|
|
/*
* This program source code file is part of KICAD, a free EDA CAD application. * * Copyright (C) 2016-2017 CERN * @author Tomasz Wlostowski <tomasz.wlostowski@cern.ch> * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */
#include <connectivity_algo.h>
#ifdef PROFILE
#include <profile.h>
#endif
using namespace std::placeholders;
bool operator<( const CN_ANCHOR_PTR a, const CN_ANCHOR_PTR b ){ if( a->Pos().x == b->Pos().x ) return a->Pos().y < b->Pos().y; else return a->Pos().x < b->Pos().x;}
bool CN_ANCHOR::IsDirty() const{ return m_item->Dirty();}
CN_CLUSTER::CN_CLUSTER(){ m_items.reserve( 64 ); m_originPad = nullptr; m_originNet = -1; m_conflicting = false;}
CN_CLUSTER::~CN_CLUSTER(){}
wxString CN_CLUSTER::OriginNetName() const{ if( !m_originPad || !m_originPad->Valid() ) return "<none>"; else return m_originPad->Parent()->GetNetname();}
bool CN_CLUSTER::Contains( const CN_ITEM* aItem ){ return std::find( m_items.begin(), m_items.end(), aItem ) != m_items.end();}
bool CN_CLUSTER::Contains( const BOARD_CONNECTED_ITEM* aItem ){ for( auto item : m_items ) { if( item->Valid() && item->Parent() == aItem ) return true; }
return false;}
void CN_ITEM::Dump(){ printf(" valid: %d, connected: \n", !!Valid());
for( auto i : m_connected ) { TRACK* t = static_cast<TRACK*>( i->Parent() ); printf( " - %p %d\n", t, t->Type() ); }}
void CN_CLUSTER::Dump(){ for( auto item : m_items ) { wxLogTrace( "CN", " - item : %p bitem : %p type : %d inet %s\n", item, item->Parent(), item->Parent()->Type(), (const char*) item->Parent()->GetNetname().c_str() ); printf( "- item : %p bitem : %p type : %d inet %s\n", item, item->Parent(), item->Parent()->Type(), (const char*) item->Parent()->GetNetname().c_str() ); item->Dump(); }}
void CN_CLUSTER::Add( CN_ITEM* item ){ m_items.push_back( item );
if( m_originNet < 0 ) { m_originNet = item->Net(); }
if( item->Parent()->Type() == PCB_PAD_T ) { if( !m_originPad ) { m_originPad = item; m_originNet = item->Net(); }
if( m_originPad && item->Net() != m_originNet ) { m_conflicting = true; } }}
CN_CONNECTIVITY_ALGO::CN_CONNECTIVITY_ALGO(){}
CN_CONNECTIVITY_ALGO::~CN_CONNECTIVITY_ALGO(){ Clear();}
bool CN_CONNECTIVITY_ALGO::Remove( BOARD_ITEM* aItem ){ markItemNetAsDirty( aItem );
switch( aItem->Type() ) { case PCB_MODULE_T: for( auto pad : static_cast<MODULE*>( aItem ) -> Pads() ) { m_itemMap[ static_cast<BOARD_CONNECTED_ITEM*>( pad ) ].MarkItemsAsInvalid(); m_itemMap.erase( static_cast<BOARD_CONNECTED_ITEM*>( pad ) ); }
m_padList.SetDirty( true ); break;
case PCB_PAD_T: m_itemMap[ static_cast<BOARD_CONNECTED_ITEM*>( aItem ) ].MarkItemsAsInvalid(); m_itemMap.erase( static_cast<BOARD_CONNECTED_ITEM*>( aItem ) ); m_padList.SetDirty( true ); break;
case PCB_TRACE_T: m_itemMap[ static_cast<BOARD_CONNECTED_ITEM*>( aItem ) ].MarkItemsAsInvalid(); m_itemMap.erase( static_cast<BOARD_CONNECTED_ITEM*>( aItem ) ); m_trackList.SetDirty( true ); break;
case PCB_VIA_T: m_itemMap[ static_cast<BOARD_CONNECTED_ITEM*>( aItem ) ].MarkItemsAsInvalid(); m_itemMap.erase( static_cast<BOARD_CONNECTED_ITEM*>( aItem ) ); m_viaList.SetDirty( true ); break;
