|
|
/*
* This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2017 Jean-Pierre Charras, jp.charras at wanadoo.fr * Copyright (C) 2015 SoftPLC Corporation, Dick Hollenbeck <dick@softplc.com> * Copyright The KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */
#include <unordered_set>
#include <trigo.h>
#include <macros.h>
#include <math/vector2d.h>
#include <pcb_shape.h>
#include <footprint.h>
#include <pad.h>
#include <base_units.h>
#include <convert_basic_shapes_to_polygon.h>
#include <geometry/shape_poly_set.h>
#include <geometry/geometry_utils.h>
#include <convert_shape_list_to_polygon.h>
#include <board.h>
#include <collectors.h>
#include <nanoflann.hpp>
#include <wx/log.h>
/**
* Flag to enable debug tracing for the board outline creation * * Use "KICAD_BOARD_OUTLINE" to enable. * * @ingroup trace_env_vars */ const wxChar* traceBoardOutline = wxT( "KICAD_BOARD_OUTLINE" );
class SCOPED_FLAGS_CLEANER : public std::unordered_set<EDA_ITEM*> { EDA_ITEM_FLAGS m_flagsToClear;
public: SCOPED_FLAGS_CLEANER( const EDA_ITEM_FLAGS& aFlagsToClear ) : m_flagsToClear( aFlagsToClear ) {}
~SCOPED_FLAGS_CLEANER() { for( EDA_ITEM* item : *this ) item->ClearFlags( m_flagsToClear ); } };
/**
* Local and tunable method of qualifying the proximity of two points. * * @param aLeft is the first point. * @param aRight is the second point. * @param aLimit is a measure of proximity that the caller knows about. * @return true if the two points are close enough, else false. */ static bool close_enough( VECTOR2I aLeft, VECTOR2I aRight, unsigned aLimit ) { return ( aLeft - aRight ).SquaredEuclideanNorm() <= SEG::Square( aLimit ); }
/**
* Local method which qualifies whether the start or end point of a segment is closest to a point. * * @param aRef is the reference point * @param aFirst is the first point * @param aSecond is the second point * @return true if the first point is closest to the reference, otherwise false. */ static bool closer_to_first( VECTOR2I aRef, VECTOR2I aFirst, VECTOR2I aSecond ) { return ( aRef - aFirst ).SquaredEuclideanNorm() < ( aRef - aSecond ).SquaredEuclideanNorm(); }
static bool isCopperOutside( const FOOTPRINT* aFootprint, SHAPE_POLY_SET& aShape ) { bool padOutside = false;
for( PAD* pad : aFootprint->Pads() ) { pad->Padstack().ForEachUniqueLayer( [&]( PCB_LAYER_ID aLayer ) { SHAPE_POLY_SET poly = aShape.CloneDropTriangulation();
poly.ClearArcs();
poly.BooleanIntersection( *pad->GetEffectivePolygon( aLayer, ERROR_INSIDE ) );
if( poly.OutlineCount() == 0 ) { VECTOR2I padPos = pad->GetPosition(); wxLogTrace( traceBoardOutline, wxT( "Tested pad (%d, %d): outside" ), padPos.x, padPos.y ); padOutside = true; } } );
if( padOutside ) break;
VECTOR2I padPos = pad->GetPosition(); wxLogTrace( traceBoardOutline, wxT( "Tested pad (%d, %d): not outside" ), padPos.x, padPos.y ); }
return padOutside; }
struct PCB_SHAPE_ENDPOINTS_ADAPTOR { std::vector<std::pair<VECTOR2I, PCB_SHAPE*>> endpoints;
PCB_SHAPE_ENDPOINTS_ADAPTOR( const std::vector<PCB_SHAPE*>& shapes ) { endpoints.reserve( shapes.size() * 2 );
for( PCB_SHAPE* shape : shapes ) { endpoints.emplace_back( shape->GetStart(), shape ); endpoints.emplace_back( shape->GetEnd(), shape ); } }
// Required by nanoflann
size_t kdtree_get_point_count() const { return endpoints.size(); }
// Returns the dim'th component of the idx'th point
double kdtree_get_pt( const size_t idx, const size_t dim ) const { if( dim == 0 ) return static_cast<double>( endpoints[idx].first.x ); else return static_cast<double>( endpoints[idx].first.y ); }
template <class BBOX> bool kdtree_get_bbox( BBOX& ) const { return false; } };
using KDTree = nanoflann::KDTreeSingleIndexAdaptor<nanoflann::L2_Simple_Adaptor<double, PCB_SHAPE_ENDPOINTS_ADAPTOR>, PCB_SHAPE_ENDPOINTS_ADAPTOR, 2 /* dim */ >;
// Helper function to find next shape using KD-tree
static PCB_SHAPE* findNext( PCB_SHAPE* aShape, const VECTOR2I& aPoint, const KDTree& kdTree, const PCB_SHAPE_ENDPOINTS_ADAPTOR& adaptor, unsigned aLimit ) { const double query_pt[2] = { static_cast<double>( aPoint.x ), static_cast<double>( aPoint.y ) };
// Search for points within a very small radius for exact matches
std::vector<nanoflann::ResultItem<size_t, double>> matches; double search_radius_sq = static_cast<double>( aLimit * aLimit ); nanoflann::RadiusResultSet<double, size_t> radiusResultSet( search_radius_sq, matches );
