|
|
/*
* This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2013 CERN * Copyright (C) 2021 KiCad Developers, see AUTHORS.txt for contributors. * * @author Tomasz Wlostowski <tomasz.wlostowski@cern.ch> * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */
#ifndef __SEG_H
#define __SEG_H
#include <math.h> // for sqrt
#include <stdlib.h> // for abs
#include <ostream> // for operator<<, ostream, basic_os...
#include <type_traits> // for swap
#include <core/optional.h>
#include <math/vector2d.h>
typedef OPT<VECTOR2I> OPT_VECTOR2I;
class SEG { public: using ecoord = VECTOR2I::extended_type; friend inline std::ostream& operator<<( std::ostream& aStream, const SEG& aSeg );
/* Start and the of the segment. Public, to make access simpler.
*/ VECTOR2I A; VECTOR2I B;
/**
* Create an empty (0, 0) segment. */ SEG() { m_index = -1; }
/**
* Create a segment between (aX1, aY1) and (aX2, aY2). */ SEG( int aX1, int aY1, int aX2, int aY2 ) : A( VECTOR2I( aX1, aY1 ) ), B( VECTOR2I( aX2, aY2 ) ) { m_index = -1; }
/**
* Create a segment between (aA) and (aB). */ SEG( const VECTOR2I& aA, const VECTOR2I& aB ) : A( aA ), B( aB ) { m_index = -1; }
/**
* Create a segment between (aA) and (aB), referenced to a multi-segment shape. * * @param aA reference to the start point in the parent shape * @param aB reference to the end point in the parent shape * @param aIndex index of the segment within the parent shape */ SEG( const VECTOR2I& aA, const VECTOR2I& aB, int aIndex ) : A( aA ), B( aB ) { m_index = aIndex; }
/**
* Copy constructor. */ SEG( const SEG& aSeg ) : A( aSeg.A ), B( aSeg.B ), m_index( aSeg.m_index ) { }
SEG& operator=( const SEG& aSeg ) { A = aSeg.A; B = aSeg.B; m_index = aSeg.m_index;
return *this; }
bool operator==( const SEG& aSeg ) const { return (A == aSeg.A && B == aSeg.B) ; }
bool operator!=( const SEG& aSeg ) const { return (A != aSeg.A || B != aSeg.B); }
static SEG::ecoord Square( int a ) { return ecoord( a ) * a; }
/**
* Compute the perpendicular projection point of aP on a line passing through * ends of the segment. * * @param aP point to project * @return projected point */ VECTOR2I LineProject( const VECTOR2I& aP ) const;
/**
* Determine on which side of directed line passing via segment ends point aP lies. * * @param aP point to determine the orientation wrs to self * @return: < 0: left, 0 : on the line, > 0 : right */ int Side( const VECTOR2I& aP ) const { const ecoord det = ( B - A ).Cross( aP - A );
return det < 0 ? -1 : ( det > 0 ? 1 : 0 ); }
/**
* Return the closest Euclidean distance between point aP and the line defined by * the ends of segment (this). * * @param aP the point to test * @param aDetermineSide: when true, the sign of the returned value indicates * the side of the line at which we are (negative = left) * @return the distance */ int LineDistance( const VECTOR2I& aP, bool aDetermineSide = false ) const;
/**
* Determine the smallest angle between two segments (result in degrees) * * @param aOther point to determine the orientation wrs to self * @return smallest angle between this and aOther (degrees) */ double AngleDegrees( const SEG& aOther ) const;
/**
* Compute a point on the segment (this) that is closest to point \a aP. * * @return the nearest point */ const VECTOR2I NearestPoint( const VECTOR2I& aP ) const;
/**
* Compute a point on the segment (this) that is closest to any point on \a aSeg. * * @return the nearest point */ const VECTOR2I NearestPoint( const SEG &aSeg ) const;
/**
* Reflect a point using this segment as axis. * * @return the reflected point */ const VECTOR2I ReflectPoint( const VECTOR2I& aP ) const;
/**
* Compute intersection point of segment (this) with segment \a aSeg. * * @param aSeg: segment to intersect with * @param aIgnoreEndpoints: don't treat corner cases (i.e. end of one segment touching the * other) as intersections. * @param aLines: treat segments as infinite lines * @return intersection point, if exists */ OPT_VECTOR2I Intersect( const SEG& aSeg, bool aIgnoreEndpoints = false, bool aLines = false ) const;
bool Intersects( const SEG& aSeg ) const;
/**
* Compute the intersection point of lines passing through ends of (this) and \a aSeg. * * @param aSeg segment defining the line to intersect with * @return intersection point, if exists */ OPT_VECTOR2I IntersectLines( const SEG& aSeg ) const { return Intersect( aSeg, false, true ); }
