|
|
/*
* KiRouter - a push-and-(sometimes-)shove PCB router * * Copyright (C) 2013-2014 CERN * Copyright (C) 2016 KiCad Developers, see AUTHORS.txt for contributors. * Author: Tomasz Wlostowski <tomasz.wlostowski@cern.ch> * * This program is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or (at your * option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <geometry/shape_line_chain.h>
#include <geometry/shape_rect.h>
#include <geometry/shape_simple.h>
#include <geometry/shape_file_io.h>
#include <cmath>
#include "pns_arc.h"
#include "pns_line.h"
#include "pns_diff_pair.h"
#include "pns_node.h"
#include "pns_solid.h"
#include "pns_optimizer.h"
#include "pns_utils.h"
#include "pns_router.h"
#include "pns_debug_decorator.h"
namespace PNS {
static DEBUG_DECORATOR *g_dbg;/**
* Cost Estimator Methods */int COST_ESTIMATOR::CornerCost( const SEG& aA, const SEG& aB ){ DIRECTION_45 dir_a( aA ), dir_b( aB );
switch( dir_a.Angle( dir_b ) ) { case DIRECTION_45::ANG_OBTUSE: return 10; case DIRECTION_45::ANG_STRAIGHT: return 5; case DIRECTION_45::ANG_ACUTE: return 50; case DIRECTION_45::ANG_RIGHT: return 30; case DIRECTION_45::ANG_HALF_FULL: return 60; default: return 100; }}
int COST_ESTIMATOR::CornerCost( const SHAPE_LINE_CHAIN& aLine ){ int total = 0;
for( int i = 0; i < aLine.SegmentCount() - 1; ++i ) total += CornerCost( aLine.CSegment( i ), aLine.CSegment( i + 1 ) );
return total;}
int COST_ESTIMATOR::CornerCost( const LINE& aLine ){ return CornerCost( aLine.CLine() );}
void COST_ESTIMATOR::Add( const LINE& aLine ){ m_lengthCost += aLine.CLine().Length(); m_cornerCost += CornerCost( aLine );}
void COST_ESTIMATOR::Remove( const LINE& aLine ){ m_lengthCost -= aLine.CLine().Length(); m_cornerCost -= CornerCost( aLine );}
void COST_ESTIMATOR::Replace( const LINE& aOldLine, const LINE& aNewLine ){ m_lengthCost -= aOldLine.CLine().Length(); m_cornerCost -= CornerCost( aOldLine ); m_lengthCost += aNewLine.CLine().Length(); m_cornerCost += CornerCost( aNewLine );}
bool COST_ESTIMATOR::IsBetter( const COST_ESTIMATOR& aOther, double aLengthTolerance, double aCornerTolerance ) const{ if( aOther.m_cornerCost < m_cornerCost && aOther.m_lengthCost < m_lengthCost ) return true;
else if( aOther.m_cornerCost < m_cornerCost * aCornerTolerance && aOther.m_lengthCost < m_lengthCost * aLengthTolerance ) return true;
return false;}
/**
* Optimizer **/OPTIMIZER::OPTIMIZER( NODE* aWorld ) : m_world( aWorld ), m_collisionKindMask( ITEM::ANY_T ), m_effortLevel( MERGE_SEGMENTS ){}
OPTIMIZER::~OPTIMIZER(){}
struct OPTIMIZER::CACHE_VISITOR{ CACHE_VISITOR( const ITEM* aOurItem, NODE* aNode, int aMask ) : m_ourItem( aOurItem ), m_collidingItem( NULL ), m_node( aNode ), m_mask( aMask ) {}
bool operator()( ITEM* aOtherItem ) { if( !( m_mask & aOtherItem->Kind() ) ) return true;
if( !aOtherItem->Collide( m_ourItem, m_node ) ) return true;
m_collidingItem = aOtherItem; return false; }
const ITEM* m_ourItem; ITEM* m_collidingItem; NODE* m_node; int m_mask;};
void OPTIMIZER::cacheAdd( ITEM* aItem, bool aIsStatic = false ){ if( m_cacheTags.find( aItem ) != m_cacheTags.end() ) return;
m_cache.Add( aItem ); m_cacheTags[aItem].m_hits = 1; m_cacheTags[aItem].m_isStatic = aIsStatic;}
void OPTIMIZER::removeCachedSegments( LINE* aLine, int aStartVertex, int aEndVertex ){ if( !aLine->IsLinked() ) return;