kdTree.findNeighbors( radiusResultSet, query_pt );
if( matches.empty() ) return nullptr;
// Find the closest valid candidate
PCB_SHAPE* closest_graphic = nullptr; double closest_dist_sq = search_radius_sq;
for( const auto& match : matches ) { PCB_SHAPE* candidate = adaptor.endpoints[match.first].second;
if( candidate == aShape ) continue;
if( match.second < closest_dist_sq && !candidate->HasFlag( SKIP_STRUCT ) ) { closest_dist_sq = match.second; closest_graphic = candidate; } }
return closest_graphic; }
bool doConvertOutlineToPolygon( std::vector<PCB_SHAPE*>& aShapeList, SHAPE_POLY_SET& aPolygons, int aErrorMax, int aChainingEpsilon, bool aAllowDisjoint, OUTLINE_ERROR_HANDLER* aErrorHandler, bool aAllowUseArcsInPolygons, SCOPED_FLAGS_CLEANER& aCleaner ) { if( aShapeList.size() == 0 ) return true;
bool selfIntersecting = false; PCB_SHAPE* graphic = nullptr;
std::set<PCB_SHAPE*> startCandidates( aShapeList.begin(), aShapeList.end() );
// Pre-build KD-tree
PCB_SHAPE_ENDPOINTS_ADAPTOR adaptor( aShapeList ); KDTree kdTree( 2, adaptor, nanoflann::KDTreeSingleIndexAdaptorParams( 10 ) );
// Keep a list of where the various shapes came from so after doing our combined-polygon
// tests we can still report errors against the individual graphic items.
std::map<std::pair<VECTOR2I, VECTOR2I>, PCB_SHAPE*> shapeOwners;
auto fetchOwner = [&]( const SEG& seg ) -> PCB_SHAPE* { auto it = shapeOwners.find( std::make_pair( seg.A, seg.B ) ); return it == shapeOwners.end() ? nullptr : it->second; };
PCB_SHAPE* prevGraphic = nullptr; VECTOR2I prevPt;
std::vector<SHAPE_LINE_CHAIN> contours; contours.reserve( startCandidates.size() );
for( PCB_SHAPE* shape : startCandidates ) shape->ClearFlags( SKIP_STRUCT );
while( startCandidates.size() ) { graphic = (PCB_SHAPE*) *startCandidates.begin(); graphic->SetFlags( SKIP_STRUCT ); aCleaner.insert( graphic ); startCandidates.erase( startCandidates.begin() );
contours.emplace_back();
SHAPE_LINE_CHAIN& currContour = contours.back(); currContour.SetWidth( graphic->GetWidth() ); bool firstPt = true;
// Circles, rects and polygons are closed shapes unto themselves (and do not combine
// with other shapes), so process them separately.
if( graphic->GetShape() == SHAPE_T::POLY ) { for( auto it = graphic->GetPolyShape().CIterate(); it; it++ ) { VECTOR2I pt = *it;
currContour.Append( pt );
if( firstPt ) firstPt = false; else shapeOwners[ std::make_pair( prevPt, pt ) ] = graphic;
prevPt = pt; }
currContour.SetClosed( true ); } else if( graphic->GetShape() == SHAPE_T::CIRCLE ) { VECTOR2I center = graphic->GetCenter(); int radius = graphic->GetRadius(); VECTOR2I start = center; start.x += radius;
// Add 360 deg Arc in currContour
SHAPE_ARC arc360( center, start, ANGLE_360, 0 ); currContour.Append( arc360, aErrorMax ); currContour.SetClosed( true );
// set shapeOwners for currContour points created by appending the arc360:
for( int ii = 1; ii < currContour.PointCount(); ++ii ) { shapeOwners[ std::make_pair( currContour.CPoint( ii-1 ), currContour.CPoint( ii ) ) ] = graphic; }
if( !aAllowUseArcsInPolygons ) currContour.ClearArcs(); } else if( graphic->GetShape() == SHAPE_T::RECTANGLE ) { std::vector<VECTOR2I> pts = graphic->GetRectCorners();
for( const VECTOR2I& pt : pts ) { currContour.Append( pt );
if( firstPt ) firstPt = false; else shapeOwners[ std::make_pair( prevPt, pt ) ] = graphic;
prevPt = pt; }
currContour.SetClosed( true ); } else { // Polygon start point. Arbitrarily chosen end of the segment and build the poly
// from here.
VECTOR2I startPt = graphic->GetEnd(); prevPt = startPt; currContour.Append( prevPt );
// do not append the other end point yet, this first 'graphic' might be an arc
for(;;) { switch( graphic->GetShape() ) { case SHAPE_T::RECTANGLE: case SHAPE_T::CIRCLE: { // As a non-first item, closed shapes can't be anything but self-intersecting
if( aErrorHandler ) { wxASSERT( prevGraphic ); (*aErrorHandler)( _( "(self-intersecting)" ), prevGraphic, graphic, prevPt ); }
selfIntersecting = true;
// A closed shape will finish where it started, so no point in updating prevPt
break; }
case SHAPE_T::SEGMENT: { VECTOR2I nextPt;
// Use the line segment end point furthest away from prevPt as we assume
// the other end to be ON prevPt or very close to it.