case PCB_ZONE_AREA_T: case PCB_ZONE_T: { m_itemMap[ static_cast<BOARD_CONNECTED_ITEM*>( aItem ) ].MarkItemsAsInvalid(); m_itemMap.erase ( static_cast<BOARD_CONNECTED_ITEM*>( aItem ) ); m_zoneList.SetDirty( true ); break; }
default: return false; }
return true;}
void CN_CONNECTIVITY_ALGO::markItemNetAsDirty( const BOARD_ITEM* aItem ){ if( aItem->IsConnected() ) { auto citem = static_cast<const BOARD_CONNECTED_ITEM*>( aItem ); MarkNetAsDirty( citem->GetNetCode() ); } else { if( aItem->Type() == PCB_MODULE_T ) { auto mod = static_cast <const MODULE*>( aItem );
for( D_PAD* pad = mod->PadsList(); pad; pad = pad->Next() ) MarkNetAsDirty( pad->GetNetCode() ); } }}
bool CN_CONNECTIVITY_ALGO::Add( BOARD_ITEM* aItem ){ markItemNetAsDirty ( aItem );
switch( aItem->Type() ) { case PCB_NETINFO_T: { MarkNetAsDirty( static_cast<NETINFO_ITEM*>( aItem )->GetNet() ); break; } case PCB_MODULE_T: for( auto pad : static_cast<MODULE*>( aItem ) -> Pads() ) { if( m_itemMap.find( pad ) != m_itemMap.end() ) return false;
add( m_padList, pad ); }
break;
case PCB_PAD_T: if( m_itemMap.find ( static_cast<D_PAD*>( aItem ) ) != m_itemMap.end() ) return false;
add( m_padList, static_cast<D_PAD*>( aItem ) );
break;
case PCB_TRACE_T: { if( m_itemMap.find( static_cast<TRACK*>( aItem ) ) != m_itemMap.end() ) return false;
add( m_trackList, static_cast<TRACK*>( aItem ) );
break; }
case PCB_VIA_T: if( m_itemMap.find( static_cast<VIA*>( aItem ) ) != m_itemMap.end() ) return false;
add( m_viaList, static_cast<VIA*>( aItem ) );
break;
case PCB_ZONE_AREA_T: case PCB_ZONE_T: { auto zone = static_cast<ZONE_CONTAINER*>( aItem );
if( m_itemMap.find( static_cast<ZONE_CONTAINER*>( aItem ) ) != m_itemMap.end() ) return false;
m_itemMap[zone] = ITEM_MAP_ENTRY();
for( auto zitem : m_zoneList.Add( zone ) ) m_itemMap[zone].Link(zitem);
break; }
default: return false; }
return true;}
void CN_CONNECTIVITY_ALGO::searchConnections( bool aIncludeZones ){ int totalDirtyCount = 0;
if( m_lastSearchWithZones != aIncludeZones ) { m_padList.MarkAllAsDirty(); m_viaList.MarkAllAsDirty(); m_trackList.MarkAllAsDirty(); m_zoneList.MarkAllAsDirty(); }
m_lastSearchWithZones = aIncludeZones;
auto checkForConnection = [] ( const CN_ANCHOR_PTR point, CN_ITEM* aRefItem, int aMaxDist = 0 ) { const auto parent = aRefItem->Parent();
assert( point->Item() ); assert( point->Item()->Parent() ); assert( aRefItem->Parent() );
if( !point->Item()->Valid() ) return;
if( !aRefItem->Valid() ) return;
if( parent == point->Item()->Parent() ) return;
if( !( parent->GetLayerSet() & point->Item()->Parent()->GetLayerSet() ).any() ) return;
switch( parent->Type() ) { case PCB_PAD_T: case PCB_VIA_T:
if( parent->HitTest( wxPoint( point->Pos().x, point->Pos().y ) ) ) CN_ITEM::Connect( aRefItem, point->Item() );
break;
case PCB_TRACE_T: { const auto track = static_cast<TRACK*> ( parent );
const VECTOR2I d_start( VECTOR2I( track->GetStart() ) - point->Pos() ); const VECTOR2I d_end( VECTOR2I( track->GetEnd() ) - point->Pos() );
if( d_start.EuclideanNorm() < aMaxDist || d_end.EuclideanNorm() < aMaxDist ) CN_ITEM::Connect( aRefItem, point->Item() ); break; }
case PCB_ZONE_T: case PCB_ZONE_AREA_T: { const auto zone = static_cast<ZONE_CONTAINER*> ( parent ); auto zoneItem = static_cast<CN_ZONE*> ( aRefItem );