auto links = aLine->Links();
if( aEndVertex < 0 ) aEndVertex += aLine->PointCount();
for( int i = aStartVertex; i < aEndVertex - 1; i++ ) { LINKED_ITEM* s = links[i]; m_cacheTags.erase( s ); m_cache.Remove( s ); }}
void OPTIMIZER::CacheRemove( ITEM* aItem ){ if( aItem->Kind() == ITEM::LINE_T ) removeCachedSegments( static_cast<LINE*>( aItem ) );}
void OPTIMIZER::ClearCache( bool aStaticOnly ){ if( !aStaticOnly ) { m_cacheTags.clear(); m_cache.Clear(); return; }
for( auto i = m_cacheTags.begin(); i!= m_cacheTags.end(); ++i ) { if( i->second.m_isStatic ) { m_cache.Remove( i->first ); m_cacheTags.erase( i->first ); } }}
bool AREA_CONSTRAINT::Check( int aVertex1, int aVertex2, const LINE* aOriginLine, const SHAPE_LINE_CHAIN& aCurrentPath, const SHAPE_LINE_CHAIN& aReplacement ){ const VECTOR2I& p1 = aOriginLine->CPoint( aVertex1 ); const VECTOR2I& p2 = aOriginLine->CPoint( aVertex2 );
bool p1_in = m_allowedArea.Contains( p1 ); bool p2_in = m_allowedArea.Contains( p2 );
return p1_in || p2_in;}
bool PRESERVE_VERTEX_CONSTRAINT::Check( int aVertex1, int aVertex2, const LINE* aOriginLine, const SHAPE_LINE_CHAIN& aCurrentPath, const SHAPE_LINE_CHAIN& aReplacement ){ bool cv = false;
for( int i = aVertex1; i < aVertex2; i++ ) { SEG::ecoord dist = aCurrentPath.CSegment(i).SquaredDistance( m_v );
if ( dist <= 1 ) { cv = true; break; } }
if( !cv ) return true;
for( int i = 0; i < aReplacement.SegmentCount(); i++ ) { SEG::ecoord dist = aReplacement.CSegment(i).SquaredDistance( m_v );
if ( dist <= 1 ) return true; }
return false;}
bool RESTRICT_VERTEX_RANGE_CONSTRAINT::Check( int aVertex1, int aVertex2, const LINE* aOriginLine, const SHAPE_LINE_CHAIN& aCurrentPath, const SHAPE_LINE_CHAIN& aReplacement ){ return true;}
// fixme: integrate into SHAPE_LINE_CHAIN, check corner cases against current PointInside implementation
static bool pointInside2( const SHAPE_LINE_CHAIN& aL, const VECTOR2I& aP ){ if( !aL.IsClosed() || aL.SegmentCount() < 3 ) return false;
// returns 0 if false, +1 if true, -1 if pt ON polygon boundary
int result = 0; size_t cnt = aL.PointCount();
VECTOR2I ip = aL.CPoint( 0 );
for( size_t i = 1; i <= cnt; ++i ) { VECTOR2I ipNext = (i == cnt ? aL.CPoint( 0 ) : aL.CPoint( i ));
if( ipNext.y == aP.y ) { if( (ipNext.x ==aP.x) || ( ip.y == aP.y && ( (ipNext.x >aP.x) == (ip.x <aP.x) ) ) ) return -1; }
if( (ip.y <aP.y) != (ipNext.y <aP.y) ) { if( ip.x >=aP.x ) { if( ipNext.x >aP.x ) result = 1 - result; else { double d = static_cast<double>( ip.x - aP.x ) * static_cast<double>( ipNext.y - aP.y ) - static_cast<double>( ipNext.x - aP.x ) * static_cast<double>( ip.y - aP.y );
if( !d ) return -1;
if( (d > 0) == (ipNext.y > ip.y) ) result = 1 - result; } } else { if( ipNext.x >aP.x ) { double d = ((double)ip.x -aP.x) * ((double)ipNext.y -aP.y) - ((double)ipNext.x -aP.x) * ((double)ip.y -aP.y);
if( !d ) return -1;
if( (d > 0) == (ipNext.y > ip.y) ) result = 1 - result; } } }
ip = ipNext; }
return result > 0;}
bool KEEP_TOPOLOGY_CONSTRAINT::Check( int aVertex1, int aVertex2, const LINE* aOriginLine, const SHAPE_LINE_CHAIN& aCurrentPath, const SHAPE_LINE_CHAIN& aReplacement ){ SHAPE_LINE_CHAIN encPoly = aOriginLine->CLine().Slice( aVertex1, aVertex2 );
// fixme: this is a remarkably shitty implementation...