if( closer_to_first( prevPt, graphic->GetStart(), graphic->GetEnd()) ) nextPt = graphic->GetEnd(); else nextPt = graphic->GetStart();
currContour.Append( nextPt ); shapeOwners[ std::make_pair( prevPt, nextPt ) ] = graphic; prevPt = nextPt; } break;
case SHAPE_T::ARC: { VECTOR2I pstart = graphic->GetStart(); VECTOR2I pmid = graphic->GetArcMid(); VECTOR2I pend = graphic->GetEnd();
if( !close_enough( prevPt, pstart, aChainingEpsilon ) ) { wxASSERT( close_enough( prevPt, graphic->GetEnd(), aChainingEpsilon ) );
std::swap( pstart, pend ); }
// Snap the arc start point to avoid potential self-intersections
pstart = prevPt;
SHAPE_ARC sarc( pstart, pmid, pend, 0 );
SHAPE_LINE_CHAIN arcChain; arcChain.Append( sarc, aErrorMax );
if( !aAllowUseArcsInPolygons ) arcChain.ClearArcs();
// set shapeOwners for arcChain points created by appending the sarc:
for( int ii = 1; ii < arcChain.PointCount(); ++ii ) { shapeOwners[std::make_pair( arcChain.CPoint( ii - 1 ), arcChain.CPoint( ii ) )] = graphic; }
currContour.Append( arcChain );
prevPt = pend; } break;
case SHAPE_T::BEZIER: { // We do not support Bezier curves in polygons, so approximate with a series
// of short lines and put those line segments into the !same! PATH.
VECTOR2I nextPt; bool reverse = false;
// Use the end point furthest away from prevPt as we assume the other
// end to be ON prevPt or very close to it.
if( closer_to_first( prevPt, graphic->GetStart(), graphic->GetEnd()) ) { nextPt = graphic->GetEnd(); } else { nextPt = graphic->GetStart(); reverse = true; }
// Ensure the approximated Bezier shape is built
graphic->RebuildBezierToSegmentsPointsList( aErrorMax );
if( reverse ) { for( int jj = graphic->GetBezierPoints().size()-1; jj >= 0; jj-- ) { const VECTOR2I& pt = graphic->GetBezierPoints()[jj];
if( prevPt == pt ) continue;
currContour.Append( pt ); shapeOwners[ std::make_pair( prevPt, pt ) ] = graphic; prevPt = pt; } } else { for( const VECTOR2I& pt : graphic->GetBezierPoints() ) { if( prevPt == pt ) continue;
currContour.Append( pt ); shapeOwners[ std::make_pair( prevPt, pt ) ] = graphic; prevPt = pt; } }
prevPt = nextPt; } break;
default: UNIMPLEMENTED_FOR( graphic->SHAPE_T_asString() ); return false; }
PCB_SHAPE* nextGraphic = findNext( graphic, prevPt, kdTree, adaptor, aChainingEpsilon );
if( nextGraphic && !( nextGraphic->GetFlags() & SKIP_STRUCT ) ) { prevGraphic = graphic; graphic = nextGraphic; graphic->SetFlags( SKIP_STRUCT ); aCleaner.insert( graphic ); startCandidates.erase( graphic ); continue; }
// Finished, or ran into trouble...
if( close_enough( startPt, prevPt, aChainingEpsilon ) ) { if( startPt != prevPt && currContour.PointCount() > 2 ) { // Snap the last shape's endpoint to the outline startpoint
PCB_SHAPE* owner = fetchOwner( currContour.CSegment( -1 ) );
if( currContour.IsArcEnd( currContour.PointCount() - 1 ) ) { SHAPE_ARC arc = currContour.Arc( currContour.ArcIndex( currContour.PointCount() - 1 ) );
// Snap the arc endpoint
SHAPE_ARC sarc( arc.GetP0(), arc.GetArcMid(), startPt, 0 );
SHAPE_LINE_CHAIN arcChain; arcChain.Append( sarc, aErrorMax );
if( !aAllowUseArcsInPolygons ) arcChain.ClearArcs();
// Set shapeOwners for arcChain points created by appending the sarc:
for( int ii = 1; ii < arcChain.PointCount(); ++ii ) { shapeOwners[std::make_pair( arcChain.CPoint( ii - 1 ), arcChain.CPoint( ii ) )] = owner; }
currContour.RemoveShape( currContour.PointCount() - 1 ); currContour.Append( arcChain ); } else { // Snap the segment endpoint
currContour.SetPoint( -1, startPt );
shapeOwners[std::make_pair( currContour.CPoint( -2 ), currContour.CPoint( -1 ) )] = owner; }
prevPt = startPt; }
currContour.SetClosed( true ); break; } else if( nextGraphic ) // encountered already-used segment, but not at the start
{ if( aErrorHandler ) (*aErrorHandler)( _( "(self-intersecting)" ), graphic, nextGraphic, prevPt );
break; } else // encountered discontinuity
{ if( aErrorHandler ) (*aErrorHandler)( _( "(not a closed shape)" ), graphic, nullptr, prevPt );
break; } } } }
for( const SHAPE_LINE_CHAIN& contour : contours ) { if( !contour.IsClosed() ) return false; }
std::map<int, std::vector<int>> contourToParentIndexesMap;
for( size_t ii = 0; ii < contours.size(); ++ii ) { SHAPE_LINE_CHAIN& contour = contours[ii];
