|
|
/*
* This program source code file is part of KICAD, a free EDA CAD application. * * Copyright (C) 2016-2018 CERN * Copyright The KiCad Developers, see AUTHORS.txt for contributors. * * @author Tomasz Wlostowski <tomasz.wlostowski@cern.ch> * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */
#include <algorithm>
#include <future>
#include <mutex>
#include <connectivity/connectivity_algo.h>
#include <progress_reporter.h>
#include <geometry/geometry_utils.h>
#include <board_commit.h>
#include <thread_pool.h>
#include <pcb_shape.h>
#include <wx/log.h>
#ifdef PROFILE
#include <core/profile.h>
#endif
bool CN_CONNECTIVITY_ALGO::Remove( BOARD_ITEM* aItem ){ markItemNetAsDirty( aItem );
switch( aItem->Type() ) { case PCB_FOOTPRINT_T: for( PAD* pad : static_cast<FOOTPRINT*>( aItem )->Pads() ) { m_itemMap[pad].MarkItemsAsInvalid(); m_itemMap.erase( pad ); }
m_itemList.SetDirty( true ); break;
case PCB_PAD_T: case PCB_TRACE_T: case PCB_ARC_T: case PCB_VIA_T: case PCB_ZONE_T: case PCB_SHAPE_T: m_itemMap[aItem].MarkItemsAsInvalid(); m_itemMap.erase ( aItem ); m_itemList.SetDirty( true ); break;
default: return false; }
// Once we delete an item, it may connect between lists, so mark both as potentially invalid
m_itemList.SetHasInvalid( true );
return true;}
void CN_CONNECTIVITY_ALGO::markItemNetAsDirty( const BOARD_ITEM* aItem ){ if( aItem->IsConnected() ) { const BOARD_CONNECTED_ITEM* citem = static_cast<const BOARD_CONNECTED_ITEM*>( aItem ); MarkNetAsDirty( citem->GetNetCode() ); } else { if( aItem->Type() == PCB_FOOTPRINT_T ) { const FOOTPRINT* footprint = static_cast<const FOOTPRINT*>( aItem );
for( PAD* pad : footprint->Pads() ) MarkNetAsDirty( pad->GetNetCode() ); } }}
bool CN_CONNECTIVITY_ALGO::Add( BOARD_ITEM* aItem ){ if( !aItem->IsOnCopperLayer() ) return false;
auto alreadyAdded = [this]( BOARD_ITEM* item ) { auto it = m_itemMap.find( item );
if( it == m_itemMap.end() ) return false;
// Don't be fooled by an empty ITEM_MAP_ENTRY auto-created by operator[].
return !it->second.GetItems().empty(); };
switch( aItem->Type() ) { case PCB_NETINFO_T: MarkNetAsDirty( static_cast<NETINFO_ITEM*>( aItem )->GetNetCode() ); break;
case PCB_FOOTPRINT_T: { if( static_cast<FOOTPRINT*>( aItem )->GetAttributes() & FP_JUST_ADDED ) return false;
for( PAD* pad : static_cast<FOOTPRINT*>( aItem )->Pads() ) { if( alreadyAdded( pad ) ) return false;
add( m_itemList, pad ); }
break; }
case PCB_PAD_T: { if( FOOTPRINT* fp = aItem->GetParentFootprint() ) { if( fp->GetAttributes() & FP_JUST_ADDED ) return false; }
if( alreadyAdded( aItem ) ) return false;
add( m_itemList, static_cast<PAD*>( aItem ) ); break; }
case PCB_TRACE_T: if( alreadyAdded( aItem ) ) return false;
add( m_itemList, static_cast<PCB_TRACK*>( aItem ) ); break;
case PCB_ARC_T: if( alreadyAdded( aItem ) ) return false;
add( m_itemList, static_cast<PCB_ARC*>( aItem ) ); break;
case PCB_VIA_T: if( alreadyAdded( aItem ) ) return false;
add( m_itemList, static_cast<PCB_VIA*>( aItem ) ); break;
case PCB_SHAPE_T: if( alreadyAdded( aItem ) ) return false;
if( !IsCopperLayer( aItem->GetLayer() ) ) return false;
add( m_itemList, static_cast<PCB_SHAPE*>( aItem ) ); break;
