|
|
/*
* This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2018 Jean-Pierre Charras jp.charras at wanadoo.fr * Copyright The KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */
#pragma once
#include <core/mirror.h>
#include <geometry/shape_poly_set.h>
#include <geometry/approximation.h>
#include <properties/property.h>
#include <stroke_params.h>
#include <trigo.h>
#include <api/serializable.h>
class LINE_READER;class EDA_DRAW_FRAME;class FOOTPRINT;class MSG_PANEL_ITEM;
using KIGFX::COLOR4D;
enum class SHAPE_T : int{ UNDEFINED = -1, SEGMENT = 0, RECTANGLE, ///< Use RECTANGLE instead of RECT to avoid collision in a Windows header.
ARC, CIRCLE, POLY, BEZIER};
// WARNING: Do not change these values without updating dialogs that depend on their position values
enum class FILL_T : int{ NO_FILL = 1, FILLED_SHAPE, ///< Fill with object color.
FILLED_WITH_BG_BODYCOLOR, //< Fill with background body color.
FILLED_WITH_COLOR, //< Fill with a separate color.
HATCH, REVERSE_HATCH, CROSS_HATCH};
enum UI_FILL_MODE{ NONE = 0, SOLID, HATCH, REVERSE_HATCH, CROSS_HATCH};
/// Holding struct to keep originating midpoint
struct ARC_MID{ VECTOR2I mid; VECTOR2I start; VECTOR2I end; VECTOR2I center;};
class EDA_SHAPE : public SERIALIZABLE{public: EDA_SHAPE( SHAPE_T aType, int aLineWidth, FILL_T aFill );
/// Construct an EDA_SHAPE from an abstract SHAPE geometry.
EDA_SHAPE( const SHAPE& aShape );
// Do not create a copy constructor & operator=.
// The ones generated by the compiler are adequate.
virtual ~EDA_SHAPE();
void SwapShape( EDA_SHAPE* aImage );
void Serialize( google::protobuf::Any &aContainer ) const override; bool Deserialize( const google::protobuf::Any &aContainer ) override;
wxString ShowShape() const;
wxString SHAPE_T_asString() const;
virtual bool IsProxyItem() const { return m_proxyItem; } virtual void SetIsProxyItem( bool aIsProxy = true ) { m_proxyItem = aIsProxy; }
bool IsAnyFill() const { return GetFillMode() != FILL_T::NO_FILL; }
bool IsSolidFill() const { return GetFillMode() == FILL_T::FILLED_SHAPE || GetFillMode() == FILL_T::FILLED_WITH_COLOR || GetFillMode() == FILL_T::FILLED_WITH_BG_BODYCOLOR; }
bool IsHatchedFill() const { return GetFillMode() == FILL_T::HATCH || GetFillMode() == FILL_T::REVERSE_HATCH || GetFillMode() == FILL_T::CROSS_HATCH; }
virtual bool IsFilledForHitTesting() const { return IsSolidFill(); }
virtual void SetFilled( bool aFlag ) { setFilled( aFlag ); }
void SetFillMode( FILL_T aFill ); FILL_T GetFillMode() const { return m_fill; }
void SetFillModeProp( UI_FILL_MODE ); UI_FILL_MODE GetFillModeProp() const;
void SetHatchingDirty() { m_hatchingDirty = true; } const SHAPE_POLY_SET& GetHatching() const { return m_hatching; }
bool IsClosed() const;
COLOR4D GetFillColor() const { return m_fillColor; } void SetFillColor( const COLOR4D& aColor ) { m_fillColor = aColor; }
void SetWidth( int aWidth ); virtual int GetWidth() const { return m_stroke.GetWidth(); } virtual int GetEffectiveWidth() const { return GetWidth(); } virtual int GetHatchLineWidth() const { return GetEffectiveWidth(); } virtual int GetHatchLineSpacing() const { return GetHatchLineWidth() * 10; }
void SetLineStyle( const LINE_STYLE aStyle ); LINE_STYLE GetLineStyle() const;
void SetLineColor( const COLOR4D& aColor ) { m_stroke.SetColor( aColor ); } COLOR4D GetLineColor() const { return m_stroke.GetColor(); }
void SetShape( SHAPE_T aShape ) { m_shape = aShape; } SHAPE_T GetShape() const { return m_shape; }
/**
* Return the starting point of the graphic. */ const VECTOR2I& GetStart() const { return m_start; } int GetStartY() const { return m_start.y; } int GetStartX() const { return m_start.x; }
void SetStart( const VECTOR2I& aStart ) { m_start = aStart; m_endsSwapped = false; m_hatchingDirty = true; }
void SetStartY( int y ) { m_start.y = y; m_endsSwapped = false; m_hatchingDirty = true; }
void SetStartX( int x ) { m_start.x = x; m_endsSwapped = false; m_hatchingDirty = true; }
void SetCenterY( int y ) { m_end.y += y - m_start.y; m_start.y = y; m_hatchingDirty = true; }
void SetCenterX( int x ) { m_end.x += x - m_start.x; m_start.x = x; m_hatchingDirty = true; }
/**
* Return the ending point of the graphic. */ const VECTOR2I& GetEnd() const { return m_end; } int GetEndY() const { return m_end.y; } int GetEndX() const { return m_end.x; }
