|
|
/*
* This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2016 Jean-Pierre Charras, jp.charras at wanadoo.fr * Copyright (C) 2011 Wayne Stambaugh <stambaughw@verizon.net> * Copyright (C) 1992-2016 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */
/**
* @file dcode.cpp * @brief D_CODE class implementation */
#include <fctsys.h>
#include <common.h>
#include <trigo.h>
#include <gerbview_frame.h>
#include <gerber_file_image.h>
#include <convert_to_biu.h>
#include <convert_basic_shapes_to_polygon.h>
#define DCODE_DEFAULT_SIZE Millimeter2iu( 0.1 )
/* Format Gerber: NOTES:
* Tools and D_CODES * tool number (identification of shapes) * 1 to 999 * * D_CODES: * D01 ... D9 = command codes: * D01 = activating light (pen down) while moving * D02 = light extinction (pen up) while moving * D03 = Flash * D04 to D09 = non used * D10 ... D999 = Identification Tool (Shape id) * * For tools defining a shape): * DCode min = D10 * DCode max = 999 */
/***************//* Class DCODE *//***************/
D_CODE::D_CODE( int num_dcode ){ m_Num_Dcode = num_dcode; Clear_D_CODE_Data();}
D_CODE::~D_CODE(){}
void D_CODE::Clear_D_CODE_Data(){ m_Size.x = DCODE_DEFAULT_SIZE; m_Size.y = DCODE_DEFAULT_SIZE; m_Shape = APT_CIRCLE; m_Drill.x = m_Drill.y = 0; m_DrillShape = APT_DEF_NO_HOLE; m_InUse = false; m_Defined = false; m_Macro = NULL; m_Rotation = 0.0; m_EdgesCount = 0; m_Polygon.RemoveAllContours();}
const wxChar* D_CODE::ShowApertureType( APERTURE_T aType ){ const wxChar* ret;
switch( aType ) { case APT_CIRCLE: ret = wxT( "Round" ); break;
case APT_RECT: ret = wxT( "Rect" ); break;
case APT_OVAL: ret = wxT( "Oval" ); break;
case APT_POLYGON: ret = wxT( "Poly" ); break;
case APT_MACRO: ret = wxT( "Macro" ); break;
default: ret = wxT( "???" ); break; }
return ret;}
int D_CODE::GetShapeDim( GERBER_DRAW_ITEM* aParent ){ int dim = -1; switch( m_Shape ) { case APT_CIRCLE: dim = m_Size.x; break;
case APT_RECT: case APT_OVAL: dim = std::min( m_Size.x, m_Size.y ); break;
case APT_POLYGON: dim = std::min( m_Size.x, m_Size.y ); break;
case APT_MACRO: if( m_Macro ) dim = m_Macro->GetShapeDim( aParent ); break;
default: break; }
return dim;}
void D_CODE::DrawFlashedShape( GERBER_DRAW_ITEM* aParent, EDA_RECT* aClipBox, wxDC* aDC, COLOR4D aColor, wxPoint aShapePos, bool aFilledShape ){ int radius;
switch( m_Shape ) { case APT_MACRO: GetMacro()->DrawApertureMacroShape( aParent, aClipBox, aDC, aColor, aShapePos, aFilledShape); break;
case APT_CIRCLE: radius = m_Size.x >> 1; if( !aFilledShape ) GRCircle( aClipBox, aDC, aParent->GetABPosition(aShapePos), radius, 0, aColor ); else if( m_DrillShape == APT_DEF_NO_HOLE ) { GRFilledCircle( aClipBox, aDC, aParent->GetABPosition(aShapePos), radius, aColor ); } else if( m_DrillShape == APT_DEF_ROUND_HOLE ) // round hole in shape
{ int width = (m_Size.x - m_Drill.x ) / 2; GRCircle( aClipBox, aDC, aParent->GetABPosition(aShapePos), radius - (width / 2), width, aColor ); } else // rectangular hole
{ if( m_Polygon.OutlineCount() == 0 ) ConvertShapeToPolygon();