/**
* Compute a segment perpendicular to this one, passing through point \a aP. * * @param aP Point through which the new segment will pass * @return SEG perpendicular to this passing through point aP */ SEG PerpendicularSeg( const VECTOR2I& aP ) const;
/**
* Compute a segment parallel to this one, passing through point \a aP. * * @param aP Point through which the new segment will pass * @return SEG parallel to this passing through point aP */ SEG ParallelSeg( const VECTOR2I& aP ) const;
bool Collide( const SEG& aSeg, int aClearance, int* aActual = nullptr ) const;
ecoord SquaredDistance( const SEG& aSeg ) const;
/**
* Compute minimum Euclidean distance to segment \a aSeg. * * @param aSeg other segment * @return minimum distance */ int Distance( const SEG& aSeg ) const;
ecoord SquaredDistance( const VECTOR2I& aP ) const { return ( NearestPoint( aP ) - aP ).SquaredEuclideanNorm(); }
/**
* Compute minimum Euclidean distance to point \a aP. * * @param aP the point * @return minimum distance */ int Distance( const VECTOR2I& aP ) const;
void CanonicalCoefs( ecoord& qA, ecoord& qB, ecoord& qC ) const { qA = ecoord{ A.y } - B.y; qB = ecoord{ B.x } - A.x; qC = -qA * A.x - qB * A.y; }
/**
* Check if segment aSeg lies on the same line as (this). * * @param aSeg the segment to check colinearity with * @return true, when segments are collinear. */ bool Collinear( const SEG& aSeg ) const { ecoord qa, qb, qc; CanonicalCoefs( qa, qb, qc );
ecoord d1 = std::abs( aSeg.A.x * qa + aSeg.A.y * qb + qc ); ecoord d2 = std::abs( aSeg.B.x * qa + aSeg.B.y * qb + qc );
return ( d1 <= 1 && d2 <= 1 ); }
bool ApproxCollinear( const SEG& aSeg ) const { ecoord p, q, r; CanonicalCoefs( p, q, r );
ecoord dist1 = ( p * aSeg.A.x + q * aSeg.A.y + r ) / sqrt( p * p + q * q ); ecoord dist2 = ( p * aSeg.B.x + q * aSeg.B.y + r ) / sqrt( p * p + q * q );
return std::abs( dist1 ) <= 1 && std::abs( dist2 ) <= 1; }
bool ApproxParallel( const SEG& aSeg, int aDistanceThreshold = 1 ) const { ecoord p, q, r; CanonicalCoefs( p, q, r );
ecoord dist1 = ( p * aSeg.A.x + q * aSeg.A.y + r ) / sqrt( p * p + q * q ); ecoord dist2 = ( p * aSeg.B.x + q * aSeg.B.y + r ) / sqrt( p * p + q * q );
return std::abs( dist1 - dist2 ) <= aDistanceThreshold; }
bool ApproxPerpendicular( const SEG& aSeg ) const { SEG perp = PerpendicularSeg( A );
return aSeg.ApproxParallel( perp ); }
bool Overlaps( const SEG& aSeg ) const { if( aSeg.A == aSeg.B ) // single point corner case
{ if( A == aSeg.A || B == aSeg.A ) return false;
return Contains( aSeg.A ); }
if( !Collinear( aSeg ) ) return false;
if( Contains( aSeg.A ) || Contains( aSeg.B ) ) return true;
if( aSeg.Contains( A ) || aSeg.Contains( B ) ) return true;
return false; }
bool Contains( const SEG& aSeg ) const { if( aSeg.A == aSeg.B ) // single point corner case
return Contains( aSeg.A );
if( !Collinear( aSeg ) ) return false;
if( Contains( aSeg.A ) && Contains( aSeg.B ) ) return true;
return false; }
/**
* Return the length (this). * * @return length */ int Length() const { return ( A - B ).EuclideanNorm(); }
ecoord SquaredLength() const { return ( A - B ).SquaredEuclideanNorm(); }
ecoord TCoef( const VECTOR2I& aP ) const;
/**
* Return the index of this segment in its parent shape (applicable only to non-local * segments). * * @return index value */ int Index() const { return m_index; }
bool Contains( const VECTOR2I& aP ) const;
void Reverse() { std::swap( A, B ); }
SEG Reversed() const { return SEG( B, A ); }
///< Returns the center point of the line
VECTOR2I Center() const { return A + ( B - A ) / 2; }
private: bool ccw( const VECTOR2I& aA, const VECTOR2I& aB, const VECTOR2I &aC ) const;
bool intersects( const SEG& aSeg, bool aIgnoreEndpoints = false, bool aLines = false, VECTOR2I* aPt = nullptr ) const;
private: ///< index within the parent shape (used when m_is_local == false)
int m_index; };
inline SEG::ecoord SEG::TCoef( const VECTOR2I& aP ) const { VECTOR2I d = B - A; return d.Dot( aP - A); }
inline std::ostream& operator<<( std::ostream& aStream, const SEG& aSeg ) { aStream << "[ " << aSeg.A << " - " << aSeg.B << " ]";
return aStream; }
#endif // __SEG_H
|