|
|
/*
* This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2007-2014 Jean-Pierre Charras jp.charras at wanadoo.fr * Copyright (C) 1992-2020 KiCad Developers, see change_log.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */
#include <vector>
#include <export_to_pcbnew.h>
#include <confirm.h>
#include <macros.h>
#include <trigo.h>
#include <gerbview_frame.h>
#include <gerber_file_image.h>
#include <gerber_file_image_list.h>
#include <build_version.h>
#include <wildcards_and_files_ext.h>
#include "excellon_image.h"
// Imported function
extern const wxString GetPCBDefaultLayerName( LAYER_NUM aLayerNumber );
GBR_TO_PCB_EXPORTER::GBR_TO_PCB_EXPORTER( GERBVIEW_FRAME* aFrame, const wxString& aFileName ){ m_gerbview_frame = aFrame; m_pcb_file_name = aFileName; m_fp = NULL; m_pcbCopperLayersCount = 2;}
GBR_TO_PCB_EXPORTER::~GBR_TO_PCB_EXPORTER(){}
bool GBR_TO_PCB_EXPORTER::ExportPcb( LAYER_NUM* aLayerLookUpTable, int aCopperLayers ){ LOCALE_IO toggle; // toggles on, then off, the C locale.
m_fp = wxFopen( m_pcb_file_name, wxT( "wt" ) );
if( m_fp == NULL ) { wxString msg; msg.Printf( _( "Cannot create file \"%s\"" ), m_pcb_file_name ); DisplayError( m_gerbview_frame, msg ); return false; }
m_pcbCopperLayersCount = aCopperLayers;
writePcbHeader( aLayerLookUpTable );
// create an image of gerber data
const int pcbCopperLayerMax = 31; GERBER_FILE_IMAGE_LIST* images = m_gerbview_frame->GetGerberLayout()->GetImagesList();
// First collect all the holes. We'll use these to generate pads, vias, etc.
for( unsigned layer = 0; layer < images->ImagesMaxCount(); ++layer ) { EXCELLON_IMAGE* excellon = dynamic_cast<EXCELLON_IMAGE*>( images->GetGbrImage( layer ) );
if( excellon == NULL ) // Layer not yet used or not a drill image
continue;
for( GERBER_DRAW_ITEM* gerb_item : excellon->GetItems() ) collect_hole( gerb_item ); }
// Next: non copper layers:
for( unsigned layer = 0; layer < images->ImagesMaxCount(); ++layer ) { GERBER_FILE_IMAGE* gerber = images->GetGbrImage( layer );
if( gerber == NULL ) // Graphic layer not yet used
continue;
LAYER_NUM pcb_layer_number = aLayerLookUpTable[layer];
if( !IsPcbLayer( pcb_layer_number ) ) continue;
if( pcb_layer_number <= pcbCopperLayerMax ) // copper layer
continue;
for( GERBER_DRAW_ITEM* gerb_item : gerber->GetItems() ) export_non_copper_item( gerb_item, pcb_layer_number ); }
// Copper layers
for( unsigned layer = 0; layer < images->ImagesMaxCount(); ++layer ) { GERBER_FILE_IMAGE* gerber = images->GetGbrImage( layer );
if( gerber == NULL ) // Graphic layer not yet used
continue;
LAYER_NUM pcb_layer_number = aLayerLookUpTable[layer];
if( pcb_layer_number < 0 || pcb_layer_number > pcbCopperLayerMax ) continue;
for( GERBER_DRAW_ITEM* gerb_item : gerber->GetItems() ) export_copper_item( gerb_item, pcb_layer_number ); }
// Now write out the holes we collected earlier as vias
for( const EXPORT_VIA& via : m_vias ) export_via( via );
fprintf( m_fp, ")\n" );
fclose( m_fp ); m_fp = NULL; return true;}
void GBR_TO_PCB_EXPORTER::export_non_copper_item( GERBER_DRAW_ITEM* aGbrItem, LAYER_NUM aLayer ){ // used when a D_CODE is not found. default D_CODE to draw a flashed item
static D_CODE dummyD_CODE( 0 );