encPoly.Append( aReplacement.Reverse() ); encPoly.SetClosed( true );
BOX2I bb = encPoly.BBox(); std::vector<JOINT*> joints;
int cnt = m_world->QueryJoints( bb, joints, aOriginLine->Layers(), ITEM::SOLID_T );
if( !cnt ) return true;
for( JOINT* j : joints ) { if( j->Net() == aOriginLine->Net() ) continue;
if( pointInside2( encPoly, j->Pos() ) ) { bool falsePositive = false; for( int k = 0; k < encPoly.PointCount(); k++ ) { if( encPoly.CPoint(k) == j->Pos() ) { falsePositive = true; break; } }
if( !falsePositive ) { //dbg->AddPoint(j->Pos(), 5);
return false; } } }
return true;}
bool OPTIMIZER::checkColliding( ITEM* aItem, bool aUpdateCache ){ CACHE_VISITOR v( aItem, m_world, m_collisionKindMask );
return static_cast<bool>( m_world->CheckColliding( aItem ) );}
void OPTIMIZER::ClearConstraints(){ for( OPT_CONSTRAINT* c : m_constraints ) delete c;
m_constraints.clear();}
void OPTIMIZER::AddConstraint ( OPT_CONSTRAINT *aConstraint ){ m_constraints.push_back( aConstraint );}
bool OPTIMIZER::checkConstraints( int aVertex1, int aVertex2, LINE* aOriginLine, const SHAPE_LINE_CHAIN& aCurrentPath, const SHAPE_LINE_CHAIN& aReplacement ){ for( OPT_CONSTRAINT* c : m_constraints ) { if( !c->Check( aVertex1, aVertex2, aOriginLine, aCurrentPath, aReplacement ) ) return false; }
return true;}
bool OPTIMIZER::checkColliding( LINE* aLine, const SHAPE_LINE_CHAIN& aOptPath ){ LINE tmp( *aLine, aOptPath );
return checkColliding( &tmp );}
bool OPTIMIZER::mergeObtuse( LINE* aLine ){ SHAPE_LINE_CHAIN& line = aLine->Line();
int step = line.PointCount() - 3; int iter = 0; int segs_pre = line.SegmentCount();
if( step < 0 ) return false;
SHAPE_LINE_CHAIN current_path( line );
while( 1 ) { iter++; int n_segs = current_path.SegmentCount(); int max_step = n_segs - 2;
if( step > max_step ) step = max_step;
if( step < 2 ) { line = current_path; return current_path.SegmentCount() < segs_pre; }
bool found_anything = false;
for( int n = 0; n < n_segs - step; n++ ) { const SEG s1 = current_path.CSegment( n ); const SEG s2 = current_path.CSegment( n + step ); SEG s1opt, s2opt;
if( DIRECTION_45( s1 ).IsObtuse( DIRECTION_45( s2 ) ) ) { VECTOR2I ip = *s1.IntersectLines( s2 );
s1opt = SEG( s1.A, ip ); s2opt = SEG( ip, s2.B );
if( DIRECTION_45( s1opt ).IsObtuse( DIRECTION_45( s2opt ) ) ) { SHAPE_LINE_CHAIN opt_path; opt_path.Append( s1opt.A ); opt_path.Append( s1opt.B ); opt_path.Append( s2opt.B );
LINE opt_track( *aLine, opt_path );
if( !checkColliding( &opt_track ) ) { current_path.Replace( s1.Index() + 1, s2.Index(), ip ); // removeCachedSegments(aLine, s1.Index(), s2.Index());
n_segs = current_path.SegmentCount(); found_anything = true; break; } } } }
if( !found_anything ) { if( step <= 2 ) { line = current_path; return line.SegmentCount() < segs_pre; }
step--; } }
return line.SegmentCount() < segs_pre;}
bool OPTIMIZER::mergeFull( LINE* aLine ){ SHAPE_LINE_CHAIN& line = aLine->Line(); int step = line.SegmentCount() - 1;
int segs_pre = line.SegmentCount();
line.Simplify();
if( step < 0 ) return false;
SHAPE_LINE_CHAIN current_path( line );
while( 1 ) { int n_segs = current_path.SegmentCount(); int max_step = n_segs - 2;
if( step > max_step ) step = max_step;
if( step < 1 ) break;
bool found_anything = mergeStep( aLine, current_path, step );
if( !found_anything ) step--;
if( !step ) break; }
aLine->SetShape( current_path );
return current_path.SegmentCount() < segs_pre;}
bool OPTIMIZER::mergeColinear( LINE* aLine ){ SHAPE_LINE_CHAIN& line = aLine->Line();
int nSegs = line.SegmentCount();
for( int segIdx = 0; segIdx < line.SegmentCount() - 1; ++segIdx ) { SEG s1 = line.CSegment( segIdx ); SEG s2 = line.CSegment( segIdx + 1 );
if( s1.Collinear( s2 ) ) line.Replace( segIdx, segIdx + 1, s1.A ); }
return line.SegmentCount() < nSegs;}
