|
|
/*
* This program source code file is part of KICAD, a free EDA CAD application.** Copyright (C) 2016 Kicad Developers, see change_log.txt for contributors.** This program is free software; you can redistribute it and/or* modify it under the terms of the GNU General Public License* as published by the Free Software Foundation; either version 2* of the License, or (at your option) any later version.** This program is distributed in the hope that it will be useful,* but WITHOUT ANY WARRANTY; without even the implied warranty of* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the* GNU General Public License for more details.** You should have received a copy of the GNU General Public License* along with this program; if not, you may find one here:* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA*/
#include "gl_builtin_shaders.h"
namespace KIGFX {namespace BUILTIN_SHADERS {
const char ssaa_x4_fragment_shader[] = R"SHADER_SOURCE(
#version 120
varying vec2 texcoord;uniform sampler2D source;void main(){ float step_x = dFdx(texcoord.x)/4.; float step_y = dFdy(texcoord.y)/4.;
vec4 q00 = texture2D( source, texcoord + vec2(-step_x, -step_y) ); vec4 q01 = texture2D( source, texcoord + vec2( step_x, -step_y) ); vec4 q10 = texture2D( source, texcoord + vec2(-step_x, step_y) ); vec4 q11 = texture2D( source, texcoord + vec2( step_x, step_y) );
gl_FragColor = (q00+q01+q10+q11)/4;}
)SHADER_SOURCE";
const char smaa_base_shader_p1[] = R"SHADER_SOURCE(
/**
* Copyright (C) 2013 Jorge Jimenez (jorge@iryoku.com) * Copyright (C) 2013 Jose I. Echevarria (joseignacioechevarria@gmail.com) * Copyright (C) 2013 Belen Masia (bmasia@unizar.es) * Copyright (C) 2013 Fernando Navarro (fernandn@microsoft.com) * Copyright (C) 2013 Diego Gutierrez (diegog@unizar.es) * * Made compatible to OpenGL 2.1 (KiCad Developers 2016) * * Permission is hereby granted, free of charge, to any person obtaining a copy * this software and associated documentation files (the "Software"), to deal in * the Software without restriction, including without limitation the rights to * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies * of the Software, and to permit persons to whom the Software is furnished to * do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. As clarification, there * is no requirement that the copyright notice and permission be included in * binary distributions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */
/**
* _______ ___ ___ ___ ___ * / || \/ | / \ / \ * | (---- | \ / | / ^ \ / ^ \ * \ \ | |\/| | / /_\ \ / /_\ \ * ----) | | | | | / _____ \ / _____ \ * |_______/ |__| |__| /__/ \__\ /__/ \__\ * * E N H A N C E D * S U B P I X E L M O R P H O L O G I C A L A N T I A L I A S I N G * * http://www.iryoku.com/smaa/
* * Hi, welcome aboard! * * Here you'll find instructions to get the shader up and running as fast as * possible. * * IMPORTANTE NOTICE: when updating, remember to update both this file and the * precomputed textures! They may change from version to version. * * The shader has three passes, chained together as follows: * * |input|------------------\ * v | * [ SMAA*EdgeDetection ] | * v | * |edgesTex| | * v | * [ SMAABlendingWeightCalculation ] | * v | * |blendTex| | * v | * [ SMAANeighborhoodBlending ] <------/ * v * |output| * * Note that each [pass] has its own vertex and pixel shader. Remember to use * oversized triangles instead of quads to avoid overshading along the * diagonal. * * You've three edge detection methods to choose from: luma, color or depth. * They represent different quality/performance and anti-aliasing/sharpness * tradeoffs, so our recommendation is for you to choose the one that best * suits your particular scenario: * * - Depth edge detection is usually the fastest but it may miss some edges. * * - Luma edge detection is usually more expensive than depth edge detection, * but catches visible edges that depth edge detection can miss. * * - Color edge detection is usually the most expensive one but catches * chroma-only edges. * * For quickstarters: just use luma edge detection. * * The general advice is to not rush the integration process and ensure each * step is done correctly (don't try to integrate SMAA T2x with predicated edge * detection from the start!). Ok then, let's go! * * 1. The first step is to create two RGBA temporal render targets for holding * |edgesTex| and |blendTex|. * * In DX10 or DX11, you can use a RG render target for the edges texture. * In the case of NVIDIA GPUs, using RG render targets seems to actually be * slower. * * On the Xbox 360, you can use the same render target for resolving both * |edgesTex| and |blendTex|, as they aren't needed simultaneously. * * 2. Both temporal render targets |edgesTex| and |blendTex| must be cleared * each frame. Do not forget to clear the alpha channel! * * 3. The next step is loading the two supporting precalculated textures, * 'areaTex' and 'searchTex'. You'll find them in the 'Textures' folder as * C++ headers, and also as regular DDS files. They'll be needed for the * 'SMAABlendingWeightCalculation' pass. * * If you use the C++ headers, be sure to load them in the format specified * inside of them. * * You can also compress 'areaTex' and 'searchTex' using BC5 and BC4 * respectively, if you have that option in your content processor pipeline. * When compressing then, you get a non-perceptible quality decrease, and a * marginal performance increase. * * 4. All samplers must be set to linear filtering and clamp. * * After you get the technique working, remember that 64-bit inputs have * half-rate linear filtering on GCN. * * If SMAA is applied to 64-bit color buffers, switching to point filtering * when accessing them will increase the performance. Search for * 'SMAASamplePoint' to see which textures may benefit from point * filtering, and where (which is basically the color input in the edge * detection and resolve passes). * * 5. All texture reads and buffer writes must be non-sRGB, with the exception * of the input read and the output write in * 'SMAANeighborhoodBlending' (and only in this pass!). If sRGB reads in * this last pass are not possible, the technique will work anyway, but * will perform antialiasing in gamma space. * * IMPORTANT: for best results the input read for the color/luma edge * detection should *NOT* be sRGB. * * 6. Before including SMAA.h you'll have to setup the render target metrics, * the target and any optional configuration defines. Optionally you can * use a preset. * * You have the following targets available: * SMAA_HLSL_3 * SMAA_HLSL_4 * SMAA_HLSL_4_1 * SMAA_GLSL_3 * * SMAA_GLSL_4 * * * * (See SMAA_INCLUDE_VS and SMAA_INCLUDE_PS