|
|
/*
* This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2015-2016 Mario Luzeiro <mrluzeiro@ua.pt> * Copyright (C) 1992-2017 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */
/**
* @file ccamera.cpp * @brief */
#include "ccamera.h"
#include <wx/log.h>
/**
* Trace mask used to enable or disable the trace output of this class. * The debug output can be turned on by setting the WXTRACE environment variable to * "KI_TRACE_CCAMERA". See the wxWidgets documentation on wxLogTrace for * more information. */const wxChar *CCAMERA::m_logTrace = wxT( "KI_TRACE_CCAMERA" );
#define MIN_ZOOM 0.10f
#define MAX_ZOOM 1.25f
CCAMERA::CCAMERA( float aRangeScale ){ wxLogTrace( m_logTrace, wxT( "CCAMERA::CCAMERA" ) );
m_range_scale = aRangeScale; m_camera_pos_init = SFVEC3F( 0.0f, 0.0f, -(aRangeScale * 2.0f ) ); m_board_lookat_pos_init = SFVEC3F( 0.0f ); m_windowSize = SFVEC2I( 0, 0 ); m_projectionType = PROJECTION_PERSPECTIVE; m_interpolation_mode = INTERPOLATION_BEZIER;
Reset();}
void CCAMERA::Reset(){ m_parametersChanged = true; m_projectionMatrix = glm::mat4( 1.0f ); m_projectionMatrixInv = glm::mat4( 1.0f ); m_rotationMatrix = glm::mat4( 1.0f ); m_rotationMatrixAux = glm::mat4( 1.0f ); m_lastPosition = wxPoint( 0, 0 );
m_zoom = 1.0f; m_zoom_t0 = 1.0f; m_zoom_t1 = 1.0f; m_camera_pos = m_camera_pos_init; m_camera_pos_t0 = m_camera_pos_init; m_camera_pos_t1 = m_camera_pos_init; m_lookat_pos = m_board_lookat_pos_init; m_lookat_pos_t0 = m_board_lookat_pos_init; m_lookat_pos_t1 = m_board_lookat_pos_init;
m_rotate_aux = SFVEC3F( 0.0f ); m_rotate_aux_t0 = SFVEC3F( 0.0f ); m_rotate_aux_t1 = SFVEC3F( 0.0f );
updateRotationMatrix(); updateViewMatrix(); m_viewMatrixInverse = glm::inverse( m_viewMatrix ); m_scr_nX.clear(); m_scr_nY.clear(); rebuildProjection();}
void CCAMERA::Reset_T1(){ m_camera_pos_t1 = m_camera_pos_init; m_zoom_t1 = 1.0f; m_rotate_aux_t1 = SFVEC3F( 0.0f ); m_lookat_pos_t1 = m_board_lookat_pos_init;}
void CCAMERA::updateViewMatrix(){ m_viewMatrix = glm::translate( glm::mat4( 1.0f ), m_camera_pos ) * m_rotationMatrix * m_rotationMatrixAux * glm::translate( glm::mat4( 1.0f ), -m_lookat_pos );}
void CCAMERA::updateRotationMatrix(){ m_rotationMatrixAux = glm::rotate( glm::mat4( 1.0f ), m_rotate_aux.x, SFVEC3F( 1.0f, 0.0f, 0.0f ) );
m_rotationMatrixAux = glm::rotate( m_rotationMatrixAux, m_rotate_aux.y, SFVEC3F( 0.0f, 1.0f, 0.0f ) );
m_rotationMatrixAux = glm::rotate( m_rotationMatrixAux, m_rotate_aux.z, SFVEC3F( 0.0f, 0.0f, 1.0f ) );
m_parametersChanged = true;
updateViewMatrix(); updateFrustum();}
const glm::mat4 CCAMERA::GetRotationMatrix() const{ return m_rotationMatrix * m_rotationMatrixAux;}
void CCAMERA::rebuildProjection(){ if( (m_windowSize.x == 0) || (m_windowSize.y == 0) ) return;
m_frustum.ratio = (float) m_windowSize.x / (float)m_windowSize.y;
// Consider that we can render double the length multiplied by the 2/sqrt(2)
//
m_frustum.farD = glm::length( m_camera_pos_init ) * 2.0f * ( 2.0f * sqrtf( 2.0f ) );
switch( m_projectionType ) { default: case PROJECTION_PERSPECTIVE:
m_frustum.nearD = 0.10f;
// Ratio width / height of the window display
