|
|
/*
* This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2020-2022 KiCad Developers, see AUTHORS.txt for contributors. * Copyright (C) 2020 CERN * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 3 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-3.0.html
* or you may search the http://www.gnu.org website for the version 3 license,
* or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */
#ifndef DRC_RTREE_H_
#define DRC_RTREE_H_
#include <board_item.h>
#include <pad.h>
#include <fp_text.h>
#include <memory>
#include <unordered_set>
#include <set>
#include <vector>
#include <geometry/rtree.h>
#include <geometry/shape.h>
#include <geometry/shape_segment.h>
#include <math/vector2d.h>
#include "geometry/shape_null.h"
#include "board.h"
/**
* Implement an R-tree for fast spatial and layer indexing of connectable items. * Non-owning. */ class DRC_RTREE {
public:
struct ITEM_WITH_SHAPE { ITEM_WITH_SHAPE( BOARD_ITEM *aParent, const SHAPE* aShape, std::shared_ptr<SHAPE> aParentShape = nullptr ) : parent( aParent ), shape( aShape ), shapeStorage( nullptr ), parentShape( aParentShape ) {};
ITEM_WITH_SHAPE( BOARD_ITEM *aParent, std::shared_ptr<SHAPE> aShape, std::shared_ptr<SHAPE> aParentShape = nullptr ) : parent( aParent ), shape( aShape.get() ), shapeStorage( aShape ), parentShape( aParentShape ) {};
BOARD_ITEM* parent; const SHAPE* shape; std::shared_ptr<SHAPE> shapeStorage; std::shared_ptr<SHAPE> parentShape; };
private:
using drc_rtree = RTree<ITEM_WITH_SHAPE*, int, 2, double>;
public:
DRC_RTREE() { for( int layer : LSET::AllLayersMask().Seq() ) m_tree[layer] = new drc_rtree();
m_count = 0; }
~DRC_RTREE() { for( drc_rtree* tree : m_tree ) { for( DRC_RTREE::ITEM_WITH_SHAPE* el : *tree ) delete el;
delete tree; } }
/**
* Insert an item into the tree on a particular layer with an optional worst clearance. */ void Insert( BOARD_ITEM* aItem, PCB_LAYER_ID aLayer, int aWorstClearance = 0 ) { Insert( aItem, aLayer, aLayer, aWorstClearance ); }
/**
* Insert an item into the tree on a particular layer with a worst clearance. Allows the * source layer to be different from the tree layer. */ void Insert( BOARD_ITEM* aItem, PCB_LAYER_ID aRefLayer, PCB_LAYER_ID aTargetLayer, int aWorstClearance ) { wxCHECK( aTargetLayer != UNDEFINED_LAYER, /* void */ );
if( aItem->Type() == PCB_FP_TEXT_T && !static_cast<FP_TEXT*>( aItem )->IsVisible() ) return;
std::vector<const SHAPE*> subshapes; std::shared_ptr<SHAPE> shape = aItem->GetEffectiveShape( aRefLayer );
if( shape->HasIndexableSubshapes() ) shape->GetIndexableSubshapes( subshapes ); else subshapes.push_back( shape.get() );
for( const SHAPE* subshape : subshapes ) { if( dynamic_cast<const SHAPE_NULL*>( subshape ) ) continue;
BOX2I bbox = subshape->BBox();
bbox.Inflate( aWorstClearance );
const int mmin[2] = { bbox.GetX(), bbox.GetY() }; const int mmax[2] = { bbox.GetRight(), bbox.GetBottom() }; ITEM_WITH_SHAPE* itemShape = new ITEM_WITH_SHAPE( aItem, subshape, shape );
m_tree[aTargetLayer]->Insert( mmin, mmax, itemShape ); m_count++; }
if( aItem->Type() == PCB_PAD_T && aItem->HasHole() ) { std::shared_ptr<SHAPE_SEGMENT> hole = aItem->GetEffectiveHoleShape(); BOX2I bbox = hole->BBox();
