|
|
/**
* @file ratsnest.cpp * @brief Ratsnets functions. */
#include <fctsys.h>
#include <gr_basic.h>
#include <common.h>
#include <class_drawpanel.h>
#include <colors_selection.h>
#include <wxBasePcbFrame.h>
#include <macros.h>
#include <class_board.h>
#include <class_module.h>
#include <class_track.h>
#include <pcbnew.h>
#include <minimun_spanning_tree.h>
/**
* @brief class MIN_SPAN_TREE_PADS (derived from MIN_SPAN_TREE) specialize * the basic class to calculate a minimum spanning tree from a list of pads, * and to add this tree as ratsnest to the main ratsnest list. */class MIN_SPAN_TREE_PADS: public MIN_SPAN_TREE{ friend class MIN_SPAN_TREE;public: std::vector <D_PAD*>* m_PadsList; // list of pads:
/* these pads are the parents of nodes of the tree.
* Each node position is the corresponding pad position. * This pad list is used to evaluate the weight of an edge in tree. * -> edge = link between 2 nodes = links between 2 pads. * -> weight of a link = rectilinear distance between the 2 pads */
public: MIN_SPAN_TREE_PADS(): MIN_SPAN_TREE() { m_PadsList = NULL; }
void MSP_Init( std::vector <D_PAD*>* aPadsList ) { m_PadsList = aPadsList; MIN_SPAN_TREE::MSP_Init( (int) m_PadsList->size() ); }
/**
* Function AddTreeToRatsnest * Adds the current minimum spanning tree as ratsnest items * to the main ratsnest list * @param aRatsnestList = the main ratsnest list */ void AddTreeToRatsnest( std::vector<RATSNEST_ITEM> &aRatsnestList );
/**
* Function GetWeight * calculates the weight between 2 items * NOTE: The weight between a node and itself should be 0 * @param aItem1 = first item * @param aItem2 = other item * @return the weight between items ( the rectilinear distance ) */ int GetWeight( int aItem1, int aItem2 );};
void MIN_SPAN_TREE_PADS::AddTreeToRatsnest( std::vector<RATSNEST_ITEM> &aRatsnestList ){ std::vector<D_PAD*> & padsBuffer = *m_PadsList; int netcode = padsBuffer[0]->GetNet(); // Note: to get edges in minimum spanning tree,
// the index value 0 is not used: it is just
// the entry point of the minimum spanning tree.
// The first edge (i.e. rastnest) starts at index 1
for( int ii = 1; ii < m_Size; ii++ ) { // Create the new ratsnest
RATSNEST_ITEM net; net.SetNet( netcode ); net.m_Status = CH_ACTIF | CH_VISIBLE; net.m_Lenght = GetDist(ii); net.m_PadStart = padsBuffer[ii]; net.m_PadEnd = padsBuffer[ GetWhoTo(ii) ]; aRatsnestList.push_back( net ); }}
/* Function GetWeight
* calculates the weight between 2 items * Here it calculate the rectilinear distance between 2 pads (2 items) * NOTE: The weight between a node and itself should be <=0 * aItem1 and aItem2 are the 2 items * return the rectilinear distance */int MIN_SPAN_TREE_PADS::GetWeight( int aItem1, int aItem2 ){ // NOTE: The distance (weight) between a node and itself should be 0
// so we add 1 to other distances to be sure we never have 0
// in cases other than a node and itself
D_PAD* pad1 = (*m_PadsList)[aItem1]; D_PAD* pad2 = (*m_PadsList)[aItem2];
if( pad1 == pad2 ) return 0; int weight = abs( pad2->GetPosition().x - pad1->GetPosition().x ) + abs( pad2->GetPosition().y - pad1->GetPosition().y ); return weight + 1;}
/* Note about the ratsnest computation:
* Building the general ratsnest: * For each net, the ratsnest is the set of lines connecting pads, * using the shorter distance * Therefore this problem is well known in graph therory, and sloved * using the "minimum spanning tree". * We use here an algorithm to build the minimum spanning tree known as Prim's algorithm */
/**