void SetEnd( const VECTOR2I& aEnd ) { m_end = aEnd; m_endsSwapped = false; m_hatchingDirty = true; }
void SetEndY( int aY ) { m_end.y = aY; m_endsSwapped = false; m_hatchingDirty = true; }
void SetEndX( int aX ) { m_end.x = aX; m_endsSwapped = false; m_hatchingDirty = true; }
void SetRadius( int aX ) { m_end = m_start + VECTOR2I( aX, 0 ); m_hatchingDirty = true; }
virtual VECTOR2I GetTopLeft() const { return GetStart(); } virtual VECTOR2I GetBotRight() const { return GetEnd(); }
virtual void SetTop( int val ) { SetStartY( val ); } virtual void SetLeft( int val ) { SetStartX( val ); } virtual void SetRight( int val ) { SetEndX( val ); } virtual void SetBottom( int val ) { SetEndY( val ); }
void SetBezierC1( const VECTOR2I& aPt ) { m_bezierC1 = aPt; } const VECTOR2I& GetBezierC1() const { return m_bezierC1; }
void SetBezierC2( const VECTOR2I& aPt ) { m_bezierC2 = aPt; } const VECTOR2I& GetBezierC2() const { return m_bezierC2; }
VECTOR2I getCenter() const; void SetCenter( const VECTOR2I& aCenter );
/**
* Set the end point from the angle center and start. * * aAngle is: * - clockwise in right-down coordinate system * - counter-clockwise in right-up (libedit) coordinate system. */ void SetArcAngleAndEnd( const EDA_ANGLE& aAngle, bool aCheckNegativeAngle = false );
EDA_ANGLE GetArcAngle() const;
EDA_ANGLE GetSegmentAngle() const;
/**
* Have the start and end points been swapped since they were set? * * @return true if they have. */ bool EndsSwapped() const { return m_endsSwapped; }
// Some attributes are read only, since they are derived from m_Start, m_End, and m_Angle.
// No Set...() function for these attributes.
VECTOR2I GetArcMid() const; std::vector<VECTOR2I> GetRectCorners() const; std::vector<VECTOR2I> GetCornersInSequence( EDA_ANGLE angle ) const;
/**
* Calc arc start and end angles such that aStartAngle < aEndAngle. Each may be between * -360.0 and 360.0. */ void CalcArcAngles( EDA_ANGLE& aStartAngle, EDA_ANGLE& aEndAngle ) const;
int GetRadius() const;
/**
* Set the three controlling points for an arc. * * NB: these are NOT what's currently stored, so we have to do some calculations behind * the scenes. However, they are what SHOULD be stored. */ void SetArcGeometry( const VECTOR2I& aStart, const VECTOR2I& aMid, const VECTOR2I& aEnd );
/**
* Set the data used for mid point caching. * * If the controlling points remain constant, then we keep the midpoint the same as it was * when read in. This minimizes VCS churn. * * @param aStart Cached start point. * @param aMid Cached mid point. * @param aEnd Cached end point. * @param aCenter Calculated center point using the preceeding three. */ void SetCachedArcData( const VECTOR2I& aStart, const VECTOR2I& aMid, const VECTOR2I& aEnd, const VECTOR2I& aCenter );
const std::vector<VECTOR2I>& GetBezierPoints() const { return m_bezierPoints; }
/**
* Duplicate the list of corners in a std::vector<VECTOR2I>. * * It must be used only to convert the SHAPE_POLY_SET internal corner buffer * to a list of VECTOR2Is, and nothing else, because it duplicates the buffer, * that is inefficient to know for instance the corner count. */ void DupPolyPointsList( std::vector<VECTOR2I>& aBuffer ) const;
/**
* @return the number of corners of the polygonal shape. */ int GetPointCount() const;
// Accessors to the polygonal shape
SHAPE_POLY_SET& GetPolyShape() { return m_poly; } const SHAPE_POLY_SET& GetPolyShape() const { return m_poly; }
/**
* @return true if the polygonal shape is valid (has more than 2 points). */ bool IsPolyShapeValid() const;
void SetPolyShape( const SHAPE_POLY_SET& aShape ) { m_poly = aShape;
for( int ii = 0; ii < m_poly.OutlineCount(); ++ii ) { if( m_poly.HoleCount( ii ) ) { m_poly.Fracture(); break; } } }
void SetPolyPoints( const std::vector<VECTOR2I>& aPoints );
/**
* Rebuild the m_bezierPoints vertex list that approximate the Bezier curve by a list of * segments. * * Has meaning only for #BEZIER shape. * * @param aMinSegLen is the max deviation between the polyline and the curve. */ void RebuildBezierToSegmentsPointsList( int aMaxError );
/**
* Make a set of SHAPE objects representing the #EDA_SHAPE. * * Caller owns the objects. * * @param aEdgeOnly indicates only edges should be generated (even if 0 width), and no fill * shapes. */ virtual std::vector<SHAPE*> MakeEffectiveShapes( bool aEdgeOnly = false ) const { return makeEffectiveShapes( aEdgeOnly ); }