case PCB_ZONE_T: { ZONE* zone = static_cast<ZONE*>( aItem );
if( alreadyAdded( aItem ) ) return false;
m_itemMap[zone] = ITEM_MAP_ENTRY();
// Don't check for connections on layers that only exist in the zone but
// were disabled in the board
BOARD* board = zone->GetBoard(); LSET layerset = board->GetEnabledLayers() & zone->GetLayerSet();
layerset.RunOnLayers( [&]( PCB_LAYER_ID layer ) { for( CN_ITEM* zitem : m_itemList.Add( zone, layer ) ) m_itemMap[zone].Link( zitem ); } ); } break;
default: return false; }
markItemNetAsDirty( aItem );
return true;}
void CN_CONNECTIVITY_ALGO::RemoveInvalidRefs(){ for( CN_ITEM* item : m_itemList ) item->RemoveInvalidRefs();}
void CN_CONNECTIVITY_ALGO::searchConnections(){ std::lock_guard lock( m_mutex );#ifdef PROFILE
PROF_TIMER garbage_collection( "garbage-collection" );#endif
std::vector<CN_ITEM*> garbage; garbage.reserve( 1024 );
m_parentConnectivityData->RemoveInvalidRefs();
if( m_isLocal ) m_globalConnectivityData->RemoveInvalidRefs();
m_itemList.RemoveInvalidItems( garbage );
for( CN_ITEM* item : garbage ) delete item;
#ifdef PROFILE
garbage_collection.Show(); PROF_TIMER search_basic( "search-basic" );#endif
thread_pool& tp = GetKiCadThreadPool(); std::vector<CN_ITEM*> dirtyItems; std::copy_if( m_itemList.begin(), m_itemList.end(), std::back_inserter( dirtyItems ), [] ( CN_ITEM* aItem ) { return aItem->Dirty(); } );
if( m_progressReporter ) { m_progressReporter->SetMaxProgress( dirtyItems.size() );
if( !m_progressReporter->KeepRefreshing() ) return; }
if( m_itemList.IsDirty() ) {
std::vector<std::future<size_t>> returns( dirtyItems.size() );
auto conn_lambda = [&dirtyItems]( size_t aItem, CN_LIST* aItemList, PROGRESS_REPORTER* aReporter) -> size_t { if( aReporter && aReporter->IsCancelled() ) return 0;
CN_VISITOR visitor( dirtyItems[aItem] ); aItemList->FindNearby( dirtyItems[aItem], visitor );
if( aReporter ) aReporter->AdvanceProgress();
return 1; };
for( size_t ii = 0; ii < dirtyItems.size(); ++ii ) returns[ii] = tp.submit( conn_lambda, ii, &m_itemList, m_progressReporter );
for( const std::future<size_t>& ret : returns ) { // Here we balance returns with a 250ms timeout to allow UI updating
std::future_status status = ret.wait_for( std::chrono::milliseconds( 250 ) );
while( status != std::future_status::ready ) { if( m_progressReporter ) m_progressReporter->KeepRefreshing();
status = ret.wait_for( std::chrono::milliseconds( 250 ) ); } }
if( m_progressReporter ) m_progressReporter->KeepRefreshing(); }
#ifdef PROFILE
search_basic.Show();#endif
m_itemList.ClearDirtyFlags();}
const CN_CONNECTIVITY_ALGO::CLUSTERS CN_CONNECTIVITY_ALGO::SearchClusters( CLUSTER_SEARCH_MODE aMode ){ return SearchClusters( aMode, ( aMode == CSM_PROPAGATE ), -1 );}
const CN_CONNECTIVITY_ALGO::CLUSTERSCN_CONNECTIVITY_ALGO::SearchClusters( CLUSTER_SEARCH_MODE aMode, bool aExcludeZones, int aSingleNet ){ bool withinAnyNet = ( aMode != CSM_PROPAGATE );
std::deque<CN_ITEM*> Q; std::set<CN_ITEM*> item_set;
CLUSTERS clusters;
if( m_itemList.IsDirty() ) searchConnections();
std::set<CN_ITEM*> visited;
auto addToSearchList = [&item_set, withinAnyNet, aSingleNet, &aExcludeZones]( CN_ITEM *aItem ) { if( withinAnyNet && aItem->Net() <= 0 ) return;
