|
|
/*
* This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2018 Jean-Pierre Charras, jp.charras at wanadoo.fr * Copyright (C) 2012 SoftPLC Corporation, Dick Hollenbeck <dick@softplc.com> * Copyright (C) 2011 Wayne Stambaugh <stambaughw@gmail.com> * Copyright (C) 2023 CERN * Copyright (C) 1992-2024 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */
#include <eda_shape.h>
#include <bezier_curves.h>
#include <convert_basic_shapes_to_polygon.h>
#include <eda_draw_frame.h>
#include <geometry/shape_arc.h>
#include <geometry/shape_circle.h>
#include <geometry/shape_simple.h>
#include <geometry/shape_segment.h>
#include <geometry/shape_rect.h>
#include <macros.h>
#include <math/util.h> // for KiROUND
#include <eda_item.h>
#include <plotters/plotter.h>
#include <api/api_enums.h>
#include <api/api_utils.h>
#include <api/common/types/base_types.pb.h>
EDA_SHAPE::EDA_SHAPE( SHAPE_T aType, int aLineWidth, FILL_T aFill ) : m_endsSwapped( false ), m_shape( aType ), m_stroke( aLineWidth, LINE_STYLE::DEFAULT, COLOR4D::UNSPECIFIED ), m_fill( aFill ), m_fillColor( COLOR4D::UNSPECIFIED ), m_rectangleHeight( 0 ), m_rectangleWidth( 0 ), m_segmentLength( 0 ), m_editState( 0 ), m_proxyItem( false ){}
EDA_SHAPE::~EDA_SHAPE(){}
EDA_SHAPE::EDA_SHAPE( const SHAPE& aShape ) : m_endsSwapped( false ), m_stroke( 0, LINE_STYLE::DEFAULT, COLOR4D::UNSPECIFIED ), m_fill(), m_rectangleHeight( 0 ), m_rectangleWidth( 0 ), m_segmentLength( 0 ), m_editState( 0 ), m_proxyItem( false ){ switch( aShape.Type() ) { case SH_RECT: { auto rect = static_cast<const SHAPE_RECT&>( aShape ); m_shape = SHAPE_T::RECTANGLE; SetStart( rect.GetPosition() ); SetEnd( rect.GetPosition() + rect.GetSize() ); break; }
case SH_SEGMENT: { auto seg = static_cast<const SHAPE_SEGMENT&>( aShape ); m_shape = SHAPE_T::SEGMENT; SetStart( seg.GetSeg().A ); SetEnd( seg.GetSeg().B ); SetWidth( seg.GetWidth() ); break; }
case SH_LINE_CHAIN: { auto line = static_cast<const SHAPE_LINE_CHAIN&>( aShape ); m_shape = SHAPE_T::POLY; m_poly = SHAPE_POLY_SET(); m_poly.AddOutline( line ); SetWidth( line.Width() ); break; }
case SH_CIRCLE: { auto circle = static_cast<const SHAPE_CIRCLE&>( aShape ); m_shape = SHAPE_T::CIRCLE; SetStart( circle.GetCenter() ); SetEnd( circle.GetCenter() + circle.GetRadius() ); break; }
case SH_ARC: { auto arc = static_cast<const SHAPE_ARC&>( aShape ); m_shape = SHAPE_T::ARC; SetArcGeometry( arc.GetP0(), arc.GetArcMid(), arc.GetP1() ); SetWidth( arc.GetWidth() ); break; }
case SH_SIMPLE: { auto poly = static_cast<const SHAPE_SIMPLE&>( aShape ); m_shape = SHAPE_T::POLY; poly.TransformToPolygon( m_poly, 0, ERROR_INSIDE ); break; }
// currently unhandled
case SH_POLY_SET: case SH_COMPOUND: case SH_NULL: case SH_POLY_SET_TRIANGLE: default: m_shape = SHAPE_T::UNDEFINED; break; }}
void EDA_SHAPE::Serialize( google::protobuf::Any &aContainer ) const{ using namespace kiapi::common; types::GraphicShape shape;
types::StrokeAttributes* stroke = shape.mutable_attributes()->mutable_stroke(); types::GraphicFillAttributes* fill = shape.mutable_attributes()->mutable_fill();
stroke->mutable_width()->set_value_nm( GetWidth() );
switch( GetLineStyle() ) { case LINE_STYLE::DEFAULT: stroke->set_style( types::SLS_DEFAULT ); break; case LINE_STYLE::SOLID: stroke->set_style( types::SLS_SOLID ); break; case LINE_STYLE::DASH: stroke->set_style( types::SLS_DASH ); break; case LINE_STYLE::DOT: stroke->set_style( types::SLS_DOT ); break; case LINE_STYLE::DASHDOT: stroke->set_style( types::SLS_DASHDOT ); break; case LINE_STYLE::DASHDOTDOT: stroke->set_style( types::SLS_DASHDOTDOT ); break; default: break; }
switch( GetFillMode() ) { case FILL_T::FILLED_SHAPE: fill->set_fill_type( types::GFT_FILLED ); break; default: fill->set_fill_type( types::GFT_UNFILLED ); break; }
switch( GetShape() ) { case SHAPE_T::SEGMENT: { types::GraphicSegmentAttributes* segment = shape.mutable_segment(); PackVector2( *segment->mutable_start(), GetStart() ); PackVector2( *segment->mutable_end(), GetEnd() ); break; }
case SHAPE_T::RECTANGLE: { types::GraphicRectangleAttributes* rectangle = shape.mutable_rectangle(); PackVector2( *rectangle->mutable_top_left(), GetStart() ); PackVector2( *rectangle->mutable_bottom_right(), GetEnd() ); break; }
case SHAPE_T::ARC: { types::GraphicArcAttributes* arc = shape.mutable_arc(); PackVector2( *arc->mutable_start(), GetStart() ); PackVector2( *arc->mutable_mid(), GetArcMid() ); PackVector2( *arc->mutable_end(), GetEnd() ); break; }
case SHAPE_T::CIRCLE: { types::GraphicCircleAttributes* circle = shape.mutable_circle(); PackVector2( *circle->mutable_center(), GetStart() ); PackVector2( *circle->mutable_radius_point(), GetEnd() ); break; }
case SHAPE_T::POLY: { PackPolySet( *shape.mutable_polygon(), GetPolyShape() ); break; }
case SHAPE_T::BEZIER: { types::GraphicBezierAttributes* bezier = shape.mutable_bezier(); PackVector2( *bezier->mutable_start(), GetStart() ); PackVector2( *bezier->mutable_control1(), GetBezierC1() ); PackVector2( *bezier->mutable_control2(), GetBezierC2() ); PackVector2( *bezier->mutable_end(), GetEnd() ); break; }
default: wxASSERT_MSG( false, "Unhandled shape in PCB_SHAPE::Serialize" ); }
// TODO m_hasSolderMask and m_solderMaskMargin
aContainer.PackFrom( shape );}
bool EDA_SHAPE::Deserialize( const google::protobuf::Any &aContainer ){ using namespace kiapi::common;
types::GraphicShape shape;
if( !aContainer.UnpackTo( &shape ) ) return false;
// Initialize everything to a known state that doesn't get touched by every
// codepath below, to make sure the equality operator is consistent
m_start = {}; m_end = {}; m_arcCenter = {}; m_arcMidData = {}; m_bezierC1 = {}; m_bezierC2 = {}; m_editState = 0; m_proxyItem = false; m_endsSwapped = false;
SetFilled( shape.attributes().fill().fill_type() == types::GFT_FILLED ); SetWidth( shape.attributes().stroke().width().value_nm() );
switch( shape.attributes().stroke().style() ) { case types::SLS_DEFAULT: SetLineStyle( LINE_STYLE::DEFAULT ); break; case types::SLS_SOLID: SetLineStyle( LINE_STYLE::SOLID ); break; case types::SLS_DASH: SetLineStyle( LINE_STYLE::DASH ); break; case types::SLS_DOT: SetLineStyle( LINE_STYLE::DOT ); break; case types::SLS_DASHDOT: SetLineStyle( LINE_STYLE::DASHDOT ); break; case types::SLS_DASHDOTDOT: SetLineStyle( LINE_STYLE::DASHDOTDOT ); break; default: break; }
if( shape.has_segment() ) { SetShape( SHAPE_T::SEGMENT ); SetStart( UnpackVector2( shape.segment().start() ) ); SetEnd( UnpackVector2( shape.segment().end() ) ); } else if( shape.has_rectangle() ) { SetShape( SHAPE_T::RECTANGLE ); SetStart( UnpackVector2( shape.rectangle().top_left() ) ); SetEnd( UnpackVector2( shape.rectangle().bottom_right() ) ); } else if( shape.has_arc() ) { SetShape( SHAPE_T::ARC ); SetArcGeometry( UnpackVector2( shape.arc().start() ), UnpackVector2( shape.arc().mid() ), UnpackVector2( shape.arc().end() ) ); } else if( shape.has_circle() ) { SetShape( SHAPE_T::CIRCLE ); SetStart( UnpackVector2( shape.circle().center() ) ); SetEnd( UnpackVector2( shape.circle().radius_point() ) ); } else if( shape.has_polygon() ) { SetShape( SHAPE_T::POLY ); SetPolyShape( UnpackPolySet( shape.polygon() ) ); } else if( shape.has_bezier() ) { SetShape( SHAPE_T::BEZIER ); SetStart( UnpackVector2( shape.bezier().start() ) ); SetBezierC1( UnpackVector2( shape.bezier().control1() ) ); SetBezierC2( UnpackVector2( shape.bezier().control2() ) ); SetEnd( UnpackVector2( shape.bezier().end() ) ); RebuildBezierToSegmentsPointsList( ARC_HIGH_DEF ); }
return true;}
wxString EDA_SHAPE::ShowShape() const{ if( IsProxyItem() ) { switch( m_shape ) { case SHAPE_T::SEGMENT: return _( "Thermal Spoke" ); case SHAPE_T::RECTANGLE: return _( "Number Box" ); default: return wxT( "??" ); } } else { switch( m_shape ) { case SHAPE_T::SEGMENT: return _( "Line" ); case SHAPE_T::RECTANGLE: return _( "Rect" ); case SHAPE_T::ARC: return _( "Arc" ); case SHAPE_T::CIRCLE: return _( "Circle" ); case SHAPE_T::BEZIER: return _( "Bezier Curve" ); case SHAPE_T::POLY: return _( "Polygon" ); default: return wxT( "??" ); } }}
wxString EDA_SHAPE::SHAPE_T_asString() const{ switch( m_shape ) { case SHAPE_T::SEGMENT: return wxS( "S_SEGMENT" ); case SHAPE_T::RECTANGLE: return wxS( "S_RECT" ); case SHAPE_T::ARC: return wxS( "S_ARC" ); case SHAPE_T::CIRCLE: return wxS( "S_CIRCLE" ); case SHAPE_T::POLY: return wxS( "S_POLYGON" ); case SHAPE_T::BEZIER: return wxS( "S_CURVE" ); case SHAPE_T::UNDEFINED: return wxS( "UNDEFINED" ); }
return wxEmptyString; // Just to quiet GCC.