bool OPTIMIZER::Optimize( LINE* aLine, LINE* aResult ){ if( !aResult ) { aResult = aLine; } else { *aResult = *aLine; aResult->ClearLinks(); }
bool hasArcs = aLine->ArcCount(); bool rv = false;
if( m_effortLevel & PRESERVE_VERTEX ) { auto c = new PRESERVE_VERTEX_CONSTRAINT( m_world, m_preservedVertex ); AddConstraint( c ); } if( m_effortLevel & RESTRICT_VERTEX_RANGE ) { auto c = new RESTRICT_VERTEX_RANGE_CONSTRAINT( m_world, m_restrictedVertexRange.first, m_restrictedVertexRange.second ); AddConstraint( c ); }
if( m_effortLevel & KEEP_TOPOLOGY ) { auto c = new KEEP_TOPOLOGY_CONSTRAINT( m_world ); AddConstraint( c ); }
// TODO: Fix for arcs
if( !hasArcs && m_effortLevel & MERGE_SEGMENTS ) rv |= mergeFull( aResult );
// TODO: Fix for arcs
if( !hasArcs && m_effortLevel & MERGE_OBTUSE ) rv |= mergeObtuse( aResult );
if( m_effortLevel & MERGE_COLINEAR ) rv |= mergeColinear( aResult );
// TODO: Fix for arcs
if( !hasArcs && m_effortLevel & SMART_PADS ) rv |= runSmartPads( aResult );
// TODO: Fix for arcs
if( !hasArcs && m_effortLevel & FANOUT_CLEANUP ) rv |= fanoutCleanup( aResult );
return rv;}
bool OPTIMIZER::mergeStep( LINE* aLine, SHAPE_LINE_CHAIN& aCurrentPath, int step ){ int n_segs = aCurrentPath.SegmentCount();
int cost_orig = COST_ESTIMATOR::CornerCost( aCurrentPath );
if( aLine->SegmentCount() < 2 ) return false;
DIRECTION_45 orig_start( aLine->CSegment( 0 ) ); DIRECTION_45 orig_end( aLine->CSegment( -1 ) );
for( int n = 0; n < n_segs - step; n++ ) { // Do not attempt to merge false segments that are part of an arc
if( aCurrentPath.isArc( n ) || aCurrentPath.isArc( static_cast<std::size_t>( n ) + step ) ) continue;
const SEG s1 = aCurrentPath.CSegment( n ); const SEG s2 = aCurrentPath.CSegment( n + step );
SHAPE_LINE_CHAIN path[2]; SHAPE_LINE_CHAIN* picked = NULL; int cost[2];
for( int i = 0; i < 2; i++ ) { SHAPE_LINE_CHAIN bypass = DIRECTION_45().BuildInitialTrace( s1.A, s2.B, i ); cost[i] = INT_MAX;
bool ok = false; if( !checkColliding( aLine, bypass ) ) { ok = checkConstraints ( n, n + step + 1, aLine, aCurrentPath, bypass ); }
if( ok ) { path[i] = aCurrentPath; path[i].Replace( s1.Index(), s2.Index(), bypass ); path[i].Simplify(); cost[i] = COST_ESTIMATOR::CornerCost( path[i] ); } }
if( cost[0] < cost_orig && cost[0] < cost[1] ) picked = &path[0]; else if( cost[1] < cost_orig ) picked = &path[1];
if( picked ) { n_segs = aCurrentPath.SegmentCount(); aCurrentPath = *picked; return true; } }
return false;}
OPTIMIZER::BREAKOUT_LIST OPTIMIZER::circleBreakouts( int aWidth, const SHAPE* aShape, bool aPermitDiagonal ) const{ BREAKOUT_LIST breakouts;
for( int angle = 0; angle < 360; angle += 45 ) { const SHAPE_CIRCLE* cir = static_cast<const SHAPE_CIRCLE*>( aShape ); SHAPE_LINE_CHAIN l; VECTOR2I p0 = cir->GetCenter(); VECTOR2I v0( cir->GetRadius() * M_SQRT2, 0 );
l.Append( p0 ); l.Append( p0 + v0.Rotate( angle * M_PI / 180.0 ) ); breakouts.push_back( l ); }
return breakouts;}
OPTIMIZER::BREAKOUT_LIST OPTIMIZER::customBreakouts( int aWidth, const ITEM* aItem, bool aPermitDiagonal ) const{ BREAKOUT_LIST breakouts; const SHAPE_SIMPLE* convex = static_cast<const SHAPE_SIMPLE*>( aItem->Shape() );
BOX2I bbox = convex->BBox( 0 ); VECTOR2I p0 = static_cast<const SOLID*>( aItem )->Pos(); // must be large enough to guarantee intersecting the convex polygon
int length = std::max( bbox.GetWidth(), bbox.GetHeight() ) / 2 + 5;
for( int angle = 0; angle < 360; angle += ( aPermitDiagonal ? 45 : 90 ) ) { SHAPE_LINE_CHAIN l; VECTOR2I v0( p0 + VECTOR2I( length, 0 ).Rotate( angle * M_PI / 180.0 ) ); SHAPE_LINE_CHAIN::INTERSECTIONS intersections; int n = convex->Vertices().Intersect( SEG( p0, v0 ), intersections ); // if n == 1 intersected a segment
// if n == 2 intersected the common point of 2 segments
// n == 0 can not happen I think, but...