* Function Compile_Ratsnest * Create the entire board ratsnest. * Must be called after a board change (changes for * pads, footprints or a read netlist ). * @param aDC = the current device context (can be NULL) * @param aDisplayStatus : if true, display the computation results */void PCB_BASE_FRAME::Compile_Ratsnest( wxDC* aDC, bool aDisplayStatus ){ wxString msg;
GetBoard()->m_Status_Pcb = 0; // we want a full ratsnest computation, from the scratch
ClearMsgPanel();
// Rebuild the full pads and net info list
RecalculateAllTracksNetcode();
if( aDisplayStatus ) { msg.Printf( wxT( " %d" ), m_Pcb->GetPadCount() ); AppendMsgPanel( wxT( "Pads" ), msg, RED ); msg.Printf( wxT( " %d" ), m_Pcb->GetNetCount() ); AppendMsgPanel( wxT( "Nets" ), msg, CYAN ); }
/* Compute the full ratsnest
* which can be see like all the possible links or logical connections. * some of them are active (no track connected) and others are inactive * (when tracks connect pads) * This full ratsnest is not modified by track editing. * It changes only when a netlist is read, or footprints are modified */ Build_Board_Ratsnest();
// Compute the pad connections due to the existing tracks (physical connections)
TestConnections();
/* Compute the active ratsnest, i.e. the unconnected links
*/ TestForActiveLinksInRatsnest( 0 );
// Redraw the active ratsnest ( if enabled )
if( GetBoard()->IsElementVisible(RATSNEST_VISIBLE) && aDC ) DrawGeneralRatsnest( aDC, 0 );
if( aDisplayStatus ) SetMsgPanel( m_Pcb );}
/* Sort function used by QSORT
* Sort pads by net code */static bool sortByNetcode( const D_PAD* const & ref, const D_PAD* const & item ){ return ref->GetNet() < item->GetNet();}
/**
* Function to compute the full ratsnest * This is the "basic" ratsnest depending only on pads. * * Create the sorted pad list (if necessary) * The active pads (i.e included in a net ) are called nodes * This pad list is sorted by net codes * A ratsnest can be seen as a logical connection. * * Update : * nb_nodes = Active pads count for the board * nb_links = link count for the board (logical connection count) * (there are n-1 links in a net which counting n active pads) . */void PCB_BASE_FRAME::Build_Board_Ratsnest(){ D_PAD* pad; int noconn;
m_Pcb->SetUnconnectedNetCount( 0 );
m_Pcb->m_FullRatsnest.clear();
if( m_Pcb->GetPadCount() == 0 ) return;
// Created pad list and the net_codes if needed
if( (m_Pcb->m_Status_Pcb & NET_CODES_OK) == 0 ) m_Pcb->BuildListOfNets();
for( unsigned ii = 0; ii<m_Pcb->GetPadCount(); ++ii ) { pad = m_Pcb->GetPad( ii ); pad->SetSubRatsnest( 0 ); }
if( m_Pcb->GetNodesCount() == 0 ) return; // No useful connections.
// Ratsnest computation
unsigned current_net_code = 1; // First net code is analyzed.
// (net_code = 0 -> no connect)
noconn = 0; MIN_SPAN_TREE_PADS min_spanning_tree; for( ; current_net_code < m_Pcb->GetNetCount(); current_net_code++ ) { NETINFO_ITEM* net = m_Pcb->FindNet( current_net_code );
if( net == NULL ) //Should not occur
{ wxMessageBox( wxT( "Build_Board_Ratsnest() error: net not found" ) ); return; }
net->m_RatsnestStartIdx = m_Pcb->GetRatsnestsCount();
min_spanning_tree.MSP_Init( &net->m_PadInNetList ); min_spanning_tree.BuildTree(); min_spanning_tree.AddTreeToRatsnest( m_Pcb->m_FullRatsnest ); net->m_RatsnestEndIdx = m_Pcb->GetRatsnestsCount(); }
m_Pcb->SetUnconnectedNetCount( noconn ); m_Pcb->m_Status_Pcb |= LISTE_RATSNEST_ITEM_OK;
// Update the ratsnest display option (visible/invisible) flag
for( unsigned ii = 0; ii < m_Pcb->GetRatsnestsCount(); ii++ ) { if( !GetBoard()->IsElementVisible(RATSNEST_VISIBLE) ) // Clear VISIBLE flag