}
void EDA_SHAPE::setPosition( const VECTOR2I& aPos ){ move( aPos - getPosition() );}
VECTOR2I EDA_SHAPE::getPosition() const{ if( m_shape == SHAPE_T::ARC ) return getCenter(); else if( m_shape == SHAPE_T::POLY ) return m_poly.CVertex( 0 ); else return m_start;}
double EDA_SHAPE::GetLength() const{ double length = 0.0;
switch( m_shape ) { case SHAPE_T::BEZIER: for( size_t ii = 1; ii < m_bezierPoints.size(); ++ii ) length += m_bezierPoints[ ii - 1].Distance( m_bezierPoints[ii] );
return length;
case SHAPE_T::SEGMENT: return GetStart().Distance( GetEnd() );
case SHAPE_T::POLY: for( int ii = 0; ii < m_poly.COutline( 0 ).SegmentCount(); ii++ ) length += m_poly.COutline( 0 ).CSegment( ii ).Length();
return length;
case SHAPE_T::ARC: return GetRadius() * GetArcAngle().AsRadians();
default: UNIMPLEMENTED_FOR( SHAPE_T_asString() ); return 0.0; }}
int EDA_SHAPE::GetRectangleHeight() const{ switch( m_shape ) { case SHAPE_T::RECTANGLE: return GetEndY() - GetStartY();
default: UNIMPLEMENTED_FOR( SHAPE_T_asString() ); return 0; }}
int EDA_SHAPE::GetRectangleWidth() const{ switch( m_shape ) { case SHAPE_T::RECTANGLE: return GetEndX() - GetStartX();
default: UNIMPLEMENTED_FOR( SHAPE_T_asString() ); return 0; }}
void EDA_SHAPE::SetLength( const double& aLength ){ switch( m_shape ) { case SHAPE_T::SEGMENT: m_segmentLength = aLength; break;
default: UNIMPLEMENTED_FOR( SHAPE_T_asString() ); }}
void EDA_SHAPE::SetRectangleHeight( const int& aHeight ){ switch ( m_shape ) { case SHAPE_T::RECTANGLE: m_rectangleHeight = aHeight; SetEndY( GetStartY() + m_rectangleHeight ); break;
default: UNIMPLEMENTED_FOR( SHAPE_T_asString() ); }}
void EDA_SHAPE::SetRectangleWidth( const int& aWidth ){ switch ( m_shape ) { case SHAPE_T::RECTANGLE: m_rectangleWidth = aWidth; SetEndX( GetStartX() + m_rectangleWidth ); break;
default: UNIMPLEMENTED_FOR( SHAPE_T_asString() ); }}
void EDA_SHAPE::SetRectangle( const long long int& aHeight, const long long int& aWidth ){ switch ( m_shape ) { case SHAPE_T::RECTANGLE: m_rectangleHeight = aHeight; m_rectangleWidth = aWidth; break;
default: UNIMPLEMENTED_FOR( SHAPE_T_asString() ); }}
void EDA_SHAPE::SetSegmentAngle( const EDA_ANGLE& aAngle ){ switch( m_shape ) { case SHAPE_T::SEGMENT: m_segmentAngle = aAngle; break;
default: UNIMPLEMENTED_FOR( SHAPE_T_asString() ); }}
bool EDA_SHAPE::IsClosed() const{ switch( m_shape ) { case SHAPE_T::CIRCLE: case SHAPE_T::RECTANGLE: return true;
case SHAPE_T::ARC: case SHAPE_T::SEGMENT: return false;
case SHAPE_T::POLY: if( m_poly.IsEmpty() ) return false; else return m_poly.Outline( 0 ).IsClosed();
case SHAPE_T::BEZIER: if( m_bezierPoints.size() < 3 ) return false; else return m_bezierPoints[0] == m_bezierPoints[ m_bezierPoints.size() - 1 ];
default: UNIMPLEMENTED_FOR( SHAPE_T_asString() ); return false; }}
void EDA_SHAPE::move( const VECTOR2I& aMoveVector ){ switch ( m_shape ) { case SHAPE_T::ARC: m_arcCenter += aMoveVector; KI_FALLTHROUGH;
case SHAPE_T::SEGMENT: case SHAPE_T::RECTANGLE: case SHAPE_T::CIRCLE: m_start += aMoveVector; m_end += aMoveVector; break;
case SHAPE_T::POLY: m_poly.Move( aMoveVector ); break;
case SHAPE_T::BEZIER: m_start += aMoveVector; m_end += aMoveVector; m_bezierC1 += aMoveVector; m_bezierC2 += aMoveVector;
for( VECTOR2I& pt : m_bezierPoints ) pt += aMoveVector;
break;
default: UNIMPLEMENTED_FOR( SHAPE_T_asString() ); break; }}
void EDA_SHAPE::scale( double aScale ){ auto scalePt = [&]( VECTOR2I& pt ) { pt.x = KiROUND( pt.x * aScale ); pt.y = KiROUND( pt.y * aScale ); };
switch( m_shape ) { case SHAPE_T::ARC: scalePt( m_arcCenter ); KI_FALLTHROUGH;
case SHAPE_T::SEGMENT: case SHAPE_T::RECTANGLE: scalePt( m_start ); scalePt( m_end ); break;
case SHAPE_T::CIRCLE: // ring or circle
scalePt( m_start ); m_end.x = m_start.x + KiROUND( GetRadius() * aScale ); m_end.y = m_start.y; break;
case SHAPE_T::POLY: // polygon
{ std::vector<VECTOR2I> pts;
for( int ii = 0; ii < m_poly.OutlineCount(); ++ ii ) { for( const VECTOR2I& pt : m_poly.Outline( ii ).CPoints() ) { pts.emplace_back( pt ); scalePt( pts.back() ); } }
SetPolyPoints( pts ); } break;
case SHAPE_T::BEZIER: scalePt( m_start ); scalePt( m_end ); scalePt( m_bezierC1 ); scalePt( m_bezierC2 ); RebuildBezierToSegmentsPointsList( m_stroke.GetWidth() / 2 ); break;
default: UNIMPLEMENTED_FOR( SHAPE_T_asString() ); break; }}
void EDA_SHAPE::rotate( const VECTOR2I& aRotCentre, const EDA_ANGLE& aAngle ){ switch( m_shape ) { case SHAPE_T::SEGMENT: case SHAPE_T::CIRCLE: RotatePoint( m_start, aRotCentre, aAngle ); RotatePoint( m_end, aRotCentre, aAngle ); break;
case SHAPE_T::ARC: RotatePoint( m_start, aRotCentre, aAngle ); RotatePoint( m_end, aRotCentre, aAngle ); RotatePoint( m_arcCenter, aRotCentre, aAngle ); break;
case SHAPE_T::RECTANGLE: if( aAngle.IsCardinal() ) { RotatePoint( m_start, aRotCentre, aAngle ); RotatePoint( m_end, aRotCentre, aAngle ); break; }
// Convert non-cardinally-rotated rect to a diamond
m_shape = SHAPE_T::POLY; m_poly.RemoveAllContours(); m_poly.NewOutline(); m_poly.Append( m_start ); m_poly.Append( m_end.x, m_start.y ); m_poly.Append( m_end ); m_poly.Append( m_start.x, m_end.y );
KI_FALLTHROUGH;
case SHAPE_T::POLY: m_poly.Rotate( aAngle, aRotCentre ); break;
case SHAPE_T::BEZIER: RotatePoint( m_start, aRotCentre, aAngle ); RotatePoint( m_end, aRotCentre, aAngle ); RotatePoint( m_bezierC1, aRotCentre, aAngle ); RotatePoint( m_bezierC2, aRotCentre, aAngle );
for( VECTOR2I& pt : m_bezierPoints ) RotatePoint( pt, aRotCentre, aAngle);
break;
default: UNIMPLEMENTED_FOR( SHAPE_T_asString() ); break; }}
void EDA_SHAPE::flip( const VECTOR2I& aCentre, FLIP_DIRECTION aFlipDirection ){ switch ( m_shape ) { case SHAPE_T::SEGMENT: case SHAPE_T::RECTANGLE: MIRROR( m_start, aCentre, aFlipDirection ); MIRROR( m_end, aCentre, aFlipDirection ); break;
case SHAPE_T::CIRCLE: MIRROR( m_start, aCentre, aFlipDirection ); MIRROR( m_end, aCentre, aFlipDirection ); break;
case SHAPE_T::ARC: MIRROR( m_start, aCentre, aFlipDirection ); MIRROR( m_end, aCentre, aFlipDirection ); MIRROR( m_arcCenter, aCentre, aFlipDirection );
std::swap( m_start, m_end ); break;
case SHAPE_T::POLY: m_poly.Mirror( aCentre, aFlipDirection ); break;