if( !contour.GetCachedBBox()->IsValid() ) contour.GenerateBBoxCache(); }
for( size_t ii = 0; ii < contours.size(); ++ii ) { VECTOR2I firstPt = contours[ii].GetPoint( 0 ); std::vector<int> parents;
for( size_t jj = 0; jj < contours.size(); ++jj ) { if( jj == ii ) continue;
const SHAPE_LINE_CHAIN& parentCandidate = contours[jj];
if( parentCandidate.PointInside( firstPt, 0, true ) ) parents.push_back( jj ); }
contourToParentIndexesMap[ii] = std::move( parents ); }
// Next add those that are top-level outlines to the SHAPE_POLY_SET
std::map<int, int> contourToOutlineIdxMap;
for( const auto& [ contourIndex, parentIndexes ] : contourToParentIndexesMap ) { if( parentIndexes.size() %2 == 0 ) { // Even number of parents; top-level outline
if( !aAllowDisjoint && !aPolygons.IsEmpty() ) { if( aErrorHandler ) { BOARD_ITEM* a = fetchOwner( aPolygons.Outline( 0 ).GetSegment( 0 ) ); BOARD_ITEM* b = fetchOwner( contours[ contourIndex ].GetSegment( 0 ) );
if( a && b ) { (*aErrorHandler)( _( "(multiple board outlines not supported)" ), a, b, contours[ contourIndex ].GetPoint( 0 ) );
return false; } } }
aPolygons.AddOutline( contours[ contourIndex ] ); contourToOutlineIdxMap[ contourIndex ] = aPolygons.OutlineCount() - 1; } }
// And finally add the holes
for( const auto& [ contourIndex, parentIndexes ] : contourToParentIndexesMap ) { if( parentIndexes.size() %2 == 1 ) { // Odd number of parents; we're a hole in the parent which has one fewer parents
// than we have.
const SHAPE_LINE_CHAIN& hole = contours[ contourIndex ];
for( int parentContourIdx : parentIndexes ) { if( contourToParentIndexesMap[ parentContourIdx ].size() == parentIndexes.size() - 1 ) { int outlineIdx = contourToOutlineIdxMap[ parentContourIdx ]; aPolygons.AddHole( hole, outlineIdx ); break; } } } }
// All of the silliness that follows is to work around the segment iterator while checking
// for collisions.
// TODO: Implement proper segment and point iterators that follow std
std::vector<SEG> segments; size_t total = 0;
for( int ii = 0; ii < aPolygons.OutlineCount(); ++ii ) { const SHAPE_LINE_CHAIN& contour = aPolygons.Outline( ii ); total += contour.SegmentCount();
for( int jj = 0; jj < aPolygons.HoleCount( ii ); ++jj ) { const SHAPE_LINE_CHAIN& hole = aPolygons.Hole( ii, jj ); total += hole.SegmentCount(); } }
segments.reserve( total );
for( auto seg = aPolygons.IterateSegmentsWithHoles(); seg; seg++ ) { SEG segment = *seg;
// Ensure segments are always ordered A < B
if( LexicographicalCompare( segment.A, segment.B ) > 0 ) { std::swap( segment.A, segment.B ); }
segments.push_back( segment ); }
std::sort( segments.begin(), segments.end(), []( const SEG& a, const SEG& b ) { if( a.A != b.A ) return LexicographicalCompare( a.A, b.A ) < 0;
return LexicographicalCompare( a.B, b.B ) < 0; } );
for( size_t i = 0; i < segments.size(); ++i ) { const SEG& seg1 = segments[i];
for( size_t j = i + 1; j < segments.size(); ++j ) { const SEG& seg2 = segments[j];
if( seg2.A > seg1.B ) { // No more segments to check, as they are sorted by A and B.
break; }
// Check for exact overlapping segments.
if( seg1 == seg2 || ( seg1.A == seg2.B && seg1.B == seg2.A ) ) { if( aErrorHandler ) { BOARD_ITEM* a = fetchOwner( seg1 ); BOARD_ITEM* b = fetchOwner( seg2 ); (*aErrorHandler)( _( "(self-intersecting)" ), a, b, seg1.A ); }
selfIntersecting = true; } else if( OPT_VECTOR2I pt = seg1.Intersect( seg2, true ) ) { if( aErrorHandler ) { BOARD_ITEM* a = fetchOwner( seg1 ); BOARD_ITEM* b = fetchOwner( seg2 ); (*aErrorHandler)( _( "(self-intersecting)" ), a, b, *pt ); }
selfIntersecting = true; } } }
return !selfIntersecting; }
bool ConvertOutlineToPolygon( std::vector<PCB_SHAPE*>& aShapeList, SHAPE_POLY_SET& aPolygons, int aErrorMax, int aChainingEpsilon, bool aAllowDisjoint, OUTLINE_ERROR_HANDLER* aErrorHandler, bool aAllowUseArcsInPolygons ) { SCOPED_FLAGS_CLEANER cleaner( SKIP_STRUCT );
return doConvertOutlineToPolygon( aShapeList, aPolygons, aErrorMax, aChainingEpsilon, aAllowDisjoint, aErrorHandler, aAllowUseArcsInPolygons, cleaner ); }
bool TestBoardOutlinesGraphicItems( BOARD* aBoard, int aMinDist, OUTLINE_ERROR_HANDLER* aErrorHandler ) { bool success = true; PCB_TYPE_COLLECTOR items; int min_dist = std::max( 0, aMinDist );
// Get all the shapes into 'items', then keep only those on layer == Edge_Cuts.