if( n > 0 ) { l.Append( p0 );
// for a breakout distance relative to the distance between
// center and polygon edge
//l.Append( intersections[0].p + (v0 - p0).Resize( (intersections[0].p - p0).EuclideanNorm() * 0.4 ) );
// for an absolute breakout distance, e.g. 0.1 mm
//l.Append( intersections[0].p + (v0 - p0).Resize( 100000 ) );
// for the breakout right on the polygon edge
l.Append( intersections[0].p );
breakouts.push_back( l ); } }
return breakouts;}
OPTIMIZER::BREAKOUT_LIST OPTIMIZER::rectBreakouts( int aWidth, const SHAPE* aShape, bool aPermitDiagonal ) const{ const SHAPE_RECT* rect = static_cast<const SHAPE_RECT*>(aShape); VECTOR2I s = rect->GetSize(); VECTOR2I c = rect->GetPosition() + VECTOR2I( s.x / 2, s.y / 2 ); BREAKOUT_LIST breakouts;
VECTOR2I d_offset;
d_offset.x = ( s.x > s.y ) ? ( s.x - s.y ) / 2 : 0; d_offset.y = ( s.x < s.y ) ? ( s.y - s.x ) / 2 : 0;
VECTOR2I d_vert = VECTOR2I( 0, s.y / 2 + aWidth ); VECTOR2I d_horiz = VECTOR2I( s.x / 2 + aWidth, 0 );
breakouts.push_back( SHAPE_LINE_CHAIN( { c, c + d_horiz } ) ); breakouts.push_back( SHAPE_LINE_CHAIN( { c, c - d_horiz } ) ); breakouts.push_back( SHAPE_LINE_CHAIN( { c, c + d_vert } ) ); breakouts.push_back( SHAPE_LINE_CHAIN( { c, c - d_vert } ) );
if( aPermitDiagonal ) { int l = aWidth + std::min( s.x, s.y ) / 2; VECTOR2I d_diag;
if( s.x >= s.y ) { breakouts.push_back( SHAPE_LINE_CHAIN( { c, c + d_offset, c + d_offset + VECTOR2I( l, l ) } ) ); breakouts.push_back( SHAPE_LINE_CHAIN( { c, c + d_offset, c + d_offset - VECTOR2I( -l, l ) } ) ); breakouts.push_back( SHAPE_LINE_CHAIN( { c, c - d_offset, c - d_offset + VECTOR2I( -l, l ) } ) ); breakouts.push_back( SHAPE_LINE_CHAIN( { c, c - d_offset, c - d_offset - VECTOR2I( l, l ) } ) ); } else { // fixme: this could be done more efficiently
breakouts.push_back( SHAPE_LINE_CHAIN( { c, c + d_offset, c + d_offset + VECTOR2I( l, l ) } ) ); breakouts.push_back( SHAPE_LINE_CHAIN( { c, c - d_offset, c - d_offset - VECTOR2I( -l, l ) } ) ); breakouts.push_back( SHAPE_LINE_CHAIN( { c, c + d_offset, c + d_offset + VECTOR2I( -l, l ) } ) ); breakouts.push_back( SHAPE_LINE_CHAIN( { c, c - d_offset, c - d_offset - VECTOR2I( l, l ) } ) ); } }
return breakouts;}
OPTIMIZER::BREAKOUT_LIST OPTIMIZER::computeBreakouts( int aWidth, const ITEM* aItem, bool aPermitDiagonal ) const{ switch( aItem->Kind() ) { case ITEM::VIA_T: { const VIA* via = static_cast<const VIA*>( aItem ); return circleBreakouts( aWidth, via->Shape(), aPermitDiagonal ); }
case ITEM::SOLID_T: { const SHAPE* shape = aItem->Shape();
switch( shape->Type() ) { case SH_RECT: return rectBreakouts( aWidth, shape, aPermitDiagonal );
case SH_SEGMENT: { const SHAPE_SEGMENT* seg = static_cast<const SHAPE_SEGMENT*> (shape); const SHAPE_RECT rect = ApproximateSegmentAsRect ( *seg ); return rectBreakouts( aWidth, &rect, aPermitDiagonal ); }
case SH_CIRCLE: return circleBreakouts( aWidth, shape, aPermitDiagonal );
case SH_SIMPLE: return customBreakouts( aWidth, aItem, aPermitDiagonal );
default: break; }
break; }
default: break; }
return BREAKOUT_LIST();}
ITEM* OPTIMIZER::findPadOrVia( int aLayer, int aNet, const VECTOR2I& aP ) const{ JOINT* jt = m_world->FindJoint( aP, aLayer, aNet );
if( !jt ) return NULL;
for( ITEM* item : jt->LinkList() ) { if( item->OfKind( ITEM::VIA_T | ITEM::SOLID_T ) ) return item; }
return NULL;}
int OPTIMIZER::smartPadsSingle( LINE* aLine, ITEM* aPad, bool aEnd, int aEndVertex ){ DIRECTION_45 dir;
const int ForbiddenAngles = DIRECTION_45::ANG_ACUTE | DIRECTION_45::ANG_RIGHT | DIRECTION_45::ANG_HALF_FULL | DIRECTION_45::ANG_UNDEFINED;
typedef std::tuple<int, long long int, SHAPE_LINE_CHAIN> RtVariant; std::vector<RtVariant> variants;
SOLID* solid = dyn_cast<SOLID*>( aPad );
// don't do optimized connections for offset pads
if( solid && solid->Offset() != VECTOR2I( 0, 0 ) ) return -1;
// don't do optimization on vias, they are always round at the moment and the optimizer
// will possibly mess up an intended via exit posture
if( aPad->Kind() == ITEM::VIA_T ) return -1;
BREAKOUT_LIST breakouts = computeBreakouts( aLine->Width(), aPad, true ); SHAPE_LINE_CHAIN line = ( aEnd ? aLine->CLine().Reverse() : aLine->CLine() ); int p_end = std::min( aEndVertex, std::min( 3, line.PointCount() - 1 ) );
// Start at 1 to find a potentially better breakout (0 is the pad connection)
for( int p = 1; p <= p_end; p++ ) { // If the line is contained inside the pad, don't optimize
if( solid && solid->Shape() && !solid->Shape()->Collide( SEG( line.CPoint( 0 ), line.CPoint( p ) ), aLine->Width() / 2 ) ) { continue; }
for( SHAPE_LINE_CHAIN & breakout : breakouts ) { for( int diag = 0; diag < 2; diag++ ) { SHAPE_LINE_CHAIN v; SHAPE_LINE_CHAIN connect = dir.BuildInitialTrace( breakout.CPoint( -1 ), line.CPoint( p ), diag == 0 );
DIRECTION_45 dir_bkout( breakout.CSegment( -1 ) );
if( !connect.SegmentCount() ) continue;
int ang1 = dir_bkout.Angle( DIRECTION_45( connect.CSegment( 0 ) ) );
if( ang1 & ForbiddenAngles ) continue;
if( breakout.Length() > line.Length() ) continue;
v = breakout; v.Append( connect );
for( int i = p + 1; i < line.PointCount(); i++ ) v.Append( line.CPoint( i ) );
LINE tmp( *aLine, v ); int cc = tmp.CountCorners( ForbiddenAngles );
if( cc == 0 ) { RtVariant vp; std::get<0>( vp ) = p; std::get<1>( vp ) = breakout.Length(); std::get<2>( vp ) = aEnd ? v.Reverse() : v; std::get<2>( vp ).Simplify(); variants.push_back( vp ); } } } }
// We attempt to minimize the corner cost (minimizes the segments and types of corners)
// but given two, equally valid costs, we want to pick the longer pad exit. The logic
// here is that if the pad is oblong, the track should not exit the shorter side and parallel
// the pad but should follow the pad's preferential direction before exiting.
