|
|
/*******************************************//* class_board.cpp - BOARD class functions *//*******************************************/#include "fctsys.h"
#include "common.h"
#include "pcbnew.h"
#include "class_board_design_settings.h"
#include "colors_selection.h"
/* This is an odd place for this, but cvpcb won't link if it is
* in class_board_item.cpp like I first tried it. */wxPoint BOARD_ITEM::ZeroOffset( 0, 0 );
// Current design settings (used also to read configs):
BOARD_DESIGN_SETTINGS boardDesignSettings;
/*****************//* Class BOARD: *//*****************/
BOARD::BOARD( EDA_BaseStruct* parent, WinEDA_BasePcbFrame* frame ) : BOARD_ITEM( (BOARD_ITEM*)parent, TYPE_PCB ), m_NetClasses( this ){ m_PcbFrame = frame; m_Status_Pcb = 0; // Status word: bit 1 = calculate.
SetBoardDesignSettings(&boardDesignSettings); SetColorsSettings(&g_ColorsSettings); m_NbNodes = 0; // Number of connected pads.
m_NbNoconnect = 0; // Number of unconnected nets.
m_CurrentZoneContour = NULL; // This ZONE_CONTAINER handle the
// zone contour currently in
// progress
m_NetInfo = new NETINFO_LIST( this ); // handle nets info list (name,
// design constraints ..
m_NetInfo->BuildListOfNets(); // prepare pads and nets lists
// containers.
for( int layer = 0; layer < NB_COPPER_LAYERS; ++layer ) { m_Layer[layer].m_Name = GetDefaultLayerName( layer ); m_Layer[layer].m_Type = LT_SIGNAL; }
// Initial parameters for the default NETCLASS come from the global
// preferences
// within g_DesignSettings via the NETCLASS() constructor.
// Should user eventually load a board from a disk file, then these
// defaults
// will get overwritten during load.
m_NetClasses.GetDefault()->SetDescription( _( "This is the default net class." ) ); m_ViaSizeSelector = 0; m_TrackWidthSelector = 0;
// Initialize default values.
SetCurrentNetClass( m_NetClasses.GetDefault()->GetName() );}
BOARD::~BOARD(){ if( m_PcbFrame->GetScreen() ) m_PcbFrame->GetScreen()->ClearUndoRedoList();
while( m_ZoneDescriptorList.size() ) { ZONE_CONTAINER* area_to_remove = m_ZoneDescriptorList[0]; Delete( area_to_remove ); }
m_FullRatsnest.clear();
m_LocalRatsnest.clear();
DeleteMARKERs(); DeleteZONEOutlines();
delete m_CurrentZoneContour; m_CurrentZoneContour = NULL;
delete m_NetInfo;}
/**
* Function SetCurrentNetClass * Must be called after a netclass selection (or after a netclass parameter * change * Initialize vias and tracks values displayed in combo boxes of the auxiliary * toolbar and some other parameters (netclass name ....) * @param aNetClassName = the new netclass name * @return true if lists of tracks and vias sizes are modified */bool BOARD::SetCurrentNetClass( const wxString& aNetClassName ){ NETCLASS* netClass = m_NetClasses.Find( aNetClassName ); bool lists_sizes_modified = false;
// if not found (should not happen) use the default
if( netClass == NULL ) netClass = m_NetClasses.GetDefault();
m_CurrentNetClassName = netClass->GetName();
// Initialize others values:
if( m_ViasDimensionsList.size() == 0 ) { VIA_DIMENSION viadim; lists_sizes_modified = true; m_ViasDimensionsList.push_back( viadim ); } if( m_TrackWidthList.size() == 0 ) { lists_sizes_modified = true; m_TrackWidthList.push_back( 0 ); }
/* note the m_ViasDimensionsList[0] and m_TrackWidthList[0] values
* are always the Netclass values */ if( m_ViasDimensionsList[0].m_Diameter != netClass->GetViaDiameter() ) lists_sizes_modified = true; m_ViasDimensionsList[0].m_Diameter = netClass->GetViaDiameter();
if( m_TrackWidthList[0] != netClass->GetTrackWidth() ) lists_sizes_modified = true; m_TrackWidthList[0] = netClass->GetTrackWidth();
if( m_ViaSizeSelector >= m_ViasDimensionsList.size() ) m_ViaSizeSelector = m_ViasDimensionsList.size(); if( m_TrackWidthSelector >= m_TrackWidthList.size() ) m_TrackWidthSelector = m_TrackWidthList.size();
return lists_sizes_modified;}
/** function GetBiggestClearanceValue
* @return the biggest clearance value found in NetClasses list */int BOARD::GetBiggestClearanceValue(){ int clearance = m_NetClasses.GetDefault()->GetClearance();
//Read list of Net Classes
for( NETCLASSES::const_iterator nc = m_NetClasses.begin(); nc != m_NetClasses.end(); nc++ ) { NETCLASS* netclass = nc->second; clearance = MAX( clearance, netclass->GetClearance() ); }
return clearance;}
/** function GetCurrentMicroViaSize
* @return the current micro via size, * that is the current netclass value */int BOARD::GetCurrentMicroViaSize(){ NETCLASS* netclass = m_NetClasses.Find( m_CurrentNetClassName );
return netclass->GetuViaDiameter();}
/** function GetCurrentMicroViaDrill
* @return the current micro via drill, * that is the current netclass value */int BOARD::GetCurrentMicroViaDrill(){ NETCLASS* netclass = m_NetClasses.Find( m_CurrentNetClassName );
return netclass->GetuViaDrill();}
wxString BOARD::GetLayerName( int aLayerIndex ) const{ if( !IsValidLayerIndex( aLayerIndex ) ) return wxEmptyString;
// copper layer names are stored in the BOARD.
if( IsValidCopperLayerIndex( aLayerIndex ) && IsLayerEnabled( aLayerIndex ) ) { // default names were set in BOARD::BOARD() but they may be
// over-ridden by BOARD::SetLayerName()
return m_Layer[aLayerIndex].m_Name; }
return GetDefaultLayerName( aLayerIndex );}
wxString BOARD::GetDefaultLayerName( int aLayerNumber ){ const wxChar* txt;
// These are only default layer names. For PCBNEW, the copper names
// may be over-ridden in the BOARD (*.brd) file.