wxPoint seg_start = aGbrItem->m_Start; wxPoint seg_end = aGbrItem->m_End; D_CODE* d_codeDescr = aGbrItem->GetDcodeDescr(); SHAPE_POLY_SET polygon;
if( d_codeDescr == NULL ) d_codeDescr = &dummyD_CODE;
switch( aGbrItem->m_Shape ) { case GBR_POLYGON: writePcbPolygon( aGbrItem->m_Polygon, aLayer ); break;
case GBR_SPOT_CIRCLE: case GBR_SPOT_RECT: case GBR_SPOT_OVAL: case GBR_SPOT_POLY: case GBR_SPOT_MACRO: d_codeDescr->ConvertShapeToPolygon(); writePcbPolygon( d_codeDescr->m_Polygon, aLayer, aGbrItem->GetABPosition( seg_start ) ); break;
case GBR_ARC: { double a = atan2( (double) ( aGbrItem->m_Start.y - aGbrItem->m_ArcCentre.y ), (double) ( aGbrItem->m_Start.x - aGbrItem->m_ArcCentre.x ) ); double b = atan2( (double) ( aGbrItem->m_End.y - aGbrItem->m_ArcCentre.y ), (double) ( aGbrItem->m_End.x - aGbrItem->m_ArcCentre.x ) );
double angle = RAD2DEG(b - a); seg_start = aGbrItem->m_ArcCentre;
// Ensure arc orientation is CCW
if( angle < 0 ) angle += 360.0;
// Reverse Y axis:
seg_start.y = -seg_start.y; seg_end.y = -seg_end.y;
if( angle == 360.0 || angle == 0 ) { fprintf( m_fp, "(gr_circle (center %s %s) (end %s %s) (layer %s) (width %s))\n", Double2Str( MapToPcbUnits(seg_start.x) ).c_str(), Double2Str( MapToPcbUnits(seg_start.y) ).c_str(), Double2Str( MapToPcbUnits(seg_end.x) ).c_str(), Double2Str( MapToPcbUnits(seg_end.y) ).c_str(), TO_UTF8( GetPCBDefaultLayerName( aLayer ) ), Double2Str( MapToPcbUnits( aGbrItem->m_Size.x ) ).c_str() ); } else { fprintf( m_fp, "(gr_arc (start %s %s) (end %s %s) (angle %s) (layer %s) (width %s))\n", Double2Str( MapToPcbUnits(seg_start.x) ).c_str(), Double2Str( MapToPcbUnits(seg_start.y) ).c_str(), Double2Str( MapToPcbUnits(seg_end.x) ).c_str(), Double2Str( MapToPcbUnits(seg_end.y) ).c_str(), Double2Str( angle ).c_str(), TO_UTF8( GetPCBDefaultLayerName( aLayer ) ), Double2Str( MapToPcbUnits( aGbrItem->m_Size.x ) ).c_str() ); } } break;
case GBR_CIRCLE: // Reverse Y axis:
seg_start.y = -seg_start.y; seg_end.y = -seg_end.y;
fprintf( m_fp, "(gr_circle (start %s %s) (end %s %s) (layer %s) (width %s))\n", Double2Str( MapToPcbUnits( seg_start.x ) ).c_str(), Double2Str( MapToPcbUnits( seg_start.y ) ).c_str(), Double2Str( MapToPcbUnits( seg_end.x ) ).c_str(), Double2Str( MapToPcbUnits( seg_end.y ) ).c_str(), TO_UTF8( GetPCBDefaultLayerName( aLayer ) ), Double2Str( MapToPcbUnits( aGbrItem->m_Size.x ) ).c_str() ); break;
case GBR_SEGMENT: // Reverse Y axis:
seg_start.y = -seg_start.y; seg_end.y = -seg_end.y;
fprintf( m_fp, "(gr_line (start %s %s) (end %s %s) (layer %s) (width %s))\n", Double2Str( MapToPcbUnits( seg_start.x ) ).c_str(), Double2Str( MapToPcbUnits( seg_start.y ) ).c_str(), Double2Str( MapToPcbUnits( seg_end.x ) ).c_str(), Double2Str( MapToPcbUnits( seg_end.y ) ).c_str(), TO_UTF8( GetPCBDefaultLayerName( aLayer ) ), Double2Str( MapToPcbUnits( aGbrItem->m_Size.x ) ).c_str() ); break; }}
/*