m_Pcb->m_FullRatsnest[ii].m_Status &= ~CH_VISIBLE; }}
/**
* function DrawGeneralRatsnest * Only ratsnest items with the status bit CH_VISIBLE set are displayed * @param aDC = the current device context (can be NULL) * @param aNetcode: if > 0, Display only the ratsnest relative to the * corresponding net_code */void PCB_BASE_FRAME::DrawGeneralRatsnest( wxDC* aDC, int aNetcode ){ if( ( m_Pcb->m_Status_Pcb & LISTE_RATSNEST_ITEM_OK ) == 0 ) return;
if( ( m_Pcb->m_Status_Pcb & DO_NOT_SHOW_GENERAL_RASTNEST ) ) return;
if( aDC == NULL ) return;
const int state = CH_VISIBLE | CH_ACTIF;
for( unsigned ii = 0; ii < m_Pcb->GetRatsnestsCount(); ii++ ) { RATSNEST_ITEM& item = m_Pcb->m_FullRatsnest[ii];
if( ( item.m_Status & state ) != state ) continue;
if( ( aNetcode <= 0 ) || ( aNetcode == item.GetNet() ) ) { item.Draw( m_canvas, aDC, GR_XOR, wxPoint( 0, 0 ) ); } }}
/**
* Function used by TestForActiveLinksInRatsnest * Function testing the ratsnest between 2 blocks ( of the same net ) * The search is made between pads in block 1 and the others blocks * The block n ( n > 1 ) is merged with block 1 and linked by the smallest ratsnest * between block 1 and the block n (activate the logical connection) * @param aRatsnestBuffer = the buffer to store NETINFO_ITEM* items * @param aNetinfo = the current NETINFO_ITEM for the current net * output: .state member, bit CH_ACTIF of the ratsnest item * @return last subratsnest id in use */static int tst_links_between_blocks( NETINFO_ITEM* aNetinfo, std::vector<RATSNEST_ITEM>& aRatsnestBuffer ){ int subratsnest_id, min_id; RATSNEST_ITEM* link, * best_link;
// Search a link from a block to an other block
best_link = NULL;
for( unsigned ii = aNetinfo->m_RatsnestStartIdx; ii < aNetinfo->m_RatsnestEndIdx; ii++ ) { link = &aRatsnestBuffer[ii];
// If this link joints 2 pads inside the same block, do nothing
// (these pads are already connected)
if( link->m_PadStart->GetSubRatsnest() == link->m_PadEnd->GetSubRatsnest() ) continue;
// This link joints 2 pads of different blocks: this is a candidate,
// but we want to select the shorter link, so use it only if it is shorter
// than the previous candidate:
if( best_link == NULL ) // no candidate
best_link = link; else if( best_link->m_Lenght > link->m_Lenght ) // It is a better candidate.
best_link = link; }
if( best_link == NULL ) return 1;
/* At this point we have found a link between 2 different blocks (subratsnest)
* we must set its status to ACTIVE and merge the 2 blocks */ best_link->m_Status |= CH_ACTIF; subratsnest_id = best_link->m_PadStart->GetSubRatsnest(); min_id = best_link->m_PadEnd->GetSubRatsnest();
if( min_id > subratsnest_id ) EXCHG( min_id, subratsnest_id );
// Merge the 2 blocks in one sub ratsnest:
for( unsigned ii = 0; ii < aNetinfo->m_PadInNetList.size(); ii++ ) { if( aNetinfo->m_PadInNetList[ii]->GetSubRatsnest() == subratsnest_id ) { aNetinfo->m_PadInNetList[ii]->SetSubRatsnest( min_id ); } }
return subratsnest_id;}
/**
* Function used by TestForActiveLinksInRatsnest_general * The general ratsnest list must exists because this function explores this ratsnest * Activates (i.e. set the CH_ACTIF flag) the ratsnest links between 2 pads when * at least one pad not already connected (SubRatsnest = 0) * and actives the corresponding link * * @param aFirstItem = starting address for the ratsnest list * @param aLastItem = ending address for the ratsnest list * @param aCurrSubRatsnestId = last sub ratsnest id in use (computed from the track * analysis) * * output: * ratsnest list (status member bit CH_ACTIF set) * and pads linked (m_SubRatsnest value set) * * @return new block number */static void tst_links_between_pads( int & aCurrSubRatsnestId, RATSNEST_ITEM* aFirstItem, RATSNEST_ITEM* aLastItem ){ for( RATSNEST_ITEM* item = aFirstItem; item < aLastItem; item++ ) { D_PAD* pad_start = item->m_PadStart; D_PAD* pad_end = item->m_PadEnd;
