 Modular KiCad Blueprint Milestone B), major portions:
*) When kicad.exe closes a project, close any open KIFACEs so that they cannot
get disassociated from their true PROJECT.
*) Allow loading eeschema library editor from kicad.exe
*) Allow loading pcbnew library editor from kicad.exe
*) Rename LIB_COMPONENT to LIB_PART.
*) Add class PART_LIBS, and PART_LIB.
*) Make PART_LIBS non-global, i.e. PROJECT specific.
*) Implement "data on demand" for PART_LIBS
*) Implement "data on demand" for schematic SEARCH_STACK.
*) Use RSTRINGs to retain eeschema editor's notion of last library and part being edited.
*) Get rid of library search on every SCH_COMPONENT::Draw() call, instead use
a weak pointer.
*) Remove all chdir() calls so projects don't need to be CWD.
*) Romove APPEND support from OpenProjectFiles().
*) Make OpenProjectFiles() robust, even for creating new projects.
*) Load EESCHEMA colors in the KIWAY::OnKiwayStart() rather in window open,
and save them in the .eeschema config file, not in the project file.
*) Fix bug with wxDir() while accessing protected dirs in kicad.exe
*) Consolidate template copying into PROJECT class, not in kicad.exe source.
*) Generally untangle eeschema, making its libraries not global but rather
held in the PROJECT.
11 years ago |
|
/*
* This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2017 Jean-Pierre Charras, jp.charras at wanadoo.fr * Copyright (C) 2004-2020 KiCad Developers, see AUTHORS.txt for contributors. * Copyright (C) 2019 CERN * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */
#include <sch_draw_panel.h>
#include <plotter.h>
#include <trigo.h>
#include <base_units.h>
#include <widgets/msgpanel.h>
#include <bitmaps.h>
#include <math/util.h> // for KiROUND
#include <eda_draw_frame.h>
#include <general.h>
#include <lib_arc.h>
#include <transform.h>
#include <settings/color_settings.h>
#include <status_popup.h>
// Helper function
static inline wxPoint twoPointVector( const wxPoint &startPoint, const wxPoint &endPoint ){ return endPoint - startPoint;}
LIB_ARC::LIB_ARC( LIB_PART* aParent ) : LIB_ITEM( LIB_ARC_T, aParent ){ m_Radius = 0; m_t1 = 0; m_t2 = 0; m_Width = 0; m_fill = FILL_TYPE::NO_FILL; m_isFillable = true; m_editState = 0;}
bool LIB_ARC::HitTest( const wxPoint& aRefPoint, int aAccuracy ) const{ int mindist = std::max( aAccuracy + GetPenWidth() / 2, Mils2iu( MINIMUM_SELECTION_DISTANCE ) ); wxPoint relativePosition = aRefPoint;
relativePosition.y = -relativePosition.y; // reverse Y axis
int distance = KiROUND( GetLineLength( m_Pos, relativePosition ) );
if( abs( distance - m_Radius ) > mindist ) return false;
// We are on the circle, ensure we are only on the arc, i.e. between
// m_ArcStart and m_ArcEnd
wxPoint startEndVector = twoPointVector( m_ArcStart, m_ArcEnd ); wxPoint startRelativePositionVector = twoPointVector( m_ArcStart, relativePosition );
wxPoint centerStartVector = twoPointVector( m_Pos, m_ArcStart ); wxPoint centerEndVector = twoPointVector( m_Pos, m_ArcEnd ); wxPoint centerRelativePositionVector = twoPointVector( m_Pos, relativePosition );
