|
|
/*
* This program source code file is part of KICAD, a free EDA CAD application. * * Copyright (C) 2016-2018 CERN * @author Tomasz Wlostowski <tomasz.wlostowski@cern.ch> * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */
#include <connectivity_algo.h>
#include <widgets/progress_reporter.h>
#include <geometry/geometry_utils.h>
#include <thread>
#include <mutex>
#ifdef PROFILE
#include <profile.h>
#endif
#ifdef USE_OPENMP
#include <omp.h>
#endif /* USE_OPENMP */
using namespace std::placeholders;
bool operator<( const CN_ANCHOR_PTR& a, const CN_ANCHOR_PTR& b ){ if( a->Pos().x == b->Pos().x ) return a->Pos().y < b->Pos().y; else return a->Pos().x < b->Pos().x;}
bool CN_ANCHOR::IsDirty() const{ return m_item->Dirty();}
CN_CLUSTER::CN_CLUSTER(){ m_items.reserve( 64 ); m_originPad = nullptr; m_originNet = -1; m_conflicting = false;}
CN_CLUSTER::~CN_CLUSTER(){}
wxString CN_CLUSTER::OriginNetName() const{ if( !m_originPad || !m_originPad->Valid() ) return "<none>"; else return m_originPad->Parent()->GetNetname();}
bool CN_CLUSTER::Contains( const CN_ITEM* aItem ){ return std::find( m_items.begin(), m_items.end(), aItem ) != m_items.end();}
bool CN_CLUSTER::Contains( const BOARD_CONNECTED_ITEM* aItem ){ for( auto item : m_items ) { if( item->Valid() && item->Parent() == aItem ) return true; }
return false;}
void CN_ITEM::Dump(){ printf(" valid: %d, connected: \n", !!Valid());
for( auto i : m_connected ) { TRACK* t = static_cast<TRACK*>( i->Parent() ); printf( " - %p %d\n", t, t->Type() ); }}
void CN_CLUSTER::Dump(){ for( auto item : m_items ) { wxLogTrace( "CN", " - item : %p bitem : %p type : %d inet %s\n", item, item->Parent(), item->Parent()->Type(), (const char*) item->Parent()->GetNetname().c_str() ); printf( "- item : %p bitem : %p type : %d inet %s\n", item, item->Parent(), item->Parent()->Type(), (const char*) item->Parent()->GetNetname().c_str() ); item->Dump(); }}
void CN_CLUSTER::Add( CN_ITEM* item ){ m_items.push_back( item );
if( m_originNet < 0 ) { m_originNet = item->Net(); }
if( item->Parent()->Type() == PCB_PAD_T ) { if( !m_originPad ) { m_originPad = item; m_originNet = item->Net(); }
if( m_originPad && item->Net() != m_originNet ) { m_conflicting = true; } }}
CN_CONNECTIVITY_ALGO::CN_CONNECTIVITY_ALGO(){}
CN_CONNECTIVITY_ALGO::~CN_CONNECTIVITY_ALGO(){ Clear();}
bool CN_CONNECTIVITY_ALGO::Remove( BOARD_ITEM* aItem ){ markItemNetAsDirty( aItem );
switch( aItem->Type() ) { case PCB_MODULE_T: for( auto pad : static_cast<MODULE*>( aItem ) -> Pads() ) { m_itemMap[ static_cast<BOARD_CONNECTED_ITEM*>( pad ) ].MarkItemsAsInvalid(); m_itemMap.erase( static_cast<BOARD_CONNECTED_ITEM*>( pad ) ); }
m_itemList.SetDirty( true ); break;
case PCB_PAD_T: m_itemMap[ static_cast<BOARD_CONNECTED_ITEM*>( aItem ) ].MarkItemsAsInvalid(); m_itemMap.erase( static_cast<BOARD_CONNECTED_ITEM*>( aItem ) ); m_itemList.SetDirty( true ); break;
case PCB_TRACE_T: m_itemMap[ static_cast<BOARD_CONNECTED_ITEM*>( aItem ) ].MarkItemsAsInvalid(); m_itemMap.erase( static_cast<BOARD_CONNECTED_ITEM*>( aItem ) ); m_itemList.SetDirty( true ); break;
case PCB_VIA_T: m_itemMap[ static_cast<BOARD_CONNECTED_ITEM*>( aItem ) ].MarkItemsAsInvalid(); m_itemMap.erase( static_cast<BOARD_CONNECTED_ITEM*>( aItem ) ); m_itemList.SetDirty( true ); break;
