|
|
/*
* This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2013 CERN * @author Tomasz Wlostowski <tomasz.wlostowski@cern.ch> * Copyright (C) 2016-2019 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */
#ifndef __COROUTINE_H
#define __COROUTINE_H
#include <cassert>
#include <cstdlib>
#include <type_traits>
#include <system/libcontext.h>
#include <memory>
/**
* Class COROUNTINE. * Implements a coroutine. Wikipedia has a good explanation: * * "Coroutines are computer program components that generalize subroutines to * allow multiple entry points for suspending and resuming execution at certain locations. * Coroutines are well-suited for implementing more familiar program components such as cooperative * tasks, exceptions, event loop, iterators, infinite lists and pipes." * * In other words, a coroutine can be considered a lightweight thread - which can be * preempted only when it deliberately yields the control to the caller. This way, * we avoid concurrency problems such as locking / race conditions. * * Uses libcontext library to do the actual context switching. * * This particular version takes a DELEGATE as an entry point, so it can invoke * methods within a given object as separate coroutines. * * See coroutine_example.cpp for sample code. */
template <typename ReturnType, typename ArgType>class COROUTINE{private: class CALL_CONTEXT;
struct INVOCATION_ARGS { enum { FROM_ROOT, // a stub was called/a corutine was resumed from the main-stack context
FROM_ROUTINE, // a stub was called/a coroutine was resumed fron a coroutine context
CONTINUE_AFTER_ROOT // a function sent a request to invoke a function on the main
// stack context
} type; // invocation type
COROUTINE* destination; // stores the coroutine pointer for the stub OR the coroutine
// ptr for the coroutine to be resumed if a
// root(main-stack)-call-was initiated.
CALL_CONTEXT* context; // pointer to the call context of the current callgraph this
// call context holds a reference to the main stack context
};
using CONTEXT_T = libcontext::fcontext_t; using CALLEE_STORAGE = CONTEXT_T;
class CALL_CONTEXT { public: void SetMainStack( CONTEXT_T* aStack ) { m_mainStackContext = aStack; }
void RunMainStack( COROUTINE* aCor, std::function<void()> aFunc ) { m_mainStackFunction = std::move( aFunc ); INVOCATION_ARGS args{ INVOCATION_ARGS::CONTINUE_AFTER_ROOT, aCor, this };
libcontext::jump_fcontext( &aCor->m_callee, *m_mainStackContext, reinterpret_cast<intptr_t>( &args ) ); }
void Continue( INVOCATION_ARGS* args ) { while( args->type == INVOCATION_ARGS::CONTINUE_AFTER_ROOT ) { m_mainStackFunction(); args->type = INVOCATION_ARGS::FROM_ROOT; args = args->destination->doResume( args ); } }
private: CONTEXT_T* m_mainStackContext; std::function<void()> m_mainStackFunction; };
public: COROUTINE() : COROUTINE( nullptr ) { }
/**
* Constructor * Creates a coroutine from a member method of an object */ template <class T> COROUTINE( T* object, ReturnType(T::*ptr)( ArgType ) ) : COROUTINE( std::bind( ptr, object, std::placeholders::_1 ) ) { }
/**
* Constructor * Creates a coroutine from a delegate object */ COROUTINE( std::function<ReturnType(ArgType)> aEntry ) : m_func( std::move( aEntry ) ), m_running( false ), m_args( 0 ), m_caller( nullptr ), m_callContext( nullptr ), m_callee( nullptr ), m_retVal( 0 ) { }
~COROUTINE() { }
public: /**
* Function KiYield() * * Stops execution of the coroutine and returns control to the caller. * After a yield, Call() or Resume() methods invoked by the caller will * immediately return true, indicating that we are not done yet, just asleep. */ void KiYield() { jumpOut(); }
/**
* Function KiYield() * * KiYield with a value - passes a value of given type to the caller. * Useful for implementing generator objects. */ void KiYield( ReturnType& aRetVal ) { m_retVal = aRetVal; jumpOut(); }
/**
* Function SetEntry() * * Defines the entry point for the coroutine, if not set in the constructor. */ void SetEntry( std::function<ReturnType(ArgType)> aEntry ) { m_func = std::move( aEntry ); }
/**
* Function RunMainStack() * * Run a functor inside the application main stack context * Call this function for example if the operation will spawn a webkit browser instance which * will walk the stack to the upper border of the address space on mac osx systems because * its javascript needs garbage collection (for example if you paste text into an edit box). */ void RunMainStack( std::function<void()> func ) { assert( m_callContext ); m_callContext->RunMainStack( this, std::move( func ) ); }