* Many holes will be pads, but we have no way to create those without modules, and creating * a module per pad is not really viable. * * So we use vias to mimic holes, with the loss of any hole shape (as we only have round holes * in vias at present). * * We start out with a via size minimally larger than the hole. We'll leave it this way if * the pad gets drawn as a copper polygon, or increase it to the proper size if it has a * circular, concentric copper flashing. */void GBR_TO_PCB_EXPORTER::collect_hole( GERBER_DRAW_ITEM* aGbrItem ){ int size = std::min( aGbrItem->m_Size.x, aGbrItem->m_Size.y ); m_vias.emplace_back( aGbrItem->m_Start, size + 1, size );}
void GBR_TO_PCB_EXPORTER::export_via( const EXPORT_VIA& aVia ){ wxPoint via_pos = aVia.m_Pos;
// Reverse Y axis:
via_pos.y = -via_pos.y;
// Layers are Front to Back
fprintf( m_fp, " (via (at %s %s) (size %s) (drill %s)", Double2Str( MapToPcbUnits( via_pos.x ) ).c_str(), Double2Str( MapToPcbUnits( via_pos.y ) ).c_str(), Double2Str( MapToPcbUnits( aVia.m_Size ) ).c_str(), Double2Str( MapToPcbUnits( aVia.m_Drill ) ).c_str() );
fprintf( m_fp, " (layers %s %s))\n", TO_UTF8( GetPCBDefaultLayerName( F_Cu ) ), TO_UTF8( GetPCBDefaultLayerName( B_Cu ) ) );}
void GBR_TO_PCB_EXPORTER::export_copper_item( GERBER_DRAW_ITEM* aGbrItem, LAYER_NUM aLayer ){ switch( aGbrItem->m_Shape ) { case GBR_SPOT_CIRCLE: case GBR_SPOT_RECT: case GBR_SPOT_OVAL: export_flashed_copper_item( aGbrItem, aLayer ); break;
case GBR_ARC: export_segarc_copper_item( aGbrItem, aLayer ); break;
case GBR_POLYGON: // One can use a polygon or a zone to output a Gerber region.
// none are perfect.
// The current way is use a polygon, as the zone export
// is exprimental and only for tests.
#if 1
writePcbPolygon( aGbrItem->m_Polygon, aLayer );#else
// Only for tests:
writePcbZoneItem( aGbrItem, aLayer );#endif
break;
default: export_segline_copper_item( aGbrItem, aLayer ); break; }}
void GBR_TO_PCB_EXPORTER::export_segline_copper_item( GERBER_DRAW_ITEM* aGbrItem, LAYER_NUM aLayer ){ wxPoint seg_start, seg_end;
seg_start = aGbrItem->m_Start; seg_end = aGbrItem->m_End;
// Reverse Y axis:
seg_start.y = -seg_start.y; seg_end.y = -seg_end.y;
writeCopperLineItem( seg_start, seg_end, aGbrItem->m_Size.x, aLayer );}
void GBR_TO_PCB_EXPORTER::writeCopperLineItem( wxPoint& aStart, wxPoint& aEnd, int aWidth, LAYER_NUM aLayer ){ fprintf( m_fp, "(segment (start %s %s) (end %s %s) (width %s) (layer %s) (net 0))\n", Double2Str( MapToPcbUnits(aStart.x) ).c_str(), Double2Str( MapToPcbUnits(aStart.y) ).c_str(), Double2Str( MapToPcbUnits(aEnd.x) ).c_str(), Double2Str( MapToPcbUnits(aEnd.y) ).c_str(), Double2Str( MapToPcbUnits( aWidth ) ).c_str(), TO_UTF8( GetPCBDefaultLayerName( aLayer ) ) );}
void GBR_TO_PCB_EXPORTER::export_segarc_copper_item( GERBER_DRAW_ITEM* aGbrItem, LAYER_NUM aLayer ){ double a = atan2( (double) ( aGbrItem->m_Start.y - aGbrItem->m_ArcCentre.y ), (double) ( aGbrItem->m_Start.x - aGbrItem->m_ArcCentre.x ) ); double b = atan2( (double) ( aGbrItem->m_End.y - aGbrItem->m_ArcCentre.y ), (double) ( aGbrItem->m_End.x - aGbrItem->m_ArcCentre.x ) );
wxPoint start = aGbrItem->m_Start; wxPoint end = aGbrItem->m_End;
/* Because Pcbnew does not know arcs in tracks,
* approximate arc by segments (SEG_COUNT__CIRCLE segment per 360 deg) * The arc is drawn anticlockwise from the start point to the end point. */ #define SEG_COUNT_CIRCLE 16
#define DELTA_ANGLE 2 * M_PI / SEG_COUNT_CIRCLE
// calculate the number of segments from a to b.