m_frustum.angle = 45.0f * m_zoom;
m_projectionMatrix = glm::perspective( glm::radians( m_frustum.angle ), m_frustum.ratio, m_frustum.nearD, m_frustum.farD );
m_projectionMatrixInv = glm::inverse( m_projectionMatrix );
m_frustum.tang = glm::tan( glm::radians( m_frustum.angle ) * 0.5f ) ;
m_focalLen.x = ( (float)m_windowSize.y / (float)m_windowSize.x ) / m_frustum.tang; m_focalLen.y = 1.0f / m_frustum.tang;
m_frustum.nh = m_frustum.nearD * m_frustum.tang; m_frustum.nw = m_frustum.nh * m_frustum.ratio; m_frustum.fh = m_frustum.farD * m_frustum.tang; m_frustum.fw = m_frustum.fh * m_frustum.ratio; break;
case PROJECTION_ORTHO:
m_frustum.nearD = -m_frustum.farD; // Use a symmetrical clip plane for ortho projection
const float orthoReductionFactor = m_zoom / 75.0f;
// Initialize Projection Matrix for Ortographic View
m_projectionMatrix = glm::ortho( -m_windowSize.x * orthoReductionFactor, m_windowSize.x * orthoReductionFactor, -m_windowSize.y * orthoReductionFactor, m_windowSize.y * orthoReductionFactor, m_frustum.nearD, m_frustum.farD );
m_projectionMatrixInv = glm::inverse( m_projectionMatrix );
m_frustum.nw = m_windowSize.x * orthoReductionFactor * 2.0f; m_frustum.nh = m_windowSize.y * orthoReductionFactor * 2.0f; m_frustum.fw = m_frustum.nw; m_frustum.fh = m_frustum.nh;
break; }
if ( (m_windowSize.x > 0) && (m_windowSize.y > 0) ) { m_scr_nX.resize( m_windowSize.x + 1 ); m_scr_nY.resize( m_windowSize.y + 1 );
// Precalc X values for camera -> ray generation
for( unsigned int x = 0; x < (unsigned int)m_windowSize.x + 1; ++x ) { // Converts 0.0 .. 1.0
const float xNormalizedDeviceCoordinates = ( ( (float)x + 0.5f ) / (m_windowSize.x - 0.0f) );
// Converts -1.0 .. 1.0
m_scr_nX[x] = 2.0f * xNormalizedDeviceCoordinates - 1.0f; }
// Precalc Y values for camera -> ray generation
for( unsigned int y = 0; y < (unsigned int)m_windowSize.y + 1 ; ++y ) { // Converts 0.0 .. 1.0
const float yNormalizedDeviceCoordinates = ( ( (float)y + 0.5f ) / (m_windowSize.y - 0.0f) );
// Converts -1.0 .. 1.0
m_scr_nY[y] = 2.0f * yNormalizedDeviceCoordinates - 1.0f; }
updateFrustum(); }}
void CCAMERA::updateFrustum(){ // Update matrix and vectors
m_viewMatrixInverse = glm::inverse( m_viewMatrix );
m_right = glm::normalize( SFVEC3F( m_viewMatrixInverse * glm::vec4( SFVEC3F( 1.0, 0.0, 0.0 ), 0.0 ) ) );
m_up = glm::normalize( SFVEC3F( m_viewMatrixInverse * glm::vec4( SFVEC3F( 0.0, 1.0, 0.0 ), 0.0 ) ) );
m_dir = glm::normalize( SFVEC3F( m_viewMatrixInverse * glm::vec4( SFVEC3F( 0.0, 0.0, 1.0 ), 0.0 ) ) );
m_pos = SFVEC3F( m_viewMatrixInverse * glm::vec4( SFVEC3F( 0.0, 0.0, 0.0 ), 1.0 ) );
/*
* Frustum is a implementation based on a tutorial by * http://www.lighthouse3d.com/tutorials/view-frustum-culling/
*/
// compute the centers of the near and far planes
m_frustum.nc = m_pos - m_dir * m_frustum.nearD; m_frustum.fc = m_pos - m_dir * m_frustum.farD;
// compute the 4 corners of the frustum on the near plane
m_frustum.ntl = m_frustum.nc + m_up * m_frustum.nh - m_right * m_frustum.nw; m_frustum.ntr = m_frustum.nc + m_up * m_frustum.nh + m_right * m_frustum.nw; m_frustum.nbl = m_frustum.nc - m_up * m_frustum.nh - m_right * m_frustum.nw; m_frustum.nbr = m_frustum.nc - m_up * m_frustum.nh + m_right * m_frustum.nw;
