|
|
/*
* This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2024 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */
#include "tool/construction_manager.h"
#include <chrono>
#include <condition_variable>
#include <thread>
#include <advanced_config.h>
#include <hash.h>
/**
* A helper class to manage the activation of a "proposal" after a timeout. * * When a proposal is made, a timer starts. If no new proposal is made and the proposal * is not cancelled before the timer expires, the proposal is "accepted" via a callback. * * Propos * * @tparam T The type of the proposal, which will be passed to the callback (by value) */template <typename T>class ACTIVATION_HELPER{public: using ACTIVATION_CALLBACK = std::function<void( T&& )>;
ACTIVATION_HELPER( std::chrono::milliseconds aTimeout, ACTIVATION_CALLBACK aCallback ) : m_timeout( aTimeout ), m_callback( std::move( aCallback ) ), m_stop( false ), m_thread( &ACTIVATION_HELPER::ProposalCheckFunction, this ) { }
~ACTIVATION_HELPER() { // Stop the delay thread and wait for it
{ std::lock_guard<std::mutex> lock( m_mutex ); m_stop = true; m_cv.notify_all(); }
if( m_thread.joinable() ) { m_thread.join(); } }
void ProposeActivation( T&& aProposal, std::size_t aProposalTag ) { std::lock_guard<std::mutex> lock( m_mutex );
if( m_lastAcceptedProposalTag.has_value() && aProposalTag == *m_lastAcceptedProposalTag ) { // This proposal was accepted last time
// (could be made optional if we want to allow re-accepting the same proposal)
return; }
if( m_pendingProposalTag.has_value() && aProposalTag == *m_pendingProposalTag ) { // This proposal is already pending
return; }
m_pendingProposalTag = aProposalTag; m_lastProposal = std::move( aProposal ); m_proposalDeadline = std::chrono::steady_clock::now() + m_timeout; m_cv.notify_all(); }
void CancelProposal() { std::lock_guard<std::mutex> lock( m_mutex ); m_pendingProposalTag.reset(); m_cv.notify_all(); }
void ProposalCheckFunction() { while( !m_stop ) { std::unique_lock<std::mutex> lock( m_mutex ); if( !m_stop && !m_pendingProposalTag.has_value() ) { // No active proposal - wait for one (unlocks while waiting)
m_cv.wait( lock ); }
if( !m_stop && m_pendingProposalTag.has_value() ) { // Active proposal - wait for timeout
auto now = std::chrono::steady_clock::now();
if( m_cv.wait_for( lock, m_proposalDeadline - now ) == std::cv_status::timeout ) { // See if the timeout was extended for a new proposal
now = std::chrono::steady_clock::now(); if( now < m_proposalDeadline ) { // Extended - wait for the new deadline
continue; }
// See if there is still a proposal to accept
// (could have been cancelled in the meantime)
if( m_pendingProposalTag ) { m_lastAcceptedProposalTag = m_pendingProposalTag; m_pendingProposalTag.reset();
T proposalToAccept = std::move( m_lastProposal ); lock.unlock(); // Call the callback (outside the lock)
m_callback( std::move( proposalToAccept ) ); } } } } }
private: mutable std::mutex m_mutex;
// Activation timeout in milliseconds
std::chrono::milliseconds m_timeout;
///< Callback to call when the proposal is accepted
ACTIVATION_CALLBACK m_callback; std::condition_variable m_cv; std::atomic<bool> m_stop; std::thread m_thread;
std::chrono::time_point<std::chrono::steady_clock> m_proposalDeadline;
///< The last proposal tag that was made
std::optional<std::size_t> m_pendingProposalTag;
///< The last proposal that was accepted
std::optional<std::size_t> m_lastAcceptedProposalTag;
// The most recently-proposed item
T m_lastProposal;};
struct CONSTRUCTION_MANAGER::PENDING_BATCH{ CONSTRUCTION_ITEM_BATCH Batch; bool IsPersistent;};