bbox.Inflate( aWorstClearance );
const int mmin[2] = { bbox.GetX(), bbox.GetY() }; const int mmax[2] = { bbox.GetRight(), bbox.GetBottom() }; ITEM_WITH_SHAPE* itemShape = new ITEM_WITH_SHAPE( aItem, hole, shape );
m_tree[aTargetLayer]->Insert( mmin, mmax, itemShape ); m_count++;
} }
/**
* Remove all items from the RTree. */ void clear() { for( auto tree : m_tree ) tree->RemoveAll();
m_count = 0; }
bool CheckColliding( SHAPE* aRefShape, PCB_LAYER_ID aTargetLayer, int aClearance = 0, std::function<bool( BOARD_ITEM*)> aFilter = nullptr ) const { BOX2I box = aRefShape->BBox(); box.Inflate( aClearance );
int min[2] = { box.GetX(), box.GetY() }; int max[2] = { box.GetRight(), box.GetBottom() };
int count = 0;
auto visit = [&] ( ITEM_WITH_SHAPE* aItem ) -> bool { if( !aFilter || aFilter( aItem->parent ) ) { int actual;
if( aRefShape->Collide( aItem->shape, aClearance, &actual ) ) { count++; return false; } }
return true; };
this->m_tree[aTargetLayer]->Search( min, max, visit ); return count > 0; }
/**
* This is a fast test which essentially does bounding-box overlap given a worst-case * clearance. It's used when looking up the specific item-to-item clearance might be * expensive and should be deferred till we know we have a possible hit. */ int QueryColliding( BOARD_ITEM* aRefItem, PCB_LAYER_ID aRefLayer, PCB_LAYER_ID aTargetLayer, std::function<bool( BOARD_ITEM* )> aFilter = nullptr, std::function<bool( BOARD_ITEM* )> aVisitor = nullptr, int aClearance = 0 ) const { // keep track of BOARD_ITEMs that have already been found to collide (some items might
// be built of COMPOUND/triangulated shapes and a single subshape collision means we have
// a hit)
std::unordered_set<BOARD_ITEM*> collidingCompounds;
// keep track of results of client filter so we don't ask more than once for compound
// shapes
std::unordered_map<BOARD_ITEM*, bool> filterResults;
BOX2I box = aRefItem->GetBoundingBox(); box.Inflate( aClearance );
int min[2] = { box.GetX(), box.GetY() }; int max[2] = { box.GetRight(), box.GetBottom() };
std::shared_ptr<SHAPE> refShape = aRefItem->GetEffectiveShape( aRefLayer );
int count = 0;
auto visit = [&]( ITEM_WITH_SHAPE* aItem ) -> bool { if( aItem->parent == aRefItem ) return true;
if( collidingCompounds.find( aItem->parent ) != collidingCompounds.end() ) return true;
bool filtered; auto it = filterResults.find( aItem->parent );
if( it == filterResults.end() ) { filtered = aFilter && !aFilter( aItem->parent ); filterResults[ aItem->parent ] = filtered; } else { filtered = it->second; }
if( filtered ) return true;
if( refShape->Collide( aItem->shape, aClearance ) ) { collidingCompounds.insert( aItem->parent ); count++;
if( aVisitor ) return aVisitor( aItem->parent ); }
return true; };
this->m_tree[aTargetLayer]->Search( min, max, visit ); return count; }
/**
* This one is for tessellated items. (All shapes in the tree will be from a single * BOARD_ITEM.) * It checks all items in the bbox overlap to find the minimal actual distance and * position. */ bool QueryColliding( const BOX2I& aBox, SHAPE* aRefShape, PCB_LAYER_ID aLayer, int aClearance, int* aActual, VECTOR2I* aPos ) const { BOX2I bbox = aBox; bbox.Inflate( aClearance );