case SHAPE_T::BEZIER: MIRROR( m_start, aCentre, aFlipDirection ); MIRROR( m_end, aCentre, aFlipDirection ); MIRROR( m_bezierC1, aCentre, aFlipDirection ); MIRROR( m_bezierC2, aCentre, aFlipDirection );
RebuildBezierToSegmentsPointsList( m_stroke.GetWidth() / 2 ); break;
default: UNIMPLEMENTED_FOR( SHAPE_T_asString() ); break; }}
void EDA_SHAPE::RebuildBezierToSegmentsPointsList( int aMaxError ){ // Has meaning only for SHAPE_T::BEZIER
if( m_shape != SHAPE_T::BEZIER ) { m_bezierPoints.clear(); return; }
// Rebuild the m_BezierPoints vertex list that approximate the Bezier curve
m_bezierPoints = buildBezierToSegmentsPointsList( aMaxError );}
const std::vector<VECTOR2I> EDA_SHAPE::buildBezierToSegmentsPointsList( int aMaxError ) const{ std::vector<VECTOR2I> bezierPoints;
// Rebuild the m_BezierPoints vertex list that approximate the Bezier curve
std::vector<VECTOR2I> ctrlPoints = { m_start, m_bezierC1, m_bezierC2, m_end }; BEZIER_POLY converter( ctrlPoints ); converter.GetPoly( bezierPoints, aMaxError );
return bezierPoints;}
VECTOR2I EDA_SHAPE::getCenter() const{ switch( m_shape ) { case SHAPE_T::ARC: return m_arcCenter;
case SHAPE_T::CIRCLE: return m_start;
case SHAPE_T::SEGMENT: // Midpoint of the line
return ( m_start + m_end ) / 2;
case SHAPE_T::POLY: case SHAPE_T::RECTANGLE: case SHAPE_T::BEZIER: return getBoundingBox().Centre();
default: UNIMPLEMENTED_FOR( SHAPE_T_asString() ); return VECTOR2I(); }}
void EDA_SHAPE::SetCenter( const VECTOR2I& aCenter ){ switch( m_shape ) { case SHAPE_T::ARC: m_arcCenter = aCenter; break;
case SHAPE_T::CIRCLE: m_start = aCenter; break;
default: UNIMPLEMENTED_FOR( SHAPE_T_asString() ); }}
VECTOR2I EDA_SHAPE::GetArcMid() const{ // If none of the input data have changed since we loaded the arc,
// keep the original mid point data to minimize churn
if( m_arcMidData.start == m_start && m_arcMidData.end == m_end && m_arcMidData.center == m_arcCenter ) return m_arcMidData.mid;
VECTOR2I mid = m_start; RotatePoint( mid, m_arcCenter, -GetArcAngle() / 2.0 ); return mid;}
void EDA_SHAPE::CalcArcAngles( EDA_ANGLE& aStartAngle, EDA_ANGLE& aEndAngle ) const{ VECTOR2D startRadial( GetStart() - getCenter() ); VECTOR2D endRadial( GetEnd() - getCenter() );
aStartAngle = EDA_ANGLE( startRadial ); aEndAngle = EDA_ANGLE( endRadial );
if( aEndAngle == aStartAngle ) aEndAngle = aStartAngle + ANGLE_360; // ring, not null
while( aEndAngle < aStartAngle ) aEndAngle += ANGLE_360;}
int EDA_SHAPE::GetRadius() const{ double radius = 0.0;
switch( m_shape ) { case SHAPE_T::ARC: radius = m_arcCenter.Distance( m_start ); break;
case SHAPE_T::CIRCLE: radius = m_start.Distance( m_end ); break;
default: UNIMPLEMENTED_FOR( SHAPE_T_asString() ); }
// don't allow degenerate circles/arcs
return std::max( 1, KiROUND( radius ) );}
void EDA_SHAPE::SetCachedArcData( const VECTOR2I& aStart, const VECTOR2I& aMid, const VECTOR2I& aEnd, const VECTOR2I& aCenter ){ m_arcMidData.start = aStart; m_arcMidData.end = aEnd; m_arcMidData.center = aCenter; m_arcMidData.mid = aMid;}
void EDA_SHAPE::SetArcGeometry( const VECTOR2I& aStart, const VECTOR2I& aMid, const VECTOR2I& aEnd ){ m_arcMidData = {}; m_start = aStart; m_end = aEnd; m_arcCenter = CalcArcCenter( aStart, aMid, aEnd ); VECTOR2I new_mid = GetArcMid();
m_endsSwapped = false;
// Watch the ordering here. GetArcMid above needs to be called prior to initializing the
// m_arcMidData structure in order to ensure we get the calculated variant, not the cached
SetCachedArcData( aStart, aMid, aEnd, m_arcCenter );
/*
* If the input winding doesn't match our internal winding, the calculated midpoint will end * up on the other side of the arc. In this case, we need to flip the start/end points and * flag this change for the system. */ VECTOR2D dist( new_mid - aMid ); VECTOR2D dist2( new_mid - m_arcCenter );
if( dist.SquaredEuclideanNorm() > dist2.SquaredEuclideanNorm() ) { std::swap( m_start, m_end ); m_endsSwapped = true; }}
EDA_ANGLE EDA_SHAPE::GetSegmentAngle() const{ EDA_ANGLE angle( atan2( static_cast<double>( GetStart().y - GetEnd().y ), static_cast<double>( GetEnd().x - GetStart().x ) ), RADIANS_T );
return angle;}
EDA_ANGLE EDA_SHAPE::GetArcAngle() const{ EDA_ANGLE startAngle; EDA_ANGLE endAngle;
CalcArcAngles( startAngle, endAngle );
return endAngle - startAngle;}
bool EDA_SHAPE::IsClockwiseArc() const{ if( m_shape == SHAPE_T::ARC ) { VECTOR2D mid = GetArcMid();
double orient = ( mid.x - m_start.x ) * ( m_end.y - m_start.y ) - ( mid.y - m_start.y ) * ( m_end.x - m_start.x );
return orient < 0; }
UNIMPLEMENTED_FOR( SHAPE_T_asString() ); return false;}
void EDA_SHAPE::SetArcAngleAndEnd( const EDA_ANGLE& aAngle, bool aCheckNegativeAngle ){ EDA_ANGLE angle( aAngle );
m_end = m_start; RotatePoint( m_end, m_arcCenter, -angle.Normalize720() );
if( aCheckNegativeAngle && aAngle < ANGLE_0 ) { std::swap( m_start, m_end ); m_endsSwapped = true; }}
wxString EDA_SHAPE::getFriendlyName() const{ if( IsProxyItem() ) { switch( m_shape ) { case SHAPE_T::RECTANGLE: return _( "Pad Number Box" ); case SHAPE_T::SEGMENT: return _( "Thermal Spoke Template" ); default: return _( "Unrecognized" ); } } else { switch( m_shape ) { case SHAPE_T::CIRCLE: return _( "Circle" ); case SHAPE_T::ARC: return _( "Arc" ); case SHAPE_T::BEZIER: return _( "Curve" ); case SHAPE_T::POLY: return _( "Polygon" ); case SHAPE_T::RECTANGLE: return _( "Rectangle" ); case SHAPE_T::SEGMENT: return _( "Segment" ); default: return _( "Unrecognized" ); } }}
void EDA_SHAPE::ShapeGetMsgPanelInfo( EDA_DRAW_FRAME* aFrame, std::vector<MSG_PANEL_ITEM>& aList ){ wxString msg;
wxString shape = _( "Shape" ); aList.emplace_back( shape, getFriendlyName() );
switch( m_shape ) { case SHAPE_T::CIRCLE: aList.emplace_back( _( "Radius" ), aFrame->MessageTextFromValue( GetRadius() ) ); break;
case SHAPE_T::ARC: msg = EDA_UNIT_UTILS::UI::MessageTextFromValue( GetArcAngle() ); aList.emplace_back( _( "Angle" ), msg );
aList.emplace_back( _( "Radius" ), aFrame->MessageTextFromValue( GetRadius() ) ); break;
case SHAPE_T::BEZIER: aList.emplace_back( _( "Length" ), aFrame->MessageTextFromValue( GetLength() ) ); break;
case SHAPE_T::POLY: msg.Printf( wxS( "%d" ), GetPolyShape().Outline(0).PointCount() ); aList.emplace_back( _( "Points" ), msg ); break;