/* Update the current SubRatsnest if the 2 pads are not connected :
* a new cluster is created and the link activated */ if( (pad_start->GetSubRatsnest() == 0) && (pad_end->GetSubRatsnest() == 0) ) { aCurrSubRatsnestId++; pad_start->SetSubRatsnest( aCurrSubRatsnestId ); pad_end->SetSubRatsnest( aCurrSubRatsnestId ); item->m_Status |= CH_ACTIF; }
/* If a pad is already connected to a subratsnest: activate the link
* the pad other is merged in the existing subratsnest */ else if( pad_start->GetSubRatsnest() == 0 ) { pad_start->SetSubRatsnest( pad_end->GetSubRatsnest() ); item->m_Status |= CH_ACTIF; } else if( pad_end->GetSubRatsnest() == 0 ) { pad_end->SetSubRatsnest( pad_start->GetSubRatsnest() ); item->m_Status |= CH_ACTIF; } }}
/* function TestForActiveLinksInRatsnest
* determine the active links inside the full ratsnest * * I used an algorithm inspired by the "Lee algorithm". * The idea is all pads must be connected by a physical track or a logical track * a physical track is the existing track on copper layers. * a logical track is the link that must be activated (visible) if * no track found between 2 pads. * The algorithm explore the existing full ratnest * This is a 2 steps algorithm (executed for each net). * - First: * Initialise for each pad the subratsnest id to its subnet value * explore the full ratnest (relative to the net) and active a link each time at least one pad of * the given link is not connected to an other pad by a track ( subratsnest = 0) * If the 2 pads linked have both the subratsnest id = 0, a new subratsnest value is created * - Second: * explore the full ratnest (relative to the net) and find a link that links * 2 pads having different subratsnest values * Active the link and merge the 2 subratsnest value. * * This is usually fast because the ratsnest is not built here: it is just explored * to see what link must be activated */void PCB_BASE_FRAME::TestForActiveLinksInRatsnest( int aNetCode ){ RATSNEST_ITEM* rats; D_PAD* pad; NETINFO_ITEM* net;
if( m_Pcb->GetPadCount() == 0 ) return;
if( (m_Pcb->m_Status_Pcb & LISTE_RATSNEST_ITEM_OK) == 0 ) Build_Board_Ratsnest();
for( int net_code = 1; net_code < (int) m_Pcb->GetNetCount(); net_code++ ) { net = m_Pcb->FindNet( net_code );
wxCHECK_RET( net != NULL, wxString::Format( wxT( "Net code %d not found!" ), net_code ) );
if( aNetCode && (net_code != aNetCode) ) continue;
// Create subratsnests id from subnets created by existing tracks:
int subratsnest = 0; for( unsigned ip = 0; ip < net->m_PadInNetList.size(); ip++ ) { pad = net->m_PadInNetList[ip]; int subnet = pad->GetSubNet(); pad->SetSubRatsnest( subnet ); subratsnest = std::max( subratsnest, subnet ); }
for( unsigned ii = net->m_RatsnestStartIdx; ii < net->m_RatsnestEndIdx; ii++ ) { m_Pcb->m_FullRatsnest[ii].m_Status &= ~CH_ACTIF; }
// First pass - activate links for not connected pads
rats = &m_Pcb->m_FullRatsnest[0]; tst_links_between_pads( subratsnest, rats + net->m_RatsnestStartIdx, rats + net->m_RatsnestEndIdx );
// Second pass activate links between blocks (Iteration)
while( subratsnest > 1 ) { subratsnest = tst_links_between_blocks( net, m_Pcb->m_FullRatsnest ); } }