CONSTRUCTION_MANAGER::CONSTRUCTION_MANAGER( CONSTRUCTION_VIEW_HANDLER& aHelper ) : m_viewHandler( aHelper ){ const std::chrono::milliseconds acceptanceTimeout( ADVANCED_CFG::GetCfg().m_ExtensionSnapTimeoutMs );
m_activationHelper = std::make_unique<ACTIVATION_HELPER<std::unique_ptr<PENDING_BATCH>>>( acceptanceTimeout, [this]( std::unique_ptr<PENDING_BATCH>&& aAccepted ) { acceptConstructionItems( std::move( aAccepted ) ); } );}
CONSTRUCTION_MANAGER::~CONSTRUCTION_MANAGER(){}
/**
* Construct a hash based on the sources of the items in the batch. */static std::size_tHashConstructionBatchSources( const CONSTRUCTION_MANAGER::CONSTRUCTION_ITEM_BATCH& aBatch, bool aIsPersistent ){ std::size_t hash = hash_val( aIsPersistent );
for( const CONSTRUCTION_MANAGER::CONSTRUCTION_ITEM& item : aBatch ) { hash_combine( hash, item.Source, item.Item ); } return hash;}
void CONSTRUCTION_MANAGER::ProposeConstructionItems( std::unique_ptr<CONSTRUCTION_ITEM_BATCH> aBatch, bool aIsPersistent ){ if( aBatch->empty() ) { // There's no point in proposing an empty batch
// It would just clear existing construction items for nothing new
return; }
const std::size_t hash = HashConstructionBatchSources( *aBatch, aIsPersistent );
m_activationHelper->ProposeActivation( std::make_unique<PENDING_BATCH>( std::move( *aBatch ), aIsPersistent ), hash );}
void CONSTRUCTION_MANAGER::CancelProposal(){ m_activationHelper->CancelProposal();}
void CONSTRUCTION_MANAGER::acceptConstructionItems( std::unique_ptr<PENDING_BATCH> aAcceptedBatch ){ const auto getInvolved = [&]( const CONSTRUCTION_ITEM_BATCH& aBatchToAdd ) { for( const CONSTRUCTION_ITEM& item : aBatchToAdd ) { // Only show the item if it's not already involved
// (avoid double-drawing the same item)
if( m_involvedItems.count( item.Item ) == 0 ) { m_involvedItems.insert( item.Item ); } } };
// Copies for use outside the lock
std::vector<CONSTRUCTION_ITEM_BATCH> persistentBatches, temporaryBatches; { std::lock_guard<std::mutex> lock( m_batchesMutex );
if( aAcceptedBatch->IsPersistent ) { // We only keep one previous persistent batch for the moment
m_persistentConstructionBatch = std::move( aAcceptedBatch->Batch ); } else { bool anyNewItems = false; for( CONSTRUCTION_ITEM& item : aAcceptedBatch->Batch ) { if( m_involvedItems.count( item.Item ) == 0 ) { anyNewItems = true; break; } }
// If there are no new items involved, don't bother adding the batch
if( !anyNewItems ) { return; }
// We only keep up to one previous temporary batch and the current one
// we could make this a setting if we want to keep more, but it gets cluttered
const int maxTempItems = 2;
while( m_temporaryConstructionBatches.size() >= maxTempItems ) { m_temporaryConstructionBatches.pop_front(); }
m_temporaryConstructionBatches.emplace_back( std::move( aAcceptedBatch->Batch ) ); }
m_involvedItems.clear();
// Copy the batches for use outside the lock
if( m_persistentConstructionBatch ) { getInvolved( *m_persistentConstructionBatch ); persistentBatches.push_back( *m_persistentConstructionBatch ); }
for( const CONSTRUCTION_ITEM_BATCH& batch : m_temporaryConstructionBatches ) { getInvolved( batch ); temporaryBatches.push_back( batch ); } }
KIGFX::CONSTRUCTION_GEOM& geom = m_viewHandler.GetViewItem(); geom.ClearDrawables();
const auto addDrawables = [&]( const std::vector<CONSTRUCTION_ITEM_BATCH>& aBatches, bool aIsPersistent ) { for( const CONSTRUCTION_ITEM_BATCH& batch : aBatches ) { for( const CONSTRUCTION_ITEM& item : batch ) { for( const KIGFX::CONSTRUCTION_GEOM::DRAWABLE& drawable : item.Constructions ) { geom.AddDrawable( drawable, aIsPersistent ); } } } };
addDrawables( persistentBatches, true ); addDrawables( temporaryBatches, false );
m_viewHandler.updateView();}