case SHAPE_T::RECTANGLE: aList.emplace_back( _( "Width" ), aFrame->MessageTextFromValue( std::abs( GetEnd().x - GetStart().x ) ) );
aList.emplace_back( _( "Height" ), aFrame->MessageTextFromValue( std::abs( GetEnd().y - GetStart().y ) ) ); break;
case SHAPE_T::SEGMENT: { aList.emplace_back( _( "Length" ), aFrame->MessageTextFromValue( GetStart().Distance( GetEnd() ) ));
// angle counter-clockwise from 3'o-clock
EDA_ANGLE angle( atan2( (double)( GetStart().y - GetEnd().y ), (double)( GetEnd().x - GetStart().x ) ), RADIANS_T ); aList.emplace_back( _( "Angle" ), EDA_UNIT_UTILS::UI::MessageTextFromValue( angle ) ); break; }
default: break; }
m_stroke.GetMsgPanelInfo( aFrame, aList );}
const BOX2I EDA_SHAPE::getBoundingBox() const{ BOX2I bbox;
switch( m_shape ) { case SHAPE_T::RECTANGLE: for( VECTOR2I& pt : GetRectCorners() ) bbox.Merge( pt );
break;
case SHAPE_T::SEGMENT: bbox.SetOrigin( GetStart() ); bbox.SetEnd( GetEnd() ); break;
case SHAPE_T::CIRCLE: bbox.SetOrigin( GetStart() ); bbox.Inflate( GetRadius() ); break;
case SHAPE_T::ARC: computeArcBBox( bbox ); break;
case SHAPE_T::POLY: if( m_poly.IsEmpty() ) break;
for( auto iter = m_poly.CIterate(); iter; iter++ ) bbox.Merge( *iter );
break;
case SHAPE_T::BEZIER: // Bezier BBoxes are not trivial to compute, so we approximate it by
// using the bounding box of the curve (not control!) points.
for( const VECTOR2I& pt : m_bezierPoints ) bbox.Merge( pt ); break;
default: UNIMPLEMENTED_FOR( SHAPE_T_asString() ); break; }
bbox.Inflate( std::max( 0, GetWidth() ) / 2 ); bbox.Normalize();
return bbox;}
bool EDA_SHAPE::hitTest( const VECTOR2I& aPosition, int aAccuracy ) const{ double maxdist = aAccuracy;
if( GetWidth() > 0 ) maxdist += GetWidth() / 2.0;
switch( m_shape ) { case SHAPE_T::CIRCLE: { double radius = GetRadius(); double dist = aPosition.Distance( getCenter() );
if( IsFilledForHitTesting() ) return dist <= radius + maxdist; // Filled circle hit-test
else return abs( radius - dist ) <= maxdist; // Ring hit-test
}
case SHAPE_T::ARC: { if( aPosition.Distance( m_start ) <= maxdist ) return true;
if( aPosition.Distance( m_end ) <= maxdist ) return true;
double radius = GetRadius(); VECTOR2D relPos( VECTOR2D( aPosition ) - getCenter() ); double dist = relPos.EuclideanNorm();
if( IsFilledForHitTesting() ) { // Check distance from arc center
if( dist > radius + maxdist ) return false; } else { // Check distance from arc circumference
if( abs( radius - dist ) > maxdist ) return false; }
// Finally, check to see if it's within arc's swept angle.
EDA_ANGLE startAngle; EDA_ANGLE endAngle; CalcArcAngles( startAngle, endAngle );
EDA_ANGLE relPosAngle( relPos );
startAngle.Normalize(); endAngle.Normalize(); relPosAngle.Normalize();
if( endAngle > startAngle ) return relPosAngle >= startAngle && relPosAngle <= endAngle; else return relPosAngle >= startAngle || relPosAngle <= endAngle; }
case SHAPE_T::BEZIER: { const std::vector<VECTOR2I>* pts = &m_bezierPoints; std::vector<VECTOR2I> updatedBezierPoints;
if( m_bezierPoints.empty() ) { BEZIER_POLY converter( m_start, m_bezierC1, m_bezierC2, m_end ); converter.GetPoly( updatedBezierPoints, aAccuracy / 2 ); pts = &updatedBezierPoints; }
for( unsigned int i = 1; i < pts->size(); i++ ) { if( TestSegmentHit( aPosition, ( *pts )[i - 1], ( *pts )[i], maxdist ) ) return true; }
return false; } case SHAPE_T::SEGMENT: return TestSegmentHit( aPosition, GetStart(), GetEnd(), maxdist );
case SHAPE_T::RECTANGLE: if( IsProxyItem() || IsFilledForHitTesting() ) // Filled rect hit-test
{ SHAPE_POLY_SET poly; poly.NewOutline();
for( const VECTOR2I& pt : GetRectCorners() ) poly.Append( pt );
return poly.Collide( aPosition, maxdist ); } else // Open rect hit-test
{ std::vector<VECTOR2I> pts = GetRectCorners();
return TestSegmentHit( aPosition, pts[0], pts[1], maxdist ) || TestSegmentHit( aPosition, pts[1], pts[2], maxdist ) || TestSegmentHit( aPosition, pts[2], pts[3], maxdist ) || TestSegmentHit( aPosition, pts[3], pts[0], maxdist ); }
case SHAPE_T::POLY: if( IsFilledForHitTesting() ) { if( !m_poly.COutline( 0 ).IsClosed() ) { // Only one outline is expected
SHAPE_LINE_CHAIN copy( m_poly.COutline( 0 ) ); copy.SetClosed( true ); return copy.Collide( aPosition, maxdist ); } else { return m_poly.Collide( aPosition, maxdist ); } } else { return m_poly.CollideEdge( aPosition, nullptr, maxdist ); }
default: UNIMPLEMENTED_FOR( SHAPE_T_asString() ); return false; }}
bool EDA_SHAPE::hitTest( const BOX2I& aRect, bool aContained, int aAccuracy ) const{ BOX2I arect = aRect; arect.Normalize(); arect.Inflate( aAccuracy );
BOX2I bbox = getBoundingBox();
switch( m_shape ) { case SHAPE_T::CIRCLE: // Test if area intersects or contains the circle:
if( aContained ) { return arect.Contains( bbox ); } else { // If the rectangle does not intersect the bounding box, this is a much quicker test
if( !arect.Intersects( bbox ) ) return false; else return arect.IntersectsCircleEdge( getCenter(), GetRadius(), GetWidth() ); }
case SHAPE_T::ARC: // Test for full containment of this arc in the rect
if( aContained ) { return arect.Contains( bbox ); } // Test if the rect crosses the arc
else { if( !arect.Intersects( bbox ) ) return false;
if( IsFilled() ) { return ( arect.Intersects( getCenter(), GetStart() ) || arect.Intersects( getCenter(), GetEnd() ) || arect.IntersectsCircleEdge( getCenter(), GetRadius(), GetWidth() ) ); } else { return arect.IntersectsCircleEdge( getCenter(), GetRadius(), GetWidth() ); } }
case SHAPE_T::RECTANGLE: if( aContained ) { return arect.Contains( bbox ); } else { std::vector<VECTOR2I> pts = GetRectCorners();
// Account for the width of the lines
arect.Inflate( GetWidth() / 2 ); return ( arect.Intersects( pts[0], pts[1] ) || arect.Intersects( pts[1], pts[2] ) || arect.Intersects( pts[2], pts[3] ) || arect.Intersects( pts[3], pts[0] ) ); }
case SHAPE_T::SEGMENT: if( aContained ) { return arect.Contains( GetStart() ) && aRect.Contains( GetEnd() ); } else { // Account for the width of the line
arect.Inflate( GetWidth() / 2 ); return arect.Intersects( GetStart(), GetEnd() ); }