below). * * And four presets: * SMAA_PRESET_LOW (%60 of the quality) * SMAA_PRESET_MEDIUM (%80 of the quality) * SMAA_PRESET_HIGH (%95 of the quality) * SMAA_PRESET_ULTRA (%99 of the quality) * * For example: * #define SMAA_RT_METRICS float4(1.0 / 1280.0, 1.0 / 720.0, 1280.0, 720.0) * #define SMAA_HLSL_4 * #define SMAA_PRESET_HIGH * #include "SMAA.h" * * Note that SMAA_RT_METRICS doesn't need to be a macro, it can be a * uniform variable. The code is designed to minimize the impact of not * using a constant value, but it is still better to hardcode it. * * Depending on how you encoded 'areaTex' and 'searchTex', you may have to * add (and customize) the following defines before including SMAA.h: * #define SMAA_AREATEX_SELECT(sample) sample.rg * #define SMAA_SEARCHTEX_SELECT(sample) sample.r * * If your engine is already using porting macros, you can define * SMAA_CUSTOM_SL, and define the porting functions by yourself. * * 7. Then, you'll have to setup the passes as indicated in the scheme above. * You can take a look into SMAA.fx, to see how we did it for our demo. * Checkout the function wrappers, you may want to copy-paste them! * * 8. It's recommended to validate the produced |edgesTex| and |blendTex|. * You can use a screenshot from your engine to compare the |edgesTex| * and |blendTex| produced inside of the engine with the results obtained * with the reference demo. * * 9. After you get the last pass to work, it's time to optimize. You'll have * to initialize a stencil buffer in the first pass (discard is already in * the code), then mask execution by using it the second pass. The last * pass should be executed in all pixels. * * * After this point you can choose to enable predicated thresholding, * temporal supersampling and motion blur integration: * * a) If you want to use predicated thresholding, take a look into * SMAA_PREDICATION; you'll need to pass an extra texture in the edge * detection pass. * * b) If you want to enable temporal supersampling (SMAA T2x): * * 1. The first step is to render using subpixel jitters. I won't go into * detail, but it's as simple as moving each vertex position in the * vertex shader, you can check how we do it in our DX10 demo. * * 2. Then, you must setup the temporal resolve. You may want to take a look * into SMAAResolve for resolving 2x modes. After you get it working, you'll * probably see ghosting everywhere. But fear not, you can enable the * CryENGINE temporal reprojection by setting the SMAA_REPROJECTION macro. * Check out SMAA_DECODE_VELOCITY if your velocity buffer is encoded. * * 3. The next step is to apply SMAA to each subpixel jittered frame, just as * done for 1x. * * 4. At this point you should already have something usable, but for best * results the proper area textures must be set depending on current jitter. * For this, the parameter 'subsampleIndices' of * 'SMAABlendingWeightCalculationPS' must be set as follows, for our T2x * mode: * * @SUBSAMPLE_INDICES * * | S# | Camera Jitter | subsampleIndices | * +----+------------------+---------------------+ * | 0 | ( 0.25, -0.25) | float4(1, 1, 1, 0) | * | 1 | (-0.25, 0.25) | float4(2, 2, 2, 0) | * * These jitter positions assume a bottom-to-top y axis. S# stands for the * sample number. * * More information about temporal supersampling here: * http://iryoku.com/aacourse/downloads/13-Anti-Aliasing-Methods-in-CryENGINE-3.pdf
* * c) If you want to enable spatial multisampling (SMAA S2x): * * 1. The scene must be rendered using MSAA 2x. The MSAA 2x buffer must be * created with: * - DX10: see below (*) * - DX10.1: D3D10_STANDARD_MULTISAMPLE_PATTERN or * - DX11: D3D11_STANDARD_MULTISAMPLE_PATTERN * * This allows one to ensure that the subsample order matches the table in * @SUBSAMPLE_INDICES. * * (*) In the case of DX10, we refer the reader to: * - SMAA::detectMSAAOrder and * - SMAA::msaaReorder * * These functions allows one to match the standard multisample patterns by * detecting the subsample order for a specific GPU, and reordering * them appropriately. * * 2. A shader must be run to output each subsample into a separate buffer * (DX10 is required). You can use SMAASeparate for this purpose, or just do * it in an existing pass (for example, in the tone mapping pass, which has * the advantage of feeding tone mapped subsamples to SMAA, which will yield * better results). * * 3. The full SMAA 1x pipeline must be run for each separated buffer, storing * the results in the final buffer. The second run should alpha blend with * the existing final buffer using a blending factor of 0.5. * 'subsampleIndices' must be adjusted as in the SMAA T2x case (see point * b). * * d) If you want to enable temporal supersampling on top of SMAA S2x * (which actually is SMAA 4x): * * 1. SMAA 4x consists on temporally jittering SMAA S2x, so the first step is * to calculate SMAA S2x for current frame. In this case, 'subsampleIndices' * must be set as follows: * * | F# | S# | Camera Jitter | Net Jitter | subsampleIndices | * +----+----+--------------------+-------------------+----------------------+ * | 0 | 0 | ( 0.125, 0.125) | ( 0.375, -0.125) | float4(5, 3, 1, 3) | * | 0 | 1 | ( 0.125, 0.125) | (-0.125, 0.375) | float4(4, 6, 2, 3) | * +----+----+--------------------+-------------------+----------------------+ * | 1 | 2 | (-0.125, -0.125) | ( 0.125, -0.375) | float4(3, 5, 1, 4) | * | 1 | 3 | (-0.125, -0.125) | (-0.375, 0.125) | float4(6, 4, 2, 4) | * * These jitter positions assume a bottom-to-top y axis. F# stands for the * frame number. S# stands for the sample number. * * 2. After calculating SMAA S2x for current frame (with the new subsample * indices), previous frame must be reprojected as in SMAA T2x mode (see * point b). * * e) If motion blur is used, you may want to do the edge detection pass * together with motion blur. This has two advantages: * * 1. Pixels under heavy motion can be omitted from the edge detection process. * For these pixels we can just store "no edge", as motion blur will take * care of them. * 2. The center pixel tap is reused. * * Note that in this case depth testing should be used instead of stenciling, * as we have to write all the pixels in the motion blur pass. * * That's it! */
//-----------------------------------------------------------------------------
// SMAA Presets
/**
* Note that if you use one of these presets, the following configuration * macros will be ignored if set in the "Configurable Defines" section. */
#if defined(SMAA_PRESET_LOW)
#define SMAA_THRESHOLD 0.15
#define SMAA_MAX_SEARCH_STEPS 4
#define SMAA_DISABLE_DIAG_DETECTION
#define SMAA_DISABLE_CORNER_DETECTION
#elif defined(SMAA_PRESET_MEDIUM)
#define SMAA_THRESHOLD 0.1