if( !aItem->Valid() ) return;
if( aSingleNet >=0 && aItem->Net() != aSingleNet ) return;
if( aExcludeZones && aItem->Parent()->Type() == PCB_ZONE_T ) return;
item_set.insert( aItem ); };
std::for_each( m_itemList.begin(), m_itemList.end(), addToSearchList );
if( m_progressReporter && m_progressReporter->IsCancelled() ) return CLUSTERS();
while( !item_set.empty() ) { std::shared_ptr<CN_CLUSTER> cluster = std::make_shared<CN_CLUSTER>(); CN_ITEM* root; auto it = item_set.begin();
while( it != item_set.end() && visited.contains( *it ) ) it = item_set.erase( item_set.begin() );
if( it == item_set.end() ) break;
root = *it; visited.insert( root );
Q.clear(); Q.push_back( root );
while( Q.size() ) { CN_ITEM* current = Q.front();
Q.pop_front(); cluster->Add( current );
for( CN_ITEM* n : current->ConnectedItems() ) { if( withinAnyNet && n->Net() != root->Net() ) continue;
if( aExcludeZones && n->Parent()->Type() == PCB_ZONE_T ) continue;
if( !visited.contains( n ) && n->Valid() ) { visited.insert( n ); Q.push_back( n ); } } }
clusters.push_back( cluster ); }
if( m_progressReporter && m_progressReporter->IsCancelled() ) return CLUSTERS();
std::sort( clusters.begin(), clusters.end(), []( const std::shared_ptr<CN_CLUSTER>& a, const std::shared_ptr<CN_CLUSTER>& b ) { return a->OriginNet() < b->OriginNet(); } );
return clusters;}
void CN_CONNECTIVITY_ALGO::Build( BOARD* aBoard, PROGRESS_REPORTER* aReporter ){ // Generate CN_ZONE_LAYERs for each island on each layer of each zone
//
std::vector<CN_ZONE_LAYER*> zitems;
for( ZONE* zone : aBoard->Zones() ) { if( zone->IsOnCopperLayer() ) { m_itemMap[zone] = ITEM_MAP_ENTRY(); markItemNetAsDirty( zone );
// Don't check for connections on layers that only exist in the zone but
// were disabled in the board
BOARD* board = zone->GetBoard(); LSET layerset = board->GetEnabledLayers() & zone->GetLayerSet() & LSET::AllCuMask();
layerset.RunOnLayers( [&]( PCB_LAYER_ID layer ) { for( int j = 0; j < zone->GetFilledPolysList( layer )->OutlineCount(); j++ ) zitems.push_back( new CN_ZONE_LAYER( zone, layer, j ) ); } ); } }
// Setup progress metrics
//
int progressDelta = 50; double size = 0.0;
size += zitems.size(); // Once for building RTrees
size += zitems.size(); // Once for adding to connectivity
size += aBoard->Tracks().size(); size += aBoard->Drawings().size();
for( FOOTPRINT* footprint : aBoard->Footprints() ) size += footprint->Pads().size();
size *= 1.5; // Our caller gets the other third of the progress bar
progressDelta = std::max( progressDelta, (int) size / 4 );
auto report = [&]( int progress ) { if( aReporter && ( progress % progressDelta ) == 0 ) { aReporter->SetCurrentProgress( progress / size ); aReporter->KeepRefreshing( false ); } };
// Generate RTrees for CN_ZONE_LAYER items (in parallel)
//
thread_pool& tp = GetKiCadThreadPool(); std::vector<std::future<size_t>> returns( zitems.size() );
auto cache_zones = [aReporter]( CN_ZONE_LAYER* aZoneLayer ) -> size_t { if( aReporter && aReporter->IsCancelled() ) return 0;
aZoneLayer->BuildRTree();
if( aReporter ) aReporter->AdvanceProgress();
return 1; };
for( size_t ii = 0; ii < zitems.size(); ++ii ) returns[ii] = tp.submit( cache_zones, zitems[ii] );