m_Pcb->SetUnconnectedNetCount( 0 );
unsigned cnt = 0;
for( unsigned ii = 0; ii < m_Pcb->GetRatsnestsCount(); ii++ ) { if( m_Pcb->m_FullRatsnest[ii].IsActive() ) cnt++; }
m_Pcb->SetUnconnectedNetCount( cnt );}
void PCB_BASE_FRAME::build_ratsnest_module( MODULE* aModule ){ // for local ratsnest calculation when moving a footprint:
// list of pads to use for this local ratsnets:
// this is the list of connected pads of the current module,
// and all pads connected to these pads:
static std::vector <D_PAD*> localPadList; static unsigned pads_module_count; // node count (node = pad with a net
// code) for the footprint being moved
static unsigned internalRatsCount; // number of internal links (links
// between pads of the module)
D_PAD* pad_ref; D_PAD* pad_externe; int current_net_code; int distance; wxPoint pad_pos; // True pad position according to the
// current footprint position
if( (GetBoard()->m_Status_Pcb & LISTE_PAD_OK) == 0 ) { GetBoard()->m_Status_Pcb = 0; GetBoard()->BuildListOfNets(); }
/* Compute the "local" ratsnest if needed (when this footprint starts move)
* and the list of external pads to consider, i.e pads in others * footprints which are "connected" to * a pad in the current footprint */ if( (m_Pcb->m_Status_Pcb & RATSNEST_ITEM_LOCAL_OK) == 0 ) { /* Compute the "internal" ratsnest, i.e the links between the current
* footprint pads */ localPadList.clear(); m_Pcb->m_LocalRatsnest.clear();
// collect active pads of the module:
for( pad_ref = aModule->Pads(); pad_ref != NULL; pad_ref = pad_ref->Next() ) { if( pad_ref->GetNet() == 0 ) continue;
localPadList.push_back( pad_ref ); pad_ref->SetSubRatsnest( 0 ); pad_ref->SetSubNet( 0 ); }
pads_module_count = localPadList.size();
if( pads_module_count == 0 ) return; // no connection!
sort( localPadList.begin(), localPadList.end(), sortByNetcode );
// Build the list of pads linked to the current footprint pads
current_net_code = 0;
for( unsigned ii = 0; ii < pads_module_count; ii++ ) { pad_ref = localPadList[ii];
if( pad_ref->GetNet() == current_net_code ) continue;
// A new net was found, load all pads of others modules members of this net:
NETINFO_ITEM* net = m_Pcb->FindNet( pad_ref->GetNet() );
if( net == NULL ) //Should not occur
{ wxMessageBox( wxT( "build_ratsnest_module() error: net not found" ) ); return; }
for( unsigned jj = 0; jj < net->m_PadInNetList.size(); jj++ ) { pad_externe = net->m_PadInNetList[jj];
if( pad_externe->GetParent() == aModule ) continue;
pad_externe->SetSubRatsnest( 0 ); pad_externe->SetSubNet( 0 );
localPadList.push_back( pad_externe ); } }
// Sort the pad list by net_code
sort( localPadList.begin() + pads_module_count, localPadList.end(), sortByNetcode );
/* Compute the internal rats nest:
* this is the same as general ratsnest, but considers only the current * footprint pads it is therefore not time consuming, and it is made only * once */ current_net_code = localPadList[0]->GetNet();
MIN_SPAN_TREE_PADS min_spanning_tree; std::vector<D_PAD*> padsBuffer; // contains pads of only one net
for( unsigned ii = 0; ii < pads_module_count; ii++ ) { // Search the end of pad list relative to the current net
unsigned jj = ii + 1;
for( ; jj <= pads_module_count; jj++ ) { if( jj >= pads_module_count ) break;
if( localPadList[jj]->GetNet() != current_net_code ) break; }
for(unsigned kk = ii; kk < jj; kk++ ) padsBuffer.push_back( localPadList[kk] ); min_spanning_tree.MSP_Init( &padsBuffer ); min_spanning_tree.BuildTree(); min_spanning_tree.AddTreeToRatsnest( m_Pcb->m_LocalRatsnest ); padsBuffer.clear(); ii = jj; if( ii < localPadList.size() ) current_net_code = localPadList[ii]->GetNet(); } internalRatsCount = m_Pcb->m_LocalRatsnest.size();