int min[2] = { bbox.GetX(), bbox.GetY() }; int max[2] = { bbox.GetRight(), bbox.GetBottom() };
bool collision = false; int actual = INT_MAX; VECTOR2I pos;
auto visit = [&]( ITEM_WITH_SHAPE* aItem ) -> bool { int curActual; VECTOR2I curPos;
if( aRefShape->Collide( aItem->shape, aClearance, &curActual, &curPos ) ) { collision = true;
if( curActual < actual ) { actual = curActual; pos = curPos; }
// Stop looking after we have a true collision
if( actual <= 0 ) return false; }
return true; };
this->m_tree[aLayer]->Search( min, max, visit );
if( collision ) { if( aActual ) *aActual = std::max( 0, actual );
if( aPos ) *aPos = pos;
return true; }
return false; }
/**
* Quicker version of above that just reports a raw yes/no. */ bool QueryColliding( const BOX2I& aBox, SHAPE* aRefShape, PCB_LAYER_ID aLayer ) const { SHAPE_POLY_SET* poly = dynamic_cast<SHAPE_POLY_SET*>( aRefShape );
int min[2] = { aBox.GetX(), aBox.GetY() }; int max[2] = { aBox.GetRight(), aBox.GetBottom() }; bool collision = false;
// Special case the polygon case. Otherwise we'll call its Collide() method which will
// triangulate it as well and then do triangle/triangle collisions. This ends up being
// *much* slower than 4 calls to PointInside().
auto polyVisitor = [&]( ITEM_WITH_SHAPE* aItem ) -> bool { const SHAPE* shape = aItem->shape; wxASSERT( dynamic_cast<const SHAPE_POLY_SET::TRIANGULATED_POLYGON::TRI*>( shape ) ); auto tri = static_cast<const SHAPE_POLY_SET::TRIANGULATED_POLYGON::TRI*>( shape );
const SHAPE_LINE_CHAIN& outline = poly->Outline( 0 );
if( outline.PointInside( tri->GetPoint( 0 ) ) || outline.PointInside( tri->GetPoint( 1 ) ) || outline.PointInside( tri->GetPoint( 2 ) ) || tri->PointInside( outline.CPoint( 0 ) ) ) { collision = true; return false; }
return true; };
auto visitor = [&]( ITEM_WITH_SHAPE* aItem ) -> bool { if( aRefShape->Collide( aItem->shape, 0 ) ) { collision = true; return false; }
return true; };
if( poly && poly->OutlineCount() == 1 ) this->m_tree[aLayer]->Search( min, max, polyVisitor ); else this->m_tree[aLayer]->Search( min, max, visitor );
return collision; }
/**
* Gets the BOARD_ITEMs that overlap the specified point/layer * @param aPt Position on the tree * @param aLayer Layer to search * @return vector of overlapping BOARD_ITEMS* */ std::unordered_set<BOARD_ITEM*> GetObjectsAt( const VECTOR2I& aPt, PCB_LAYER_ID aLayer, int aClearance = 0 ) { std::unordered_set<BOARD_ITEM*> retval; int min[2] = { aPt.x - aClearance, aPt.y - aClearance }; int max[2] = { aPt.x + aClearance, aPt.y + aClearance };
auto visitor = [&]( ITEM_WITH_SHAPE* aItem ) -> bool { retval.insert( aItem->parent ); return true; };
m_tree[aLayer]->Search( min, max, visitor );
return retval; }
typedef std::pair<PCB_LAYER_ID, PCB_LAYER_ID> LAYER_PAIR;
struct PAIR_INFO { PAIR_INFO( LAYER_PAIR aPair, ITEM_WITH_SHAPE* aRef, ITEM_WITH_SHAPE* aTest ) : layerPair( aPair ), refItem( aRef ), testItem( aTest ) { };
LAYER_PAIR layerPair; ITEM_WITH_SHAPE* refItem; ITEM_WITH_SHAPE* testItem; };
int QueryCollidingPairs( DRC_RTREE* aRefTree, std::vector<LAYER_PAIR> aLayerPairs, std::function<bool( const LAYER_PAIR&, ITEM_WITH_SHAPE*, ITEM_WITH_SHAPE*, bool* aCollision )> aVisitor, int aMaxClearance, std::function<bool(int, int )> aProgressReporter ) const { std::vector<PAIR_INFO> pairsToVisit;