// Compute the cross product to check if the point is in the sector
double crossProductStart = CrossProduct( centerStartVector, centerRelativePositionVector ); double crossProductEnd = CrossProduct( centerEndVector, centerRelativePositionVector );
// The cross products need to be exchanged, depending on which side the center point
// relative to the start point to end point vector lies
if( CrossProduct( startEndVector, startRelativePositionVector ) < 0 ) { std::swap( crossProductStart, crossProductEnd ); }
// When the cross products have a different sign, the point lies in sector
// also check, if the reference is near start or end point
return HitTestPoints( m_ArcStart, relativePosition, MINIMUM_SELECTION_DISTANCE ) || HitTestPoints( m_ArcEnd, relativePosition, MINIMUM_SELECTION_DISTANCE ) || ( crossProductStart <= 0 && crossProductEnd >= 0 );}
bool LIB_ARC::HitTest( const EDA_RECT& aRect, bool aContained, int aAccuracy ) const{ if( m_flags & (STRUCT_DELETED | SKIP_STRUCT ) ) return false;
wxPoint center = DefaultTransform.TransformCoordinate( GetPosition() ); int radius = GetRadius(); int lineWidth = GetWidth(); EDA_RECT sel = aRect ;
if ( aAccuracy ) sel.Inflate( aAccuracy );
if( aContained ) return sel.Contains( GetBoundingBox() );
EDA_RECT arcRect = GetBoundingBox().Common( sel );
/* All following tests must pass:
* 1. Rectangle must intersect arc BoundingBox * 2. Rectangle must cross the outside of the arc */ return arcRect.Intersects( sel ) && arcRect.IntersectsCircleEdge( center, radius, lineWidth );}
EDA_ITEM* LIB_ARC::Clone() const{ return new LIB_ARC( *this );}
int LIB_ARC::compare( const LIB_ITEM& aOther, LIB_ITEM::COMPARE_FLAGS aCompareFlags ) const{ wxASSERT( aOther.Type() == LIB_ARC_T );
int retv = LIB_ITEM::compare( aOther );
if( retv ) return retv;
const LIB_ARC* tmp = ( LIB_ARC* ) &aOther;
if( m_Pos.x != tmp->m_Pos.x ) return m_Pos.x - tmp->m_Pos.x;
if( m_Pos.y != tmp->m_Pos.y ) return m_Pos.y - tmp->m_Pos.y;
if( m_t1 != tmp->m_t1 ) return m_t1 - tmp->m_t1;
if( m_t2 != tmp->m_t2 ) return m_t2 - tmp->m_t2;
return 0;}
void LIB_ARC::Offset( const wxPoint& aOffset ){ m_Pos += aOffset; m_ArcStart += aOffset; m_ArcEnd += aOffset;}
void LIB_ARC::MoveTo( const wxPoint& aPosition ){ wxPoint offset = aPosition - m_Pos; m_Pos = aPosition; m_ArcStart += offset; m_ArcEnd += offset;}
void LIB_ARC::MirrorHorizontal( const wxPoint& aCenter ){ m_Pos.x -= aCenter.x; m_Pos.x *= -1; m_Pos.x += aCenter.x; m_ArcStart.x -= aCenter.x; m_ArcStart.x *= -1; m_ArcStart.x += aCenter.x; m_ArcEnd.x -= aCenter.x; m_ArcEnd.x *= -1; m_ArcEnd.x += aCenter.x; std::swap( m_ArcStart, m_ArcEnd ); std::swap( m_t1, m_t2 ); m_t1 = 1800 - m_t1; m_t2 = 1800 - m_t2; if( m_t1 > 3600 || m_t2 > 3600 ) { m_t1 -= 3600; m_t2 -= 3600; } else if( m_t1 < -3600 || m_t2 < -3600 ) { m_t1 += 3600; m_t2 += 3600; }}
void LIB_ARC::MirrorVertical( const wxPoint& aCenter ){ m_Pos.y -= aCenter.y; m_Pos.y *= -1; m_Pos.y += aCenter.y; m_ArcStart.y -= aCenter.y; m_ArcStart.y *= -1; m_ArcStart.y += aCenter.y; m_ArcEnd.y -= aCenter.y; m_ArcEnd.y *= -1; m_ArcEnd.y += aCenter.y; std::swap( m_ArcStart, m_ArcEnd ); std::swap( m_t1, m_t2 ); m_t1 = - m_t1; m_t2 = - m_t2; if( m_t1 > 3600 || m_t2 > 3600 ) { m_t1 -= 3600; m_t2 -= 3600; } else if( m_t1 < -3600 || m_t2 < -3600 ) { m_t1 += 3600; m_t2 += 3600; }}