// set the flag LOCAL_RATSNEST_ITEM of the ratsnest status:
for( unsigned ii = 0; ii < m_Pcb->m_LocalRatsnest.size(); ii++ ) m_Pcb->m_LocalRatsnest[ii].m_Status = LOCAL_RATSNEST_ITEM;
m_Pcb->m_Status_Pcb |= RATSNEST_ITEM_LOCAL_OK; } // End of internal ratsnest build
/* This section computes the "external" ratsnest: it is done when the
* footprint position changes * * This section search: * for each current module pad the nearest neighbor external pad (of * course for the same net code). * For each current footprint cluster of pad (pads having the same net * code), * we search the smaller rats nest. * so, for each net, only one rats nest item is created */ RATSNEST_ITEM local_rats; local_rats.m_Lenght = INT_MAX; local_rats.m_Status = 0; bool addRats = false;
// Erase external ratsnest items:
if( internalRatsCount < m_Pcb->m_LocalRatsnest.size() ) m_Pcb->m_LocalRatsnest.erase( m_Pcb->m_LocalRatsnest.begin() + internalRatsCount, m_Pcb->m_LocalRatsnest.end() );
current_net_code = localPadList[0]->GetNet();
for( unsigned ii = 0; ii < pads_module_count; ii++ ) { pad_ref = localPadList[ii];
if( pad_ref->GetNet() != current_net_code ) { // if needed, creates a new ratsnest for the old net
if( addRats ) { m_Pcb->m_LocalRatsnest.push_back( local_rats ); }
addRats = false; current_net_code = pad_ref->GetNet(); local_rats.m_Lenght = INT_MAX; }
pad_pos = pad_ref->GetPosition() - g_Offset_Module;
// Search the nearest external pad of this current pad
for( unsigned jj = pads_module_count; jj < localPadList.size(); jj++ ) { pad_externe = localPadList[jj];
// we search pads having the same net code
if( pad_externe->GetNet() < pad_ref->GetNet() ) continue;
if( pad_externe->GetNet() > pad_ref->GetNet() ) // pads are sorted by net code
break;
distance = abs( pad_externe->GetPosition().x - pad_pos.x ) + abs( pad_externe->GetPosition().y - pad_pos.y );
if( distance < local_rats.m_Lenght ) { local_rats.m_PadStart = pad_ref; local_rats.m_PadEnd = pad_externe; local_rats.SetNet( pad_ref->GetNet() ); local_rats.m_Lenght = distance; local_rats.m_Status = 0;
addRats = true; } } }
if( addRats ) // Ensure the last created rats nest item is stored in buffer
m_Pcb->m_LocalRatsnest.push_back( local_rats );}
void PCB_BASE_FRAME::TraceModuleRatsNest( wxDC* DC ){ if( DC == NULL ) return;
if( ( m_Pcb->m_Status_Pcb & RATSNEST_ITEM_LOCAL_OK ) == 0 ) return;
EDA_COLOR_T tmpcolor = g_ColorsSettings.GetItemColor(RATSNEST_VISIBLE);
for( unsigned ii = 0; ii < m_Pcb->m_LocalRatsnest.size(); ii++ ) { RATSNEST_ITEM* rats = &m_Pcb->m_LocalRatsnest[ii];
if( rats->m_Status & LOCAL_RATSNEST_ITEM ) { g_ColorsSettings.SetItemColor(RATSNEST_VISIBLE, YELLOW); rats->Draw( m_canvas, DC, GR_XOR, g_Offset_Module ); } else { g_ColorsSettings.SetItemColor(RATSNEST_VISIBLE, tmpcolor);
wxPoint tmp = rats->m_PadStart->GetPosition();
rats->m_PadStart->SetPosition( tmp - g_Offset_Module ); rats->Draw( m_canvas, DC, GR_XOR, wxPoint( 0, 0 ) );
rats->m_PadStart->SetPosition( tmp ); } }
g_ColorsSettings.SetItemColor( RATSNEST_VISIBLE, tmpcolor );}
/*
* PCB_BASE_FRAME::BuildAirWiresTargetsList and * PCB_BASE_FRAME::TraceAirWiresToTargets * are 2 function to show the near connecting points when * a new track is created, by displaying g_MaxLinksShowed airwires * between the on grid mouse cursor and these connecting points * during the creation of a track */
/* Buffer to store pads coordinates when creating a track.