#define SMAA_MAX_SEARCH_STEPS 8
#define SMAA_DISABLE_DIAG_DETECTION
#define SMAA_DISABLE_CORNER_DETECTION
#elif defined(SMAA_PRESET_HIGH)
#define SMAA_THRESHOLD 0.1
#define SMAA_MAX_SEARCH_STEPS 16
#define SMAA_MAX_SEARCH_STEPS_DIAG 8
#define SMAA_CORNER_ROUNDING 25
#elif defined(SMAA_PRESET_ULTRA)
#define SMAA_THRESHOLD 0.05
#define SMAA_MAX_SEARCH_STEPS 32
#define SMAA_MAX_SEARCH_STEPS_DIAG 16
#define SMAA_CORNER_ROUNDING 25
#endif
//-----------------------------------------------------------------------------
// Configurable Defines
/**
* SMAA_THRESHOLD specifies the threshold or sensitivity to edges. * Lowering this value you will be able to detect more edges at the expense of * performance. * * Range: [0, 0.5] * 0.1 is a reasonable value, and allows one to catch most visible edges. * 0.05 is a rather overkill value, that allows one to catch 'em all. * * If temporal supersampling is used, 0.2 could be a reasonable value, as low * contrast edges are properly filtered by just 2x. */#ifndef SMAA_THRESHOLD
#define SMAA_THRESHOLD 0.1
#endif
/**
* SMAA_DEPTH_THRESHOLD specifies the threshold for depth edge detection. * * Range: depends on the depth range of the scene. */#ifndef SMAA_DEPTH_THRESHOLD
#define SMAA_DEPTH_THRESHOLD (0.1 * SMAA_THRESHOLD)
#endif
/**
* SMAA_MAX_SEARCH_STEPS specifies the maximum steps performed in the * horizontal/vertical pattern searches, at each side of the pixel. * * In number of pixels, it's actually the double. So the maximum line length * perfectly handled by, for example 16, is 64 (by perfectly, we meant that * longer lines won't look as good, but still antialiased). * * Range: [0, 112] */#ifndef SMAA_MAX_SEARCH_STEPS
#define SMAA_MAX_SEARCH_STEPS 16
#endif
)SHADER_SOURCE";
const char smaa_base_shader_p2[] = R"SHADER_SOURCE(/**
* SMAA_MAX_SEARCH_STEPS_DIAG specifies the maximum steps performed in the * diagonal pattern searches, at each side of the pixel. In this case we jump * one pixel at time, instead of two. * * Range: [0, 20] * * On high-end machines it is cheap (between a 0.8x and 0.9x slower for 16 * steps), but it can have a significant impact on older machines. * * Define SMAA_DISABLE_DIAG_DETECTION to disable diagonal processing. */#ifndef SMAA_MAX_SEARCH_STEPS_DIAG
#define SMAA_MAX_SEARCH_STEPS_DIAG 8
#endif
/**
* SMAA_CORNER_ROUNDING specifies how much sharp corners will be rounded. * * Range: [0, 100] * * Define SMAA_DISABLE_CORNER_DETECTION to disable corner processing. */#ifndef SMAA_CORNER_ROUNDING
#define SMAA_CORNER_ROUNDING 25
#endif
/**
* If there is an neighbor edge that has SMAA_LOCAL_CONTRAST_FACTOR times * bigger contrast than current edge, current edge will be discarded. * * This allows one to eliminate spurious crossing edges, and is based on the fact * that, if there is too much contrast in a direction, that will hide * perceptually contrast in the other neighbors. */#ifndef SMAA_LOCAL_CONTRAST_ADAPTATION_FACTOR
#define SMAA_LOCAL_CONTRAST_ADAPTATION_FACTOR 2.0
#endif
/**
* Predicated thresholding allows one to better preserve texture details and to * improve performance, by decreasing the number of detected edges using an * additional buffer like the light accumulation buffer, object ids or even the * depth buffer (the depth buffer usage may be limited to indoor or short range * scenes). * * It locally decreases the luma or color threshold if an edge is found in an * additional buffer (so the global threshold can be higher). * * This method was developed by Playstation EDGE MLAA team, and used in * Killzone 3, by using the light accumulation buffer. More information here: * http://iryoku.com/aacourse/downloads/06-MLAA-on-PS3.pptx
*/#ifndef SMAA_PREDICATION
#define SMAA_PREDICATION 0
#endif
/**
* Threshold to be used in the additional predication buffer. * * Range: depends on the input, so you'll have to find the magic number that * works for you. */#ifndef SMAA_PREDICATION_THRESHOLD
#define SMAA_PREDICATION_THRESHOLD 0.01
#endif
/**
* How much to scale the global threshold used for luma or color edge * detection when using predication. * * Range: [1, 5] */#ifndef SMAA_PREDICATION_SCALE
#define SMAA_PREDICATION_SCALE 2.0
#endif
/**
* How much to locally decrease the threshold. * * Range: [0, 1] */#ifndef SMAA_PREDICATION_STRENGTH
#define SMAA_PREDICATION_STRENGTH 0.4
#endif
/**
* Temporal reprojection allows one to remove ghosting artifacts when using * temporal supersampling. We use the CryEngine 3 method which also introduces * velocity weighting. This feature is of extreme importance for totally * removing ghosting. More information here: * http://iryoku.com/aacourse/downloads/13-Anti-Aliasing-Methods-in-CryENGINE-3.pdf
* * Note that you'll need to setup a velocity buffer for enabling reprojection. * For static geometry, saving the previous depth buffer is a viable * alternative. */#ifndef SMAA_REPROJECTION
#define SMAA_REPROJECTION 0
#endif
/**
* SMAA_REPROJECTION_WEIGHT_SCALE controls the velocity weighting. It allows one * to remove ghosting trails behind the moving object, which are not removed by * just using reprojection. Using low values will exhibit ghosting, while using * high values will disable temporal supersampling under motion. * * Behind the scenes, velocity weighting removes temporal supersampling when * the velocity of the subsamples differs (meaning they are different objects). * * Range: [0, 80] */#ifndef SMAA_REPROJECTION_WEIGHT_SCALE
#define SMAA_REPROJECTION_WEIGHT_SCALE 30.0
#endif
/**
* On some compilers, discard cannot be used in vertex shaders. Thus, they need * to be compiled separately. */#ifndef SMAA_INCLUDE_VS
#define SMAA_INCLUDE_VS 1
#endif
#ifndef SMAA_INCLUDE_PS
#define SMAA_INCLUDE_PS 1
#endif
//-----------------------------------------------------------------------------
// Texture Access Defines
#ifndef SMAA_AREATEX_SELECT
#if defined(SMAA_HLSL_3)
#define SMAA_AREATEX_SELECT(sample) sample.ra
#else
#define SMAA_AREATEX_SELECT(sample) sample.rg
#endif
#endif
#ifndef SMAA_SEARCHTEX_SELECT
#define SMAA_SEARCHTEX_SELECT(sample) sample.r
#endif
#ifndef SMAA_DECODE_VELOCITY
#define SMAA_DECODE_VELOCITY(sample) sample.rg
#endif
//-----------------------------------------------------------------------------
// Non-Configurable Defines
#define SMAA_AREATEX_MAX_DISTANCE 16
#define SMAA_AREATEX_MAX_DISTANCE_DIAG 20
#define SMAA_AREATEX_PIXEL_SIZE (1.0 / float2(160.0, 560.0))
#define SMAA_AREATEX_SUBTEX_SIZE (1.0 / 7.0)
#define SMAA_SEARCHTEX_SIZE float2(66.0, 33.0)
#define SMAA_SEARCHTEX_PACKED_SIZE float2(64.0, 16.0)
#define SMAA_CORNER_ROUNDING_NORM (float(SMAA_CORNER_ROUNDING) / 100.0)
//-----------------------------------------------------------------------------