DrawFlashedPolygon( aParent, aClipBox, aDC, aColor, aFilledShape, aShapePos ); } break;
case APT_RECT: { wxPoint start; start.x = aShapePos.x - m_Size.x / 2; start.y = aShapePos.y - m_Size.y / 2; wxPoint end = start + m_Size; start = aParent->GetABPosition( start ); end = aParent->GetABPosition( end );
if( !aFilledShape ) { GRRect( aClipBox, aDC, start.x, start.y, end.x, end.y, 0, aColor ); } else if( m_DrillShape == APT_DEF_NO_HOLE ) { GRFilledRect( aClipBox, aDC, start.x, start.y, end.x, end.y, 0, aColor, aColor ); } else { if( m_Polygon.OutlineCount() == 0 ) ConvertShapeToPolygon();
DrawFlashedPolygon( aParent, aClipBox, aDC, aColor, aFilledShape, aShapePos ); } } break;
case APT_OVAL: { wxPoint start = aShapePos; wxPoint end = aShapePos;
if( m_Size.x > m_Size.y ) // horizontal oval
{ int delta = (m_Size.x - m_Size.y) / 2; start.x -= delta; end.x += delta; radius = m_Size.y; // Width in fact
} else // vertical oval
{ int delta = (m_Size.y - m_Size.x) / 2; start.y -= delta; end.y += delta; radius = m_Size.x; // Width in fact
}
start = aParent->GetABPosition( start ); end = aParent->GetABPosition( end );
if( !aFilledShape ) { GRCSegm( aClipBox, aDC, start.x, start.y, end.x, end.y, radius, aColor ); } else if( m_DrillShape == APT_DEF_NO_HOLE ) { GRFillCSegm( aClipBox, aDC, start.x, start.y, end.x, end.y, radius, aColor ); } else { if( m_Polygon.OutlineCount() == 0 ) ConvertShapeToPolygon();
DrawFlashedPolygon( aParent, aClipBox, aDC, aColor, aFilledShape, aShapePos ); } } break;
case APT_POLYGON: if( m_Polygon.OutlineCount() == 0 ) ConvertShapeToPolygon();
DrawFlashedPolygon( aParent, aClipBox, aDC, aColor, aFilledShape, aShapePos ); break; }}
void D_CODE::DrawFlashedPolygon( GERBER_DRAW_ITEM* aParent, EDA_RECT* aClipBox, wxDC* aDC, COLOR4D aColor, bool aFilled, const wxPoint& aPosition ){ if( m_Polygon.OutlineCount() == 0 ) return;
int pointCount = m_Polygon.VertexCount(); std::vector<wxPoint> points; points.reserve( pointCount );
for( int ii = 0; ii < pointCount; ii++ ) { wxPoint p( m_Polygon.CVertex( ii ).x, m_Polygon.CVertex( ii ).y ); points[ii] = p + aPosition; points[ii] = aParent->GetABPosition( points[ii] ); }
GRClosedPoly( aClipBox, aDC, pointCount, &points[0], aFilled, aColor, aColor );}
// TODO(snh): Remove the hard-coded count
#define SEGS_CNT 64 // number of segments to approximate a circle
// A helper function for D_CODE::ConvertShapeToPolygon(). Add a hole to a polygon
static void addHoleToPolygon( SHAPE_POLY_SET* aPolygon, APERTURE_DEF_HOLETYPE aHoleShape, wxSize aSize, wxPoint aAnchorPos );
void D_CODE::ConvertShapeToPolygon(){ wxPoint initialpos; wxPoint currpos;
m_Polygon.RemoveAllContours();
switch( m_Shape ) { case APT_CIRCLE: // creates only a circle with rectangular hole
TransformCircleToPolygon( m_Polygon, initialpos, m_Size.x >> 1, ARC_HIGH_DEF ); addHoleToPolygon( &m_Polygon, m_DrillShape, m_Drill, initialpos ); break;