case SHAPE_T::POLY: if( aContained ) { return arect.Contains( bbox ); } else { // Fast test: if aRect is outside the polygon bounding box,
// rectangles cannot intersect
if( !arect.Intersects( bbox ) ) return false;
// Account for the width of the line
arect.Inflate( GetWidth() / 2 );
for( int ii = 0; ii < m_poly.OutlineCount(); ++ii ) { const SHAPE_LINE_CHAIN& poly = m_poly.Outline( ii ); int count = poly.GetPointCount();
for( int jj = 0; jj < count; jj++ ) { VECTOR2I vertex = poly.GetPoint( jj );
// Test if the point is within aRect
if( arect.Contains( vertex ) ) return true;
if( jj + 1 < count ) { VECTOR2I vertexNext = poly.GetPoint( jj + 1 );
// Test if this edge intersects aRect
if( arect.Intersects( vertex, vertexNext ) ) return true; } else if( poly.IsClosed() ) { VECTOR2I vertexNext = poly.GetPoint( 0 );
// Test if this edge intersects aRect
if( arect.Intersects( vertex, vertexNext ) ) return true; } } }
return false; }
case SHAPE_T::BEZIER: if( aContained ) { return arect.Contains( bbox ); } else { // Fast test: if aRect is outside the polygon bounding box,
// rectangles cannot intersect
if( !arect.Intersects( bbox ) ) return false;
// Account for the width of the line
arect.Inflate( GetWidth() / 2 ); const std::vector<VECTOR2I>* pts = &m_bezierPoints; std::vector<VECTOR2I> updatedBezierPoints;
if( m_bezierPoints.empty() ) { BEZIER_POLY converter( m_start, m_bezierC1, m_bezierC2, m_end ); converter.GetPoly( updatedBezierPoints, aAccuracy / 2 ); pts = &updatedBezierPoints; }
for( unsigned ii = 1; ii < pts->size(); ii++ ) { VECTOR2I vertex = ( *pts )[ii - 1]; VECTOR2I vertexNext = ( *pts )[ii];
// Test if the point is within aRect
if( arect.Contains( vertex ) ) return true;
// Test if this edge intersects aRect
if( arect.Intersects( vertex, vertexNext ) ) return true; }
return false; }
default: UNIMPLEMENTED_FOR( SHAPE_T_asString() ); return false; }}
std::vector<VECTOR2I> EDA_SHAPE::GetRectCorners() const{ std::vector<VECTOR2I> pts; VECTOR2I topLeft = GetStart(); VECTOR2I botRight = GetEnd();
pts.emplace_back( topLeft ); pts.emplace_back( botRight.x, topLeft.y ); pts.emplace_back( botRight ); pts.emplace_back( topLeft.x, botRight.y );
return pts;}
void EDA_SHAPE::computeArcBBox( BOX2I& aBBox ) const{ // Start, end, and each inflection point the arc crosses will enclose the entire arc.
// Only include the center when filled; it's not necessarily inside the BB of an unfilled
// arc with a small included angle.
aBBox.SetOrigin( m_start ); aBBox.Merge( m_end );
if( IsFilled() ) aBBox.Merge( m_arcCenter );
int radius = GetRadius(); EDA_ANGLE t1, t2;
CalcArcAngles( t1, t2 );
t1.Normalize(); t2.Normalize();
if( t2 > t1 ) { if( t1 < ANGLE_0 && t2 > ANGLE_0 ) aBBox.Merge( VECTOR2I( m_arcCenter.x + radius, m_arcCenter.y ) ); // right
if( t1 < ANGLE_90 && t2 > ANGLE_90 ) aBBox.Merge( VECTOR2I( m_arcCenter.x, m_arcCenter.y + radius ) ); // down
if( t1 < ANGLE_180 && t2 > ANGLE_180 ) aBBox.Merge( VECTOR2I( m_arcCenter.x - radius, m_arcCenter.y ) ); // left
if( t1 < ANGLE_270 && t2 > ANGLE_270 ) aBBox.Merge( VECTOR2I( m_arcCenter.x, m_arcCenter.y - radius ) ); // up
} else { if( t1 < ANGLE_0 || t2 > ANGLE_0 ) aBBox.Merge( VECTOR2I( m_arcCenter.x + radius, m_arcCenter.y ) ); // right
if( t1 < ANGLE_90 || t2 > ANGLE_90 ) aBBox.Merge( VECTOR2I( m_arcCenter.x, m_arcCenter.y + radius ) ); // down
if( t1 < ANGLE_180 || t2 > ANGLE_180 ) aBBox.Merge( VECTOR2I( m_arcCenter.x - radius, m_arcCenter.y ) ); // left
if( t1 < ANGLE_270 || t2 > ANGLE_270 ) aBBox.Merge( VECTOR2I( m_arcCenter.x, m_arcCenter.y - radius ) ); // up
}}
void EDA_SHAPE::SetPolyPoints( const std::vector<VECTOR2I>& aPoints ){ m_poly.RemoveAllContours(); m_poly.NewOutline();
for( const VECTOR2I& p : aPoints ) m_poly.Append( p.x, p.y );}
std::vector<SHAPE*> EDA_SHAPE::makeEffectiveShapes( bool aEdgeOnly, bool aLineChainOnly ) const{ std::vector<SHAPE*> effectiveShapes; int width = GetEffectiveWidth();
switch( m_shape ) { case SHAPE_T::ARC: effectiveShapes.emplace_back( new SHAPE_ARC( m_arcCenter, m_start, GetArcAngle(), width ) ); break;
case SHAPE_T::SEGMENT: effectiveShapes.emplace_back( new SHAPE_SEGMENT( m_start, m_end, width ) ); break;
case SHAPE_T::RECTANGLE: { std::vector<VECTOR2I> pts = GetRectCorners();
if( ( IsFilled() || IsProxyItem() ) && !aEdgeOnly ) effectiveShapes.emplace_back( new SHAPE_SIMPLE( pts ) );
if( width > 0 || !IsFilled() || aEdgeOnly ) { effectiveShapes.emplace_back( new SHAPE_SEGMENT( pts[0], pts[1], width ) ); effectiveShapes.emplace_back( new SHAPE_SEGMENT( pts[1], pts[2], width ) ); effectiveShapes.emplace_back( new SHAPE_SEGMENT( pts[2], pts[3], width ) ); effectiveShapes.emplace_back( new SHAPE_SEGMENT( pts[3], pts[0], width ) ); } } break;
case SHAPE_T::CIRCLE: { if( IsFilled() && !aEdgeOnly ) effectiveShapes.emplace_back( new SHAPE_CIRCLE( getCenter(), GetRadius() ) );
if( width > 0 || !IsFilled() || aEdgeOnly ) effectiveShapes.emplace_back( new SHAPE_ARC( getCenter(), GetEnd(), ANGLE_360, width ) );
break; }
case SHAPE_T::BEZIER: { std::vector<VECTOR2I> bezierPoints = buildBezierToSegmentsPointsList( width / 2 ); VECTOR2I start_pt = bezierPoints[0];
for( unsigned int jj = 1; jj < bezierPoints.size(); jj++ ) { VECTOR2I end_pt = bezierPoints[jj]; effectiveShapes.emplace_back( new SHAPE_SEGMENT( start_pt, end_pt, width ) ); start_pt = end_pt; }
break; }
case SHAPE_T::POLY: { if( GetPolyShape().OutlineCount() == 0 ) // malformed/empty polygon
break;
for( int ii = 0; ii < GetPolyShape().OutlineCount(); ++ii ) { const SHAPE_LINE_CHAIN& l = GetPolyShape().COutline( ii );
if( IsFilled() && !aEdgeOnly ) effectiveShapes.emplace_back( new SHAPE_SIMPLE( l ) );
if( width > 0 || !IsFilled() || aEdgeOnly ) { int segCount = l.SegmentCount();
if( aLineChainOnly && l.IsClosed() ) segCount--; // Treat closed chain as open
for( int jj = 0; jj < segCount; jj++ ) effectiveShapes.emplace_back( new SHAPE_SEGMENT( l.CSegment( jj ), width ) ); } } } break;
default: UNIMPLEMENTED_FOR( SHAPE_T_asString() ); break; }
return effectiveShapes;}
void EDA_SHAPE::DupPolyPointsList( std::vector<VECTOR2I>& aBuffer ) const{ for( int ii = 0; ii < m_poly.OutlineCount(); ++ii ) { int pointCount = m_poly.COutline( ii ).PointCount();