case PCB_ZONE_AREA_T: case PCB_ZONE_T: { m_itemMap[ static_cast<BOARD_CONNECTED_ITEM*>( aItem ) ].MarkItemsAsInvalid(); m_itemMap.erase ( static_cast<BOARD_CONNECTED_ITEM*>( aItem ) ); m_itemList.SetDirty( true ); break; }
default: return false; }
// Once we delete an item, it may connect between lists, so mark both as potentially invalid
m_itemList.SetHasInvalid( true );
return true;}
void CN_CONNECTIVITY_ALGO::markItemNetAsDirty( const BOARD_ITEM* aItem ){ if( aItem->IsConnected() ) { auto citem = static_cast<const BOARD_CONNECTED_ITEM*>( aItem ); MarkNetAsDirty( citem->GetNetCode() ); } else { if( aItem->Type() == PCB_MODULE_T ) { auto mod = static_cast <const MODULE*>( aItem );
for( D_PAD* pad = mod->PadsList(); pad; pad = pad->Next() ) MarkNetAsDirty( pad->GetNetCode() ); } }}
bool CN_CONNECTIVITY_ALGO::Add( BOARD_ITEM* aItem ){ if( !IsCopperLayer( aItem->GetLayer() ) ) return false;
markItemNetAsDirty ( aItem );
switch( aItem->Type() ) { case PCB_NETINFO_T: { MarkNetAsDirty( static_cast<NETINFO_ITEM*>( aItem )->GetNet() ); break; } case PCB_MODULE_T: for( auto pad : static_cast<MODULE*>( aItem ) -> Pads() ) { if( m_itemMap.find( pad ) != m_itemMap.end() ) return false;
add( m_itemList, pad ); }
break;
case PCB_PAD_T: if( m_itemMap.find ( static_cast<D_PAD*>( aItem ) ) != m_itemMap.end() ) return false;
add( m_itemList, static_cast<D_PAD*>( aItem ) );
break;
case PCB_TRACE_T: { if( m_itemMap.find( static_cast<TRACK*>( aItem ) ) != m_itemMap.end() ) return false;
add( m_itemList, static_cast<TRACK*>( aItem ) );
break; }
case PCB_VIA_T: if( m_itemMap.find( static_cast<VIA*>( aItem ) ) != m_itemMap.end() ) return false;
add( m_itemList, static_cast<VIA*>( aItem ) );
break;
case PCB_ZONE_AREA_T: case PCB_ZONE_T: { auto zone = static_cast<ZONE_CONTAINER*>( aItem );
if( m_itemMap.find( static_cast<ZONE_CONTAINER*>( aItem ) ) != m_itemMap.end() ) return false;
m_itemMap[zone] = ITEM_MAP_ENTRY();
for( auto zitem : m_itemList.Add( zone ) ) m_itemMap[zone].Link(zitem);
break; }
default: return false; }
return true;}
void CN_CONNECTIVITY_ALGO::searchConnections(){#ifdef CONNECTIVITY_DEBUG
printf("Search start\n");#endif
#ifdef PROFILE
PROF_COUNTER garbage_collection( "garbage-collection" );#endif
std::vector<CN_ITEM*> garbage; garbage.reserve( 1024 );
m_itemList.RemoveInvalidItems( garbage );
for( auto item : garbage ) delete item;
#ifdef PROFILE
garbage_collection.Show(); PROF_COUNTER search_cnt( "search-connections" ); PROF_COUNTER search_basic( "search-basic" );#endif
if( m_progressReporter ) { m_progressReporter->SetMaxProgress( m_itemList.IsDirty() ? m_itemList.Size() : 0 ); }
#ifdef USE_OPENMP
#pragma omp parallel num_threads( std::max( omp_get_num_procs(), 2 ) )
{ if( omp_get_thread_num() == 0 && m_progressReporter ) m_progressReporter->KeepRefreshing( true );#endif
if( m_itemList.IsDirty() ) {#ifdef USE_OPENMP
#pragma omp parallel for
#endif
for( int i = 0; i < m_itemList.Size(); i++ ) { auto item = m_itemList[i]; if( item->Dirty() ) { CN_VISITOR visitor( item, &m_listLock ); m_itemList.FindNearby( item, visitor ); }
if( m_progressReporter ) m_progressReporter->AdvanceProgress(); } }
#ifdef PROFILE
search_basic.Show();#endif
#ifdef USE_OPENMP
}#endif
m_itemList.ClearDirtyFlags();
#ifdef CONNECTIVITY_DEBUG
printf("Search end\n");#endif
#ifdef PROFILE
search_cnt.Show();#endif