void LIB_ARC::Rotate( const wxPoint& aCenter, bool aRotateCCW ){ int rot_angle = aRotateCCW ? -900 : 900; RotatePoint( &m_Pos, aCenter, rot_angle ); RotatePoint( &m_ArcStart, aCenter, rot_angle ); RotatePoint( &m_ArcEnd, aCenter, rot_angle ); m_t1 -= rot_angle; m_t2 -= rot_angle; if( m_t1 > 3600 || m_t2 > 3600 ) { m_t1 -= 3600; m_t2 -= 3600; } else if( m_t1 < -3600 || m_t2 < -3600 ) { m_t1 += 3600; m_t2 += 3600; }}
void LIB_ARC::Plot( PLOTTER* aPlotter, const wxPoint& aOffset, bool aFill, const TRANSFORM& aTransform ){ wxASSERT( aPlotter != NULL );
int t1 = m_t1; int t2 = m_t2; wxPoint pos = aTransform.TransformCoordinate( m_Pos ) + aOffset;
aTransform.MapAngles( &t1, &t2 );
if( aFill && m_fill == FILL_TYPE::FILLED_WITH_BG_BODYCOLOR ) { aPlotter->SetColor( aPlotter->RenderSettings()->GetLayerColor( LAYER_DEVICE_BACKGROUND ) ); aPlotter->Arc( pos, -t2, -t1, m_Radius, FILL_TYPE::FILLED_WITH_BG_BODYCOLOR, 0 ); }
bool already_filled = m_fill == FILL_TYPE::FILLED_WITH_BG_BODYCOLOR; int pen_size = GetPenWidth();
if( !already_filled || pen_size > 0 ) { pen_size = std::max( pen_size, aPlotter->RenderSettings()->GetMinPenWidth() );
aPlotter->SetColor( aPlotter->RenderSettings()->GetLayerColor( LAYER_DEVICE ) ); aPlotter->Arc( pos, -t2, -t1, m_Radius, already_filled ? FILL_TYPE::NO_FILL : m_fill, pen_size ); }}
int LIB_ARC::GetPenWidth() const{ // Historically 0 meant "default width" and negative numbers meant "don't stroke".
if( m_Width < 0 && GetFillMode() != FILL_TYPE::NO_FILL ) return 0; else return std::max( m_Width, 1 );}
void LIB_ARC::print( const RENDER_SETTINGS* aSettings, const wxPoint& aOffset, void* aData, const TRANSFORM& aTransform ){ bool forceNoFill = static_cast<bool>( aData ); int penWidth = GetPenWidth();
if( forceNoFill && m_fill != FILL_TYPE::NO_FILL && penWidth == 0 ) return;
wxDC* DC = aSettings->GetPrintDC(); wxPoint pos1, pos2, posc; COLOR4D color = aSettings->GetLayerColor( LAYER_DEVICE );
pos1 = aTransform.TransformCoordinate( m_ArcEnd ) + aOffset; pos2 = aTransform.TransformCoordinate( m_ArcStart ) + aOffset; posc = aTransform.TransformCoordinate( m_Pos ) + aOffset; int pt1 = m_t1; int pt2 = m_t2; bool swap = aTransform.MapAngles( &pt1, &pt2 );
if( swap ) { std::swap( pos1.x, pos2.x ); std::swap( pos1.y, pos2.y ); }
if( forceNoFill || m_fill == FILL_TYPE::NO_FILL ) { penWidth = std::max( penWidth, aSettings->GetDefaultPenWidth() );
GRArc1( nullptr, DC, pos1.x, pos1.y, pos2.x, pos2.y, posc.x, posc.y, penWidth, color ); } else { if( m_fill == FILL_TYPE::FILLED_WITH_BG_BODYCOLOR ) color = aSettings->GetLayerColor( LAYER_DEVICE_BACKGROUND );
GRFilledArc( nullptr, DC, posc.x, posc.y, pt1, pt2, m_Radius, penWidth, color, color ); }}
const EDA_RECT LIB_ARC::GetBoundingBox() const{ int minX, minY, maxX, maxY, angleStart, angleEnd; EDA_RECT rect; wxPoint nullPoint, startPos, endPos, centerPos; wxPoint normStart = m_ArcStart - m_Pos; wxPoint normEnd = m_ArcEnd - m_Pos;