if( pointCount ) { aBuffer.reserve( pointCount );
for ( auto iter = m_poly.CIterate(); iter; iter++ ) aBuffer.emplace_back( iter->x, iter->y ); } }}
bool EDA_SHAPE::IsPolyShapeValid() const{ // return true if the polygonal shape is valid (has more than 2 points)
return GetPolyShape().OutlineCount() > 0 && GetPolyShape().Outline( 0 ).PointCount() > 2;}
int EDA_SHAPE::GetPointCount() const{ // return the number of corners of the polygonal shape
// this shape is expected to be only one polygon without hole
return GetPolyShape().OutlineCount() ? GetPolyShape().VertexCount( 0 ) : 0;}
void EDA_SHAPE::beginEdit( const VECTOR2I& aPosition ){ switch( GetShape() ) { case SHAPE_T::SEGMENT: case SHAPE_T::CIRCLE: case SHAPE_T::RECTANGLE: SetStart( aPosition ); SetEnd( aPosition ); break;
case SHAPE_T::ARC: SetArcGeometry( aPosition, aPosition, aPosition ); m_editState = 1; break;
case SHAPE_T::BEZIER: SetStart( aPosition ); SetEnd( aPosition ); SetBezierC1( aPosition ); SetBezierC2( aPosition ); m_editState = 1;
RebuildBezierToSegmentsPointsList( GetWidth() / 2 ); break;
case SHAPE_T::POLY: m_poly.NewOutline(); m_poly.Outline( 0 ).SetClosed( false );
// Start and end of the first segment (co-located for now)
m_poly.Outline( 0 ).Append( aPosition ); m_poly.Outline( 0 ).Append( aPosition, true ); break;
default: UNIMPLEMENTED_FOR( SHAPE_T_asString() ); }}
bool EDA_SHAPE::continueEdit( const VECTOR2I& aPosition ){ switch( GetShape() ) { case SHAPE_T::ARC: case SHAPE_T::SEGMENT: case SHAPE_T::CIRCLE: case SHAPE_T::RECTANGLE: return false;
case SHAPE_T::BEZIER: if( m_editState == 3 ) return false;
m_editState++; return true;
case SHAPE_T::POLY: { SHAPE_LINE_CHAIN& poly = m_poly.Outline( 0 );
// do not add zero-length segments
if( poly.CPoint( poly.GetPointCount() - 2 ) != poly.CLastPoint() ) poly.Append( aPosition, true ); } return true;
default: UNIMPLEMENTED_FOR( SHAPE_T_asString() ); return false; }}
void EDA_SHAPE::calcEdit( const VECTOR2I& aPosition ){#define sq( x ) pow( x, 2 )
switch( GetShape() ) { case SHAPE_T::SEGMENT: case SHAPE_T::CIRCLE: case SHAPE_T::RECTANGLE: SetEnd( aPosition ); break;
case SHAPE_T::BEZIER: { switch( m_editState ) { case 0: SetStart( aPosition ); SetEnd( aPosition ); SetBezierC1( aPosition ); SetBezierC2( aPosition ); break; case 1: SetBezierC2( aPosition ); SetEnd( aPosition ); break; case 2: SetBezierC1( aPosition ); break; case 3: SetBezierC2( aPosition ); break; }
RebuildBezierToSegmentsPointsList( GetWidth() / 2 ); } break;
case SHAPE_T::ARC: { double radius = GetRadius(); EDA_ANGLE lastAngle = GetArcAngle();
// Edit state 0: drawing: place start
// Edit state 1: drawing: place end (center calculated for 90-degree subtended angle)
// Edit state 2: point edit: move start (center calculated for invariant subtended angle)
// Edit state 3: point edit: move end (center calculated for invariant subtended angle)
// Edit state 4: point edit: move center
// Edit state 5: point edit: move arc-mid-point
switch( m_editState ) { case 0: SetArcGeometry( aPosition, aPosition, aPosition ); return;
case 1: m_end = aPosition; radius = m_start.Distance( m_end ) * M_SQRT1_2; break;
case 2: case 3: { VECTOR2I v = m_start - m_end; double chordBefore = v.SquaredEuclideanNorm();
if( m_editState == 2 ) m_start = aPosition; else m_end = aPosition;
v = m_start - m_end;
double chordAfter = v.SquaredEuclideanNorm(); double ratio = 0.0;
if( chordBefore > 0 ) ratio = chordAfter / chordBefore;
if( ratio != 0 ) radius = std::max( sqrt( sq( radius ) * ratio ), sqrt( chordAfter ) / 2 ); } break;
case 4: { double radialA = m_start.Distance( aPosition ); double radialB = m_end.Distance( aPosition ); radius = ( radialA + radialB ) / 2.0; } break;
case 5: SetArcGeometry( GetStart(), aPosition, GetEnd() ); return; }
// Calculate center based on start, end, and radius
//
// Let 'l' be the length of the chord and 'm' the middle point of the chord
double l = m_start.Distance( m_end ); VECTOR2D m = ( m_start + m_end ) / 2; double sqRadDiff = ( radius * radius ) - ( l * l ) / 4.0;
// Calculate 'd', the vector from the chord midpoint to the center
VECTOR2D d;
if( l > 0 && sqRadDiff >= 0 ) { d.x = sqrt( sqRadDiff ) * ( m_start.y - m_end.y ) / l; d.y = sqrt( sqRadDiff ) * ( m_end.x - m_start.x ) / l; }
VECTOR2I c1 = KiROUND( m + d ); VECTOR2I c2 = KiROUND( m - d );
// Solution gives us 2 centers; we need to pick one:
switch( m_editState ) { case 1: // Keep arc clockwise while drawing i.e. arc angle = 90 deg.
// it can be 90 or 270 deg depending on the arc center choice (c1 or c2)
m_arcCenter = c1; // first trial
if( GetArcAngle() > ANGLE_180 ) m_arcCenter = c2;
break;
case 2: case 3: // Pick the one of c1, c2 to keep arc on the same side
m_arcCenter = c1; // first trial
if( ( lastAngle < ANGLE_180 ) != ( GetArcAngle() < ANGLE_180 ) ) m_arcCenter = c2;
break;
case 4: // Pick the one closer to the mouse position
m_arcCenter = c1.Distance( aPosition ) < c2.Distance( aPosition ) ? c1 : c2; break; } } break;
case SHAPE_T::POLY: m_poly.Outline( 0 ).SetPoint( m_poly.Outline( 0 ).GetPointCount() - 1, aPosition ); break;
default: UNIMPLEMENTED_FOR( SHAPE_T_asString() ); }}
void EDA_SHAPE::endEdit( bool aClosed ){ switch( GetShape() ) { case SHAPE_T::ARC: case SHAPE_T::SEGMENT: case SHAPE_T::CIRCLE: case SHAPE_T::RECTANGLE: case SHAPE_T::BEZIER: break;
case SHAPE_T::POLY: { SHAPE_LINE_CHAIN& poly = m_poly.Outline( 0 );
// do not include last point twice
if( poly.GetPointCount() > 2 ) { if( poly.CPoint( poly.GetPointCount() - 2 ) == poly.CLastPoint() ) { poly.SetClosed( aClosed ); } else { poly.SetClosed( false ); poly.Remove( poly.GetPointCount() - 1 ); } } } break;
default: UNIMPLEMENTED_FOR( SHAPE_T_asString() ); }}
void EDA_SHAPE::SwapShape( EDA_SHAPE* aImage ){ EDA_SHAPE* image = dynamic_cast<EDA_SHAPE*>( aImage ); assert( image );
#define SWAPITEM( x ) std::swap( x, image->x )
SWAPITEM( m_stroke ); SWAPITEM( m_start ); SWAPITEM( m_end ); SWAPITEM( m_arcCenter ); SWAPITEM( m_shape ); SWAPITEM( m_bezierC1 ); SWAPITEM( m_bezierC2 ); SWAPITEM( m_bezierPoints ); SWAPITEM( m_poly ); SWAPITEM( m_fill ); SWAPITEM( m_fillColor ); SWAPITEM( m_editState ); SWAPITEM( m_endsSwapped ); #undef SWAPITEM