// compute the 4 corners of the frustum on the far plane
m_frustum.ftl = m_frustum.fc + m_up * m_frustum.fh - m_right * m_frustum.fw; m_frustum.ftr = m_frustum.fc + m_up * m_frustum.fh + m_right * m_frustum.fw; m_frustum.fbl = m_frustum.fc - m_up * m_frustum.fh - m_right * m_frustum.fw; m_frustum.fbr = m_frustum.fc - m_up * m_frustum.fh + m_right * m_frustum.fw;
if ( (m_windowSize.x > 0) && (m_windowSize.y > 0) ) { // Reserve size for precalc values
m_right_nX.resize( m_windowSize.x + 1 ); m_up_nY.resize( m_windowSize.y + 1 );
// Precalc X values for camera -> ray generation
const SFVEC3F right_nw = m_right * m_frustum.nw;
for( unsigned int x = 0; x < ((unsigned int)m_windowSize.x + 1); ++x ) m_right_nX[x] = right_nw * m_scr_nX[x];
// Precalc Y values for camera -> ray generation
const SFVEC3F up_nh = m_up * m_frustum.nh;
for( unsigned int y = 0; y < ((unsigned int)m_windowSize.y + 1); ++y ) m_up_nY[y] = up_nh * m_scr_nY[y]; }}
void CCAMERA::MakeRay( const SFVEC2I &aWindowPos, SFVEC3F &aOutOrigin, SFVEC3F &aOutDirection ) const{ wxASSERT( aWindowPos.x < m_windowSize.x ); wxASSERT( aWindowPos.y < m_windowSize.y );
const SFVEC3F up_plus_right = m_up_nY[aWindowPos.y] + m_right_nX[aWindowPos.x];
switch( m_projectionType ) { default: case PROJECTION_PERSPECTIVE: aOutOrigin = up_plus_right + m_frustum.nc; aOutDirection = glm::normalize( aOutOrigin - m_pos ); break;
case PROJECTION_ORTHO: aOutOrigin = up_plus_right * 0.5f + m_frustum.nc; aOutDirection = -m_dir; break; }}
void CCAMERA::MakeRay( const SFVEC2F &aWindowPos, SFVEC3F &aOutOrigin, SFVEC3F &aOutDirection ) const{ wxASSERT( aWindowPos.x < (float)m_windowSize.x ); wxASSERT( aWindowPos.y < (float)m_windowSize.y );
const SFVEC2F floorWinPos_f = glm::floor( aWindowPos ); const SFVEC2I floorWinPos_i = (SFVEC2I)floorWinPos_f; const SFVEC2F relativeWinPos = aWindowPos - floorWinPos_f;
// Note: size of vectors m_up and m_right are m_windowSize + 1
const SFVEC3F up_plus_right = m_up_nY[floorWinPos_i.y] * (1.0f - relativeWinPos.y) + m_up_nY[floorWinPos_i.y + 1] * relativeWinPos.y + m_right_nX[floorWinPos_i.x] * (1.0f - relativeWinPos.x) + m_right_nX[floorWinPos_i.x + 1] * relativeWinPos.x;
switch( m_projectionType ) { default: case PROJECTION_PERSPECTIVE: aOutOrigin = up_plus_right + m_frustum.nc; aOutDirection = glm::normalize( aOutOrigin - m_pos ); break;
case PROJECTION_ORTHO: aOutOrigin = up_plus_right * 0.5f + m_frustum.nc; aOutDirection = -m_dir; break; }}
void CCAMERA::MakeRayAtCurrrentMousePosition( SFVEC3F &aOutOrigin, SFVEC3F &aOutDirection ) const{ MakeRay( SFVEC2I( m_lastPosition.x, m_windowSize.y - m_lastPosition.y ), aOutOrigin, aOutDirection );}
const glm::mat4 &CCAMERA::GetProjectionMatrix() const{ return m_projectionMatrix;}
const glm::mat4 &CCAMERA::GetProjectionMatrixInv() const{ return m_projectionMatrixInv;}
void CCAMERA::ResetXYpos(){ m_parametersChanged = true; m_camera_pos.x = 0.0f; m_camera_pos.y = 0.0f;
updateViewMatrix(); updateFrustum();}
void CCAMERA::ResetXYpos_T1(){ m_camera_pos_t1.x = 0.0f; m_camera_pos_t1.y = 0.0f;}