// Porting Functions
#if defined(SMAA_HLSL_3)
#define SMAATexture2D(tex) sampler2D tex
#define SMAATexturePass2D(tex) tex
#define SMAASampleLevelZero(tex, coord) tex2Dlod(tex, float4(coord, 0.0, 0.0))
#define SMAASampleLevelZeroPoint(tex, coord) tex2Dlod(tex, float4(coord, 0.0, 0.0))
#define SMAASampleLevelZeroOffset(tex, coord, offset) tex2Dlod(tex, float4(coord + offset * SMAA_RT_METRICS.xy, 0.0, 0.0))
#define SMAASample(tex, coord) tex2D(tex, coord)
#define SMAASamplePoint(tex, coord) tex2D(tex, coord)
#define SMAASampleOffset(tex, coord, offset) tex2D(tex, coord + offset * SMAA_RT_METRICS.xy)
#define SMAA_FLATTEN [flatten]
#define SMAA_BRANCH [branch]
#endif
#if defined(SMAA_HLSL_4) || defined(SMAA_HLSL_4_1)
SamplerState LinearSampler { Filter = MIN_MAG_LINEAR_MIP_POINT; AddressU = Clamp; AddressV = Clamp; };SamplerState PointSampler { Filter = MIN_MAG_MIP_POINT; AddressU = Clamp; AddressV = Clamp; };#define SMAATexture2D(tex) Texture2D tex
#define SMAATexturePass2D(tex) tex
#define SMAASampleLevelZero(tex, coord) tex.SampleLevel(LinearSampler, coord, 0)
#define SMAASampleLevelZeroPoint(tex, coord) tex.SampleLevel(PointSampler, coord, 0)
#define SMAASampleLevelZeroOffset(tex, coord, offset) tex.SampleLevel(LinearSampler, coord, 0, offset)
#define SMAASample(tex, coord) tex.Sample(LinearSampler, coord)
#define SMAASamplePoint(tex, coord) tex.Sample(PointSampler, coord)
#define SMAASampleOffset(tex, coord, offset) tex.Sample(LinearSampler, coord, offset)
#define SMAA_FLATTEN [flatten]
#define SMAA_BRANCH [branch]
#define SMAATexture2DMS2(tex) Texture2DMS<float4, 2> tex
#define SMAALoad(tex, pos, sample) tex.Load(pos, sample)
#if defined(SMAA_HLSL_4_1)
#define SMAAGather(tex, coord) tex.Gather(LinearSampler, coord, 0)
#endif
#endif
#if defined(SMAA_GLSL_2_1) || defined(SMAA_GLSL_3) || defined(SMAA_GLSL_4)
#define SMAATexture2D(tex) sampler2D tex
#define SMAATexturePass2D(tex) tex
#define SMAASampleLevelZero(tex, coord) textureLod(tex, coord, 0.0)
#define SMAASampleLevelZeroPoint(tex, coord) textureLod(tex, coord, 0.0)
#define SMAASampleLevelZeroOffset(tex, coord, offset) textureLodOffset(tex, coord, 0.0, offset)
#if defined(SMAA_GLSL_2_1)
#define SMAASample(tex, coord) texture2D(tex, coord)
#define SMAASamplePoint(tex, coord) texture2D(tex, coord)
#define SMAASampleOffset(tex, coord, offset) texture2D(tex, coord + offset * SMAA_RT_METRICS.rg)
#define round(x) floor(x + 0.5)
#define textureLod(tex, coord, level) texture2D(tex, coord)
#define textureLodOffset(tex, coord, level, offset) texture2D(tex, coord + offset * SMAA_RT_METRICS.rg)
#else
#define SMAASample(tex, coord) texture(tex, coord)
#define SMAASamplePoint(tex, coord) texture(tex, coord)
#define SMAASampleOffset(tex, coord, offset) texture(tex, coord, offset)
#endif
#define SMAA_FLATTEN
#define SMAA_BRANCH
#define lerp(a, b, t) mix(a, b, t)
#define saturate(a) clamp(a, 0.0, 1.0)
#if defined(SMAA_GLSL_4)
#define mad(a, b, c) fma(a, b, c)
#define SMAAGather(tex, coord) textureGather(tex, coord)
#else
#define mad(a, b, c) (a * b + c)
#endif
#define float2 vec2
#define float3 vec3
#define float4 vec4
#define int2 ivec2
#define int3 ivec3
#define int4 ivec4
#define bool2 bvec2
#define bool3 bvec3
#define bool4 bvec4
#endif
#if !defined(SMAA_HLSL_3) && !defined(SMAA_HLSL_4) && !defined(SMAA_HLSL_4_1) && !defined(SMAA_GLSL_2_1) && !defined(SMAA_GLSL_3) && !defined(SMAA_GLSL_4) && !defined(SMAA_CUSTOM_SL)
#error you must define the shading language: SMAA_HLSL_*, SMAA_GLSL_* or SMAA_CUSTOM_SL
#endif
//-----------------------------------------------------------------------------
// Misc functions
/**
* Gathers current pixel, and the top-left neighbors. */float3 SMAAGatherNeighbours(float2 texcoord, float4 offset[3], SMAATexture2D(tex)) { #ifdef SMAAGather
return SMAAGather(tex, texcoord + SMAA_RT_METRICS.xy * float2(-0.5, -0.5)).grb; #else
float P = SMAASamplePoint(tex, texcoord).r; float Pleft = SMAASamplePoint(tex, offset[0].xy).r; float Ptop = SMAASamplePoint(tex, offset[0].zw).r; return float3(P, Pleft, Ptop); #endif
}
/**
* Adjusts the threshold by means of predication. */float2 SMAACalculatePredicatedThreshold(float2 texcoord, float4 offset[3], SMAATexture2D(predicationTex)) { float3 neighbours = SMAAGatherNeighbours(texcoord, offset, SMAATexturePass2D(predicationTex)); float2 delta = abs(neighbours.xx - neighbours.yz); float2 edges = step(SMAA_PREDICATION_THRESHOLD, delta); return SMAA_PREDICATION_SCALE * SMAA_THRESHOLD * (1.0 - SMAA_PREDICATION_STRENGTH * edges);}
/**
* Conditional move: */void SMAAMovc(bool2 cond, inout float2 variable, float2 value) { SMAA_FLATTEN if (cond.x) variable.x = value.x; SMAA_FLATTEN if (cond.y) variable.y = value.y;}
void SMAAMovc(bool4 cond, inout float4 variable, float4 value) { SMAAMovc(cond.xy, variable.xy, value.xy); SMAAMovc(cond.zw, variable.zw, value.zw);}
#if SMAA_INCLUDE_VS
//-----------------------------------------------------------------------------
// Vertex Shaders
/**
* Edge Detection Vertex Shader */void SMAAEdgeDetectionVS(float2 texcoord, out float4 offset[3]) { offset[0] = mad(SMAA_RT_METRICS.xyxy, float4(-1.0, 0.0, 0.0, -1.0), texcoord.xyxy); offset[1] = mad(SMAA_RT_METRICS.xyxy, float4( 1.0, 0.0, 0.0, 1.0), texcoord.xyxy); offset[2] = mad(SMAA_RT_METRICS.xyxy, float4(-2.0, 0.0, 0.0, -2.0), texcoord.xyxy);}
/**
* Blend Weight Calculation Vertex Shader */void SMAABlendingWeightCalculationVS(float2 texcoord, out float2 pixcoord, out float4 offset[3]) { pixcoord = texcoord * SMAA_RT_METRICS.zw;
// We will use these offsets for the searches later on (see @PSEUDO_GATHER4):
offset[0] = mad(SMAA_RT_METRICS.xyxy, float4(-0.25, -0.125, 1.25, -0.125), texcoord.xyxy); offset[1] = mad(SMAA_RT_METRICS.xyxy, float4(-0.125, -0.25, -0.125, 1.25), texcoord.xyxy);
// And these for the searches, they indicate the ends of the loops:
offset[2] = mad(SMAA_RT_METRICS.xxyy, float4(-2.0, 2.0, -2.0, 2.0) * float(SMAA_MAX_SEARCH_STEPS), float4(offset[0].xz, offset[1].yw));}
/**
* Neighborhood Blending Vertex Shader */void SMAANeighborhoodBlendingVS(float2 texcoord, out float4 offset) { offset = mad(SMAA_RT_METRICS.xyxy, float4( 1.0, 0.0, 0.0, 1.0), texcoord.xyxy);}#endif // SMAA_INCLUDE_VS
#if SMAA_INCLUDE_PS
//-----------------------------------------------------------------------------
// Edge Detection Pixel Shaders (First Pass)
/**
* Luma Edge Detection * * IMPORTANT NOTICE: luma edge detection requires gamma-corrected colors, and * thus 'colorTex' should be a non-sRGB texture. */float2 SMAALumaEdgeDetectionPS(float2 texcoord, float4 offset[3], SMAATexture2D(colorTex) #if SMAA_PREDICATION
, SMAATexture2D(predicationTex) #endif
) { // Calculate the threshold:
