITION{private:enum HASH_FLAG { LEAD_H = 1, LEAD_V = 2, TRAIL_H = 4, TRAIL_V = 8 };
using EDGE_LIST = std::vector<int>;
template <class T> inline void hash_combine( std::size_t& seed, const T& v ) { std::hash<T> hasher; seed ^= hasher( v ) + 0x9e3779b9 + (seed << 6) + (seed >> 2); }
struct segsEqual { bool operator()( const SEG& a, const SEG& b ) const { return (a.A == b.A && a.B == b.B) || (a.A == b.B && a.B == b.A); } };
struct segHash { std::size_t operator()( const SEG& a ) const { return a.A.x + a.B.x + a.A.y + a.B.y; } };
const VECTOR2I grid2poly( const VECTOR2I& p ) const { int px = rescale( p.x, m_bbox.GetWidth(), m_gridSize ) + m_bbox.GetPosition().x; int py = rescale( p.y, m_bbox.GetHeight(), m_gridSize ) + m_bbox.GetPosition().y; // (int) floor( (double) p.y / m_gridSize * (double) m_bbox.GetHeight() + m_bbox.GetPosition().y );
return VECTOR2I( px, py ); }
void stupid_test() const { for(int i = 0; i < 16;i++) assert( poly2gridX(grid2polyX(i)) == i); }
int grid2polyX( int x ) const { return rescale( x, m_bbox.GetWidth(), m_gridSize ) + m_bbox.GetPosition().x; }
int grid2polyY( int y ) const { return rescale( y, m_bbox.GetHeight(), m_gridSize ) + m_bbox.GetPosition().y; }
const VECTOR2I poly2grid( const VECTOR2I& p ) const { int px = rescale( p.x - m_bbox.GetPosition().x, m_gridSize, m_bbox.GetWidth() ); int py = rescale( p.y - m_bbox.GetPosition().y, m_gridSize, m_bbox.GetHeight() );
if( px < 0 ) px = 0;
if( px >= m_gridSize ) px = m_gridSize - 1;
if( py < 0 ) py = 0;
if( py >= m_gridSize ) py = m_gridSize - 1;
return VECTOR2I( px, py ); }
int poly2gridX( int x ) const { int px = rescale( x - m_bbox.GetPosition().x, m_gridSize, m_bbox.GetWidth() );
if( px < 0 ) px = 0;
if( px >= m_gridSize ) px = m_gridSize - 1;
return px; }
int poly2gridY( int y ) const { int py = rescale( y - m_bbox.GetPosition().y, m_gridSize, m_bbox.GetHeight() );
if( py < 0 ) py = 0;
if( py >= m_gridSize ) py = m_gridSize - 1;
return py; }
void build( const SHAPE_LINE_CHAIN& aPolyOutline, int gridSize ) { m_outline = aPolyOutline;
//if (orientation(m_outline) < 0)
// m_outline = m_outline.Reverse();
m_bbox = m_outline.BBox(); m_gridSize = gridSize;
m_outline.SetClosed( true );
m_grid.reserve( gridSize * gridSize );
for( int y = 0; y < gridSize; y++ ) { for( int x = 0; x < gridSize; x++ ) { m_grid.push_back( EDGE_LIST() ); } }
VECTOR2I ref_v( 0, 1 ); VECTOR2I ref_h( 0, 1 );
m_flags.reserve( m_outline.SegmentCount() );
std::unordered_map<SEG, int, segHash, segsEqual> edgeSet;
for( int i = 0; i<m_outline.SegmentCount(); i++ ) { SEG edge = m_outline.CSegment( i );
if( edgeSet.find( edge ) == edgeSet.end() ) { edgeSet[edge] = 1; } else { edgeSet[edge]++; } }
for( int i = 0; i<m_outline.SegmentCount(); i++ ) { auto edge = m_outline.CSegment( i ); auto dir = edge.B - edge.A; int flags = 0;
if ( dir.y == 0 ) { flags = 0; } else if( edgeSet[edge] == 1 ) { if( dir.Dot( ref_h ) < 0 ) { flags |= LEAD_H; } else if( dir.Dot( ref_h ) > 0 ) { flags |= TRAIL_H; }
}
m_flags.push_back( flags );
if( edge.A.y == edge.B.y ) continue;
std::set<int> indices;
indices.insert( m_gridSize * poly2gridY( edge.A.y ) + poly2gridX( edge.A.x ) ); indices.insert( m_gridSize * poly2gridY( edge.B.y ) + poly2gridX( edge.B.x ) );
if( edge.A.x > edge.B.x ) std::swap( edge.A, edge.B );
dir = edge.B - edge.A;
if( dir.x != 0 ) { int gx0 = poly2gridX( edge.A.x ); int gx1 = poly2gridX( edge.B.x );
for( int x = gx0; x <= gx1; x++ ) { int px = grid2polyX( x ); int py = ( edge.A.y + rescale( dir.y, px - edge.A.x, dir.x ) ); int yy = poly2gridY( py );
indices.insert( m_gridSize * yy + x ); if( x > 0 ) indices.insert( m_gridSize * yy + x - 1 );
} }
if( edge.A.y > edge.B.y ) std::swap( edge.A, edge.B );
dir = edge.B - edge.A;
if( dir.y != 0 ) { int gy0 = poly2gridY( edge.A.y ); int gy1 = poly2gridY( edge.B.y );
for( int y = gy0; y <= gy1; y++ ) { int py = grid2polyY( y ); int px = ( edge.A.x + rescale( dir.x, py - edge.A.y, dir.y ) ); int xx = poly2gridX( px );