const glm::mat4 &CCAMERA::GetViewMatrix() const{ return m_viewMatrix;}
const glm::mat4 &CCAMERA::GetViewMatrix_Inv() const{ return m_viewMatrixInverse;}
void CCAMERA::SetCurMousePosition( const wxPoint &aNewMousePosition ){ m_lastPosition = aNewMousePosition;}
void CCAMERA::SetProjection( PROJECTION_TYPE aProjectionType ){ if( m_projectionType != aProjectionType ) { m_projectionType = aProjectionType; rebuildProjection(); }}
void CCAMERA::ToggleProjection(){ if( m_projectionType == PROJECTION_ORTHO ) m_projectionType = PROJECTION_PERSPECTIVE; else m_projectionType = PROJECTION_ORTHO;
rebuildProjection();}
bool CCAMERA::SetCurWindowSize( const wxSize &aSize ){ const SFVEC2I newSize = SFVEC2I( aSize.x, aSize.y );
if( m_windowSize != newSize ) { m_windowSize = newSize; rebuildProjection();
return true; }
return false;}
void CCAMERA::ZoomReset(){ m_zoom = 1.0f;
m_camera_pos.z = m_camera_pos_init.z;
updateViewMatrix(); rebuildProjection();}
bool CCAMERA::Zoom( float aFactor ){ if ( ( m_zoom == MIN_ZOOM && aFactor > 1 ) || ( m_zoom == MAX_ZOOM && aFactor < 1 ) || aFactor == 1 ) return false;
m_zoom /= aFactor; if( m_zoom <= MIN_ZOOM ) m_zoom = MIN_ZOOM; if( m_zoom >= MAX_ZOOM ) m_zoom = MAX_ZOOM;
m_camera_pos.z = m_camera_pos_init.z * m_zoom;
updateViewMatrix(); rebuildProjection();
return true;}
bool CCAMERA::Zoom_T1( float aFactor ){ if( ( m_zoom == MIN_ZOOM && aFactor > 1 ) || ( m_zoom == MAX_ZOOM && aFactor < 1 ) || aFactor == 1 ) return false;
m_zoom_t1 = m_zoom / aFactor; if (m_zoom_t1 < MIN_ZOOM ) m_zoom_t1 = MIN_ZOOM; if (m_zoom_t1 > MAX_ZOOM ) m_zoom_t1 = MAX_ZOOM;
m_camera_pos_t1.z = m_camera_pos_init.z * m_zoom_t1;
return true;}
float CCAMERA::ZoomGet() const{ return m_zoom;}
void CCAMERA::RotateX( float aAngleInRadians ){ m_rotate_aux.x += aAngleInRadians; updateRotationMatrix();}
void CCAMERA::RotateY( float aAngleInRadians ){ m_rotate_aux.y += aAngleInRadians; updateRotationMatrix();}
void CCAMERA::RotateZ( float aAngleInRadians ){ m_rotate_aux.z += aAngleInRadians; updateRotationMatrix();}
void CCAMERA::RotateX_T1( float aAngleInRadians ){ m_rotate_aux_t1.x += aAngleInRadians;}
void CCAMERA::RotateY_T1( float aAngleInRadians ){ m_rotate_aux_t1.y += aAngleInRadians;}
void CCAMERA::RotateZ_T1( float aAngleInRadians ){ m_rotate_aux_t1.z += aAngleInRadians;}
void CCAMERA::SetT0_and_T1_current_T(){ m_camera_pos_t0 = m_camera_pos; m_lookat_pos_t0 = m_lookat_pos; m_rotate_aux_t0 = m_rotate_aux; m_zoom_t0 = m_zoom;
m_camera_pos_t1 = m_camera_pos; m_lookat_pos_t1 = m_lookat_pos; m_rotate_aux_t1 = m_rotate_aux; m_zoom_t1 = m_zoom;}
void CCAMERA::Interpolate( float t ){ wxASSERT( t >= 0.0f );
const float t0 = 1.0f - t;
m_camera_pos = m_camera_pos_t0 * t0 + m_camera_pos_t1 * t; m_lookat_pos = m_lookat_pos_t0 * t0 + m_lookat_pos_t1 * t; m_rotate_aux = m_rotate_aux_t0 * t0 + m_rotate_aux_t1 * t; m_zoom = m_zoom_t0 * t0 + m_zoom_t1 * t;
m_parametersChanged = true;
updateRotationMatrix(); rebuildProjection();}
bool CCAMERA::ParametersChanged(){ const bool parametersChanged = m_parametersChanged;
m_parametersChanged = false;
return parametersChanged;}
|