bool CONSTRUCTION_MANAGER::InvolvesAllGivenRealItems( const std::vector<EDA_ITEM*>& aItems ) const{ for( EDA_ITEM* item : aItems ) { // Null items (i.e. construction items) are always considered involved
if( item && m_involvedItems.count( item ) == 0 ) { return false; } }
return true;}
void CONSTRUCTION_MANAGER::GetConstructionItems( std::vector<CONSTRUCTION_ITEM_BATCH>& aToExtend ) const{ std::lock_guard<std::mutex> lock( m_batchesMutex ); if( m_persistentConstructionBatch ) { aToExtend.push_back( *m_persistentConstructionBatch ); }
for( const CONSTRUCTION_ITEM_BATCH& batch : m_temporaryConstructionBatches ) { aToExtend.push_back( batch ); }}
bool CONSTRUCTION_MANAGER::HasActiveConstruction() const{ std::lock_guard<std::mutex> lock( m_batchesMutex ); return m_persistentConstructionBatch.has_value() || !m_temporaryConstructionBatches.empty();}
SNAP_LINE_MANAGER::SNAP_LINE_MANAGER( CONSTRUCTION_VIEW_HANDLER& aViewHandler ) : m_viewHandler( aViewHandler ){}
void SNAP_LINE_MANAGER::SetSnapLineOrigin( const VECTOR2I& aOrigin ){ // Setting the origin clears the snap line as the end point is no longer valid
ClearSnapLine(); m_snapLineOrigin = aOrigin;}
void SNAP_LINE_MANAGER::SetSnapLineEnd( const OPT_VECTOR2I& aSnapEnd ){ if( m_snapLineOrigin && aSnapEnd != m_snapLineEnd ) { m_snapLineEnd = aSnapEnd;
if( m_snapLineEnd ) m_viewHandler.GetViewItem().SetSnapLine( SEG{ *m_snapLineOrigin, *m_snapLineEnd } ); else m_viewHandler.GetViewItem().ClearSnapLine();
m_viewHandler.updateView(); }}
void SNAP_LINE_MANAGER::ClearSnapLine(){ m_snapLineOrigin.reset(); m_snapLineEnd.reset(); m_viewHandler.GetViewItem().ClearSnapLine(); m_viewHandler.updateView();}
void SNAP_LINE_MANAGER::SetSnappedAnchor( const VECTOR2I& aAnchorPos ){ if( m_snapLineOrigin.has_value() ) { if( aAnchorPos.x == m_snapLineOrigin->x || aAnchorPos.y == m_snapLineOrigin->y ) { SetSnapLineEnd( aAnchorPos ); } else { // Snapped to something that is not the snap line origin, so
// this anchor is now the new snap line origin
SetSnapLineOrigin( aAnchorPos ); } } else { // If there's no snap line, start one
SetSnapLineOrigin( aAnchorPos ); }}
/**
* Check if the cursor has moved far enough away from the snap line origin to escape snapping * in the X direction. * * This is defined as within aEscapeRange of the snap line origin, and within aLongRangeEscapeAngle * of the vertical line passing through the snap line origin. */static bool pointHasEscapedSnapLineX( const VECTOR2I& aCursor, const VECTOR2I& aSnapLineOrigin, int aEscapeRange, EDA_ANGLE aLongRangeEscapeAngle ){ if( std::abs( aCursor.x - aSnapLineOrigin.x ) < aEscapeRange ) { return false; } EDA_ANGLE angle = EDA_ANGLE( aCursor - aSnapLineOrigin ) + EDA_ANGLE( 90, DEGREES_T ); return std::abs( angle.Normalize90() ) > aLongRangeEscapeAngle;}
/**
* As above, but for the Y direction. */static bool pointHasEscapedSnapLineY( const VECTOR2I& aCursor, const VECTOR2I& aSnapLineOrigin, int aEscapeRange, EDA_ANGLE aLongRangeEscapeAngle ){ if( std::abs( aCursor.y - aSnapLineOrigin.y ) < aEscapeRange ) { return false; } EDA_ANGLE angle = EDA_ANGLE( aCursor - aSnapLineOrigin ); return std::abs( angle.Normalize90() ) > aLongRangeEscapeAngle;}
OPT_VECTOR2I SNAP_LINE_MANAGER::GetNearestSnapLinePoint( const VECTOR2I& aCursor, const VECTOR2I& aNearestGrid, std::optional<int> aDistToNearest, int aSnapRange ) const{ // return std::nullopt;
if( m_snapLineOrigin ) { bool snapLine = false; VECTOR2I bestSnapPoint = aNearestGrid;
// If there's no snap anchor, or it's too far away, prefer the grid
const bool gridBetterThanNearest = !aDistToNearest || *aDistToNearest > aSnapRange;
// The escape range is how far you go before the snap line is de-activated.