items.Collect( aBoard, { PCB_SHAPE_T } );
std::vector<PCB_SHAPE*> shapeList;
for( int ii = 0; ii < items.GetCount(); ii++ ) { PCB_SHAPE* seg = static_cast<PCB_SHAPE*>( items[ii] );
if( seg->GetLayer() == Edge_Cuts ) shapeList.push_back( seg ); }
// Now Test validity of collected items
for( PCB_SHAPE* shape : shapeList ) { switch( shape->GetShape() ) { case SHAPE_T::RECTANGLE: { VECTOR2I seg = shape->GetEnd() - shape->GetStart(); int dim = seg.EuclideanNorm();
if( dim <= min_dist ) { success = false;
if( aErrorHandler ) { (*aErrorHandler)( wxString::Format( _( "(rectangle has null or very small " "size: %d nm)" ), dim ), shape, nullptr, shape->GetStart() ); } } break; }
case SHAPE_T::CIRCLE: { int r = shape->GetRadius();
if( r <= min_dist ) { success = false;
if( aErrorHandler ) { (*aErrorHandler)( wxString::Format( _( "(circle has null or very small " "radius: %d nm)" ), r ), shape, nullptr, shape->GetStart() ); } } break; }
case SHAPE_T::SEGMENT: { VECTOR2I seg = shape->GetEnd() - shape->GetStart(); int dim = seg.EuclideanNorm();
if( dim <= min_dist ) { success = false;
if( aErrorHandler ) { (*aErrorHandler)( wxString::Format( _( "(segment has null or very small " "length: %d nm)" ), dim ), shape, nullptr, shape->GetStart() ); } } break; }
case SHAPE_T::ARC: { // Arc size can be evaluated from the distance between arc middle point and arc ends
// We do not need a precise value, just an idea of its size
VECTOR2I arcMiddle = shape->GetArcMid(); VECTOR2I seg1 = arcMiddle - shape->GetStart(); VECTOR2I seg2 = shape->GetEnd() - arcMiddle; int dim = seg1.EuclideanNorm() + seg2.EuclideanNorm();
if( dim <= min_dist ) { success = false;
if( aErrorHandler ) { (*aErrorHandler)( wxString::Format( _( "(arc has null or very small size: " "%d nm)" ), dim ), shape, nullptr, shape->GetStart() ); } } break; }
case SHAPE_T::POLY: break;
case SHAPE_T::BEZIER: break;
default: UNIMPLEMENTED_FOR( shape->SHAPE_T_asString() ); return false; } }
return success; }
bool BuildBoardPolygonOutlines( BOARD* aBoard, SHAPE_POLY_SET& aOutlines, int aErrorMax, int aChainingEpsilon, OUTLINE_ERROR_HANDLER* aErrorHandler, bool aAllowUseArcsInPolygons ) { PCB_TYPE_COLLECTOR items; SHAPE_POLY_SET fpHoles; bool success = false;
SCOPED_FLAGS_CLEANER cleaner( SKIP_STRUCT );
// Get all the shapes into 'items', then keep only those on layer == Edge_Cuts.
items.Collect( aBoard, { PCB_SHAPE_T } );
for( int ii = 0; ii < items.GetCount(); ++ii ) items[ii]->ClearFlags( SKIP_STRUCT );
for( FOOTPRINT* fp : aBoard->Footprints() ) { PCB_TYPE_COLLECTOR fpItems; fpItems.Collect( fp, { PCB_SHAPE_T } );
std::vector<PCB_SHAPE*> fpSegList;
for( int ii = 0; ii < fpItems.GetCount(); ii++ ) { PCB_SHAPE* fpSeg = static_cast<PCB_SHAPE*>( fpItems[ii] );
if( fpSeg->GetLayer() == Edge_Cuts ) fpSegList.push_back( fpSeg ); }
if( !fpSegList.empty() ) { SHAPE_POLY_SET fpOutlines; success = doConvertOutlineToPolygon( fpSegList, fpOutlines, aErrorMax, aChainingEpsilon, false, // don't report errors here; the second pass also
// gets an opportunity to use these segments
nullptr, aAllowUseArcsInPolygons, cleaner );
// Test to see if we should make holes or outlines. Holes are made if the footprint
// has copper outside of a single, closed outline. If there are multiple outlines,
// we assume that the footprint edges represent holes as we do not support multiple
// boards. Similarly, if any of the footprint pads are located outside of the edges,
// then the edges are holes
if( success && ( isCopperOutside( fp, fpOutlines ) || fpOutlines.OutlineCount() > 1 ) ) { fpHoles.Append( fpOutlines ); } else { // If it wasn't a closed area, or wasn't a hole, the we want to keep the fpSegs
// in contention for the board outline builds.
for( int ii = 0; ii < fpItems.GetCount(); ++ii ) fpItems[ii]->ClearFlags( SKIP_STRUCT ); } } }
// Make a working copy of aSegList, because the list is modified during calculations
std::vector<PCB_SHAPE*> segList;
for( int ii = 0; ii < items.GetCount(); ii++ ) { PCB_SHAPE* seg = static_cast<PCB_SHAPE*>( items[ii] );
// Skip anything already used to generate footprint holes (above)
if( seg->GetFlags() & SKIP_STRUCT ) continue;
if( seg->GetLayer() == Edge_Cuts ) segList.push_back( seg ); }
if( segList.size() ) { success = doConvertOutlineToPolygon( segList, aOutlines, aErrorMax, aChainingEpsilon, true, aErrorHandler, aAllowUseArcsInPolygons, cleaner ); }
if( !success || !aOutlines.OutlineCount() ) { // Couldn't create a valid polygon outline. Use the board edge cuts bounding box to
// create a rectangular outline, or, failing that, the bounding box of the items on
// the board.