indices.insert( m_gridSize * y + xx ); if( y > 0 ) indices.insert( m_gridSize * (y - 1) + xx ); } }
for( auto idx : indices ) m_grid[idx].push_back( i ); }
}
bool inRange( int v1, int v2, int x ) const { if( v1 < v2 ) { return x >= v1 && x <= v2; }
return x >= v2 && x <= v1; }
struct SCAN_STATE { SCAN_STATE() { dist_prev = INT_MAX; dist_max = INT_MAX; nearest = -1; nearest_prev = -1; };
int dist_prev; int dist_max; int nearest_prev; int nearest; };
void scanCell( SCAN_STATE& state, const EDGE_LIST& cell, const VECTOR2I& aP, int cx, int cy ) const { int cx0 = grid2polyX(cx); int cx1 = grid2polyX(cx + 1);
for( auto index : cell ) { const SEG& edge = m_outline.CSegment( index );
if( m_flags[index] == 0 ) { if ( aP.y == edge.A.y && inRange( edge.A.x, edge.B.x, aP.x ) ) // we belong to the outline
{ state.nearest = index; state.dist_max = 0; return; } else { continue; } }
if( inRange( edge.A.y, edge.B.y, aP.y ) ) { int dist = 0; int x0; if( edge.A.y == aP.y ) { x0 = edge.A.x; } else if( edge.B.y == aP.y ) { x0 = edge.B.x; } else { x0 = edge.A.x + rescale( ( edge.B.x - edge.A.x ), (aP.y - edge.A.y), (edge.B.y - edge.A.y ) ); }
if( x0 < cx0 || x0 > cx1 ) { continue; }
dist = aP.x - x0;
if( dist == 0 ) { if( state.nearest_prev < 0 || state.nearest != index ) { state.dist_prev = state.dist_max; state.nearest_prev = state.nearest; }
state.nearest = index; state.dist_max = 0; return; }
if( dist != 0 && std::abs( dist ) <= std::abs( state.dist_max ) ) { if( state.nearest_prev < 0 || state.nearest != index ) { state.dist_prev = state.dist_max; state.nearest_prev = state.nearest; }
state.dist_max = dist; state.nearest = index; } } } }
public:
POLY_GRID_PARTITION( const SHAPE_LINE_CHAIN& aPolyOutline, int gridSize ) { build( aPolyOutline, gridSize ); }
int containsPoint( const VECTOR2I& aP, bool debug = false ) const { const auto gridPoint = poly2grid( aP );
if( !m_bbox.Contains( aP ) ) return 0;
SCAN_STATE state; const EDGE_LIST& cell = m_grid[ m_gridSize * gridPoint.y + gridPoint.x ];
scanCell( state, cell, aP, gridPoint.x, gridPoint.y );
if( state.nearest < 0 ) { state = SCAN_STATE();
for( int d = 1; d <= m_gridSize; d++ ) { int xl = gridPoint.x - d; int xh = gridPoint.x + d;
if( xl >= 0 ) { const EDGE_LIST& cell2 = m_grid[ m_gridSize * gridPoint.y + xl ]; scanCell( state, cell2, aP, xl, gridPoint.y );
if( state.nearest >= 0 ) break; }
if( xh < m_gridSize ) { const EDGE_LIST& cell2 = m_grid[ m_gridSize * gridPoint.y + xh ]; scanCell( state, cell2, aP, xh, gridPoint.y );
if( state.nearest >= 0 ) break; } } } if( state.nearest < 0 ) return 0;
if( state.dist_max == 0 ) return 1;
// special case for diagonal 'slits', e.g. two segments that partially overlap each other.
if( state.nearest_prev >= 0 && state.dist_max == state.dist_prev ) { int d = std::abs( state.nearest_prev - state.nearest );
if( (d == 1) && ( (m_flags[state.nearest_prev] & m_flags[state.nearest]) == 0 ) ) { return 0; } } if( state.dist_max > 0 ) { return m_flags[state.nearest] & LEAD_H ? 1 : 0; } else { return m_flags[state.nearest] & TRAIL_H ? 1 : 0; } }
bool checkClearance( const VECTOR2I& aP, int aClearance ) { int gx0 = poly2gridX( aP.x - aClearance - 1); int gx1 = poly2gridX( aP.x + aClearance + 1); int gy0 = poly2gridY( aP.y - aClearance - 1); int gy1 = poly2gridY( aP.y + aClearance + 1);
using ecoord = VECTOR2I::extended_type;
ecoord dist = (ecoord) aClearance * aClearance;
for ( int gx = gx0; gx <= gx1; gx++ ) { for ( int gy = gy0; gy <= gy1; gy++ ) { const auto& cell = m_grid [ m_gridSize * gy + gx]; for ( auto index : cell ) { const auto& seg = m_outline.CSegment(index);
if ( seg.SquaredDistance(aP) <= dist ) return true;
} }
} return false; }
int ContainsPoint( const VECTOR2I& aP, int aClearance = 0 ) // const
{ if( containsPoint(aP) ) return 1;
if( aClearance > 0 ) return checkClearance ( aP, aClearance );
return 0; }
const BOX2I& BBox() const { return m_bbox; }
private: int m_gridSize; SHAPE_LINE_CHAIN m_outline; BOX2I m_bbox; std::vector<int> m_flags; std::vector<EDGE_LIST> m_grid;};
#endif
|