#if SMAA_PREDICATION
float2 threshold = SMAACalculatePredicatedThreshold(texcoord, offset, SMAATexturePass2D(predicationTex)); #else
float2 threshold = float2(SMAA_THRESHOLD, SMAA_THRESHOLD); #endif
// Calculate lumas:
float3 weights = float3(0.2126, 0.7152, 0.0722); float L = dot(SMAASamplePoint(colorTex, texcoord).rgb, weights);
float Lleft = dot(SMAASamplePoint(colorTex, offset[0].xy).rgb, weights); float Ltop = dot(SMAASamplePoint(colorTex, offset[0].zw).rgb, weights);
// We do the usual threshold:
float4 delta; delta.xy = abs(L - float2(Lleft, Ltop)); float2 edges = step(threshold, delta.xy);
// Then discard if there is no edge:
if (dot(edges, float2(1.0, 1.0)) == 0.0) discard;
// Calculate right and bottom deltas:
float Lright = dot(SMAASamplePoint(colorTex, offset[1].xy).rgb, weights); float Lbottom = dot(SMAASamplePoint(colorTex, offset[1].zw).rgb, weights); delta.zw = abs(L - float2(Lright, Lbottom));
// Calculate the maximum delta in the direct neighborhood:
float2 maxDelta = max(delta.xy, delta.zw);
// Calculate left-left and top-top deltas:
float Lleftleft = dot(SMAASamplePoint(colorTex, offset[2].xy).rgb, weights); float Ltoptop = dot(SMAASamplePoint(colorTex, offset[2].zw).rgb, weights); delta.zw = abs(float2(Lleft, Ltop) - float2(Lleftleft, Ltoptop));
// Calculate the final maximum delta:
maxDelta = max(maxDelta.xy, delta.zw); float finalDelta = max(maxDelta.x, maxDelta.y);
// Local contrast adaptation:
edges.xy *= step(finalDelta, SMAA_LOCAL_CONTRAST_ADAPTATION_FACTOR * delta.xy);
return edges;}
/**
* Color Edge Detection * * IMPORTANT NOTICE: color edge detection requires gamma-corrected colors, and * thus 'colorTex' should be a non-sRGB texture. */float2 SMAAColorEdgeDetectionPS(float2 texcoord, float4 offset[3], SMAATexture2D(colorTex) #if SMAA_PREDICATION
, SMAATexture2D(predicationTex) #endif
) { // Calculate the threshold:
#if SMAA_PREDICATION
float2 threshold = SMAACalculatePredicatedThreshold(texcoord, offset, predicationTex); #else
float2 threshold = float2(SMAA_THRESHOLD, SMAA_THRESHOLD); #endif
// Calculate color deltas:
float4 delta; float3 C = SMAASamplePoint(colorTex, texcoord).rgb;
float3 Cleft = SMAASamplePoint(colorTex, offset[0].xy).rgb; float3 t = abs(C - Cleft); delta.x = max(max(t.r, t.g), t.b);
float3 Ctop = SMAASamplePoint(colorTex, offset[0].zw).rgb; t = abs(C - Ctop); delta.y = max(max(t.r, t.g), t.b);
// We do the usual threshold:
float2 edges = step(threshold, delta.xy);
// Then discard if there is no edge:
if (dot(edges, float2(1.0, 1.0)) == 0.0) discard;
// Calculate right and bottom deltas:
float3 Cright = SMAASamplePoint(colorTex, offset[1].xy).rgb; t = abs(C - Cright); delta.z = max(max(t.r, t.g), t.b);
float3 Cbottom = SMAASamplePoint(colorTex, offset[1].zw).rgb; t = abs(C - Cbottom); delta.w = max(max(t.r, t.g), t.b);
// Calculate the maximum delta in the direct neighborhood:
float2 maxDelta = max(delta.xy, delta.zw);
// Calculate left-left and top-top deltas:
float3 Cleftleft = SMAASamplePoint(colorTex, offset[2].xy).rgb; t = abs(C - Cleftleft); delta.z = max(max(t.r, t.g), t.b);
float3 Ctoptop = SMAASamplePoint(colorTex, offset[2].zw).rgb; t = abs(C - Ctoptop); delta.w = max(max(t.r, t.g), t.b);
// Calculate the final maximum delta:
maxDelta = max(maxDelta.xy, delta.zw); float finalDelta = max(maxDelta.x, maxDelta.y);
// Local contrast adaptation:
edges.xy *= step(finalDelta, SMAA_LOCAL_CONTRAST_ADAPTATION_FACTOR * delta.xy);
return edges;})SHADER_SOURCE";
extern const char smaa_base_shader_p3[] = R"SHADER_SOURCE(/**
* Depth Edge Detection */float2 SMAADepthEdgeDetectionPS(float2 texcoord, float4 offset[3], SMAATexture2D(depthTex)) { float3 neighbours = SMAAGatherNeighbours(texcoord, offset, SMAATexturePass2D(depthTex)); float2 delta = abs(neighbours.xx - float2(neighbours.y, neighbours.z)); float2 edges = step(SMAA_DEPTH_THRESHOLD, delta);
if (dot(edges, float2(1.0, 1.0)) == 0.0) discard;
return edges;}
//-----------------------------------------------------------------------------
// Diagonal Search Functions
#if !defined(SMAA_DISABLE_DIAG_DETECTION)
/**
* Allows one to decode two binary values from a bilinear-filtered access. */float2 SMAADecodeDiagBilinearAccess(float2 e) { // Bilinear access for fetching 'e' have a 0.25 offset, and we are
// interested in the R and G edges:
//
// +---G---+-------+
// | x o R x |
// +-------+-------+
//
// Then, if one of these edge is enabled:
// Red: (0.75 * X + 0.25 * 1) => 0.25 or 1.0
// Green: (0.75 * 1 + 0.25 * X) => 0.75 or 1.0
//
// This function will unpack the values (mad + mul + round):
// wolframalpha.com: round(x * abs(5 * x - 5 * 0.75)) plot 0 to 1
e.r = e.r * abs(5.0 * e.r - 5.0 * 0.75); return round(e);}
float4 SMAADecodeDiagBilinearAccess(float4 e) { e.rb = e.rb * abs(5.0 * e.rb - 5.0 * 0.75); return round(e);}
/**
* These functions allows one to perform diagonal pattern searches. */float2 SMAASearchDiag1(SMAATexture2D(edgesTex), float2 texcoord, float2 dir, out float2 e) { float4 coord = float4(texcoord, -1.0, 1.0); float3 t = float3(SMAA_RT_METRICS.xy, 1.0); while (coord.z < float(SMAA_MAX_SEARCH_STEPS_DIAG - 1) && coord.w > 0.9) { coord.xyz = mad(t, float3(dir, 1.0), coord.xyz); e = SMAASampleLevelZero(edgesTex, coord.xy).rg; coord.w = dot(e, float2(0.5, 0.5)); } return coord.zw;}
float2 SMAASearchDiag2(SMAATexture2D(edgesTex), float2 texcoord, float2 dir, out float2 e) { float4 coord = float4(texcoord, -1.0, 1.0); coord.x += 0.25 * SMAA_RT_METRICS.x; // See @SearchDiag2Optimization
float3 t = float3(SMAA_RT_METRICS.xy, 1.0); while (coord.z < float(SMAA_MAX_SEARCH_STEPS_DIAG - 1) && coord.w > 0.9) { coord.xyz = mad(t, float3(dir, 1.0), coord.xyz);
// @SearchDiag2Optimization
// Fetch both edges at once using bilinear filtering:
e = SMAASampleLevelZero(edgesTex, coord.xy).rg; e = SMAADecodeDiagBilinearAccess(e);
// Non-optimized version:
// e.g = SMAASampleLevelZero(edgesTex, coord.xy).g;
// e.r = SMAASampleLevelZeroOffset(edgesTex, coord.xy, int2(1, 0)).r;
coord.w = dot(e, float2(0.5, 0.5)); } return coord.zw;}
/**
* Similar to SMAAArea, this calculates the area corresponding to a certain * diagonal distance and crossing edges 'e'. */float2 SMAAAreaDiag(SMAATexture2D(areaTex), float2 dist, float2 e, float offset) { float2 texcoord = mad(float2(SMAA_AREATEX_MAX_DISTANCE_DIAG, SMAA_AREATEX_MAX_DISTANCE_DIAG), e, dist);
// We do a scale and bias for mapping to texel space:
texcoord = mad(SMAA_AREATEX_PIXEL_SIZE, texcoord, 0.5 * SMAA_AREATEX_PIXEL_SIZE);
// Diagonal areas are on the second half of the texture:
texcoord.x += 0.5;
// Move to proper place, according to the subpixel offset:
texcoord.y += SMAA_AREATEX_SUBTEX_SIZE * offset;
// Do it!