BOX2I bbbox = aBoard->GetBoardEdgesBoundingBox();
// If null area, uses the global bounding box.
if( ( bbbox.GetWidth() ) == 0 || ( bbbox.GetHeight() == 0 ) ) bbbox = aBoard->ComputeBoundingBox( false );
// Ensure non null area. If happen, gives a minimal size.
if( ( bbbox.GetWidth() ) == 0 || ( bbbox.GetHeight() == 0 ) ) bbbox.Inflate( pcbIUScale.mmToIU( 1.0 ) );
aOutlines.RemoveAllContours(); aOutlines.NewOutline();
VECTOR2I corner; aOutlines.Append( bbbox.GetOrigin() );
corner.x = bbbox.GetOrigin().x; corner.y = bbbox.GetEnd().y; aOutlines.Append( corner );
aOutlines.Append( bbbox.GetEnd() );
corner.x = bbbox.GetEnd().x; corner.y = bbbox.GetOrigin().y; aOutlines.Append( corner ); }
for( int ii = 0; ii < fpHoles.OutlineCount(); ++ii ) { const VECTOR2I holePt = fpHoles.Outline( ii ).CPoint( 0 );
for( int jj = 0; jj < aOutlines.OutlineCount(); ++jj ) { if( aOutlines.Outline( jj ).PointInside( holePt ) ) { aOutlines.AddHole( fpHoles.Outline( ii ), jj ); break; } } }
return success; }
/**
* Get the complete bounding box of the board (including all items). * * The vertex numbers and segment numbers of the rectangle returned. * 1 * *---------------* * |1 2| * 0| |2 * |0 3| * *---------------* * 3 */ void buildBoardBoundingBoxPoly( const BOARD* aBoard, SHAPE_POLY_SET& aOutline ) { BOX2I bbbox = aBoard->GetBoundingBox(); SHAPE_LINE_CHAIN chain;
// If null area, uses the global bounding box.
if( ( bbbox.GetWidth() ) == 0 || ( bbbox.GetHeight() == 0 ) ) bbbox = aBoard->ComputeBoundingBox( false );
// Ensure non null area. If happen, gives a minimal size.
if( ( bbbox.GetWidth() ) == 0 || ( bbbox.GetHeight() == 0 ) ) bbbox.Inflate( pcbIUScale.mmToIU( 1.0 ) );
// Inflate slightly (by 1/10th the size of the box)
bbbox.Inflate( bbbox.GetWidth() / 10, bbbox.GetHeight() / 10 );
chain.Append( bbbox.GetOrigin() ); chain.Append( bbbox.GetOrigin().x, bbbox.GetEnd().y ); chain.Append( bbbox.GetEnd() ); chain.Append( bbbox.GetEnd().x, bbbox.GetOrigin().y ); chain.SetClosed( true );
aOutline.RemoveAllContours(); aOutline.AddOutline( chain ); }
VECTOR2I projectPointOnSegment( const VECTOR2I& aEndPoint, const SHAPE_POLY_SET& aOutline, int aOutlineNum = 0 ) { int minDistance = -1; VECTOR2I projPoint;
for( auto it = aOutline.CIterateSegments( aOutlineNum ); it; it++ ) { auto seg = it.Get(); int dis = seg.Distance( aEndPoint );
if( minDistance < 0 || ( dis < minDistance ) ) { minDistance = dis; projPoint = seg.NearestPoint( aEndPoint ); } }
return projPoint; }
int findEndSegments( SHAPE_LINE_CHAIN& aChain, SEG& aStartSeg, SEG& aEndSeg ) { int foundSegs = 0;
for( int i = 0; i < aChain.SegmentCount(); i++ ) { SEG seg = aChain.Segment( i );
bool foundA = false; bool foundB = false;
for( int j = 0; j < aChain.SegmentCount(); j++ ) { // Don't test the segment against itself
if( i == j ) continue;
SEG testSeg = aChain.Segment( j );
if( testSeg.Contains( seg.A ) ) foundA = true;
if( testSeg.Contains( seg.B ) ) foundB = true; }
// This segment isn't a start or end
if( foundA && foundB ) continue;
if( foundSegs == 0 ) { // The first segment we encounter is the "start" segment
wxLogTrace( traceBoardOutline, wxT( "Found start segment: (%d, %d)-(%d, %d)" ), seg.A.x, seg.A.y, seg.B.x, seg.B.y ); aStartSeg = seg; foundSegs++; } else { // Once we find both start and end, we can stop
wxLogTrace( traceBoardOutline, wxT( "Found end segment: (%d, %d)-(%d, %d)" ), seg.A.x, seg.A.y, seg.B.x, seg.B.y ); aEndSeg = seg; foundSegs++; break; } }
return foundSegs; }
bool BuildFootprintPolygonOutlines( BOARD* aBoard, SHAPE_POLY_SET& aOutlines, int aErrorMax, int aChainingEpsilon, OUTLINE_ERROR_HANDLER* aErrorHandler )
{ FOOTPRINT* footprint = aBoard->GetFirstFootprint();
// No footprint loaded
if( !footprint ) { wxLogTrace( traceBoardOutline, wxT( "No footprint found on board" ) ); return false; }
PCB_TYPE_COLLECTOR items; SHAPE_POLY_SET outlines; bool success = false;
SCOPED_FLAGS_CLEANER cleaner( SKIP_STRUCT );
// Get all the SHAPEs into 'items', then keep only those on layer == Edge_Cuts.