// we want CNT_PER_360 segments fo a circle
if( a > b ) b += 2 * M_PI;
wxPoint curr_start = start; wxPoint seg_start, seg_end;
int ii = 1;
for( double rot = a; rot < (b - DELTA_ANGLE); rot += DELTA_ANGLE, ii++ ) { seg_start = curr_start; wxPoint curr_end = start; RotatePoint( &curr_end, aGbrItem->m_ArcCentre, -RAD2DECIDEG( DELTA_ANGLE * ii ) ); seg_end = curr_end; // Reverse Y axis:
seg_start.y = -seg_start.y; seg_end.y = -seg_end.y; writeCopperLineItem( seg_start, seg_end, aGbrItem->m_Size.x, aLayer ); curr_start = curr_end; }
if( end != curr_start ) { seg_start = curr_start; seg_end = end; // Reverse Y axis:
seg_start.y = -seg_start.y; seg_end.y = -seg_end.y; writeCopperLineItem( seg_start, seg_end, aGbrItem->m_Size.x, aLayer ); }}
/*
* Flashed items are usually pads or vias. Pads are problematic because we have no way to * represent one in Pcbnew outside of a module (and creating a module per pad isn't really * viable). * If we've already created a via from a hole, and the flashed copper item is a simple circle * then we'll enlarge the via to the proper size. Otherwise we create a copper polygon to * represent the flashed item (which is presumably a pad). */void GBR_TO_PCB_EXPORTER::export_flashed_copper_item( GERBER_DRAW_ITEM* aGbrItem, LAYER_NUM aLayer ){ static D_CODE flashed_item_D_CODE( 0 );
D_CODE* d_codeDescr = aGbrItem->GetDcodeDescr(); SHAPE_POLY_SET polygon;
if( d_codeDescr == NULL ) d_codeDescr = &flashed_item_D_CODE;
if( aGbrItem->m_Shape == GBR_SPOT_CIRCLE ) { // See if there's a via that we can enlarge to fit this flashed item
for( EXPORT_VIA& via : m_vias ) { if( via.m_Pos == aGbrItem->m_Start ) { via.m_Size = std::max( via.m_Size, aGbrItem->m_Size.x ); return; } } }
d_codeDescr->ConvertShapeToPolygon(); wxPoint offset = aGbrItem->GetABPosition( aGbrItem->m_Start );
writePcbPolygon( d_codeDescr->m_Polygon, aLayer, offset );}
void GBR_TO_PCB_EXPORTER::writePcbHeader( LAYER_NUM* aLayerLookUpTable ){ fprintf( m_fp, "(kicad_pcb (version 4) (host Gerbview \"%s\")\n\n", TO_UTF8( GetBuildVersion() ) );
// Write layers section
fprintf( m_fp, " (layers \n" );
for( int ii = 0; ii < m_pcbCopperLayersCount; ii++ ) { int id = ii;
if( ii == m_pcbCopperLayersCount-1) id = B_Cu;
fprintf( m_fp, " (%d %s signal)\n", id, TO_UTF8( GetPCBDefaultLayerName( id ) ) ); }
for( int ii = B_Adhes; ii < PCB_LAYER_ID_COUNT; ii++ ) { if( GetPCBDefaultLayerName( ii ).IsEmpty() ) // Layer not available for export
continue;
fprintf( m_fp, " (%d %s user)\n", ii, TO_UTF8( GetPCBDefaultLayerName( ii ) ) ); }
fprintf( m_fp, " )\n\n" );}