return SMAA_AREATEX_SELECT(SMAASampleLevelZero(areaTex, texcoord));}
/**
* This searches for diagonal patterns and returns the corresponding weights. */float2 SMAACalculateDiagWeights(SMAATexture2D(edgesTex), SMAATexture2D(areaTex), float2 texcoord, float2 e, float4 subsampleIndices) { float2 weights = float2(0.0, 0.0);
// Search for the line ends:
float4 d; float2 end; if (e.r > 0.0) { d.xz = SMAASearchDiag1(SMAATexturePass2D(edgesTex), texcoord, float2(-1.0, 1.0), end); d.x += float(end.y > 0.9); } else d.xz = float2(0.0, 0.0); d.yw = SMAASearchDiag1(SMAATexturePass2D(edgesTex), texcoord, float2(1.0, -1.0), end);
SMAA_BRANCH if (d.x + d.y > 2.0) { // d.x + d.y + 1 > 3
// Fetch the crossing edges:
float4 coords = mad(float4(-d.x + 0.25, d.x, d.y, -d.y - 0.25), SMAA_RT_METRICS.xyxy, texcoord.xyxy); float4 c; c.xy = SMAASampleLevelZeroOffset(edgesTex, coords.xy, int2(-1, 0)).rg; c.zw = SMAASampleLevelZeroOffset(edgesTex, coords.zw, int2( 1, 0)).rg; c.yxwz = SMAADecodeDiagBilinearAccess(c.xyzw);
// Non-optimized version:
// float4 coords = mad(float4(-d.x, d.x, d.y, -d.y), SMAA_RT_METRICS.xyxy, texcoord.xyxy);
// float4 c;
// c.x = SMAASampleLevelZeroOffset(edgesTex, coords.xy, int2(-1, 0)).g;
// c.y = SMAASampleLevelZeroOffset(edgesTex, coords.xy, int2( 0, 0)).r;
// c.z = SMAASampleLevelZeroOffset(edgesTex, coords.zw, int2( 1, 0)).g;
// c.w = SMAASampleLevelZeroOffset(edgesTex, coords.zw, int2( 1, -1)).r;
// Merge crossing edges at each side into a single value:
float2 cc = mad(float2(2.0, 2.0), c.xz, c.yw);
// Remove the crossing edge if we didn't found the end of the line:
SMAAMovc(bool2(step(0.9, d.zw)), cc, float2(0.0, 0.0));
// Fetch the areas for this line:
weights += SMAAAreaDiag(SMAATexturePass2D(areaTex), d.xy, cc, subsampleIndices.z); }
// Search for the line ends:
d.xz = SMAASearchDiag2(SMAATexturePass2D(edgesTex), texcoord, float2(-1.0, -1.0), end); if (SMAASampleLevelZeroOffset(edgesTex, texcoord, int2(1, 0)).r > 0.0) { d.yw = SMAASearchDiag2(SMAATexturePass2D(edgesTex), texcoord, float2(1.0, 1.0), end); d.y += float(end.y > 0.9); } else d.yw = float2(0.0, 0.0);
SMAA_BRANCH if (d.x + d.y > 2.0) { // d.x + d.y + 1 > 3
// Fetch the crossing edges:
float4 coords = mad(float4(-d.x, -d.x, d.y, d.y), SMAA_RT_METRICS.xyxy, texcoord.xyxy); float4 c; c.x = SMAASampleLevelZeroOffset(edgesTex, coords.xy, int2(-1, 0)).g; c.y = SMAASampleLevelZeroOffset(edgesTex, coords.xy, int2( 0, -1)).r; c.zw = SMAASampleLevelZeroOffset(edgesTex, coords.zw, int2( 1, 0)).gr; float2 cc = mad(float2(2.0, 2.0), c.xz, c.yw);
// Remove the crossing edge if we didn't found the end of the line:
SMAAMovc(bool2(step(0.9, d.zw)), cc, float2(0.0, 0.0));
// Fetch the areas for this line:
weights += SMAAAreaDiag(SMAATexturePass2D(areaTex), d.xy, cc, subsampleIndices.w).gr; }
return weights;}#endif
//-----------------------------------------------------------------------------
// Horizontal/Vertical Search Functions
/**
* This allows one to determine how much length should we add in the last step * of the searches. It takes the bilinearly interpolated edge (see * @PSEUDO_GATHER4), and adds 0, 1 or 2, depending on which edges and * crossing edges are active. */float SMAASearchLength(SMAATexture2D(searchTex), float2 e, float offset) { // The texture is flipped vertically, with left and right cases taking half
// of the space horizontally:
float2 scale = SMAA_SEARCHTEX_SIZE * float2(0.5, -1.0); float2 bias = SMAA_SEARCHTEX_SIZE * float2(offset, 1.0);
// Scale and bias to access texel centers:
scale += float2(-1.0, 1.0); bias += float2( 0.5, -0.5);
// Convert from pixel coordinates to texcoords:
// (We use SMAA_SEARCHTEX_PACKED_SIZE because the texture is cropped)
scale *= 1.0 / SMAA_SEARCHTEX_PACKED_SIZE; bias *= 1.0 / SMAA_SEARCHTEX_PACKED_SIZE;
// Lookup the search texture:
return SMAA_SEARCHTEX_SELECT(SMAASampleLevelZero(searchTex, mad(scale, e, bias)));}
/**
* Horizontal/vertical search functions for the 2nd pass. */float SMAASearchXLeft(SMAATexture2D(edgesTex), SMAATexture2D(searchTex), float2 texcoord, float end) { /**
* @PSEUDO_GATHER4 * This texcoord has been offset by (-0.25, -0.125) in the vertex shader to * sample between edge, thus fetching four edges in a row. * Sampling with different offsets in each direction allows one to * disambiguate which edges are active from the four fetched ones. */ float2 e = float2(0.0, 1.0); while (texcoord.x > end && e.g > 0.8281 && // Is there some edge not activated?
e.r == 0.0) { // Or is there a crossing edge that breaks the line?
e = SMAASampleLevelZero(edgesTex, texcoord).rg; texcoord = mad(-float2(2.0, 0.0), SMAA_RT_METRICS.xy, texcoord); }
float offset = mad(-(255.0 / 127.0), SMAASearchLength(SMAATexturePass2D(searchTex), e, 0.0), 3.25); return mad(SMAA_RT_METRICS.x, offset, texcoord.x);
// Non-optimized version:
// We correct the previous (-0.25, -0.125) offset we applied:
// texcoord.x += 0.25 * SMAA_RT_METRICS.x;
// The searches are bias by 1, so adjust the coords accordingly:
// texcoord.x += SMAA_RT_METRICS.x;
// Disambiguate the length added by the last step:
// texcoord.x += 2.0 * SMAA_RT_METRICS.x; // Undo last step
// texcoord.x -= SMAA_RT_METRICS.x * (255.0 / 127.0) * SMAASearchLength(SMAATexturePass2D(searchTex), e, 0.0);
// return mad(SMAA_RT_METRICS.x, offset, texcoord.x);
}
float SMAASearchXRight(SMAATexture2D(edgesTex), SMAATexture2D(searchTex), float2 texcoord, float end) { float2 e = float2(0.0, 1.0); while (texcoord.x < end && e.g > 0.8281 && // Is there some edge not activated?
e.r == 0.0) { // Or is there a crossing edge that breaks the line?
e = SMAASampleLevelZero(edgesTex, texcoord).rg; texcoord = mad(float2(2.0, 0.0), SMAA_RT_METRICS.xy, texcoord); } float offset = mad(-(255.0 / 127.0), SMAASearchLength(SMAATexturePass2D(searchTex), e, 0.5), 3.25); return mad(-SMAA_RT_METRICS.x, offset, texcoord.x);}
float SMAASearchYUp(SMAATexture2D(edgesTex), SMAATexture2D(searchTex), float2 texcoord, float end) { float2 e = float2(1.0, 0.0); while (texcoord.y > end && e.r > 0.8281 && // Is there some edge not activated?
e.g == 0.0) { // Or is there a crossing edge that breaks the line?
e = SMAASampleLevelZero(edgesTex, texcoord).rg; texcoord = mad(-float2(0.0, 2.0), SMAA_RT_METRICS.xy, texcoord); } float offset = mad(-(255.0 / 127.0), SMAASearchLength(SMAATexturePass2D(searchTex), e.gr, 0.0), 3.25); return mad(SMAA_RT_METRICS.y, offset, texcoord.y);}
float SMAASearchYDown(SMAATexture2D(edgesTex), SMAATexture2D(searchTex), float2 texcoord, float end) { float2 e = float2(1.0, 0.0); while (texcoord.y < end && e.r > 0.8281 && // Is there some edge not activated?