items.Collect( aBoard, { PCB_SHAPE_T } );
// Make a working copy of aSegList, because the list is modified during calculations
std::vector<PCB_SHAPE*> segList;
for( int ii = 0; ii < items.GetCount(); ii++ ) { if( items[ii]->GetLayer() == Edge_Cuts ) segList.push_back( static_cast<PCB_SHAPE*>( items[ii] ) ); }
if( !segList.empty() ) { success = doConvertOutlineToPolygon( segList, outlines, aErrorMax, aChainingEpsilon, true, aErrorHandler, false, cleaner ); }
// A closed outline was found on Edge_Cuts
if( success ) { wxLogTrace( traceBoardOutline, wxT( "Closed outline found" ) );
// If copper is outside a closed polygon, treat it as a hole
// If there are multiple outlines in the footprint, they are also holes
if( isCopperOutside( footprint, outlines ) || outlines.OutlineCount() > 1 ) { wxLogTrace( traceBoardOutline, wxT( "Treating outline as a hole" ) );
buildBoardBoundingBoxPoly( aBoard, aOutlines );
// Copy all outlines from the conversion as holes into the new outline
for( int i = 0; i < outlines.OutlineCount(); i++ ) { SHAPE_LINE_CHAIN& out = outlines.Outline( i );
if( out.IsClosed() ) aOutlines.AddHole( out, -1 );
for( int j = 0; j < outlines.HoleCount( i ); j++ ) { SHAPE_LINE_CHAIN& hole = outlines.Hole( i, j );
if( hole.IsClosed() ) aOutlines.AddHole( hole, -1 ); } } } // If all copper is inside, then the computed outline is the board outline
else { wxLogTrace( traceBoardOutline, wxT( "Treating outline as board edge" ) ); aOutlines = std::move( outlines ); }
return true; } // No board outlines were found, so use the bounding box
else if( outlines.OutlineCount() == 0 ) { wxLogTrace( traceBoardOutline, wxT( "Using footprint bounding box" ) ); buildBoardBoundingBoxPoly( aBoard, aOutlines );
return true; } // There is an outline present, but it is not closed
else { wxLogTrace( traceBoardOutline, wxT( "Trying to build outline" ) );
std::vector<SHAPE_LINE_CHAIN> closedChains; std::vector<SHAPE_LINE_CHAIN> openChains;
// The ConvertOutlineToPolygon function returns only one main outline and the rest as
// holes, so we promote the holes and process them
openChains.push_back( outlines.Outline( 0 ) );
for( int j = 0; j < outlines.HoleCount( 0 ); j++ ) { SHAPE_LINE_CHAIN hole = outlines.Hole( 0, j );
if( hole.IsClosed() ) { wxLogTrace( traceBoardOutline, wxT( "Found closed hole" ) ); closedChains.push_back( hole ); } else { wxLogTrace( traceBoardOutline, wxT( "Found open hole" ) ); openChains.push_back( hole ); } }
SHAPE_POLY_SET bbox; buildBoardBoundingBoxPoly( aBoard, bbox );
// Treat the open polys as the board edge
SHAPE_LINE_CHAIN chain = openChains[0]; SHAPE_LINE_CHAIN rect = bbox.Outline( 0 );
// We know the outline chain is open, so set to non-closed to get better segment count
chain.SetClosed( false );
SEG startSeg; SEG endSeg;
// The two possible board outlines
SHAPE_LINE_CHAIN upper; SHAPE_LINE_CHAIN lower;
findEndSegments( chain, startSeg, endSeg );
if( chain.SegmentCount() == 0 ) { // Something is wrong, bail out with the overall footprint bounding box
wxLogTrace( traceBoardOutline, wxT( "No line segments in provided outline" ) ); aOutlines = std::move( bbox ); return true; } else if( chain.SegmentCount() == 1 ) { // This case means there is only 1 line segment making up the edge cuts of the
// footprint, so we just need to use it to cut the bounding box in half.