if( point->Item()->Net() != parent->GetNetCode() ) return;
if( !( zone->GetLayerSet() & point->Item()->Parent()->GetLayerSet() ).any() ) return;
if( zoneItem->ContainsAnchor( point ) ) { CN_ITEM::Connect( zoneItem, point->Item() ); }
break;
} default : assert( false ); } };
auto checkInterZoneConnection = [] ( CN_ZONE* testedZone, CN_ZONE* aRefZone ) { const auto parentZone = static_cast<const ZONE_CONTAINER*>( aRefZone->Parent() );
if( testedZone->Parent()->Type () != PCB_ZONE_AREA_T ) return;
if( testedZone == aRefZone ) return;
if( testedZone->Parent() == aRefZone->Parent() ) return;
if( testedZone->Net() != parentZone->GetNetCode() ) return; // we only test zones belonging to the same net
if( !( testedZone->Parent()->GetLayerSet() & parentZone->GetLayerSet() ).any() ) return; // and on same layer
const auto& outline = parentZone->GetFilledPolysList().COutline( aRefZone->SubpolyIndex() );
for( int i = 0; i < outline.PointCount(); i++ ) { if( testedZone->ContainsPoint( outline.CPoint( i ) ) ) { CN_ITEM::Connect( aRefZone, testedZone ); return; } }
const auto testedZoneParent = static_cast<const ZONE_CONTAINER*>( testedZone->Parent() );
const auto& outline2 = testedZoneParent->GetFilledPolysList().COutline( testedZone->SubpolyIndex() );
for( int i = 0; i < outline2.PointCount(); i++ ) { if( aRefZone->ContainsPoint( outline2.CPoint( i ) ) ) { CN_ITEM::Connect( aRefZone, testedZone ); return; } } };
#ifdef CONNECTIVITY_DEBUG
printf("Search start\n");#endif
std::vector<CN_ITEM*> garbage; garbage.reserve( 1024 );
m_padList.RemoveInvalidItems( garbage ); m_viaList.RemoveInvalidItems( garbage ); m_trackList.RemoveInvalidItems( garbage ); m_zoneList.RemoveInvalidItems( garbage );
for( auto item : garbage ) delete item;
//auto all = allItemsInBoard();
#ifdef CONNECTIVITY_DEBUG
for( auto item : m_padList ) if( all.find( item->Parent() ) == all.end() ) { printf("Failing pad : %p\n", item->Parent() ); assert ( false ); }
for( auto item : m_viaList ) if( all.find( item->Parent() ) == all.end() ) { printf("Failing via : %p\n", item->Parent() ); assert ( false ); }
for( auto item : m_trackList ) if( all.find( item->Parent() ) == all.end() ) { printf("Failing track : %p\n", item->Parent() ); assert ( false ); }
for( auto item : m_zoneList ) if( all.find( item->Parent() ) == all.end() ) { printf("Failing zome : %p\n", item->Parent() ); assert ( false ); } #endif
#ifdef PROFILE
PROF_COUNTER search_cnt( "search-connections" ); PROF_COUNTER search_basic( "search-basic" );#endif
if( m_padList.IsDirty() || m_trackList.IsDirty() || m_viaList.IsDirty() ) { totalDirtyCount++;
for( auto padItem : m_padList ) { auto pad = static_cast<D_PAD*> ( padItem->Parent() ); auto searchPads = std::bind( checkForConnection, _1, padItem );
m_padList.FindNearby( pad->ShapePos(), pad->GetBoundingRadius(), searchPads ); m_trackList.FindNearby( pad->ShapePos(), pad->GetBoundingRadius(), searchPads ); m_viaList.FindNearby( pad->ShapePos(), pad->GetBoundingRadius(), searchPads ); }
for( auto& trackItem : m_trackList ) { auto track = static_cast<TRACK*> ( trackItem->Parent() ); int dist_max = track->GetWidth() / 2; auto searchTracks = std::bind( checkForConnection, _1, trackItem, dist_max );