// The baseline guess is to start with the existing line the user has drawn.
int min_cost = COST_ESTIMATOR::CornerCost( *aLine ); long long int max_length = 0; bool found = false; int p_best = -1; SHAPE_LINE_CHAIN l_best;
for( RtVariant& vp : variants ) { LINE tmp( *aLine, std::get<2>( vp ) ); int cost = COST_ESTIMATOR::CornerCost( std::get<2>( vp ) ); long long int len = std::get<1>( vp );
if( !checkColliding( &tmp ) ) { if( cost < min_cost || ( cost == min_cost && len > max_length ) ) { l_best = std::get<2>( vp ); p_best = std::get<0>( vp ); found = true;
if( cost <= min_cost ) max_length = std::max<int>( len, max_length );
min_cost = std::min( cost, min_cost ); } } }
if( found ) { aLine->SetShape( l_best ); return p_best; }
return -1;}
bool OPTIMIZER::runSmartPads( LINE* aLine ){ SHAPE_LINE_CHAIN& line = aLine->Line();
if( line.PointCount() < 3 ) return false;
VECTOR2I p_start = line.CPoint( 0 ), p_end = line.CPoint( -1 );
ITEM* startPad = findPadOrVia( aLine->Layer(), aLine->Net(), p_start ); ITEM* endPad = findPadOrVia( aLine->Layer(), aLine->Net(), p_end );
int vtx = -1;
if( startPad ) vtx = smartPadsSingle( aLine, startPad, false, 3 );
if( endPad ) smartPadsSingle( aLine, endPad, true, vtx < 0 ? line.PointCount() - 1 : line.PointCount() - 1 - vtx );
aLine->Line().Simplify();
return true;}
bool OPTIMIZER::Optimize( LINE* aLine, int aEffortLevel, NODE* aWorld, const VECTOR2I aV ){ OPTIMIZER opt( aWorld );
g_dbg = ROUTER::GetInstance()->GetInterface()->GetDebugDecorator();
opt.SetEffortLevel( aEffortLevel ); opt.SetCollisionMask( -1 );
if( aEffortLevel & OPTIMIZER::PRESERVE_VERTEX ) opt.SetPreserveVertex( aV );
return opt.Optimize( aLine );}
bool OPTIMIZER::fanoutCleanup( LINE* aLine ){ if( aLine->PointCount() < 3 ) return false;
VECTOR2I p_start = aLine->CPoint( 0 ), p_end = aLine->CPoint( -1 );
ITEM* startPad = findPadOrVia( aLine->Layer(), aLine->Net(), p_start ); ITEM* endPad = findPadOrVia( aLine->Layer(), aLine->Net(), p_end );
int thr = aLine->Width() * 10; int len = aLine->CLine().Length();
if( !startPad ) return false;
bool startMatch = startPad->OfKind( ITEM::VIA_T | ITEM::SOLID_T ); bool endMatch = false;
if(endPad) { endMatch = endPad->OfKind( ITEM::VIA_T | ITEM::SOLID_T ); } else { endMatch = aLine->EndsWithVia(); }
if( startMatch && endMatch && len < thr ) { for( int i = 0; i < 2; i++ ) { SHAPE_LINE_CHAIN l2 = DIRECTION_45().BuildInitialTrace( p_start, p_end, i ); LINE repl; repl = LINE( *aLine, l2 );
if( !m_world->CheckColliding( &repl ) ) { aLine->SetShape( repl.CLine() ); return true; } } }
return false;}
int findCoupledVertices( const VECTOR2I& aVertex, const SEG& aOrigSeg, const SHAPE_LINE_CHAIN& aCoupled, DIFF_PAIR* aPair, int* aIndices ){ int count = 0;
for( int i = 0; i < aCoupled.SegmentCount(); i++ ) { SEG s = aCoupled.CSegment( i ); VECTOR2I projOverCoupled = s.LineProject ( aVertex );
if( s.ApproxParallel( aOrigSeg ) ) { int64_t dist = int64_t{(( projOverCoupled - aVertex ).EuclideanNorm())} - aPair->Width();
if( aPair->GapConstraint().Matches( dist ) ) { *aIndices++ = i; count++; } } }
return count;}
bool verifyDpBypass( NODE* aNode, DIFF_PAIR* aPair, bool aRefIsP, const SHAPE_LINE_CHAIN& aNewRef, const SHAPE_LINE_CHAIN& aNewCoupled ){ LINE refLine ( aRefIsP ? aPair->PLine() : aPair->NLine(), aNewRef ); LINE coupledLine ( aRefIsP ? aPair->NLine() : aPair->PLine(), aNewCoupled );
if( refLine.Collide( &coupledLine, aNode ) ) return false;
if( aNode->CheckColliding ( &refLine ) ) return false;
if( aNode->CheckColliding ( &coupledLine ) ) return false;