}
int EDA_SHAPE::Compare( const EDA_SHAPE* aOther ) const{#define EPSILON 2 // Should be enough for rounding errors on calculated items
#define TEST( a, b ) { if( a != b ) return a - b; }
#define TEST_E( a, b ) { if( abs( a - b ) > EPSILON ) return a - b; }
#define TEST_PT( a, b ) { TEST_E( a.x, b.x ); TEST_E( a.y, b.y ); }
TEST_PT( m_start, aOther->m_start ); TEST_PT( m_end, aOther->m_end );
TEST( (int) m_shape, (int) aOther->m_shape );
if( m_shape == SHAPE_T::ARC ) { TEST_PT( m_arcCenter, aOther->m_arcCenter ); } else if( m_shape == SHAPE_T::BEZIER ) { TEST_PT( m_bezierC1, aOther->m_bezierC1 ); TEST_PT( m_bezierC2, aOther->m_bezierC2 ); } else if( m_shape == SHAPE_T::POLY ) { TEST( m_poly.TotalVertices(), aOther->m_poly.TotalVertices() ); }
for( size_t ii = 0; ii < m_bezierPoints.size(); ++ii ) TEST_PT( m_bezierPoints[ii], aOther->m_bezierPoints[ii] );
for( int ii = 0; ii < m_poly.TotalVertices(); ++ii ) TEST_PT( m_poly.CVertex( ii ), aOther->m_poly.CVertex( ii ) );
TEST_E( m_stroke.GetWidth(), aOther->m_stroke.GetWidth() ); TEST( (int) m_stroke.GetLineStyle(), (int) aOther->m_stroke.GetLineStyle() ); TEST( (int) m_fill, (int) aOther->m_fill );
return 0;}
void EDA_SHAPE::TransformShapeToPolygon( SHAPE_POLY_SET& aBuffer, int aClearance, int aError, ERROR_LOC aErrorLoc, bool ignoreLineWidth ) const{ int width = ignoreLineWidth ? 0 : GetWidth();
width += 2 * aClearance;
switch( m_shape ) { case SHAPE_T::CIRCLE: { int r = GetRadius();
if( IsFilled() ) TransformCircleToPolygon( aBuffer, getCenter(), r + width / 2, aError, aErrorLoc ); else TransformRingToPolygon( aBuffer, getCenter(), r, width, aError, aErrorLoc );
break; }
case SHAPE_T::RECTANGLE: { std::vector<VECTOR2I> pts = GetRectCorners();
if( IsFilled() || IsProxyItem() ) { aBuffer.NewOutline();
for( const VECTOR2I& pt : pts ) aBuffer.Append( pt ); }
if( width > 0 || !IsFilled() ) { // Add in segments
TransformOvalToPolygon( aBuffer, pts[0], pts[1], width, aError, aErrorLoc ); TransformOvalToPolygon( aBuffer, pts[1], pts[2], width, aError, aErrorLoc ); TransformOvalToPolygon( aBuffer, pts[2], pts[3], width, aError, aErrorLoc ); TransformOvalToPolygon( aBuffer, pts[3], pts[0], width, aError, aErrorLoc ); }
break; }
case SHAPE_T::ARC: TransformArcToPolygon( aBuffer, GetStart(), GetArcMid(), GetEnd(), width, aError, aErrorLoc ); break;
case SHAPE_T::SEGMENT: TransformOvalToPolygon( aBuffer, GetStart(), GetEnd(), width, aError, aErrorLoc ); break;
case SHAPE_T::POLY: { if( !IsPolyShapeValid() ) break;
if( IsFilled() ) { for( int ii = 0; ii < m_poly.OutlineCount(); ++ii ) { const SHAPE_LINE_CHAIN& poly = m_poly.Outline( ii ); SHAPE_POLY_SET tmp; tmp.NewOutline();
for( int jj = 0; jj < (int) poly.GetPointCount(); ++jj ) tmp.Append( poly.GetPoint( jj ) );
if( width > 0 ) { int inflate = width / 2;
if( aErrorLoc == ERROR_OUTSIDE ) inflate += aError;
tmp.Inflate( inflate, CORNER_STRATEGY::ROUND_ALL_CORNERS, aError ); }
aBuffer.Append( tmp ); } } else { for( int ii = 0; ii < m_poly.OutlineCount(); ++ii ) { const SHAPE_LINE_CHAIN& poly = m_poly.Outline( ii );
for( int jj = 0; jj < (int) poly.SegmentCount(); ++jj ) { const SEG& seg = poly.GetSegment( jj ); TransformOvalToPolygon( aBuffer, seg.A, seg.B, width, aError, aErrorLoc ); } } }
break; }
case SHAPE_T::BEZIER: { std::vector<VECTOR2I> ctrlPts = { GetStart(), GetBezierC1(), GetBezierC2(), GetEnd() }; BEZIER_POLY converter( ctrlPts ); std::vector<VECTOR2I> poly; converter.GetPoly( poly, aError );
for( unsigned ii = 1; ii < poly.size(); ii++ ) TransformOvalToPolygon( aBuffer, poly[ii - 1], poly[ii], width, aError, aErrorLoc );
break; }
default: UNIMPLEMENTED_FOR( SHAPE_T_asString() ); break; }}
void EDA_SHAPE::SetLineStyle( const LINE_STYLE aStyle ){ m_stroke.SetLineStyle( aStyle );}
LINE_STYLE EDA_SHAPE::GetLineStyle() const{ if( m_stroke.GetLineStyle() != LINE_STYLE::DEFAULT ) return m_stroke.GetLineStyle();
return LINE_STYLE::SOLID;}
bool EDA_SHAPE::operator==( const EDA_SHAPE& aOther ) const{ if( GetShape() != aOther.GetShape() ) return false;
if( m_fill != aOther.m_fill ) return false;
if( m_stroke.GetWidth() != aOther.m_stroke.GetWidth() ) return false;
if( m_stroke.GetLineStyle() != aOther.m_stroke.GetLineStyle() ) return false;
if( m_fillColor != aOther.m_fillColor ) return false;
if( m_start != aOther.m_start ) return false;
if( m_end != aOther.m_end ) return false;
if( m_arcCenter != aOther.m_arcCenter ) return false;
if( m_bezierC1 != aOther.m_bezierC1 ) return false;
if( m_bezierC2 != aOther.m_bezierC2 ) return false;
if( m_bezierPoints != aOther.m_bezierPoints ) return false;
for( int ii = 0; ii < m_poly.TotalVertices(); ++ii ) { if( m_poly.CVertex( ii ) != aOther.m_poly.CVertex( ii ) ) return false; }
return true;}
double EDA_SHAPE::Similarity( const EDA_SHAPE& aOther ) const{ if( GetShape() != aOther.GetShape() ) return 0.0;
double similarity = 1.0;
if( m_fill != aOther.m_fill ) similarity *= 0.9;
if( m_stroke.GetWidth() != aOther.m_stroke.GetWidth() ) similarity *= 0.9;
if( m_stroke.GetLineStyle() != aOther.m_stroke.GetLineStyle() ) similarity *= 0.9;
if( m_fillColor != aOther.m_fillColor ) similarity *= 0.9;
if( m_start != aOther.m_start ) similarity *= 0.9;
if( m_end != aOther.m_end ) similarity *= 0.9;
if( m_arcCenter != aOther.m_arcCenter ) similarity *= 0.9;
if( m_bezierC1 != aOther.m_bezierC1 ) similarity *= 0.9;
if( m_bezierC2 != aOther.m_bezierC2 ) similarity *= 0.9;
{ int m = m_bezierPoints.size(); int n = aOther.m_bezierPoints.size();
size_t longest = alg::longest_common_subset( m_bezierPoints, aOther.m_bezierPoints );
similarity *= std::pow( 0.9, m + n - 2 * longest ); }
{ int m = m_poly.TotalVertices(); int n = aOther.m_poly.TotalVertices(); std::vector<VECTOR2I> poly; std::vector<VECTOR2I> otherPoly; VECTOR2I lastPt( 0, 0 );
// We look for the longest common subset of the two polygons, but we need to
// offset each point because we're actually looking for overall similarity, not just
// exact matches. So if the zone is moved by 1IU, we only want one point to be
// considered "moved" rather than the entire polygon. In this case, the first point
// will not be a match but the rest of the sequence will.