if( ( normStart == nullPoint ) || ( normEnd == nullPoint ) || ( m_Radius == 0 ) ) return rect;
endPos = DefaultTransform.TransformCoordinate( m_ArcEnd ); startPos = DefaultTransform.TransformCoordinate( m_ArcStart ); centerPos = DefaultTransform.TransformCoordinate( m_Pos ); angleStart = m_t1; angleEnd = m_t2;
if( DefaultTransform.MapAngles( &angleStart, &angleEnd ) ) { std::swap( endPos.x, startPos.x ); std::swap( endPos.y, startPos.y ); }
/* Start with the start and end point of the arc. */ minX = std::min( startPos.x, endPos.x ); minY = std::min( startPos.y, endPos.y ); maxX = std::max( startPos.x, endPos.x ); maxY = std::max( startPos.y, endPos.y );
/* Zero degrees is a special case. */ if( angleStart == 0 ) maxX = centerPos.x + m_Radius;
/* Arc end angle wrapped passed 360. */ if( angleStart > angleEnd ) angleEnd += 3600;
if( angleStart <= 900 && angleEnd >= 900 ) /* 90 deg */ maxY = centerPos.y + m_Radius;
if( angleStart <= 1800 && angleEnd >= 1800 ) /* 180 deg */ minX = centerPos.x - m_Radius;
if( angleStart <= 2700 && angleEnd >= 2700 ) /* 270 deg */ minY = centerPos.y - m_Radius;
if( angleStart <= 3600 && angleEnd >= 3600 ) /* 0 deg */ maxX = centerPos.x + m_Radius;
rect.SetOrigin( minX, minY ); rect.SetEnd( maxX, maxY ); rect.Inflate( ( GetPenWidth() / 2 ) + 1 );
return rect;}
void LIB_ARC::GetMsgPanelInfo( EDA_DRAW_FRAME* aFrame, std::vector<MSG_PANEL_ITEM>& aList ){ wxString msg; EDA_RECT bBox = GetBoundingBox();
LIB_ITEM::GetMsgPanelInfo( aFrame, aList );
msg = MessageTextFromValue( aFrame->GetUserUnits(), m_Width );
aList.emplace_back( _( "Line Width" ), msg );
msg.Printf( wxT( "(%d, %d, %d, %d)" ), bBox.GetOrigin().x, bBox.GetOrigin().y, bBox.GetEnd().x, bBox.GetEnd().y );
aList.emplace_back( _( "Bounding Box" ), msg );}
wxString LIB_ARC::GetSelectMenuText( EDA_UNITS aUnits ) const{ return wxString::Format( _( "Arc, radius %s" ), MessageTextFromValue( aUnits, m_Radius ) );}
BITMAP_DEF LIB_ARC::GetMenuImage() const{ return add_arc_xpm;}
void LIB_ARC::BeginEdit( const wxPoint aPosition ){ m_ArcStart = m_ArcEnd = aPosition; m_editState = 1;}
void LIB_ARC::CalcEdit( const wxPoint& aPosition ){#define sq( x ) pow( x, 2 )
// Edit state 0: drawing: place ArcStart
// Edit state 1: drawing: place ArcEnd (center calculated for 90-degree subtended angle)
// Edit state 2: point editing: move ArcStart (center calculated for invariant subtended angle)
// Edit state 3: point editing: move ArcEnd (center calculated for invariant subtended angle)
// Edit state 4: point editing: move center
switch( m_editState ) { case 0: m_ArcStart = aPosition; m_ArcEnd = aPosition; m_Pos = aPosition; m_Radius = 0; m_t1 = 0; m_t2 = 0; return;
case 1: m_ArcEnd = aPosition; m_Radius = KiROUND( sqrt( pow( GetLineLength( m_ArcStart, m_ArcEnd ), 2 ) / 2.0 ) ); break;
case 2: case 3: { wxPoint v = m_ArcStart - m_ArcEnd; double chordBefore = sq( v.x ) + sq( v.y );
if( m_editState == 2 ) m_ArcStart = aPosition; else m_ArcEnd = aPosition;