case APT_RECT: m_Polygon.NewOutline(); currpos.x = m_Size.x / 2; currpos.y = m_Size.y / 2; initialpos = currpos; m_Polygon.Append( VECTOR2I( currpos ) ); currpos.x -= m_Size.x; m_Polygon.Append( VECTOR2I( currpos ) ); currpos.y -= m_Size.y; m_Polygon.Append( VECTOR2I( currpos ) ); currpos.x += m_Size.x; m_Polygon.Append( VECTOR2I( currpos ) ); currpos.y += m_Size.y; m_Polygon.Append( VECTOR2I( currpos ) ); // close polygon
m_Polygon.Append( VECTOR2I( initialpos ) );
addHoleToPolygon( &m_Polygon, m_DrillShape, m_Drill, initialpos ); break;
case APT_OVAL: { m_Polygon.NewOutline(); int delta, radius;
// we create an horizontal oval shape. then rotate if needed
if( m_Size.x > m_Size.y ) // horizontal oval
{ delta = (m_Size.x - m_Size.y) / 2; radius = m_Size.y / 2; } else // vertical oval
{ delta = (m_Size.y - m_Size.x) / 2; radius = m_Size.x / 2; }
currpos.y = radius; initialpos = currpos; m_Polygon.Append( VECTOR2I( currpos ) );
// build the right arc of the shape
unsigned ii = 0;
for( ; ii <= SEGS_CNT / 2; ii++ ) { currpos = initialpos; RotatePoint( &currpos, ii * 3600.0 / SEGS_CNT ); currpos.x += delta; m_Polygon.Append( VECTOR2I( currpos ) ); }
// build the left arc of the shape
for( ii = SEGS_CNT / 2; ii <= SEGS_CNT; ii++ ) { currpos = initialpos; RotatePoint( &currpos, ii * 3600.0 / SEGS_CNT ); currpos.x -= delta; m_Polygon.Append( VECTOR2I( currpos ) ); }
m_Polygon.Append( VECTOR2I( initialpos ) ); // close outline
if( m_Size.y > m_Size.x ) // vertical oval, rotate polygon.
m_Polygon.Rotate( -M_PI / 2 );
addHoleToPolygon( &m_Polygon, m_DrillShape, m_Drill, initialpos ); } break;
case APT_POLYGON: m_Polygon.NewOutline(); currpos.x = m_Size.x >> 1; // first point is on X axis
initialpos = currpos;
// rs274x said: m_EdgesCount = 3 ... 12
if( m_EdgesCount < 3 ) m_EdgesCount = 3;
if( m_EdgesCount > 12 ) m_EdgesCount = 12;
for( int ii = 0; ii < m_EdgesCount; ii++ ) { currpos = initialpos; RotatePoint( &currpos, ii * 3600.0 / m_EdgesCount ); m_Polygon.Append( VECTOR2I( currpos ) ); }
addHoleToPolygon( &m_Polygon, m_DrillShape, m_Drill, initialpos );
if( m_Rotation ) // rotate polygonal shape:
{ double angle = m_Rotation * M_PI / 180; m_Polygon.Rotate( angle, VECTOR2I( 0, 0 ) ); }
break;
case APT_MACRO:
// TODO
break; }}
// The helper function for D_CODE::ConvertShapeToPolygon().
// Add a hole to a polygon
static void addHoleToPolygon( SHAPE_POLY_SET* aPolygon, APERTURE_DEF_HOLETYPE aHoleShape, wxSize aSize, wxPoint aAnchorPos ){ wxPoint currpos; SHAPE_POLY_SET holeBuffer;
if( aHoleShape == APT_DEF_ROUND_HOLE ) { TransformCircleToPolygon( holeBuffer, wxPoint( 0, 0 ), aSize.x / 2, ARC_HIGH_DEF ); } else if( aHoleShape == APT_DEF_RECT_HOLE ) { holeBuffer.NewOutline(); currpos.x = aSize.x / 2; currpos.y = aSize.y / 2; holeBuffer.Append( VECTOR2I( currpos ) ); // link to hole and begin hole
currpos.x -= aSize.x; holeBuffer.Append( VECTOR2I( currpos ) ); currpos.y -= aSize.y; holeBuffer.Append( VECTOR2I( currpos ) ); currpos.x += aSize.x; holeBuffer.Append( VECTOR2I( currpos ) ); currpos.y += aSize.y; holeBuffer.Append( VECTOR2I( currpos ) ); // close hole
}
aPolygon->BooleanSubtract( holeBuffer, SHAPE_POLY_SET::PM_FAST ); aPolygon->Fracture( SHAPE_POLY_SET::PM_FAST );}
|