|
|
/**
* @file aperture_macro.h */
#ifndef AM_PRIMITIVE_H
#define AM_PRIMITIVE_H
/*
* This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 1992-2010 Jean-Pierre Charras <jp.charras at wanadoo.fr> * Copyright (C) 2010 SoftPLC Corporation, Dick Hollenbeck <dick@softplc.com> * Copyright (C) 1992-2010 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */
#include <vector>
#include <set>
#include <base_struct.h>
#include <am_param.h>
#include <eda_rect.h>
class SHAPE_POLY_SET;
/*
* An aperture macro defines a complex shape and is a list of aperture primitives. * Each aperture primitive defines a simple shape (circle, rect, regular polygon...) * Inside a given aperture primitive, a fixed list of parameters defines info * about the shape: size, thickness, number of vertex ... * * Each parameter can be an immediate value or a defered value. * When value is defered, it is defined when the aperture macro is instancied by * an ADD macro command * Note also a defered parameter can be defined in aperture macro, * but outside aperture primitives. Example * %AMRECTHERM* * $4=$3/2* parameter $4 is half value of parameter $3 * 21,1,$1-$3,$2-$3,0-$1/2-$4,0-$2/2-$4,0* * For the aperture primitive, parameters $1 to $3 will be defined in ADD command, * and $4 is defined inside the macro * * Each basic shape can be a positive shape or a negative shape. * a negative shape is "local" to the whole shape. * It must be seen like a hole in the shape, and not like a standard negative object. */
/**
* Enum AM_PRIMITIVE_ID * is the set of all "aperture macro primitives" (primitive numbers). See * Table 3 in http://gerbv.sourceforge.net/docs/rs274xrevd_e.pdf
* aperture macro primitives are basic shapes which can be combined to create a complex shape * This complex shape is flashed. */enum AM_PRIMITIVE_ID { AMP_UNKNOWN = -1, // A value for uninitialized AM_PRIMITIVE.
AMP_COMMENT = 0, // A primitive description is not really a primitive, this is a comment
AMP_CIRCLE = 1, // Circle. (diameter and position)
AMP_LINE2 = 2, // Line with rectangle ends. (Width, start and end pos + rotation)
AMP_LINE20 = 20, // Same as AMP_LINE2
AMP_LINE_CENTER = 21, // Rectangle. (height, width and center pos + rotation)
AMP_LINE_LOWER_LEFT = 22, // Rectangle. (height, width and left bottom corner pos + rotation)
AMP_EOF = 3, // End Of File marquer: not really a shape
AMP_OUTLINE = 4, // Free polyline (n corners + rotation)
AMP_POLYGON = 5, // Closed regular polygon(diameter, number of vertices (3 to 10), rotation)
AMP_MOIRE = 6, // A cross hair with n concentric circles + rotation
AMP_THERMAL = 7 // Thermal shape (pos, outer and inner diameter, cross hair thickness + rotation)
};
/**
* Struct AM_PRIMITIVE * holds an aperture macro primitive as given in Table 3 of * http://gerbv.sourceforge.net/docs/rs274xrevd_e.pdf
*/class AM_PRIMITIVE{public: AM_PRIMITIVE_ID primitive_id; ///< The primitive type
AM_PARAMS params; ///< A sequence of parameters used by
// the primitive
bool m_GerbMetric; // units for this primitive:
// false = Inches, true = metric
public: AM_PRIMITIVE( bool aGerbMetric, AM_PRIMITIVE_ID aId = AMP_UNKNOWN ) { primitive_id = aId; m_GerbMetric = aGerbMetric; }
~AM_PRIMITIVE() {}
/**
* Function IsAMPrimitiveExposureOn * @return true if the first parameter is not 0 (it can be only 0 or 1). * Some but not all primitives use the first parameter as an exposure control. * Others are always ON. * In a aperture macro shape, a basic primitive with exposure off is a hole in the shape * it is NOT a negative shape */ bool IsAMPrimitiveExposureOn( const GERBER_DRAW_ITEM* aParent ) const;
/* Draw functions: */
/** GetShapeDim
* Calculate a value that can be used to evaluate the size of text * when displaying the D-Code of an item * due to the complexity of the shape of some primitives * one cannot calculate the "size" of a shape (only a bounding box) * but here, the "dimension" of the shape is the diameter of the primitive * or for lines the width of the line * @param aParent = the parent GERBER_DRAW_ITEM which is actually drawn * @return a dimension, or -1 if no dim to calculate */ int GetShapeDim( const GERBER_DRAW_ITEM* aParent );
/**