}
void CN_ITEM::RemoveInvalidRefs(){ for( auto it = m_connected.begin(); it != m_connected.end(); ) { if( !(*it)->Valid() ) it = m_connected.erase( it ); else ++it; }}
void CN_LIST::RemoveInvalidItems( std::vector<CN_ITEM*>& aGarbage ){ if( !m_hasInvalid ) return;
auto lastItem = std::remove_if(m_items.begin(), m_items.end(), [&aGarbage] ( CN_ITEM* item ) { if( !item->Valid() ) { aGarbage.push_back ( item ); return true; }
return false; } );
m_items.resize( lastItem - m_items.begin() );
// fixme: mem leaks
for( auto item : m_items ) item->RemoveInvalidRefs();
for( auto item : aGarbage ) m_index.Remove( item );
m_hasInvalid = false;}
bool CN_CONNECTIVITY_ALGO::isDirty() const{ return m_itemList.IsDirty();}
const CN_CONNECTIVITY_ALGO::CLUSTERS CN_CONNECTIVITY_ALGO::SearchClusters( CLUSTER_SEARCH_MODE aMode ){ constexpr KICAD_T types[] = { PCB_TRACE_T, PCB_PAD_T, PCB_VIA_T, PCB_ZONE_AREA_T, PCB_MODULE_T, EOT }; constexpr KICAD_T no_zones[] = { PCB_TRACE_T, PCB_PAD_T, PCB_VIA_T, PCB_MODULE_T, EOT };
if( aMode == CSM_PROPAGATE ) return SearchClusters( aMode, no_zones, -1 ); else return SearchClusters( aMode, types, -1 );}
const CN_CONNECTIVITY_ALGO::CLUSTERS CN_CONNECTIVITY_ALGO::SearchClusters( CLUSTER_SEARCH_MODE aMode, const KICAD_T aTypes[], int aSingleNet ){ bool withinAnyNet = ( aMode != CSM_PROPAGATE );
std::deque<CN_ITEM*> Q; CN_ITEM* head = nullptr; CLUSTERS clusters;
if( isDirty() ) searchConnections();
auto addToSearchList = [&head, withinAnyNet, aSingleNet, aTypes] ( CN_ITEM *aItem ) { if( withinAnyNet && aItem->Net() <= 0 ) return;
if( !aItem->Valid() ) return;
if( aSingleNet >=0 && aItem->Net() != aSingleNet ) return;
bool found = false;
for( int i = 0; aTypes[i] != EOT; i++ ) { if( aItem->Parent()->Type() == aTypes[i] ) { found = true; break; } }
if( !found ) return;
aItem->ListClear(); aItem->SetVisited( false );
if( !head ) head = aItem; else head->ListInsert( aItem ); };
std::for_each( m_itemList.begin(), m_itemList.end(), addToSearchList );
while( head ) { CN_CLUSTER_PTR cluster ( new CN_CLUSTER() );
Q.clear(); CN_ITEM* root = head; root->SetVisited ( true );
head = root->ListRemove();
Q.push_back( root );
while( Q.size() ) { CN_ITEM* current = Q.front();
Q.pop_front(); cluster->Add( current );
for( auto n : current->ConnectedItems() ) { if( withinAnyNet && n->Net() != root->Net() ) continue;
if( !n->Visited() && n->Valid() ) { n->SetVisited( true ); Q.push_back( n ); head = n->ListRemove(); } } }
clusters.push_back( cluster ); }
std::sort( clusters.begin(), clusters.end(), []( CN_CLUSTER_PTR a, CN_CLUSTER_PTR b ) { return a->OriginNet() < b->OriginNet(); } );
#ifdef CONNECTIVITY_DEBUG
printf("Active clusters: %d\n", clusters.size() );
for( auto cl : clusters ) { printf( "Net %d\n", cl->OriginNet() ); cl->Dump(); }#endif
return clusters;}
void CN_CONNECTIVITY_ALGO::Build( BOARD* aBoard ){ for( int i = 0; i<aBoard->GetAreaCount(); i++ ) { auto zone = aBoard->GetArea( i ); Add( zone ); }
for( auto tv : aBoard->Tracks() ) Add( tv );
for( auto mod : aBoard->Modules() ) { for( auto pad : mod->Pads() ) Add( pad ); }
/*wxLogTrace( "CN", "zones : %lu, pads : %lu vias : %lu tracks : %lu\n",
m_zoneList.Size(), m_padList.Size(), m_viaList.Size(), m_trackList.Size() );*/}