// Make this a bit more forgiving than the snap range, as you can easily cancel
// deliberately with a mouse move.
// These are both a bit arbitrary, and can be adjusted as preferred
const int escapeRange = 2 * aSnapRange; const EDA_ANGLE longRangeEscapeAngle( 4, DEGREES_T );
const bool escapedX = pointHasEscapedSnapLineX( aCursor, *m_snapLineOrigin, escapeRange, longRangeEscapeAngle ); const bool escapedY = pointHasEscapedSnapLineY( aCursor, *m_snapLineOrigin, escapeRange, longRangeEscapeAngle );
/// Allows de-snapping from the line if you are closer to another snap point
/// Or if you have moved far enough away from the line
if( !escapedX && gridBetterThanNearest ) { bestSnapPoint.x = m_snapLineOrigin->x; snapLine = true; }
if( !escapedY && gridBetterThanNearest ) { bestSnapPoint.y = m_snapLineOrigin->y; snapLine = true; }
if( snapLine ) { return bestSnapPoint; } }
return std::nullopt;}
SNAP_MANAGER::SNAP_MANAGER( KIGFX::CONSTRUCTION_GEOM& aHelper ) : CONSTRUCTION_VIEW_HANDLER( aHelper ), m_snapLineManager( *this ), m_constructionManager( *this ){}
void SNAP_MANAGER::updateView(){ if( m_updateCallback ) { bool showAnything = m_constructionManager.HasActiveConstruction() || m_snapLineManager.HasCompleteSnapLine();
m_updateCallback( showAnything ); }}
std::vector<CONSTRUCTION_MANAGER::CONSTRUCTION_ITEM_BATCH>SNAP_MANAGER::GetConstructionItems() const{ std::vector<CONSTRUCTION_MANAGER::CONSTRUCTION_ITEM_BATCH> batches;
m_constructionManager.GetConstructionItems( batches );
if( const OPT_VECTOR2I& snapLineOrigin = m_snapLineManager.GetSnapLineOrigin(); snapLineOrigin.has_value() ) { CONSTRUCTION_MANAGER::CONSTRUCTION_ITEM_BATCH batch;
CONSTRUCTION_MANAGER::CONSTRUCTION_ITEM& snapPointItem = batch.emplace_back( CONSTRUCTION_MANAGER::CONSTRUCTION_ITEM{ CONSTRUCTION_MANAGER::SOURCE::FROM_SNAP_LINE, nullptr, {}, } );
// One horizontal and one vertical infinite line from the snap point
snapPointItem.Constructions.push_back( LINE{ *snapLineOrigin, *snapLineOrigin + VECTOR2I( 100000, 0 ) } ); snapPointItem.Constructions.push_back( LINE{ *snapLineOrigin, *snapLineOrigin + VECTOR2I( 0, 100000 ) } );
batches.push_back( std::move( batch ) ); }
return batches;}
|