for( int ii = 0; ii < m; ++ii ) { poly.emplace_back( lastPt - m_poly.CVertex( ii ) ); lastPt = m_poly.CVertex( ii ); }
lastPt = VECTOR2I( 0, 0 );
for( int ii = 0; ii < n; ++ii ) { otherPoly.emplace_back( lastPt - aOther.m_poly.CVertex( ii ) ); lastPt = aOther.m_poly.CVertex( ii ); }
size_t longest = alg::longest_common_subset( poly, otherPoly );
similarity *= std::pow( 0.9, m + n - 2 * longest ); }
return similarity;}
IMPLEMENT_ENUM_TO_WXANY( SHAPE_T )IMPLEMENT_ENUM_TO_WXANY( LINE_STYLE )
static struct EDA_SHAPE_DESC{ EDA_SHAPE_DESC() { ENUM_MAP<SHAPE_T>::Instance() .Map( SHAPE_T::SEGMENT, _HKI( "Segment" ) ) .Map( SHAPE_T::RECTANGLE, _HKI( "Rectangle" ) ) .Map( SHAPE_T::ARC, _HKI( "Arc" ) ) .Map( SHAPE_T::CIRCLE, _HKI( "Circle" ) ) .Map( SHAPE_T::POLY, _HKI( "Polygon" ) ) .Map( SHAPE_T::BEZIER, _HKI( "Bezier" ) );
auto& plotDashTypeEnum = ENUM_MAP<LINE_STYLE>::Instance();
if( plotDashTypeEnum.Choices().GetCount() == 0 ) { plotDashTypeEnum.Map( LINE_STYLE::DEFAULT, _HKI( "Default" ) ) .Map( LINE_STYLE::SOLID, _HKI( "Solid" ) ) .Map( LINE_STYLE::DASH, _HKI( "Dashed" ) ) .Map( LINE_STYLE::DOT, _HKI( "Dotted" ) ) .Map( LINE_STYLE::DASHDOT, _HKI( "Dash-Dot" ) ) .Map( LINE_STYLE::DASHDOTDOT, _HKI( "Dash-Dot-Dot" ) ); }
PROPERTY_MANAGER& propMgr = PROPERTY_MANAGER::Instance(); REGISTER_TYPE( EDA_SHAPE );
auto isNotPolygonOrCircle = []( INSPECTABLE* aItem ) -> bool { // Polygons, unlike other shapes, have no meaningful start or end coordinates
if( EDA_SHAPE* shape = dynamic_cast<EDA_SHAPE*>( aItem ) ) return shape->GetShape() != SHAPE_T::POLY && shape->GetShape() != SHAPE_T::CIRCLE;
return false; };
auto isCircle = []( INSPECTABLE* aItem ) -> bool { // Polygons, unlike other shapes, have no meaningful start or end coordinates
if( EDA_SHAPE* shape = dynamic_cast<EDA_SHAPE*>( aItem ) ) return shape->GetShape() == SHAPE_T::CIRCLE;
return false; };
auto isRectangle = []( INSPECTABLE* aItem ) -> bool { // Polygons, unlike other shapes, have no meaningful start or end coordinates
if( EDA_SHAPE* shape = dynamic_cast<EDA_SHAPE*>( aItem ) ) return shape->GetShape() == SHAPE_T::RECTANGLE;
return false; };
const wxString shapeProps = _HKI( "Shape Properties" );
auto shape = new PROPERTY_ENUM<EDA_SHAPE, SHAPE_T>( _HKI( "Shape" ), NO_SETTER( EDA_SHAPE, SHAPE_T ), &EDA_SHAPE::GetShape ); propMgr.AddProperty( shape, shapeProps );
propMgr.AddProperty( new PROPERTY<EDA_SHAPE, int>( _HKI( "Start X" ), &EDA_SHAPE::SetStartX, &EDA_SHAPE::GetStartX, PROPERTY_DISPLAY::PT_COORD, ORIGIN_TRANSFORMS::ABS_X_COORD ), shapeProps ) .SetAvailableFunc( isNotPolygonOrCircle ); propMgr.AddProperty( new PROPERTY<EDA_SHAPE, int>( _HKI( "Start Y" ), &EDA_SHAPE::SetStartY, &EDA_SHAPE::GetStartY, PROPERTY_DISPLAY::PT_COORD, ORIGIN_TRANSFORMS::ABS_Y_COORD ), shapeProps ) .SetAvailableFunc( isNotPolygonOrCircle );
propMgr.AddProperty( new PROPERTY<EDA_SHAPE, int>( _HKI( "Center X" ), &EDA_SHAPE::SetCenterX, &EDA_SHAPE::GetStartX, PROPERTY_DISPLAY::PT_COORD, ORIGIN_TRANSFORMS::ABS_X_COORD ), shapeProps ) .SetAvailableFunc( isCircle );
propMgr.AddProperty( new PROPERTY<EDA_SHAPE, int>( _HKI( "Center Y" ), &EDA_SHAPE::SetCenterY, &EDA_SHAPE::GetStartY, PROPERTY_DISPLAY::PT_COORD, ORIGIN_TRANSFORMS::ABS_Y_COORD ), shapeProps ) .SetAvailableFunc( isCircle );
propMgr.AddProperty( new PROPERTY<EDA_SHAPE, int>( _HKI( "Radius" ), &EDA_SHAPE::SetRadius, &EDA_SHAPE::GetRadius, PROPERTY_DISPLAY::PT_SIZE, ORIGIN_TRANSFORMS::NOT_A_COORD ), shapeProps ) .SetAvailableFunc( isCircle );
propMgr.AddProperty( new PROPERTY<EDA_SHAPE, int>( _HKI( "End X" ), &EDA_SHAPE::SetEndX, &EDA_SHAPE::GetEndX, PROPERTY_DISPLAY::PT_COORD, ORIGIN_TRANSFORMS::ABS_X_COORD ), shapeProps ) .SetAvailableFunc( isNotPolygonOrCircle );
propMgr.AddProperty( new PROPERTY<EDA_SHAPE, int>( _HKI( "End Y" ), &EDA_SHAPE::SetEndY, &EDA_SHAPE::GetEndY, PROPERTY_DISPLAY::PT_COORD, ORIGIN_TRANSFORMS::ABS_Y_COORD ), shapeProps ) .SetAvailableFunc( isNotPolygonOrCircle );
propMgr.AddProperty( new PROPERTY<EDA_SHAPE, int>( _HKI( "Width" ), &EDA_SHAPE::SetRectangleWidth, &EDA_SHAPE::GetRectangleWidth, PROPERTY_DISPLAY::PT_COORD, ORIGIN_TRANSFORMS::ABS_Y_COORD ), shapeProps ) .SetAvailableFunc( isRectangle );
propMgr.AddProperty( new PROPERTY<EDA_SHAPE, int>( _HKI( "Height" ), &EDA_SHAPE::SetRectangleHeight, &EDA_SHAPE::GetRectangleHeight, PROPERTY_DISPLAY::PT_COORD, ORIGIN_TRANSFORMS::ABS_Y_COORD ), shapeProps ) .SetAvailableFunc( isRectangle );
propMgr.AddProperty( new PROPERTY<EDA_SHAPE, int>( _HKI( "Line Width" ), &EDA_SHAPE::SetWidth, &EDA_SHAPE::GetWidth, PROPERTY_DISPLAY::PT_SIZE ), shapeProps );
propMgr.AddProperty( new PROPERTY_ENUM<EDA_SHAPE, LINE_STYLE>( _HKI( "Line Style" ), &EDA_SHAPE::SetLineStyle, &EDA_SHAPE::GetLineStyle ), shapeProps );
propMgr.AddProperty( new PROPERTY<EDA_SHAPE, COLOR4D>( _HKI( "Line Color" ), &EDA_SHAPE::SetLineColor, &EDA_SHAPE::GetLineColor ), shapeProps ) .SetIsHiddenFromRulesEditor();
auto angle = new PROPERTY<EDA_SHAPE, EDA_ANGLE>( _HKI( "Angle" ), NO_SETTER( EDA_SHAPE, EDA_ANGLE ), &EDA_SHAPE::GetArcAngle, PROPERTY_DISPLAY::PT_DECIDEGREE ); angle->SetAvailableFunc( [=]( INSPECTABLE* aItem ) -> bool { if( EDA_SHAPE* curr_shape = dynamic_cast<EDA_SHAPE*>( aItem ) ) return curr_shape->GetShape() == SHAPE_T::ARC;
return false; } ); propMgr.AddProperty( angle, shapeProps );
auto fillAvailable = [=]( INSPECTABLE* aItem ) -> bool { if( EDA_ITEM* edaItem = dynamic_cast<EDA_ITEM*>( aItem ) ) { // For some reason masking "Filled" and "Fill Color" at the
// PCB_TABLECELL level doesn't work.
if( edaItem->Type() == PCB_TABLECELL_T ) return false; }
if( EDA_SHAPE* edaShape = dynamic_cast<EDA_SHAPE*>( aItem ) ) { switch( edaShape->GetShape() ) { case SHAPE_T::POLY: case SHAPE_T::RECTANGLE: case SHAPE_T::CIRCLE: case SHAPE_T::BEZIER: return true;
default: return false; } }
return false; };
propMgr.AddProperty( new PROPERTY<EDA_SHAPE, bool>( _HKI( "Filled" ), &EDA_SHAPE::SetFilled, &EDA_SHAPE::IsFilled ), shapeProps ) .SetAvailableFunc( fillAvailable );
propMgr.AddProperty( new PROPERTY<EDA_SHAPE, COLOR4D>( _HKI( "Fill Color" ), &EDA_SHAPE::SetFillColor, &EDA_SHAPE::GetFillColor ), shapeProps ) .SetAvailableFunc( fillAvailable ) .SetIsHiddenFromRulesEditor(); }} _EDA_SHAPE_DESC;
|