void CN_CONNECTIVITY_ALGO::Build( const std::vector<BOARD_ITEM*>& aItems ){ for( auto item : aItems ) { switch( item->Type() ) { case PCB_TRACE_T: case PCB_VIA_T: case PCB_ZONE_T: case PCB_PAD_T: Add( item ); break;
case PCB_MODULE_T: { for( auto pad : static_cast<MODULE*>( item )->Pads() ) { Add( pad ); }
break; }
default: break; } }}
void CN_CONNECTIVITY_ALGO::propagateConnections(){ for( const auto& cluster : m_connClusters ) { if( cluster->IsConflicting() ) { wxLogTrace( "CN", "Conflicting nets in cluster %p\n", cluster.get() ); } else if( cluster->IsOrphaned() ) { wxLogTrace( "CN", "Skipping orphaned cluster %p [net: %s]\n", cluster.get(), (const char*) cluster->OriginNetName().c_str() ); } else if( cluster->HasValidNet() ) { // normal cluster: just propagate from the pads
int n_changed = 0;
for( auto item : *cluster ) { if( item->CanChangeNet() ) { if( item->Valid() && item->Parent()->GetNetCode() != cluster->OriginNet() ) { MarkNetAsDirty( item->Parent()->GetNetCode() ); MarkNetAsDirty( cluster->OriginNet() );
item->Parent()->SetNetCode( cluster->OriginNet() ); n_changed++; } } }
if( n_changed ) wxLogTrace( "CN", "Cluster %p : net : %d %s\n", cluster.get(), cluster->OriginNet(), (const char*) cluster->OriginNetName().c_str() ); else wxLogTrace( "CN", "Cluster %p : nothing to propagate\n", cluster.get() ); } else { wxLogTrace( "CN", "Cluster %p : connected to unused net\n", cluster.get() ); } }}
void CN_CONNECTIVITY_ALGO::PropagateNets(){ m_connClusters = SearchClusters( CSM_PROPAGATE ); propagateConnections();}
void CN_CONNECTIVITY_ALGO::FindIsolatedCopperIslands( ZONE_CONTAINER* aZone, std::vector<int>& aIslands ){ if( aZone->GetFilledPolysList().IsEmpty() ) return;
aIslands.clear();
Remove( aZone ); Add( aZone );
m_connClusters = SearchClusters( CSM_CONNECTIVITY_CHECK );
for( const auto& cluster : m_connClusters ) { if( cluster->Contains( aZone ) && cluster->IsOrphaned() ) { for( auto z : *cluster ) { if( z->Parent() == aZone ) { aIslands.push_back( static_cast<CN_ZONE*>(z)->SubpolyIndex() ); } } } }
wxLogTrace( "CN", "Found %u isolated islands\n", (unsigned)aIslands.size() );}
void CN_CONNECTIVITY_ALGO::FindIsolatedCopperIslands( std::vector<CN_ZONE_ISOLATED_ISLAND_LIST>& aZones ){ for ( auto& z : aZones ) Remove( z.m_zone );
for ( auto& z : aZones ) { if( !z.m_zone->GetFilledPolysList().IsEmpty() ) Add( z.m_zone ); }
m_connClusters = SearchClusters( CSM_CONNECTIVITY_CHECK );
for ( auto& zone : aZones ) { if( zone.m_zone->GetFilledPolysList().IsEmpty() ) continue;
for( const auto& cluster : m_connClusters ) { if( cluster->Contains( zone.m_zone ) && cluster->IsOrphaned() ) { for( auto z : *cluster ) { if( z->Parent() == zone.m_zone ) { zone.m_islands.push_back( static_cast<CN_ZONE*>(z)->SubpolyIndex() ); } } } } }}
const CN_CONNECTIVITY_ALGO::CLUSTERS& CN_CONNECTIVITY_ALGO::GetClusters(){ m_ratsnestClusters = SearchClusters( CSM_RATSNEST ); return m_ratsnestClusters;}
void CN_CONNECTIVITY_ALGO::MarkNetAsDirty( int aNet ){ if( aNet < 0 ) return;
if( (int) m_dirtyNets.size() <= aNet ) { int lastNet = m_dirtyNets.size() - 1;
if( lastNet < 0 ) lastNet = 0;
m_dirtyNets.resize( aNet + 1 );
for( int i = lastNet; i < aNet + 1; i++ ) m_dirtyNets[i] = true; }
m_dirtyNets[aNet] = true;}
void CN_VISITOR::checkZoneItemConnection( CN_ZONE* aZone, CN_ITEM* aItem ){ auto zoneItem = static_cast<CN_ZONE*> ( aZone );