return true;}
bool coupledBypass( NODE* aNode, DIFF_PAIR* aPair, bool aRefIsP, const SHAPE_LINE_CHAIN& aRef, const SHAPE_LINE_CHAIN& aRefBypass, const SHAPE_LINE_CHAIN& aCoupled, SHAPE_LINE_CHAIN& aNewCoupled ){ int vStartIdx[1024]; // fixme: possible overflow
int nStarts = findCoupledVertices( aRefBypass.CPoint( 0 ), aRefBypass.CSegment( 0 ), aCoupled, aPair, vStartIdx ); DIRECTION_45 dir( aRefBypass.CSegment( 0 ) );
int64_t bestLength = -1; bool found = false; SHAPE_LINE_CHAIN bestBypass; int si, ei;
for( int i=0; i< nStarts; i++ ) { for( int j = 1; j < aCoupled.PointCount() - 1; j++ ) { int delta = std::abs ( vStartIdx[i] - j );
if( delta > 1 ) { const VECTOR2I& vs = aCoupled.CPoint( vStartIdx[i] ); SHAPE_LINE_CHAIN bypass = dir.BuildInitialTrace( vs, aCoupled.CPoint(j), dir.IsDiagonal() );
int64_t coupledLength = aPair->CoupledLength( aRef, bypass );
SHAPE_LINE_CHAIN newCoupled = aCoupled;
si = vStartIdx[i]; ei = j;
if(si < ei) newCoupled.Replace( si, ei, bypass ); else newCoupled.Replace( ei, si, bypass.Reverse() );
if( coupledLength > bestLength && verifyDpBypass( aNode, aPair, aRefIsP, aRef, newCoupled) ) { bestBypass = newCoupled; bestLength = coupledLength; found = true; } } } }
if( found ) aNewCoupled = bestBypass;
return found;}
bool checkDpColliding( NODE* aNode, DIFF_PAIR* aPair, bool aIsP, const SHAPE_LINE_CHAIN& aPath ){ LINE tmp ( aIsP ? aPair->PLine() : aPair->NLine(), aPath );
return static_cast<bool>( aNode->CheckColliding( &tmp ) );}
bool OPTIMIZER::mergeDpStep( DIFF_PAIR* aPair, bool aTryP, int step ){ int n = 1;
SHAPE_LINE_CHAIN currentPath = aTryP ? aPair->CP() : aPair->CN(); SHAPE_LINE_CHAIN coupledPath = aTryP ? aPair->CN() : aPair->CP();
int n_segs = currentPath.SegmentCount() - 1;
int64_t clenPre = aPair->CoupledLength( currentPath, coupledPath ); int64_t budget = clenPre / 10; // fixme: come up with somethig more intelligent here...
while( n < n_segs - step ) { const SEG s1 = currentPath.CSegment( n ); const SEG s2 = currentPath.CSegment( n + step );
DIRECTION_45 dir1( s1 ); DIRECTION_45 dir2( s2 );
if( dir1.IsObtuse( dir2 ) ) { SHAPE_LINE_CHAIN bypass = DIRECTION_45().BuildInitialTrace( s1.A, s2.B, dir1.IsDiagonal() ); SHAPE_LINE_CHAIN newRef; SHAPE_LINE_CHAIN newCoup; int64_t deltaCoupled = -1, deltaUni = -1;
newRef = currentPath; newRef.Replace( s1.Index(), s2.Index(), bypass );
deltaUni = aPair->CoupledLength ( newRef, coupledPath ) - clenPre + budget;
if( coupledBypass( m_world, aPair, aTryP, newRef, bypass, coupledPath, newCoup ) ) { deltaCoupled = aPair->CoupledLength( newRef, newCoup ) - clenPre + budget;
if( deltaCoupled >= 0 ) { newRef.Simplify(); newCoup.Simplify();
aPair->SetShape( newRef, newCoup, !aTryP ); return true; } } else if( deltaUni >= 0 && verifyDpBypass( m_world, aPair, aTryP, newRef, coupledPath ) ) { newRef.Simplify(); coupledPath.Simplify();
aPair->SetShape( newRef, coupledPath, !aTryP ); return true; } }
n++; }
return false;}
bool OPTIMIZER::mergeDpSegments( DIFF_PAIR* aPair ){ int step_p = aPair->CP().SegmentCount() - 2; int step_n = aPair->CN().SegmentCount() - 2;
while( 1 ) { int n_segs_p = aPair->CP().SegmentCount(); int n_segs_n = aPair->CN().SegmentCount();
int max_step_p = n_segs_p - 2; int max_step_n = n_segs_n - 2;
if( step_p > max_step_p ) step_p = max_step_p;
if( step_n > max_step_n ) step_n = max_step_n;
if( step_p < 1 && step_n < 1) break;
bool found_anything_p = false; bool found_anything_n = false;
if( step_p > 1 ) found_anything_p = mergeDpStep( aPair, true, step_p );