for( const std::future<size_t>& ret : returns ) { std::future_status status = ret.wait_for( std::chrono::milliseconds( 250 ) );
while( status != std::future_status::ready ) { if( aReporter ) aReporter->KeepRefreshing();
status = ret.wait_for( std::chrono::milliseconds( 250 ) ); }
}
// Add CN_ZONE_LAYERS, tracks, and pads to connectivity
//
int ii = zitems.size();
for( CN_ZONE_LAYER* zitem : zitems ) { m_itemList.Add( zitem ); m_itemMap[ zitem->Parent() ].Link( zitem ); report( ++ii ); }
for( PCB_TRACK* tv : aBoard->Tracks() ) { Add( tv ); report( ++ii ); }
for( FOOTPRINT* footprint : aBoard->Footprints() ) { for( PAD* pad : footprint->Pads() ) { Add( pad ); report( ++ii ); } }
for( BOARD_ITEM* drawing : aBoard->Drawings() ) { if( PCB_SHAPE* shape = dynamic_cast<PCB_SHAPE*>( drawing ) ) { if( shape->IsOnCopperLayer() ) Add( shape ); }
report( ++ii ); }
if( aReporter ) { aReporter->SetCurrentProgress( (double) ii / (double) size ); aReporter->KeepRefreshing( false ); }}
void CN_CONNECTIVITY_ALGO::LocalBuild( std::shared_ptr<CONNECTIVITY_DATA> aGlobalConnectivity, const std::vector<BOARD_ITEM*>& aLocalItems ){ m_isLocal = true; m_globalConnectivityData = aGlobalConnectivity;
for( BOARD_ITEM* item : aLocalItems ) { switch( item->Type() ) { case PCB_TRACE_T: case PCB_ARC_T: case PCB_VIA_T: case PCB_PAD_T: case PCB_FOOTPRINT_T: case PCB_SHAPE_T: Add( item ); break;
default: break; } }}
void CN_CONNECTIVITY_ALGO::propagateConnections( BOARD_COMMIT* aCommit ){ for( const std::shared_ptr<CN_CLUSTER>& cluster : m_connClusters ) { if( cluster->IsConflicting() ) { // Conflicting pads in cluster: we don't know the user's intent so best to do
// nothing.
wxLogTrace( wxT( "CN" ), wxT( "Conflicting pads in cluster %p; skipping propagation" ), cluster.get() ); } else if( cluster->HasValidNet() ) { // Propagate from the origin (will be a pad if there are any, or another item if
// there are no pads).
int n_changed = 0;
for( CN_ITEM* item : *cluster ) { if( item->Valid() && item->CanChangeNet() && item->Parent()->GetNetCode() != cluster->OriginNet() ) { MarkNetAsDirty( item->Parent()->GetNetCode() ); MarkNetAsDirty( cluster->OriginNet() );
if( aCommit ) aCommit->Modify( item->Parent() );
item->Parent()->SetNetCode( cluster->OriginNet() ); n_changed++; } }
if( n_changed ) { wxLogTrace( wxT( "CN" ), wxT( "Cluster %p: net: %d %s" ), cluster.get(), cluster->OriginNet(), (const char*) cluster->OriginNetName().c_str() ); } else { wxLogTrace( wxT( "CN" ), wxT( "Cluster %p: no changeable items to propagate to" ), cluster.get() ); } } else { wxLogTrace( wxT( "CN" ), wxT( "Cluster %p: connected to unused net" ), cluster.get() ); } }}
void CN_CONNECTIVITY_ALGO::PropagateNets( BOARD_COMMIT* aCommit ){ m_connClusters = SearchClusters( CSM_PROPAGATE ); propagateConnections( aCommit );}
void CN_CONNECTIVITY_ALGO::FillIsolatedIslandsMap( std::map<ZONE*, std::map<PCB_LAYER_ID, ISOLATED_ISLANDS>>& aMap, bool aConnectivityAlreadyRebuilt ){ int progressDelta = 50; int ii = 0;
progressDelta = std::max( progressDelta, (int) aMap.size() / 4 );
if( !aConnectivityAlreadyRebuilt ) { for( const auto& [ zone, islands ] : aMap ) { Remove( zone ); Add( zone ); ii++;