if( zoneItem->Net() != aItem->Net() && !aItem->CanChangeNet() ) return;
if( zoneItem->ContainsPoint( aItem->GetAnchor( 0 ) ) || ( aItem->Parent()->Type() == PCB_TRACE_T && zoneItem->ContainsPoint( aItem->GetAnchor( 1 ) ) ) ) { std::lock_guard<std::mutex> lock( *m_listLock ); CN_ITEM::Connect( zoneItem, aItem ); }}
void CN_VISITOR::checkZoneZoneConnection( CN_ZONE* aZoneA, CN_ZONE* aZoneB ){ const auto refParent = static_cast<const ZONE_CONTAINER*>( aZoneA->Parent() ); const auto testedParent = static_cast<const ZONE_CONTAINER*>( aZoneB->Parent() );
if( testedParent->Type () != PCB_ZONE_AREA_T ) return;
if( aZoneB == aZoneA || refParent == testedParent ) return;
if( aZoneB->Net() != aZoneA->Net() ) return; // we only test zones belonging to the same net
const auto& outline = refParent->GetFilledPolysList().COutline( aZoneA->SubpolyIndex() );
for( int i = 0; i < outline.PointCount(); i++ ) { if( aZoneB->ContainsPoint( outline.CPoint( i ) ) ) { std::lock_guard<std::mutex> lock( *m_listLock ); CN_ITEM::Connect( aZoneA, aZoneB ); return; } }
const auto& outline2 = testedParent->GetFilledPolysList().COutline( aZoneB->SubpolyIndex() );
for( int i = 0; i < outline2.PointCount(); i++ ) { if( aZoneA->ContainsPoint( outline2.CPoint( i ) ) ) { std::lock_guard<std::mutex> lock( *m_listLock ); CN_ITEM::Connect( aZoneA, aZoneB ); return; } }}
bool CN_VISITOR::operator()( CN_ITEM* aCandidate ){ const auto parentA = aCandidate->Parent(); const auto parentB = m_item->Parent();
if( !aCandidate->Valid() || !m_item->Valid() ) return true;
if( parentA == parentB ) return true;
if( !( parentA->GetLayerSet() & parentB->GetLayerSet() ).any() ) return true;
// If both m_item and aCandidate are marked dirty, they will both be searched
// Since we are reciprocal in our connection, we arbitrarily pick one of the connections
// to conduct the expensive search
if( aCandidate->Dirty() && aCandidate < m_item ) return true;
// We should handle zone-zone connection separately
if ( ( parentA->Type() == PCB_ZONE_AREA_T || parentA->Type() == PCB_ZONE_T ) && ( parentB->Type() == PCB_ZONE_AREA_T || parentB->Type() == PCB_ZONE_T ) ) { checkZoneZoneConnection( static_cast<CN_ZONE*>( m_item ), static_cast<CN_ZONE*>( aCandidate ) ); return true; }
if( parentA->Type() == PCB_ZONE_AREA_T || parentA->Type() == PCB_ZONE_T) { checkZoneItemConnection( static_cast<CN_ZONE*>( aCandidate ), m_item ); return true; }
if( parentB->Type() == PCB_ZONE_AREA_T || parentB->Type() == PCB_ZONE_T) { checkZoneItemConnection( static_cast<CN_ZONE*>( m_item ), aCandidate ); return true; }
// Items do not necessarily have reciprocity as we only check for anchors
// therefore, we check HitTest both directions A->B & B->A
// TODO: Check for collision geometry on extended features
wxPoint ptA1( aCandidate->GetAnchor( 0 ).x, aCandidate->GetAnchor( 0 ).y ); wxPoint ptA2( aCandidate->GetAnchor( 1 ).x, aCandidate->GetAnchor( 1 ).y ); wxPoint ptB1( m_item->GetAnchor( 0 ).x, m_item->GetAnchor( 0 ).y ); wxPoint ptB2( m_item->GetAnchor( 1 ).x, m_item->GetAnchor( 1 ).y ); if( parentA->HitTest( ptB1 ) || parentB->HitTest( ptA1 ) || ( parentA->Type() == PCB_TRACE_T && parentB->HitTest( ptA2 ) ) || ( parentB->Type() == PCB_TRACE_T && parentA->HitTest( ptB2 ) ) ) { std::lock_guard<std::mutex> lock( *m_listLock ); CN_ITEM::Connect( m_item, aCandidate ); }