m_trackList.FindNearby( track->GetStart(), dist_max, searchTracks ); m_trackList.FindNearby( track->GetEnd(), dist_max, searchTracks ); }
for( auto& viaItem : m_viaList ) { auto via = static_cast<VIA*> ( viaItem->Parent() ); int dist_max = via->GetWidth() / 2; auto searchVias = std::bind( checkForConnection, _1, viaItem, dist_max );
totalDirtyCount++; m_viaList.FindNearby( via->GetStart(), dist_max, searchVias ); m_trackList.FindNearby( via->GetStart(), dist_max, searchVias ); } }
#ifdef PROFILE
search_basic.Show();#endif
if( aIncludeZones ) { for( auto& item : m_zoneList ) { auto zoneItem = static_cast<CN_ZONE *> (item); auto searchZones = std::bind( checkForConnection, _1, zoneItem );
if( zoneItem->Dirty() || m_padList.IsDirty() || m_trackList.IsDirty() || m_viaList.IsDirty() ) { totalDirtyCount++; m_viaList.FindNearby( zoneItem->BBox(), searchZones ); m_trackList.FindNearby( zoneItem->BBox(), searchZones ); m_padList.FindNearby( zoneItem->BBox(), searchZones ); m_zoneList.FindNearbyZones( zoneItem->BBox(), std::bind( checkInterZoneConnection, _1, zoneItem ) ); } }
m_zoneList.ClearDirtyFlags(); }
m_padList.ClearDirtyFlags(); m_viaList.ClearDirtyFlags(); m_trackList.ClearDirtyFlags();
#ifdef CONNECTIVITY_DEBUG
printf("Search end\n");#endif
#ifdef PROFILE
search_cnt.Show();#endif
}
void CN_ITEM::RemoveInvalidRefs(){ auto lastConn = std::remove_if(m_connected.begin(), m_connected.end(), [] ( CN_ITEM * item) { return !item->Valid(); } );
m_connected.resize( lastConn - m_connected.begin() );}
void CN_LIST::RemoveInvalidItems( std::vector<CN_ITEM*>& aGarbage ){ auto lastAnchor = std::remove_if(m_anchors.begin(), m_anchors.end(), [] ( const CN_ANCHOR_PTR anchor ) { return !anchor->Valid(); } );
m_anchors.resize( lastAnchor - m_anchors.begin() );
auto lastItem = std::remove_if(m_items.begin(), m_items.end(), [&aGarbage] ( CN_ITEM* item ) { if( !item->Valid() ) { aGarbage.push_back ( item ); return true; }
return false; } );
m_items.resize( lastItem - m_items.begin() );
// fixme: mem leaks
for( auto item : m_items ) item->RemoveInvalidRefs();}
bool CN_CONNECTIVITY_ALGO::isDirty() const{ return m_viaList.IsDirty() || m_trackList.IsDirty() || m_zoneList.IsDirty() || m_padList.IsDirty();}
const CN_CONNECTIVITY_ALGO::CLUSTERS CN_CONNECTIVITY_ALGO::SearchClusters( CLUSTER_SEARCH_MODE aMode ){ constexpr KICAD_T types[] = { PCB_TRACE_T, PCB_PAD_T, PCB_VIA_T, PCB_ZONE_AREA_T, PCB_MODULE_T, EOT }; return SearchClusters( aMode, types, -1 );}
const CN_CONNECTIVITY_ALGO::CLUSTERS CN_CONNECTIVITY_ALGO::SearchClusters( CLUSTER_SEARCH_MODE aMode, const KICAD_T aTypes[], int aSingleNet ){ bool includeZones = ( aMode != CSM_PROPAGATE ); bool withinAnyNet = ( aMode != CSM_PROPAGATE );
std::deque<CN_ITEM*> Q; CN_ITEM* head = nullptr; CLUSTERS clusters;
if( isDirty() ) searchConnections( includeZones );
auto addToSearchList = [&head, withinAnyNet, aSingleNet, aTypes] ( CN_ITEM *aItem ) { if( withinAnyNet && aItem->Net() <= 0 ) return;
if( !aItem->Valid() ) return;
if( aSingleNet >=0 && aItem->Net() != aSingleNet ) return;
bool found = false;
for( int i = 0; aTypes[i] != EOT; i++ ) { if( aItem->Parent()->Type() == aTypes[i] ) { found = true; break; } }
if( !found ) return;