if( m_progressReporter && ( ii % progressDelta ) == 0 ) { m_progressReporter->SetCurrentProgress( (double) ii / (double) aMap.size() ); m_progressReporter->KeepRefreshing( false ); }
if( m_progressReporter && m_progressReporter->IsCancelled() ) return; } }
m_connClusters = SearchClusters( CSM_CONNECTIVITY_CHECK );
for( auto& [ zone, zoneIslands ] : aMap ) { for( auto& [ layer, layerIslands ] : zoneIslands ) { if( zone->GetFilledPolysList( layer )->IsEmpty() ) continue;
for( const std::shared_ptr<CN_CLUSTER>& cluster : m_connClusters ) { for( CN_ITEM* item : *cluster ) { if( item->Parent() == zone && item->GetBoardLayer() == layer ) { CN_ZONE_LAYER* z = static_cast<CN_ZONE_LAYER*>( item );
if( cluster->IsOrphaned() ) layerIslands.m_IsolatedOutlines.push_back( z->SubpolyIndex() ); else if( z->HasSingleConnection() ) layerIslands.m_SingleConnectionOutlines.push_back( z->SubpolyIndex() ); } } } } }}
const CN_CONNECTIVITY_ALGO::CLUSTERS& CN_CONNECTIVITY_ALGO::GetClusters(){ m_ratsnestClusters = SearchClusters( CSM_RATSNEST ); return m_ratsnestClusters;}
void CN_CONNECTIVITY_ALGO::MarkNetAsDirty( int aNet ){ if( aNet < 0 ) return;
if( (int) m_dirtyNets.size() <= aNet ) { int lastNet = m_dirtyNets.size() - 1;
if( lastNet < 0 ) lastNet = 0;
m_dirtyNets.resize( aNet + 1 );
for( int i = lastNet; i < aNet + 1; i++ ) m_dirtyNets[i] = true; }
m_dirtyNets[aNet] = true;}
void CN_VISITOR::checkZoneItemConnection( CN_ZONE_LAYER* aZoneLayer, CN_ITEM* aItem ){ PCB_LAYER_ID layer = aZoneLayer->GetLayer(); BOARD_CONNECTED_ITEM* item = aItem->Parent();
if( !item->IsOnLayer( layer ) ) return;
auto connect = [&]() { aZoneLayer->Connect( aItem ); aItem->Connect( aZoneLayer ); };
// Try quick checks first...
if( item->Type() == PCB_PAD_T ) { PAD* pad = static_cast<PAD*>( item );
if( pad->ConditionallyFlashed( layer ) && pad->GetZoneLayerOverride( layer ) == ZLO_FORCE_NO_ZONE_CONNECTION ) { return; } } else if( item->Type() == PCB_VIA_T ) { PCB_VIA* via = static_cast<PCB_VIA*>( item );
if( via->ConditionallyFlashed( layer ) && via->GetZoneLayerOverride( layer ) == ZLO_FORCE_NO_ZONE_CONNECTION ) { return; } }
for( int i = 0; i < aItem->AnchorCount(); ++i ) { if( aZoneLayer->ContainsPoint( aItem->GetAnchor( i ) ) ) { connect(); return; } }
if( item->Type() == PCB_VIA_T || item->Type() == PCB_PAD_T ) { // As long as the pad/via crosses the zone layer, check for the full effective shape
// We check for the overlapping layers above
if( aZoneLayer->Collide( item->GetEffectiveShape( layer, FLASHING::ALWAYS_FLASHED ).get() ) ) connect();
return; }
if( aZoneLayer->Collide( item->GetEffectiveShape( layer ).get() ) ) connect();}
void CN_VISITOR::checkZoneZoneConnection( CN_ZONE_LAYER* aZoneLayerA, CN_ZONE_LAYER* aZoneLayerB ){ const ZONE* zoneA = static_cast<const ZONE*>( aZoneLayerA->Parent() ); const ZONE* zoneB = static_cast<const ZONE*>( aZoneLayerB->Parent() );
const BOX2I& boxA = aZoneLayerA->BBox(); const BOX2I& boxB = aZoneLayerB->BBox();
PCB_LAYER_ID layer = aZoneLayerA->GetLayer();
if( aZoneLayerB->GetLayer() != layer ) return;
if( !boxA.Intersects( boxB ) ) return;
const SHAPE_LINE_CHAIN& outline = zoneA->GetFilledPolysList( layer )->COutline( aZoneLayerA->SubpolyIndex() );