return true;};
int CN_ITEM::AnchorCount() const{ if( !m_valid ) return 0;
return m_parent->Type() == PCB_TRACE_T ? 2 : 1;}
const VECTOR2I CN_ITEM::GetAnchor( int n ) const{ if( !m_valid ) return VECTOR2I();
switch( m_parent->Type() ) { case PCB_PAD_T: return static_cast<const D_PAD*>( m_parent )->ShapePos(); break;
case PCB_TRACE_T: { auto tr = static_cast<const TRACK*>( m_parent ); return ( n == 0 ? tr->GetStart() : tr->GetEnd() );
break; }
case PCB_VIA_T: return static_cast<const VIA*>( m_parent )->GetStart();
default: assert( false ); return VECTOR2I(); }}
int CN_ZONE::AnchorCount() const{ if( !Valid() ) return 0;
const auto zone = static_cast<const ZONE_CONTAINER*>( Parent() ); const auto& outline = zone->GetFilledPolysList().COutline( m_subpolyIndex );
return outline.PointCount() ? 1 : 0;}
const VECTOR2I CN_ZONE::GetAnchor( int n ) const{ if( !Valid() ) return VECTOR2I();
const auto zone = static_cast<const ZONE_CONTAINER*> ( Parent() ); const auto& outline = zone->GetFilledPolysList().COutline( m_subpolyIndex );
return outline.CPoint( 0 );}
int CN_ITEM::Net() const{ if( !m_parent || !m_valid ) return -1;
return m_parent->GetNetCode();}
BOARD_CONNECTED_ITEM* CN_ANCHOR::Parent() const{ assert( m_item->Valid() ); return m_item->Parent();}
bool CN_ANCHOR::Valid() const{ if( !m_item ) return false;
return m_item->Valid();}
void CN_CONNECTIVITY_ALGO::Clear(){ m_ratsnestClusters.clear(); m_connClusters.clear(); m_itemMap.clear(); m_itemList.Clear();
}
void CN_CONNECTIVITY_ALGO::ForEachItem( const std::function<void( CN_ITEM& )>& aFunc ){ for( auto item : m_itemList ) aFunc( *item );}
void CN_CONNECTIVITY_ALGO::ForEachAnchor( const std::function<void( CN_ANCHOR& )>& aFunc ){ ForEachItem( [aFunc] ( CN_ITEM& item ) { for( const auto& anchor : item.Anchors() ) aFunc( *anchor ); } );}
bool CN_ANCHOR::IsDangling() const{ if( !m_cluster ) return true;
// Calculate the item count connected to this anchor.
// m_cluster groups all items connected, but they are not necessary connected
// at this coordinate point (they are only candidates)
BOARD_CONNECTED_ITEM* item_ref = Parent(); LSET layers = item_ref->GetLayerSet() & LSET::AllCuMask();
// the number of items connected to item_ref at ths anchor point
int connected_items_count = 0;
// the minimal number of items connected to item_ref
// at this anchor point to decide the anchor is *not* dangling
int minimal_count = 1;
// a via can be removed if connected to only one other item.
// the minimal_count is therefore 2
if( item_ref->Type() == PCB_VIA_T ) minimal_count = 2;
for( CN_ITEM* item : *m_cluster ) { if( !item->Valid() ) continue;
BOARD_CONNECTED_ITEM* brd_item = item->Parent();
if( brd_item == item_ref ) continue;
// count only items on the same layer at this coordinate (especially for zones)
if( !( brd_item->GetLayerSet() & layers ).any() ) continue;
if( brd_item->Type() == PCB_ZONE_AREA_T ) { ZONE_CONTAINER* zone = static_cast<ZONE_CONTAINER*>( brd_item );
if( zone->HitTestInsideZone( wxPoint( Pos() ) ) ) connected_items_count++; } else if( brd_item->HitTest( wxPoint( Pos() ) ) ) connected_items_count++; }
return connected_items_count < minimal_count;}
void CN_CONNECTIVITY_ALGO::SetProgressReporter( PROGRESS_REPORTER* aReporter ){ m_progressReporter = aReporter;}
|