aItem->ListClear(); aItem->SetVisited( false );
if( !head ) head = aItem; else head->ListInsert( aItem ); };
std::for_each( m_padList.begin(), m_padList.end(), addToSearchList ); std::for_each( m_trackList.begin(), m_trackList.end(), addToSearchList ); std::for_each( m_viaList.begin(), m_viaList.end(), addToSearchList );
if( includeZones ) { std::for_each( m_zoneList.begin(), m_zoneList.end(), addToSearchList ); }
while( head ) { CN_CLUSTER_PTR cluster ( new CN_CLUSTER() );
Q.clear(); CN_ITEM* root = head; root->SetVisited ( true );
head = root->ListRemove();
Q.push_back( root );
while( Q.size() ) { CN_ITEM* current = Q.front();
Q.pop_front(); cluster->Add( current );
for( auto n : current->ConnectedItems() ) { if( withinAnyNet && n->Net() != root->Net() ) continue;
if( !n->Visited() && n->Valid() ) { n->SetVisited( true ); Q.push_back( n ); head = n->ListRemove(); } } }
clusters.push_back( cluster ); }
std::sort( clusters.begin(), clusters.end(), []( CN_CLUSTER_PTR a, CN_CLUSTER_PTR b ) { return a->OriginNet() < b->OriginNet(); } );
#ifdef CONNECTIVITY_DEBUG
printf("Active clusters: %d\n");
for( auto cl : clusters ) { printf( "Net %d\n", cl->OriginNet() ); cl->Dump(); }#endif
return clusters;}
void CN_CONNECTIVITY_ALGO::Build( BOARD* aBoard ){ for( int i = 0; i<aBoard->GetAreaCount(); i++ ) { auto zone = aBoard->GetArea( i ); Add( zone ); }
for( auto tv : aBoard->Tracks() ) Add( tv );
for( auto mod : aBoard->Modules() ) { for( auto pad : mod->Pads() ) Add( pad ); }
/*wxLogTrace( "CN", "zones : %lu, pads : %lu vias : %lu tracks : %lu\n",
m_zoneList.Size(), m_padList.Size(), m_viaList.Size(), m_trackList.Size() );*/}
void CN_CONNECTIVITY_ALGO::Build( const std::vector<BOARD_ITEM*>& aItems ){ for( auto item : aItems ) { switch( item->Type() ) { case PCB_TRACE_T: case PCB_VIA_T: case PCB_ZONE_T: case PCB_PAD_T: Add( item ); break;
case PCB_MODULE_T: { for( auto pad : static_cast<MODULE*>( item )->Pads() ) { Add( pad ); }
break; }
default: break; } }}
void CN_CONNECTIVITY_ALGO::propagateConnections(){ for( auto cluster : m_connClusters ) { if( cluster->IsConflicting() ) { wxLogTrace( "CN", "Conflicting nets in cluster %p\n", cluster.get() ); } else if( cluster->IsOrphaned() ) { wxLogTrace( "CN", "Skipping orphaned cluster %p [net: %s]\n", cluster.get(), (const char*) cluster->OriginNetName().c_str() ); } else if( cluster->HasValidNet() ) { // normal cluster: just propagate from the pads
int n_changed = 0;
for( auto item : *cluster ) { if( item->CanChangeNet() ) { if( item->Valid() && item->Parent()->GetNetCode() != cluster->OriginNet() ) { MarkNetAsDirty( item->Parent()->GetNetCode() ); MarkNetAsDirty( cluster->OriginNet() );
item->Parent()->SetNetCode( cluster->OriginNet() ); n_changed++; } } }
if( n_changed ) wxLogTrace( "CN", "Cluster %p : net : %d %s\n", cluster.get(), cluster->OriginNet(), (const char*) cluster->OriginNetName().c_str() ); else wxLogTrace( "CN", "Cluster %p : nothing to propagate\n", cluster.get() ); } else { wxLogTrace( "CN", "Cluster %p : connected to unused net\n", cluster.get() ); } }}
void CN_CONNECTIVITY_ALGO::PropagateNets(){ //searchConnections( false );
m_connClusters = SearchClusters( CSM_PROPAGATE ); propagateConnections();}