for( int i = 0; i < outline.PointCount(); i++ ) { if( !boxB.Contains( outline.CPoint( i ) ) ) continue;
if( aZoneLayerB->ContainsPoint( outline.CPoint( i ) ) ) { aZoneLayerA->Connect( aZoneLayerB ); aZoneLayerB->Connect( aZoneLayerA ); return; } }
const SHAPE_LINE_CHAIN& outline2 = zoneB->GetFilledPolysList( layer )->COutline( aZoneLayerB->SubpolyIndex() );
for( int i = 0; i < outline2.PointCount(); i++ ) { if( !boxA.Contains( outline2.CPoint( i ) ) ) continue;
if( aZoneLayerA->ContainsPoint( outline2.CPoint( i ) ) ) { aZoneLayerA->Connect( aZoneLayerB ); aZoneLayerB->Connect( aZoneLayerA ); return; } }}
bool CN_VISITOR::operator()( CN_ITEM* aCandidate ){ const BOARD_CONNECTED_ITEM* parentA = aCandidate->Parent(); const BOARD_CONNECTED_ITEM* parentB = m_item->Parent();
if( !aCandidate->Valid() || !m_item->Valid() ) return true;
if( parentA == parentB ) return true;
// Don't connect items in different nets that can't be changed
if( !aCandidate->CanChangeNet() && !m_item->CanChangeNet() && aCandidate->Net() != m_item->Net() ) return true;
// If both m_item and aCandidate are marked dirty, they will both be searched
// Since we are reciprocal in our connection, we arbitrarily pick one of the connections
// to conduct the expensive search
if( aCandidate->Dirty() && aCandidate < m_item ) return true;
// We should handle zone-zone connection separately
if ( parentA->Type() == PCB_ZONE_T && parentB->Type() == PCB_ZONE_T ) { checkZoneZoneConnection( static_cast<CN_ZONE_LAYER*>( m_item ), static_cast<CN_ZONE_LAYER*>( aCandidate ) ); return true; }
if( parentA->Type() == PCB_ZONE_T ) { checkZoneItemConnection( static_cast<CN_ZONE_LAYER*>( aCandidate ), m_item ); return true; }
if( parentB->Type() == PCB_ZONE_T ) { checkZoneItemConnection( static_cast<CN_ZONE_LAYER*>( m_item ), aCandidate ); return true; }
LSET commonLayers = parentA->GetLayerSet() & parentB->GetLayerSet();
for( size_t ii = 0; ii < commonLayers.size(); ++ii ) { if( commonLayers.test( ii ) ) { PCB_LAYER_ID layer = PCB_LAYER_ID( ii ); FLASHING flashingA = FLASHING::NEVER_FLASHED; FLASHING flashingB = FLASHING::NEVER_FLASHED;
if( parentA->Type() == PCB_PAD_T ) { if( !static_cast<const PAD*>( parentA )->ConditionallyFlashed( layer ) ) flashingA = FLASHING::ALWAYS_FLASHED; } else if( parentA->Type() == PCB_VIA_T ) { if( !static_cast<const PCB_VIA*>( parentA )->ConditionallyFlashed( layer ) ) flashingA = FLASHING::ALWAYS_FLASHED; }
if( parentB->Type() == PCB_PAD_T ) { if( !static_cast<const PAD*>( parentB )->ConditionallyFlashed( layer ) ) flashingB = FLASHING::ALWAYS_FLASHED; } else if( parentB->Type() == PCB_VIA_T ) { if( !static_cast<const PCB_VIA*>( parentB )->ConditionallyFlashed( layer ) ) flashingB = FLASHING::ALWAYS_FLASHED; }
if( parentA->GetEffectiveShape( layer, flashingA )->Collide( parentB->GetEffectiveShape( layer, flashingB ).get() ) ) { m_item->Connect( aCandidate ); aCandidate->Connect( m_item ); return true; } } }
return true;};
void CN_CONNECTIVITY_ALGO::Clear(){ m_ratsnestClusters.clear(); m_connClusters.clear(); m_itemMap.clear(); m_itemList.Clear();
}
void CN_CONNECTIVITY_ALGO::SetProgressReporter( PROGRESS_REPORTER* aReporter ){ m_progressReporter = aReporter;}
|