void GBR_TO_PCB_EXPORTER::writePcbPolygon( const SHAPE_POLY_SET& aPolys, LAYER_NUM aLayer, const wxPoint& aOffset ){ SHAPE_POLY_SET polys = aPolys;
// Cleanup the polygon
polys.Simplify( SHAPE_POLY_SET::PM_STRICTLY_SIMPLE );
// Ensure the polygon is valid:
if( polys.OutlineCount() == 0 ) return;
polys.Fracture( SHAPE_POLY_SET::PM_STRICTLY_SIMPLE );
SHAPE_LINE_CHAIN& poly = polys.Outline( 0 );
fprintf( m_fp, "(gr_poly (pts " );
#define MAX_COORD_CNT 4
int jj = MAX_COORD_CNT; int cnt_max = poly.PointCount() -1;
// Do not generate last corner, if it is the same point as the first point:
if( poly.CPoint( 0 ) == poly.CPoint( cnt_max ) ) cnt_max--;
for( int ii = 0; ii <= cnt_max; ii++ ) { if( --jj == 0 ) { jj = MAX_COORD_CNT; fprintf( m_fp, "\n" ); }
fprintf( m_fp, " (xy %s %s)", Double2Str( MapToPcbUnits( poly.CPoint( ii ).x + aOffset.x ) ).c_str(), Double2Str( MapToPcbUnits( -poly.CPoint( ii ).y + aOffset.y ) ).c_str() ); }
fprintf( m_fp, ")" );
if( jj != MAX_COORD_CNT ) fprintf( m_fp, "\n" );
fprintf( m_fp, "(layer %s) (width 0) )\n", TO_UTF8( GetPCBDefaultLayerName( aLayer ) ) );}
void GBR_TO_PCB_EXPORTER::writePcbZoneItem( GERBER_DRAW_ITEM* aGbrItem, LAYER_NUM aLayer ){ SHAPE_POLY_SET polys = aGbrItem->m_Polygon; polys.Simplify( SHAPE_POLY_SET::PM_STRICTLY_SIMPLE );
if( polys.OutlineCount() == 0 ) return;
fprintf( m_fp, "(zone (net 0) (net_name \"\") (layer %s) (tstamp 0000000) (hatch edge 0.508)\n", TO_UTF8( GetPCBDefaultLayerName( aLayer ) ) );
fprintf( m_fp, " (connect_pads (clearance 0.0))\n" );
fprintf( m_fp, " (min_thickness 0.1) (filled_areas_thickness no)\n" " (fill (thermal_gap 0.3) (thermal_bridge_width 0.3))\n" );
// Now, write the zone outlines with holes.
// first polygon is the main outline, next are holes
// One cannot know the initial zone outline.
// However most of (if not all) holes are just items with clearance,
// not really a hole in the initial zone outline.
// So we build a zone outline only with no hole.
fprintf( m_fp, " (polygon\n (pts" );
SHAPE_LINE_CHAIN& poly = polys.Outline( 0 );
#define MAX_COORD_CNT 4
int jj = MAX_COORD_CNT; int cnt_max = poly.PointCount() -1;
// Do not generate last corner, if it is the same point as the first point:
if( poly.CPoint( 0 ) == poly.CPoint( cnt_max ) ) cnt_max--;
for( int ii = 0; ii <= cnt_max; ii++ ) { if( --jj == 0 ) { jj = MAX_COORD_CNT; fprintf( m_fp, "\n " ); }
fprintf( m_fp, " (xy %s %s)", Double2Str( MapToPcbUnits( poly.CPoint( ii ).x ) ).c_str(), Double2Str( MapToPcbUnits( -poly.CPoint( ii ).y ) ).c_str() ); }
fprintf( m_fp, ")\n" );
fprintf( m_fp, " )\n)\n" );}
|