e.g == 0.0) { // Or is there a crossing edge that breaks the line?
e = SMAASampleLevelZero(edgesTex, texcoord).rg; texcoord = mad(float2(0.0, 2.0), SMAA_RT_METRICS.xy, texcoord); } float offset = mad(-(255.0 / 127.0), SMAASearchLength(SMAATexturePass2D(searchTex), e.gr, 0.5), 3.25); return mad(-SMAA_RT_METRICS.y, offset, texcoord.y);}
/**
* Ok, we have the distance and both crossing edges. So, what are the areas * at each side of current edge? */float2 SMAAArea(SMAATexture2D(areaTex), float2 dist, float e1, float e2, float offset) { // Rounding prevents precision errors of bilinear filtering:
float2 texcoord = mad(float2(SMAA_AREATEX_MAX_DISTANCE, SMAA_AREATEX_MAX_DISTANCE), round(4.0 * float2(e1, e2)), dist);
// We do a scale and bias for mapping to texel space:
texcoord = mad(SMAA_AREATEX_PIXEL_SIZE, texcoord, 0.5 * SMAA_AREATEX_PIXEL_SIZE);
// Move to proper place, according to the subpixel offset:
texcoord.y = mad(SMAA_AREATEX_SUBTEX_SIZE, offset, texcoord.y);
// Do it!
return SMAA_AREATEX_SELECT(SMAASampleLevelZero(areaTex, texcoord));}
//-----------------------------------------------------------------------------
// Corner Detection Functions
void SMAADetectHorizontalCornerPattern(SMAATexture2D(edgesTex), inout float2 weights, float4 texcoord, float2 d) { #if !defined(SMAA_DISABLE_CORNER_DETECTION)
float2 leftRight = step(d.xy, d.yx); float2 rounding = (1.0 - SMAA_CORNER_ROUNDING_NORM) * leftRight;
rounding /= leftRight.x + leftRight.y; // Reduce blending for pixels in the center of a line.
float2 factor = float2(1.0, 1.0); factor.x -= rounding.x * SMAASampleLevelZeroOffset(edgesTex, texcoord.xy, int2(0, 1)).r; factor.x -= rounding.y * SMAASampleLevelZeroOffset(edgesTex, texcoord.zw, int2(1, 1)).r; factor.y -= rounding.x * SMAASampleLevelZeroOffset(edgesTex, texcoord.xy, int2(0, -2)).r; factor.y -= rounding.y * SMAASampleLevelZeroOffset(edgesTex, texcoord.zw, int2(1, -2)).r;
weights *= saturate(factor); #endif
}
void SMAADetectVerticalCornerPattern(SMAATexture2D(edgesTex), inout float2 weights, float4 texcoord, float2 d) { #if !defined(SMAA_DISABLE_CORNER_DETECTION)
float2 leftRight = step(d.xy, d.yx); float2 rounding = (1.0 - SMAA_CORNER_ROUNDING_NORM) * leftRight;
rounding /= leftRight.x + leftRight.y;
float2 factor = float2(1.0, 1.0); factor.x -= rounding.x * SMAASampleLevelZeroOffset(edgesTex, texcoord.xy, int2( 1, 0)).g; factor.x -= rounding.y * SMAASampleLevelZeroOffset(edgesTex, texcoord.zw, int2( 1, 1)).g; factor.y -= rounding.x * SMAASampleLevelZeroOffset(edgesTex, texcoord.xy, int2(-2, 0)).g; factor.y -= rounding.y * SMAASampleLevelZeroOffset(edgesTex, texcoord.zw, int2(-2, 1)).g;
weights *= saturate(factor); #endif
}
//-----------------------------------------------------------------------------
// Blending Weight Calculation Pixel Shader (Second Pass)
float4 SMAABlendingWeightCalculationPS(float2 texcoord, float2 pixcoord, float4 offset[3], SMAATexture2D(edgesTex), SMAATexture2D(areaTex), SMAATexture2D(searchTex), float4 subsampleIndices) { // Just pass zero for SMAA 1x, see @SUBSAMPLE_INDICES.
float4 weights = float4(0.0, 0.0, 0.0, 0.0);
float2 e = SMAASample(edgesTex, texcoord).rg;
SMAA_BRANCH if (e.g > 0.0) { // Edge at north
#if !defined(SMAA_DISABLE_DIAG_DETECTION)
// Diagonals have both north and west edges, so searching for them in
// one of the boundaries is enough.
weights.rg = SMAACalculateDiagWeights(SMAATexturePass2D(edgesTex), SMAATexturePass2D(areaTex), texcoord, e, subsampleIndices);
// We give priority to diagonals, so if we find a diagonal we skip
// horizontal/vertical processing.
SMAA_BRANCH if (weights.r == -weights.g) { // weights.r + weights.g == 0.0
#endif
float2 d;
// Find the distance to the left:
float3 coords; coords.x = SMAASearchXLeft(SMAATexturePass2D(edgesTex), SMAATexturePass2D(searchTex), offset[0].xy, offset[2].x); coords.y = offset[1].y; // offset[1].y = texcoord.y - 0.25 * SMAA_RT_METRICS.y (@CROSSING_OFFSET)
d.x = coords.x;
// Now fetch the left crossing edges, two at a time using bilinear
// filtering. Sampling at -0.25 (see @CROSSING_OFFSET) enables to
// discern what value each edge has:
float e1 = SMAASampleLevelZero(edgesTex, coords.xy).r;
// Find the distance to the right:
coords.z = SMAASearchXRight(SMAATexturePass2D(edgesTex), SMAATexturePass2D(searchTex), offset[0].zw, offset[2].y); d.y = coords.z;
// We want the distances to be in pixel units (doing this here allow one
// to better interleave arithmetic and memory accesses):
d = abs(round(mad(SMAA_RT_METRICS.zz, d, -pixcoord.xx)));
// SMAAArea below needs a sqrt, as the areas texture is compressed
// quadratically:
float2 sqrt_d = sqrt(d);)SHADER_SOURCE";
extern const char smaa_base_shader_p4[] = R"SHADER_SOURCE( // Fetch the right crossing edges:
float e2 = SMAASampleLevelZeroOffset(edgesTex, coords.zy, int2(1, 0)).r;
// Ok, we know how this pattern looks like, now it is time for getting
// the actual area:
weights.rg = SMAAArea(SMAATexturePass2D(areaTex), sqrt_d, e1, e2, subsampleIndices.y);
// Fix corners:
coords.y = texcoord.y; SMAADetectHorizontalCornerPattern(SMAATexturePass2D(edgesTex), weights.rg, coords.xyzy, d);
#if !defined(SMAA_DISABLE_DIAG_DETECTION)
} else e.r = 0.0; // Skip vertical processing.