for( LAYER_PAIR& layerPair : aLayerPairs ) { const PCB_LAYER_ID refLayer = layerPair.first; const PCB_LAYER_ID targetLayer = layerPair.second;
for( ITEM_WITH_SHAPE* refItem : aRefTree->OnLayer( refLayer ) ) { BOX2I box = refItem->shape->BBox(); box.Inflate( aMaxClearance );
int min[2] = { box.GetX(), box.GetY() }; int max[2] = { box.GetRight(), box.GetBottom() };
auto visit = [&]( ITEM_WITH_SHAPE* aItemToTest ) -> bool { // don't collide items against themselves
if( aItemToTest->parent == refItem->parent ) return true;
pairsToVisit.emplace_back( layerPair, refItem, aItemToTest ); return true; };
this->m_tree[targetLayer]->Search( min, max, visit ); }; }
// keep track of BOARD_ITEMs pairs that have been already found to collide (some items
// might be build of COMPOUND/triangulated shapes and a single subshape collision
// means we have a hit)
std::unordered_map<PTR_PTR_CACHE_KEY, int> collidingCompounds;
int progress = 0; int count = pairsToVisit.size();
for( const PAIR_INFO& pair : pairsToVisit ) { if( !aProgressReporter( progress++, count ) ) break;
BOARD_ITEM* a = pair.refItem->parent; BOARD_ITEM* b = pair.testItem->parent;
// store canonical order so we don't collide in both directions (a:b and b:a)
if( static_cast<void*>( a ) > static_cast<void*>( b ) ) std::swap( a, b );
// don't report multiple collisions for compound or triangulated shapes
if( collidingCompounds.count( { a, b } ) ) continue;
bool collisionDetected = false;
if( !aVisitor( pair.layerPair, pair.refItem, pair.testItem, &collisionDetected ) ) break;
if( collisionDetected ) collidingCompounds[ { a, b } ] = 1; }
return 0; }
/**
* Return the number of items in the tree. * * @return number of elements in the tree. */ size_t size() const { return m_count; }
bool empty() const { return m_count == 0; }
using iterator = typename drc_rtree::Iterator;
/**
* The DRC_LAYER struct provides a layer-specific auto-range iterator to the RTree. Using * this struct, one can write lines like: * * for( auto item : rtree.OnLayer( In1_Cu ) ) * * and iterate over only the RTree items that are on In1 */ struct DRC_LAYER { DRC_LAYER( drc_rtree* aTree ) : layer_tree( aTree ) { m_rect = { { INT_MIN, INT_MIN }, { INT_MAX, INT_MAX } }; };
DRC_LAYER( drc_rtree* aTree, const BOX2I& aRect ) : layer_tree( aTree ) { m_rect = { { aRect.GetX(), aRect.GetY() }, { aRect.GetRight(), aRect.GetBottom() } }; };
drc_rtree::Rect m_rect; drc_rtree* layer_tree;
iterator begin() { return layer_tree->begin( m_rect ); }
iterator end() { return layer_tree->end( m_rect ); } };
DRC_LAYER OnLayer( PCB_LAYER_ID aLayer ) const { return DRC_LAYER( m_tree[int( aLayer )] ); }
DRC_LAYER Overlapping( PCB_LAYER_ID aLayer, const VECTOR2I& aPoint, int aAccuracy = 0 ) const { BOX2I rect( aPoint, VECTOR2I( 0, 0 ) ); rect.Inflate( aAccuracy ); return DRC_LAYER( m_tree[int( aLayer )], rect ); }
DRC_LAYER Overlapping( PCB_LAYER_ID aLayer, const BOX2I& aRect ) const { return DRC_LAYER( m_tree[int( aLayer )], aRect ); }
private: drc_rtree* m_tree[PCB_LAYER_ID_COUNT]; size_t m_count; };
#endif /* DRC_RTREE_H_ */
|