v = m_ArcStart - m_ArcEnd; double chordAfter = sq( v.x ) + sq( v.y ); double ratio = chordAfter / chordBefore;
if( ratio > 0 ) { m_Radius = int( sqrt( m_Radius * m_Radius * ratio ) ) + 1; m_Radius = std::max( m_Radius, int( sqrt( chordAfter ) / 2 ) + 1 ); }
break; }
case 4: { double chordA = GetLineLength( m_ArcStart, aPosition ); double chordB = GetLineLength( m_ArcEnd, aPosition ); m_Radius = int( ( chordA + chordB ) / 2.0 ) + 1; break; } }
// Calculate center based on start, end, and radius
//
// Let 'l' be the length of the chord and 'm' the middle point of the chord
double l = GetLineLength( m_ArcStart, m_ArcEnd ); wxPoint m = ( m_ArcStart + m_ArcEnd ) / 2;
// Calculate 'd', the vector from the chord midpoint to the center
wxPoint d; d.x = KiROUND( sqrt( sq( m_Radius ) - sq( l/2 ) ) * ( m_ArcStart.y - m_ArcEnd.y ) / l ); d.y = KiROUND( sqrt( sq( m_Radius ) - sq( l/2 ) ) * ( m_ArcEnd.x - m_ArcStart.x ) / l );
wxPoint c1 = m + d; wxPoint c2 = m - d;
// Solution gives us 2 centers; we need to pick one:
switch( m_editState ) { case 1: { // Keep center clockwise from chord while drawing
wxPoint chordVector = twoPointVector( m_ArcStart, m_ArcEnd ); double chordAngle = ArcTangente( chordVector.y, chordVector.x ); NORMALIZE_ANGLE_POS( chordAngle );
wxPoint c1Test = c1; RotatePoint( &c1Test, m_ArcStart, -chordAngle );
m_Pos = c1Test.x > 0 ? c2 : c1; } break;
case 2: case 3: // Pick the one closer to the old center
m_Pos = ( GetLineLength( c1, m_Pos ) < GetLineLength( c2, m_Pos ) ) ? c1 : c2; break;
case 4: // Pick the one closer to the mouse position
m_Pos = ( GetLineLength( c1, aPosition ) < GetLineLength( c2, aPosition ) ) ? c1 : c2; break; }
CalcRadiusAngles();}
void LIB_ARC::CalcRadiusAngles(){ wxPoint centerStartVector = twoPointVector( m_Pos, m_ArcStart ); wxPoint centerEndVector = twoPointVector( m_Pos, m_ArcEnd );
m_Radius = KiROUND( EuclideanNorm( centerStartVector ) );
// Angles in eeschema are still integers
m_t1 = KiROUND( ArcTangente( centerStartVector.y, centerStartVector.x ) ); m_t2 = KiROUND( ArcTangente( centerEndVector.y, centerEndVector.x ) );
NORMALIZE_ANGLE_POS( m_t1 ); NORMALIZE_ANGLE_POS( m_t2 ); // angles = 0 .. 3600
// Restrict angle to less than 180 to avoid PBS display mirror Trace because it is
// assumed that the arc is less than 180 deg to find orientation after rotate or mirror.
if( (m_t2 - m_t1) > 1800 ) m_t2 -= 3600; else if( (m_t2 - m_t1) <= -1800 ) m_t2 += 3600;
while( (m_t2 - m_t1) >= 1800 ) { m_t2--; m_t1++; }
while( (m_t1 - m_t2) >= 1800 ) { m_t2++; m_t1--; }
NORMALIZE_ANGLE_POS( m_t1 );
if( !IsMoving() ) NORMALIZE_ANGLE_POS( m_t2 );}
VECTOR2I LIB_ARC::CalcMidPoint() const{ VECTOR2D midPoint; double startAngle = static_cast<double>( m_t1 ) / 10.0; double endAngle = static_cast<double>( m_t2 ) / 10.0;
if( endAngle < startAngle ) endAngle -= 360.0;
double midPointAngle = ( ( endAngle - startAngle ) / 2.0 ) + startAngle; double x = cos( DEG2RAD( midPointAngle ) ) * m_Radius; double y = sin( DEG2RAD( midPointAngle ) ) * m_Radius;
midPoint.x = KiROUND( x ) + m_Pos.x; midPoint.y = KiROUND( y ) + m_Pos.y;
return midPoint;}
|