wxLogTrace( traceBoardOutline, wxT( "Only 1 line segment in provided outline" ) );
startSeg = chain.Segment( 0 );
// Intersect with all the sides of the rectangle
OPT_VECTOR2I inter0 = startSeg.IntersectLines( rect.Segment( 0 ) ); OPT_VECTOR2I inter1 = startSeg.IntersectLines( rect.Segment( 1 ) ); OPT_VECTOR2I inter2 = startSeg.IntersectLines( rect.Segment( 2 ) ); OPT_VECTOR2I inter3 = startSeg.IntersectLines( rect.Segment( 3 ) );
if( inter0 && inter2 && !inter1 && !inter3 ) { // Intersects the vertical rectangle sides only
wxLogTrace( traceBoardOutline, wxT( "Segment intersects only vertical bbox sides" ) );
// The upper half
upper.Append( *inter0 ); upper.Append( rect.GetPoint( 1 ) ); upper.Append( rect.GetPoint( 2 ) ); upper.Append( *inter2 ); upper.SetClosed( true );
// The lower half
lower.Append( *inter0 ); lower.Append( rect.GetPoint( 0 ) ); lower.Append( rect.GetPoint( 3 ) ); lower.Append( *inter2 ); lower.SetClosed( true ); } else if( inter1 && inter3 && !inter0 && !inter2 ) { // Intersects the horizontal rectangle sides only
wxLogTrace( traceBoardOutline, wxT( "Segment intersects only horizontal bbox sides" ) );
// The left half
upper.Append( *inter1 ); upper.Append( rect.GetPoint( 1 ) ); upper.Append( rect.GetPoint( 0 ) ); upper.Append( *inter3 ); upper.SetClosed( true );
// The right half
lower.Append( *inter1 ); lower.Append( rect.GetPoint( 2 ) ); lower.Append( rect.GetPoint( 3 ) ); lower.Append( *inter3 ); lower.SetClosed( true ); } else { // Angled line segment that cuts across a corner
wxLogTrace( traceBoardOutline, wxT( "Segment intersects two perpendicular bbox sides" ) );
// Figure out which actual lines are intersected, since IntersectLines assumes
// an infinite line
bool hit0 = rect.Segment( 0 ).Contains( *inter0 ); bool hit1 = rect.Segment( 1 ).Contains( *inter1 ); bool hit2 = rect.Segment( 2 ).Contains( *inter2 ); bool hit3 = rect.Segment( 3 ).Contains( *inter3 );
if( hit0 && hit1 ) { // Cut across the upper left corner
wxLogTrace( traceBoardOutline, wxT( "Segment cuts upper left corner" ) );
// The upper half
upper.Append( *inter0 ); upper.Append( rect.GetPoint( 1 ) ); upper.Append( *inter1 ); upper.SetClosed( true );
// The lower half
lower.Append( *inter0 ); lower.Append( rect.GetPoint( 0 ) ); lower.Append( rect.GetPoint( 3 ) ); lower.Append( rect.GetPoint( 2 ) ); lower.Append( *inter1 ); lower.SetClosed( true ); } else if( hit1 && hit2 ) { // Cut across the upper right corner
wxLogTrace( traceBoardOutline, wxT( "Segment cuts upper right corner" ) );
// The upper half
upper.Append( *inter1 ); upper.Append( rect.GetPoint( 2 ) ); upper.Append( *inter2 ); upper.SetClosed( true );
// The lower half
lower.Append( *inter1 ); lower.Append( rect.GetPoint( 1 ) ); lower.Append( rect.GetPoint( 0 ) ); lower.Append( rect.GetPoint( 3 ) ); lower.Append( *inter2 ); lower.SetClosed( true ); } else if( hit2 && hit3 ) { // Cut across the lower right corner
wxLogTrace( traceBoardOutline, wxT( "Segment cuts lower right corner" ) );
// The upper half
upper.Append( *inter2 ); upper.Append( rect.GetPoint( 2 ) ); upper.Append( rect.GetPoint( 1 ) ); upper.Append( rect.GetPoint( 0 ) ); upper.Append( *inter3 ); upper.SetClosed( true );
// The bottom half
lower.Append( *inter2 ); lower.Append( rect.GetPoint( 3 ) ); lower.Append( *inter3 ); lower.SetClosed( true ); } else { // Cut across the lower left corner
wxLogTrace( traceBoardOutline, wxT( "Segment cuts upper left corner" ) );
// The upper half
upper.Append( *inter0 ); upper.Append( rect.GetPoint( 1 ) ); upper.Append( rect.GetPoint( 2 ) ); upper.Append( rect.GetPoint( 3 ) ); upper.Append( *inter3 ); upper.SetClosed( true );
// The bottom half
lower.Append( *inter0 ); lower.Append( rect.GetPoint( 0 ) ); lower.Append( *inter3 ); lower.SetClosed( true ); } } } else { // More than 1 segment
wxLogTrace( traceBoardOutline, wxT( "Multiple segments in outline" ) );
// Just a temporary thing
aOutlines = std::move( bbox ); return true; }
// Figure out which is the correct outline
SHAPE_POLY_SET poly1; SHAPE_POLY_SET poly2;
poly1.NewOutline(); poly1.Append( upper );
poly2.NewOutline(); poly2.Append( lower );
if( isCopperOutside( footprint, poly1 ) ) { wxLogTrace( traceBoardOutline, wxT( "Using lower shape" ) ); aOutlines = std::move( poly2 ); } else { wxLogTrace( traceBoardOutline, wxT( "Using upper shape" ) ); aOutlines = std::move( poly1 ); }
// Add all closed polys as holes to the main outline
for( SHAPE_LINE_CHAIN& closedChain : closedChains ) { wxLogTrace( traceBoardOutline, wxT( "Adding hole to main outline" ) ); aOutlines.AddHole( closedChain, -1 ); }
return true; }
// We really shouldn't reach this point
return false; }
|