#endif
}
SMAA_BRANCH if (e.r > 0.0) { // Edge at west
float2 d;
// Find the distance to the top:
float3 coords; coords.y = SMAASearchYUp(SMAATexturePass2D(edgesTex), SMAATexturePass2D(searchTex), offset[1].xy, offset[2].z); coords.x = offset[0].x; // offset[1].x = texcoord.x - 0.25 * SMAA_RT_METRICS.x;
d.x = coords.y;
// Fetch the top crossing edges:
float e1 = SMAASampleLevelZero(edgesTex, coords.xy).g;
// Find the distance to the bottom:
coords.z = SMAASearchYDown(SMAATexturePass2D(edgesTex), SMAATexturePass2D(searchTex), offset[1].zw, offset[2].w); d.y = coords.z;
// We want the distances to be in pixel units:
d = abs(round(mad(SMAA_RT_METRICS.ww, d, -pixcoord.yy)));
// SMAAArea below needs a sqrt, as the areas texture is compressed
// quadratically:
float2 sqrt_d = sqrt(d);
// Fetch the bottom crossing edges:
float e2 = SMAASampleLevelZeroOffset(edgesTex, coords.xz, int2(0, 1)).g;
// Get the area for this direction:
weights.ba = SMAAArea(SMAATexturePass2D(areaTex), sqrt_d, e1, e2, subsampleIndices.x);
// Fix corners:
coords.x = texcoord.x; SMAADetectVerticalCornerPattern(SMAATexturePass2D(edgesTex), weights.ba, coords.xyxz, d); }
return weights;}
//-----------------------------------------------------------------------------
// Neighborhood Blending Pixel Shader (Third Pass)
float4 SMAANeighborhoodBlendingPS(float2 texcoord, float4 offset, SMAATexture2D(colorTex), SMAATexture2D(blendTex) #if SMAA_REPROJECTION
, SMAATexture2D(velocityTex) #endif
) { // Fetch the blending weights for current pixel:
float4 a; a.x = SMAASample(blendTex, offset.xy).a; // Right
a.y = SMAASample(blendTex, offset.zw).g; // Top
a.wz = SMAASample(blendTex, texcoord).xz; // Bottom / Left
// Is there any blending weight with a value greater than 0.0?
SMAA_BRANCH if (dot(a, float4(1.0, 1.0, 1.0, 1.0)) < 1e-5) { float4 color = SMAASampleLevelZero(colorTex, texcoord);
#if SMAA_REPROJECTION
float2 velocity = SMAA_DECODE_VELOCITY(SMAASampleLevelZero(velocityTex, texcoord));
// Pack velocity into the alpha channel:
color.a = sqrt(5.0 * length(velocity)); #endif
return color; } else { bool h = max(a.x, a.z) > max(a.y, a.w); // max(horizontal) > max(vertical)
// Calculate the blending offsets:
float4 blendingOffset = float4(0.0, a.y, 0.0, a.w); float2 blendingWeight = a.yw; SMAAMovc(bool4(h, h, h, h), blendingOffset, float4(a.x, 0.0, a.z, 0.0)); SMAAMovc(bool2(h, h), blendingWeight, a.xz); blendingWeight /= dot(blendingWeight, float2(1.0, 1.0));
// Calculate the texture coordinates:
float4 blendingCoord = mad(blendingOffset, float4(SMAA_RT_METRICS.xy, -SMAA_RT_METRICS.xy), texcoord.xyxy);
// We exploit bilinear filtering to mix current pixel with the chosen
// neighbor:
float4 color = blendingWeight.x * SMAASampleLevelZero(colorTex, blendingCoord.xy); color += blendingWeight.y * SMAASampleLevelZero(colorTex, blendingCoord.zw);
#if SMAA_REPROJECTION
// Antialias velocity for proper reprojection in a later stage:
float2 velocity = blendingWeight.x * SMAA_DECODE_VELOCITY(SMAASampleLevelZero(velocityTex, blendingCoord.xy)); velocity += blendingWeight.y * SMAA_DECODE_VELOCITY(SMAASampleLevelZero(velocityTex, blendingCoord.zw));
// Pack velocity into the alpha channel:
color.a = sqrt(5.0 * length(velocity)); #endif
return color; }}
//-----------------------------------------------------------------------------
// Temporal Resolve Pixel Shader (Optional Pass)
float4 SMAAResolvePS(float2 texcoord, SMAATexture2D(currentColorTex), SMAATexture2D(previousColorTex) #if SMAA_REPROJECTION
, SMAATexture2D(velocityTex) #endif
) { #if SMAA_REPROJECTION
// Velocity is assumed to be calculated for motion blur, so we need to
// inverse it for reprojection:
float2 velocity = -SMAA_DECODE_VELOCITY(SMAASamplePoint(velocityTex, texcoord).rg);
// Fetch current pixel:
float4 current = SMAASamplePoint(currentColorTex, texcoord);
// Reproject current coordinates and fetch previous pixel:
float4 previous = SMAASamplePoint(previousColorTex, texcoord + velocity);
// Attenuate the previous pixel if the velocity is different:
float delta = abs(current.a * current.a - previous.a * previous.a) / 5.0; float weight = 0.5 * saturate(1.0 - sqrt(delta) * SMAA_REPROJECTION_WEIGHT_SCALE);
// Blend the pixels according to the calculated weight:
return lerp(current, previous, weight); #else
// Just blend the pixels:
float4 current = SMAASamplePoint(currentColorTex, texcoord); float4 previous = SMAASamplePoint(previousColorTex, texcoord); return lerp(current, previous, 0.5); #endif
}
//-----------------------------------------------------------------------------
// Separate Multisamples Pixel Shader (Optional Pass)
#ifdef SMAALoad
void SMAASeparatePS(float4 position, float2 texcoord, out float4 target0, out float4 target1, SMAATexture2DMS2(colorTexMS)) { int2 pos = int2(position.xy); target0 = SMAALoad(colorTexMS, pos, 0); target1 = SMAALoad(colorTexMS, pos, 1);}#endif
//-----------------------------------------------------------------------------
#endif // SMAA_INCLUDE_PS
)SHADER_SOURCE";
const char smaa_pass_1_vertex_shader[] = R"SHADER_SOURCE(
varying vec4 offset[3];varying vec2 texcoord;
void main(){ texcoord = gl_MultiTexCoord0.st; SMAAEdgeDetectionVS( texcoord, offset); gl_Position = ftransform();
}
)SHADER_SOURCE";
const char smaa_pass_1_fragment_shader_luma[] = R"SHADER_SOURCE(
varying vec2 texcoord;varying vec4 offset[3];uniform sampler2D colorTex;
void main(){ gl_FragColor.xy = SMAALumaEdgeDetectionPS(texcoord, offset, colorTex).xy;}
)SHADER_SOURCE";
const char smaa_pass_1_fragment_shader_color[] = R"SHADER_SOURCE(
varying vec2 texcoord;varying vec4 offset[3];uniform sampler2D colorTex;
void main(){ gl_FragColor.xy = SMAAColorEdgeDetectionPS(texcoord, offset, colorTex).xy;}
)SHADER_SOURCE";
const char smaa_pass_2_vertex_shader[] = R"SHADER_SOURCE(
varying vec4 offset[3];varying vec2 texcoord;varying vec2 pixcoord;
void main(){ texcoord = gl_MultiTexCoord0.st; SMAABlendingWeightCalculationVS( texcoord, pixcoord, offset ); gl_Position = ftransform();}
)SHADER_SOURCE";
const char smaa_pass_2_fragment_shader[] = R"SHADER_SOURCE(
varying vec2 texcoord;varying vec2 pixcoord;varying vec4 offset[3];uniform sampler2D edgesTex;uniform sampler2D areaTex;uniform sampler2D searchTex;
void main(){ gl_FragColor = SMAABlendingWeightCalculationPS(texcoord, pixcoord, offset, edgesTex, areaTex, searchTex, vec4(0.,0.,0.,0.));}
)SHADER_SOURCE";
const char smaa_pass_3_vertex_shader[] = R"SHADER_SOURCE(
varying vec4 offset;varying vec2 texcoord;
void main(){ texcoord = gl_MultiTexCoord0.st; SMAANeighborhoodBlendingVS( texcoord, offset ); gl_Position = ftransform();}
)SHADER_SOURCE";
const char smaa_pass_3_fragment_shader[] = R"SHADER_SOURCE(
varying vec2 texcoord;varying vec4 offset;uniform sampler2D colorTex;uniform sampler2D blendTex;
void main(){ gl_FragColor = SMAANeighborhoodBlendingPS(texcoord, offset, colorTex, blendTex);}
)SHADER_SOURCE";
}}
|