void ShapeGetMsgPanelInfo( EDA_DRAW_FRAME* aFrame, std::vector<MSG_PANEL_ITEM>& aList );
void SetLength( const double& aLength );
void SetRectangleHeight( const int& aHeight );
void SetRectangleWidth( const int& aWidth );
void SetRectangle( const long long int& aHeight, const long long int& aWidth );
void SetSegmentAngle( const EDA_ANGLE& aAngle );
bool IsClockwiseArc() const;
/**
* @return the length of the segment using the hypotenuse calculation. */ double GetLength() const;
int GetRectangleHeight() const; int GetRectangleWidth() const;
virtual void UpdateHatching() const;
/**
* Convert the shape to a closed polygon. * * Circles and arcs are approximated by segments. * * @param aBuffer is a buffer to store the polygon. * @param aClearance is the clearance around the pad. * @param aError is the maximum deviation from a true arc. * @param aErrorLoc whether any approximation error should be placed inside or outside * @param ignoreLineWidth is used for edge cut items where the line width is only for * visualization */ void TransformShapeToPolygon( SHAPE_POLY_SET& aBuffer, int aClearance, int aError, ERROR_LOC aErrorLoc, bool ignoreLineWidth = false, bool includeFill = false ) const;
int Compare( const EDA_SHAPE* aOther ) const;
double Similarity( const EDA_SHAPE& aOther ) const;
bool operator==( const EDA_SHAPE& aOther ) const;
protected: wxString getFriendlyName() const;
void setPosition( const VECTOR2I& aPos ); VECTOR2I getPosition() const;
virtual void setFilled( bool aFlag ) { m_fill = aFlag ? FILL_T::FILLED_SHAPE : FILL_T::NO_FILL; }
void move( const VECTOR2I& aMoveVector ); void rotate( const VECTOR2I& aRotCentre, const EDA_ANGLE& aAngle ); void flip( const VECTOR2I& aCentre, FLIP_DIRECTION aFlipDirection ); void scale( double aScale );
virtual EDA_ANGLE getDrawRotation() const { return ANGLE_0; }
const BOX2I getBoundingBox() const;
void computeArcBBox( BOX2I& aBBox ) const;
bool hitTest( const VECTOR2I& aPosition, int aAccuracy = 0 ) const; bool hitTest( const BOX2I& aRect, bool aContained, int aAccuracy = 0 ) const; bool hitTest( const SHAPE_LINE_CHAIN& aPoly, bool aContained ) const;
const std::vector<VECTOR2I> buildBezierToSegmentsPointsList( int aMaxError ) const;
void beginEdit( const VECTOR2I& aStartPoint ); bool continueEdit( const VECTOR2I& aPosition ); void calcEdit( const VECTOR2I& aPosition );
/**
* Finish editing the shape. * * @param aClosed Should polygon shapes be closed (yes for pcbnew/fpeditor, no for libedit). */ void endEdit( bool aClosed = true ); void setEditState( int aState ) { m_editState = aState; }
virtual bool isMoving() const { return false; }
/**
* Make a set of #SHAPE objects representing the #EDA_SHAPE. * * Caller owns the objects. * * @param aEdgeOnly indicates only edges should be generated (even if 0 width), and no fill * shapes. * @param aLineChainOnly indicates #SHAPE_POLY_SET is being abused slightly to represent a * lineChain rather than a closed polygon. */ // fixme: move to shape_compound
std::vector<SHAPE*> makeEffectiveShapes( bool aEdgeOnly, bool aLineChainOnly = false ) const;
virtual int getMaxError() const { return 100; }
protected: bool m_endsSwapped; // true if start/end were swapped e.g. SetArcAngleAndEnd
SHAPE_T m_shape; // Shape: line, Circle, Arc
STROKE_PARAMS m_stroke; // Line style, width, etc.
FILL_T m_fill; COLOR4D m_fillColor;
mutable SHAPE_POLY_SET m_hatching; mutable bool m_hatchingDirty;
long long int m_rectangleHeight; long long int m_rectangleWidth;
double m_segmentLength; EDA_ANGLE m_segmentAngle;
VECTOR2I m_start; // Line start point or Circle center
VECTOR2I m_end; // Line end point or Circle 3 o'clock point
VECTOR2I m_arcCenter; // Used only for Arcs: arc end point
ARC_MID m_arcMidData; // Used to store originating data
VECTOR2I m_bezierC1; // Bezier Control Point 1
VECTOR2I m_bezierC2; // Bezier Control Point 2
std::vector<VECTOR2I> m_bezierPoints; SHAPE_POLY_SET m_poly; // Stores the S_POLYGON shape
int m_editState; bool m_proxyItem; // A shape storing proxy information (ie: a pad
// number box, thermal spoke template, etc.)
};
#ifndef SWIG
DECLARE_ENUM_TO_WXANY( SHAPE_T );DECLARE_ENUM_TO_WXANY( LINE_STYLE );DECLARE_ENUM_TO_WXANY( UI_FILL_MODE );#endif
|