if( step_n > 1 ) found_anything_n = mergeDpStep( aPair, false, step_n );
if( !found_anything_n && !found_anything_p ) { step_n--; step_p--; } } return true;}
bool OPTIMIZER::Optimize( DIFF_PAIR* aPair ){ return mergeDpSegments( aPair );}
static int64_t shovedArea( const SHAPE_LINE_CHAIN& aOld, const SHAPE_LINE_CHAIN& aNew ){ int64_t area = 0; const int oc = aOld.PointCount(); const int nc = aNew.PointCount(); const int total = oc + nc;
for(int i = 0; i < total; i++) { int i_next = (i + 1 == total ? 0 : i + 1);
const VECTOR2I &v0 = i < oc ? aOld.CPoint(i) : aNew.CPoint( nc - 1 - (i - oc) ); const VECTOR2I &v1 = i_next < oc ? aOld.CPoint ( i_next ) : aNew.CPoint( nc - 1 - (i_next - oc) ); area += -(int64_t) v0.y * v1.x + (int64_t) v0.x * v1.y; }
return std::abs(area / 2);}
bool tightenSegment( bool dir, NODE *aNode, const LINE& cur, const SHAPE_LINE_CHAIN& in, SHAPE_LINE_CHAIN& out ){ SEG a = in.CSegment(0); SEG center = in.CSegment(1); SEG b = in.CSegment(2);
DIRECTION_45 dirA ( a ); DIRECTION_45 dirCenter ( center ); DIRECTION_45 dirB ( b );
if (!dirA.IsObtuse( dirCenter) || !dirCenter.IsObtuse(dirB)) return false;
//VECTOR2I perp = (center.B - center.A).Perpendicular();
VECTOR2I guideA, guideB ;
SEG guide; int initial;
//auto dbg = ROUTER::GetInstance()->GetInterface()->GetDebugDecorator();
if ( dirA.Angle ( dirB ) != DIRECTION_45::ANG_RIGHT ) return false;
{ /*
auto rC = *a.IntersectLines( b ); dbg->AddSegment ( SEG( center.A, rC ), 1 ); dbg->AddSegment ( SEG( center.B, rC ), 2 ); auto perp = dirCenter.Left().Left();
SEG sperp ( center.A, center.A + perp.ToVector() );
auto vpc = sperp.LineProject( rC ); auto vpa = sperp.LineProject( a.A ); auto vpb = sperp.LineProject( b.B );
auto da = (vpc - vpa).EuclideanNorm(); auto db = (vpc - vpb).EuclideanNorm();
auto vp = (da < db) ? vpa : vpb; dbg->AddSegment ( SEG( vpc, vp ), 5 );
guide = SEG ( vpc, vp ); */ }
int da = a.Length(); int db = b.Length();
if( da < db ) guide = a; else guide = b;
initial = guide.Length();
int step = initial; int current = step; SHAPE_LINE_CHAIN snew;
while( step > 1 ) { LINE l( cur );
snew.Clear(); snew.Append( a.A ); snew.Append( a.B + (a.A - a.B).Resize( current ) ); snew.Append( b.A + (b.B - b.A).Resize( current ) ); snew.Append( b.B );
step /= 2;
l.SetShape(snew);
if( aNode->CheckColliding(&l) ) current -= step; else if ( current + step >= initial ) current = initial; else current += step;
//dbg->AddSegment ( SEG( center.A , a.LineProject( center.A + gr ) ), 3 );
//dbg->AddSegment ( SEG( center.A , center.A + guideA ), 3 );
//dbg->AddSegment ( SEG( center.B , center.B + guideB ), 4 );
if ( current == initial ) break;
} out = snew;
//dbg->AddLine ( snew, 3, 100000 );
return true;}
void Tighten( NODE *aNode, const SHAPE_LINE_CHAIN& aOldLine, const LINE& aNewLine, LINE& aOptimized ){ LINE tmp;
if( aNewLine.SegmentCount() < 3 ) return;
SHAPE_LINE_CHAIN current ( aNewLine.CLine() );
for( int step = 0; step < 3; step++) { current.Simplify();
for( int i = 0; i <= current.SegmentCount() - 3; i++) { SHAPE_LINE_CHAIN l_in, l_out;
l_in = current.Slice(i, i+3);
for( int dir = 0; dir < 1; dir++) { if( tightenSegment( dir ? true : false, aNode, aNewLine, l_in, l_out ) ) { SHAPE_LINE_CHAIN opt = current; opt.Replace(i, i + 3, l_out); auto optArea = std::abs(shovedArea( aOldLine, opt )); auto prevArea = std::abs(shovedArea( aOldLine, current ));
if( optArea < prevArea ) current = opt;
break; } } } }
aOptimized = LINE(aNewLine, current);
//auto dbg = ROUTER::GetInstance()->GetInterface()->GetDebugDecorator();
//dbg->AddLine ( current, 4, 100000 );
}
}
|