* Function drawBasicShape * Draw (in fact generate the actual polygonal shape of) the primitive shape of an aperture macro instance. * @param aParent = the parent GERBER_DRAW_ITEM which is actually drawn * @param aShapeBuffer = a SHAPE_POLY_SET to put the shape converted to a polygon * @param aShapePos = the actual shape position */ void DrawBasicShape( const GERBER_DRAW_ITEM* aParent, SHAPE_POLY_SET& aShapeBuffer, wxPoint aShapePos );private:
/**
* Function ConvertShapeToPolygon * convert a shape to an equivalent polygon. * Arcs and circles are approximated by segments * Useful when a shape is not a graphic primitive (shape with hole, * rotated shape ... ) and cannot be easily drawn. */ void ConvertShapeToPolygon( const GERBER_DRAW_ITEM* aParent, std::vector<wxPoint>& aBuffer );};
typedef std::vector<AM_PRIMITIVE> AM_PRIMITIVES;
/**
* Struct APERTURE_MACRO * helps support the "aperture macro" defined within standard RS274X. */struct APERTURE_MACRO{ wxString name; ///< The name of the aperture macro
AM_PRIMITIVES primitives; ///< A sequence of AM_PRIMITIVEs
/* A defered parameter can be defined in aperture macro,
* but outside aperture primitives. Example * %AMRECTHERM* * $4=$3/2* parameter $4 is half value of parameter $3 * m_localparamStack handle a list of local defered parameters */ AM_PARAMS m_localparamStack;
SHAPE_POLY_SET m_shape; ///< The shape of the item, calculated by GetApertureMacroShape
EDA_RECT m_boundingBox; ///< The bounding box of the item, calculated by GetApertureMacroShape
/**
* function GetLocalParam * Usually, parameters are defined inside the aperture primitive * using immediate mode or defered mode. * in defered mode the value is defined in a DCODE that want to use the aperture macro. * But some parameters are defined outside the aperture primitive * and are local to the aperture macro * @return the value of a defered parameter defined inside the aperture macro * @param aDcode = the D_CODE that uses this apertur macro and define defered parameters * @param aParamId = the param id (defined by $3 or $5 ..) to evaluate */ double GetLocalParam( const D_CODE* aDcode, unsigned aParamId ) const;
/**
* Function GetApertureMacroShape * Calculate the primitive shape for flashed items. * When an item is flashed, this is the shape of the item * @param aParent = the parent GERBER_DRAW_ITEM which is actually drawn * @return The shape of the item */ SHAPE_POLY_SET* GetApertureMacroShape( const GERBER_DRAW_ITEM* aParent, wxPoint aShapePos );
/**
* Function DrawApertureMacroShape * Draw the primitive shape for flashed items. * When an item is flashed, this is the shape of the item * @param aParent = the parent GERBER_DRAW_ITEM which is actually drawn * @param aClipBox = DC clip box (NULL is no clip) * @param aDC = device context * @param aColor = the color of shape * @param aShapePos = the actual shape position * @param aFilledShape = true to draw in filled mode, false to draw in skecth mode */ void DrawApertureMacroShape( GERBER_DRAW_ITEM* aParent, EDA_RECT* aClipBox, wxDC* aDC, COLOR4D aColor, wxPoint aShapePos, bool aFilledShape );
/**
* Function GetShapeDim * Calculate a value that can be used to evaluate the size of text * when displaying the D-Code of an item * due to the complexity of a shape using many primitives * one cannot calculate the "size" of a shape (only abounding box) * but most of aperture macro are using one or few primitives * and the "dimension" of the shape is the diameter of the primitive * (or the max diameter of primitives) * @param aParent = the parent GERBER_DRAW_ITEM which is actually drawn * @return a dimension, or -1 if no dim to calculate */ int GetShapeDim( GERBER_DRAW_ITEM* aParent );
/// Returns the bounding box of the shape
EDA_RECT GetBoundingBox() const { return m_boundingBox; }};
/**
* Struct APERTURE_MACRO_less_than * is used by std:set<APERTURE_MACRO> instantiation which uses * APERTURE_MACRO.name as its key. */struct APERTURE_MACRO_less_than{ // a "less than" test on two APERTURE_MACROs (.name wxStrings)
bool operator()( const APERTURE_MACRO& am1, const APERTURE_MACRO& am2 ) const { return am1.name.Cmp( am2.name ) < 0; // case specific wxString compare
}};
/**
* Type APERTURE_MACRO_SET * is a sorted collection of APERTURE_MACROS whose key is the name field in * the APERTURE_MACRO. */typedef std::set<APERTURE_MACRO, APERTURE_MACRO_less_than> APERTURE_MACRO_SET;typedef std::pair<APERTURE_MACRO_SET::iterator, bool> APERTURE_MACRO_SET_PAIR;
#endif // ifndef AM_PRIMITIVE_H
|