void CN_CONNECTIVITY_ALGO::FindIsolatedCopperIslands( ZONE_CONTAINER* aZone, std::vector<int>& aIslands ){ if( aZone->GetFilledPolysList().IsEmpty() ) return;
aIslands.clear();
Remove( aZone ); Add( aZone );
m_connClusters = SearchClusters( CSM_CONNECTIVITY_CHECK );
for( auto cluster : m_connClusters ) { if( cluster->Contains( aZone ) && cluster->IsOrphaned() ) { for( auto z : *cluster ) { if( z->Parent() == aZone ) { aIslands.push_back( static_cast<CN_ZONE*>(z)->SubpolyIndex() ); } } } }
wxLogTrace( "CN", "Found %u isolated islands\n", (unsigned)aIslands.size() );}
const CN_CONNECTIVITY_ALGO::CLUSTERS& CN_CONNECTIVITY_ALGO::GetClusters(){ m_ratsnestClusters = SearchClusters( CSM_RATSNEST ); return m_ratsnestClusters;}
void CN_CONNECTIVITY_ALGO::MarkNetAsDirty( int aNet ){ if( aNet < 0 ) return;
if( (int) m_dirtyNets.size() <= aNet ) m_dirtyNets.resize( aNet + 1 );
m_dirtyNets[aNet] = true;}
int CN_ITEM::AnchorCount() const{ if( !m_valid ) return 0;
return m_parent->Type() == PCB_TRACE_T ? 2 : 1;}
const VECTOR2I CN_ITEM::GetAnchor( int n ) const{ if( !m_valid ) return VECTOR2I();
switch( m_parent->Type() ) { case PCB_PAD_T: return static_cast<const D_PAD*>( m_parent )->ShapePos(); break;
case PCB_TRACE_T: { auto tr = static_cast<const TRACK*>( m_parent ); return ( n == 0 ? tr->GetStart() : tr->GetEnd() );
break; }
case PCB_VIA_T: return static_cast<const VIA*>( m_parent )->GetStart();
default: assert( false ); return VECTOR2I(); }}
int CN_ZONE::AnchorCount() const{ if( !Valid() ) return 0;
const auto zone = static_cast<const ZONE_CONTAINER*>( Parent() ); const auto& outline = zone->GetFilledPolysList().COutline( m_subpolyIndex );
return outline.PointCount() ? 1 : 0;}
const VECTOR2I CN_ZONE::GetAnchor( int n ) const{ if( !Valid() ) return VECTOR2I();
const auto zone = static_cast<const ZONE_CONTAINER*> ( Parent() ); const auto& outline = zone->GetFilledPolysList().COutline( m_subpolyIndex );
return outline.CPoint( 0 );}
int CN_ITEM::Net() const{ if( !m_parent || !m_valid ) return -1;
return m_parent->GetNetCode();}
BOARD_CONNECTED_ITEM* CN_ANCHOR::Parent() const{ assert( m_item->Valid() ); return m_item->Parent();}
bool CN_ANCHOR::Valid() const{ if( !m_item ) return false;
return m_item->Valid();}
void CN_CONNECTIVITY_ALGO::Clear(){ m_ratsnestClusters.clear(); m_connClusters.clear(); m_itemMap.clear(); m_padList.Clear(); m_trackList.Clear(); m_viaList.Clear(); m_zoneList.Clear();
}
void CN_CONNECTIVITY_ALGO::ForEachItem( std::function<void(CN_ITEM*)> aFunc ){ for( auto item : m_padList ) aFunc( item );
for( auto item : m_viaList ) aFunc( item );
for( auto item : m_trackList ) aFunc( item );
for( auto item : m_zoneList ) aFunc( item );}
void CN_CONNECTIVITY_ALGO::ForEachAnchor( std::function<void(CN_ANCHOR_PTR)> aFunc ){ for( auto anchor : m_padList.Anchors() ) aFunc( anchor );
for( auto anchor : m_viaList.Anchors() ) aFunc( anchor );
for( auto anchor : m_trackList.Anchors() ) aFunc( anchor );
for( auto anchor : m_zoneList.Anchors() ) aFunc( anchor );}
bool CN_ANCHOR::IsDangling() const{ if( !m_cluster ) return true;
int validCount = 0;
for( auto item : *m_cluster ) { if( item->Valid() ) validCount++; }
return validCount <= 1;}
|