* these pads are members of the net * and when the mouse is moved, the g_MaxLinksShowed links to neighbors are * drawn */static std::vector <wxPoint> s_TargetsLocations;static wxPoint s_CursorPos; // Coordinate of the moving point (mouse cursor and
// end of current track segment)
/* Used by BuildAirWiresTargetsList(): sort function by link length
* (rectilinear distance between s_CursorPos and item pos) */static bool sort_by_distance( const wxPoint& ref, const wxPoint& compare ){ wxPoint deltaref = ref - s_CursorPos; // relative coordinate of ref
wxPoint deltacmp = compare - s_CursorPos; // relative coordinate of compare
// rectilinear distance between ref and s_CursorPos:
int lengthref = abs( deltaref.x ) + abs( deltaref.y );
// rectilinear distance between compare and s_CursorPos:
int lengthcmp = abs( deltacmp.x ) + abs( deltacmp.y );
return lengthref < lengthcmp;}static bool sort_by_point( const wxPoint& ref, const wxPoint& compare ){ if( ref.x == compare.x ) return ref.y < compare.y;
return ref.x < compare.x;}
/* Function BuildAirWiresTargetsList
* Build a list of candidates that can be a coonection point * when a track is started. * This functions prepares data to show airwires to nearest connecting points (pads) * from the current new track to candidates during track creation */void PCB_BASE_FRAME::BuildAirWiresTargetsList( BOARD_CONNECTED_ITEM* aItemRef, const wxPoint& aPosition, bool aInit ){ if( ( ( m_Pcb->m_Status_Pcb & LISTE_RATSNEST_ITEM_OK ) == 0 ) || ( ( m_Pcb->m_Status_Pcb & LISTE_PAD_OK ) == 0 ) || ( ( m_Pcb->m_Status_Pcb & NET_CODES_OK ) == 0 ) ) { s_TargetsLocations.clear(); return; }
s_CursorPos = aPosition; // needed for sort_by_distance
if( aInit ) { s_TargetsLocations.clear();
if( aItemRef == NULL ) return;
int net_code = aItemRef->GetNet(); int subnet = aItemRef->GetSubNet();
if( net_code <= 0 ) return;
NETINFO_ITEM* net = m_Pcb->FindNet( net_code );
if( net == NULL ) // Should not occur
{ wxMessageBox( wxT( "BuildAirWiresTargetsList() error: net not found" ) ); return; }
// Create a list of pads candidates ( pads not already connected to the
// current track ):
for( unsigned ii = 0; ii < net->m_PadInNetList.size(); ii++ ) { D_PAD* pad = net->m_PadInNetList[ii];
if( pad == aItemRef ) continue;
if( !pad->GetSubNet() || (pad->GetSubNet() != subnet) ) s_TargetsLocations.push_back( pad->GetPosition() ); }
// Create a list of tracks ends candidates, not already connected to the
// current track:
for( TRACK* track = m_Pcb->m_Track; track; track = track->Next() ) { if( track->GetNet() < net_code ) continue; if( track->GetNet() > net_code ) break;;
if( !track->GetSubNet() || (track->GetSubNet() != subnet) ) { if( aPosition != track->GetStart() ) s_TargetsLocations.push_back( track->GetStart() ); if( aPosition != track->GetEnd() && track->GetStart() != track->GetEnd() ) s_TargetsLocations.push_back( track->GetEnd() ); } }
// Remove duplicate targets, using the C++ unique algorithm
sort( s_TargetsLocations.begin(), s_TargetsLocations.end(), sort_by_point ); std::vector< wxPoint >::iterator it = unique( s_TargetsLocations.begin(), s_TargetsLocations.end() );
// Using the C++ unique algorithm only moves the duplicate entries to the end of
// of the array. This removes the duplicate entries from the array.
s_TargetsLocations.resize( it - s_TargetsLocations.begin() ); } // end if Init
// in all cases, sort by distances:
sort( s_TargetsLocations.begin(), s_TargetsLocations.end(), sort_by_distance );}
void PCB_BASE_FRAME::TraceAirWiresToTargets( wxDC* aDC ){ if( aDC == NULL ) return;
if( s_TargetsLocations.size() == 0 ) return;
GRSetDrawMode( aDC, GR_XOR );
for( int ii = 0; ii < (int) s_TargetsLocations.size(); ii++ ) { if( ii >= g_MaxLinksShowed ) break;
GRLine( m_canvas->GetClipBox(), aDC, s_CursorPos, s_TargetsLocations[ii], 0, YELLOW ); }}
|