/**
* Function Call() * * Starts execution of a coroutine, passing args as its arguments. Call this method * from the application main stack only. * @return true, if the coroutine has yielded and false if it has finished its * execution (returned). */ bool Call( ArgType aArg ) { CALL_CONTEXT ctx; INVOCATION_ARGS args{ INVOCATION_ARGS::FROM_ROOT, this, &ctx }; ctx.Continue( doCall( &args, aArg ) );
return Running(); }
/**
* Function Call() * * Starts execution of a coroutine, passing args as its arguments. Call this method * for a nested coroutine invocation. * @return true, if the coroutine has yielded and false if it has finished its * execution (returned). */ bool Call( const COROUTINE& aCor, ArgType aArg ) { INVOCATION_ARGS args{ INVOCATION_ARGS::FROM_ROUTINE, this, aCor.m_callContext }; doCall( &args, aArg ); // we will not be asked to continue
return Running(); }
/**
* Function Resume() * * Resumes execution of a previously yielded coroutine. Call this method only * from the main application stack. * @return true, if the coroutine has yielded again and false if it has finished its * execution (returned). */ bool Resume() { CALL_CONTEXT ctx; INVOCATION_ARGS args{ INVOCATION_ARGS::FROM_ROOT, this, &ctx }; ctx.Continue( doResume( &args ) );
return Running(); }
/**
* Function Resume() * * Resumes execution of a previously yielded coroutine. Call this method * for a nested coroutine invocation. * @return true, if the coroutine has yielded again and false if it has finished its * execution (returned). */ bool Resume( const COROUTINE& aCor ) { INVOCATION_ARGS args{ INVOCATION_ARGS::FROM_ROUTINE, this, aCor.m_callContext }; doResume( &args ); // we will not be asked to continue
return Running(); }
/**
* Function ReturnValue() * * Returns the yielded value (the argument KiYield() was called with) */ const ReturnType& ReturnValue() const { return m_retVal; }
/**
* Function Running() * * @return true, if the coroutine is active */ bool Running() const { return m_running; }
private: INVOCATION_ARGS* doCall( INVOCATION_ARGS* aInvArgs, ArgType aArgs ) { assert( m_func ); assert( !m_callee );
m_args = &aArgs;
assert( m_stack == nullptr );
size_t stackSize = c_defaultStackSize; void* sp = nullptr;
#ifndef LIBCONTEXT_HAS_OWN_STACK
// fixme: Clean up stack stuff. Add a guard
m_stack.reset( new char[stackSize] );
// align to 16 bytes
sp = (void*)((((ptrdiff_t) m_stack.get()) + stackSize - 0xf) & (~0x0f));
// correct the stack size
stackSize -= size_t( ( (ptrdiff_t) m_stack.get() + stackSize ) - (ptrdiff_t) sp ); #endif
m_callee = libcontext::make_fcontext( sp, stackSize, callerStub ); m_running = true;
// off we go!
return jumpIn( aInvArgs ); }
INVOCATION_ARGS* doResume( INVOCATION_ARGS* args ) { return jumpIn( args ); }
/* real entry point of the coroutine */ static void callerStub( intptr_t aData ) { INVOCATION_ARGS& args = *reinterpret_cast<INVOCATION_ARGS*>( aData ); // get pointer to self
COROUTINE* cor = args.destination; cor->m_callContext = args.context;
if( args.type == INVOCATION_ARGS::FROM_ROOT ) cor->m_callContext->SetMainStack( &cor->m_caller );
// call the coroutine method
cor->m_retVal = cor->m_func( *(cor->m_args) ); cor->m_running = false;
// go back to wherever we came from.
cor->jumpOut(); }
INVOCATION_ARGS* jumpIn( INVOCATION_ARGS* args ) { args = reinterpret_cast<INVOCATION_ARGS*>( libcontext::jump_fcontext( &m_caller, m_callee, reinterpret_cast<intptr_t>( args ) ) );
return args; }
void jumpOut() { INVOCATION_ARGS args{ INVOCATION_ARGS::FROM_ROUTINE, nullptr, nullptr }; INVOCATION_ARGS* ret; ret = reinterpret_cast<INVOCATION_ARGS*>( libcontext::jump_fcontext( &m_callee, m_caller, reinterpret_cast<intptr_t>( &args ) ) );
m_callContext = ret->context;
if( ret->type == INVOCATION_ARGS::FROM_ROOT ) { m_callContext->SetMainStack( &m_caller ); } }
static constexpr int c_defaultStackSize = 2000000; // fixme: make configurable
///< coroutine stack
std::unique_ptr<char[]> m_stack;
std::function<ReturnType( ArgType )> m_func;
bool m_running;
///< pointer to coroutine entry arguments. Stripped of references
///< to avoid compiler errors.
typename std::remove_reference<ArgType>::type* m_args;
///< saved caller context
CONTEXT_T m_caller;
///< main stack information
CALL_CONTEXT* m_callContext;
///< saved coroutine context
CALLEE_STORAGE m_callee;
ReturnType m_retVal;};
#endif
|