// Use a switch to explicitly show the mapping more clearly
switch( aLayerNumber ) { case LAYER_N_FRONT: txt = _( "Front" ); break; case LAYER_N_2: txt = _( "Inner2" ); break; case LAYER_N_3: txt = _( "Inner3" ); break; case LAYER_N_4: txt = _( "Inner4" ); break; case LAYER_N_5: txt = _( "Inner5" ); break; case LAYER_N_6: txt = _( "Inner6" ); break; case LAYER_N_7: txt = _( "Inner7" ); break; case LAYER_N_8: txt = _( "Inner8" ); break; case LAYER_N_9: txt = _( "Inner9" ); break; case LAYER_N_10: txt = _( "Inner10" ); break; case LAYER_N_11: txt = _( "Inner11" ); break; case LAYER_N_12: txt = _( "Inner12" ); break; case LAYER_N_13: txt = _( "Inner13" ); break; case LAYER_N_14: txt = _( "Inner14" ); break; case LAYER_N_15: txt = _( "Inner15" ); break; case LAYER_N_BACK: txt = _( "Back" ); break; case ADHESIVE_N_BACK: txt = _( "Adhes_Back" ); break; case ADHESIVE_N_FRONT: txt = _( "Adhes_Front" ); break; case SOLDERPASTE_N_BACK: txt = _( "SoldP_Back" ); break; case SOLDERPASTE_N_FRONT: txt = _( "SoldP_Front" ); break; case SILKSCREEN_N_BACK: txt = _( "SilkS_Back" ); break; case SILKSCREEN_N_FRONT: txt = _( "SilkS_Front" ); break; case SOLDERMASK_N_BACK: txt = _( "Mask_Back" ); break; case SOLDERMASK_N_FRONT: txt = _( "Mask_Front" ); break; case DRAW_N: txt = _( "Drawings" ); break; case COMMENT_N: txt = _( "Comments" ); break; case ECO1_N: txt = _( "Eco1" ); break; case ECO2_N: txt = _( "Eco2" ); break; case EDGE_N: txt = _( "PCB_Edges" ); break; default: txt = _( "BAD INDEX" ); break; }
return wxString( txt );}
bool BOARD::SetLayerName( int aLayerIndex, const wxString& aLayerName ){ if( !IsValidCopperLayerIndex( aLayerIndex ) ) return false;
if( aLayerName == wxEmptyString || aLayerName.Len() > 20 ) return false;
// no quote chars in the name allowed
if( aLayerName.Find( wxChar( '"' ) ) != wxNOT_FOUND ) return false;
wxString NameTemp = aLayerName;
// replace any spaces with underscores before we do any comparing
NameTemp.Replace( wxT( " " ), wxT( "_" ) );
if( IsLayerEnabled( aLayerIndex ) ) { for( int i = 0; i < NB_COPPER_LAYERS; i++ ) { if( i != aLayerIndex && IsLayerEnabled( i ) && NameTemp == m_Layer[i].m_Name ) return false; }
m_Layer[aLayerIndex].m_Name = NameTemp;
return true; }
return false;}
LAYER_T BOARD::GetLayerType( int aLayerIndex ) const{ if( !IsValidCopperLayerIndex( aLayerIndex ) ) return LT_SIGNAL;
//@@IMB: The original test was broken due to the discontinuity
// in the layer sequence.
if( IsLayerEnabled( aLayerIndex ) ) return m_Layer[aLayerIndex].m_Type; return LT_SIGNAL;}
bool BOARD::SetLayerType( int aLayerIndex, LAYER_T aLayerType ){ if( !IsValidCopperLayerIndex( aLayerIndex ) ) return false;
//@@IMB: The original test was broken due to the discontinuity
// in the layer sequence.
if( IsLayerEnabled( aLayerIndex ) ) { m_Layer[aLayerIndex].m_Type = aLayerType; return true; } return false;}
const char* LAYER::ShowType( LAYER_T aType ){ const char* cp;
switch( aType ) { default: case LT_SIGNAL: cp = "signal"; break;
case LT_POWER: cp = "power"; break;
case LT_MIXED: cp = "mixed"; break;
case LT_JUMPER: cp = "jumper"; break; }
return cp;}
LAYER_T LAYER::ParseType( const char* aType ){ if( strcmp( aType, "signal" ) == 0 ) return LT_SIGNAL; else if( strcmp( aType, "power" ) == 0 ) return LT_POWER; else if( strcmp( aType, "mixed" ) == 0 ) return LT_MIXED; else if( strcmp( aType, "jumper" ) == 0 ) return LT_JUMPER; else return LAYER_T( -1 );}
int BOARD::GetCopperLayerCount() const{ return GetBoardDesignSettings()->GetCopperLayerCount();}
void BOARD::SetCopperLayerCount( int aCount ){ GetBoardDesignSettings()->SetCopperLayerCount( aCount );}
int BOARD::GetEnabledLayers() const{ return GetBoardDesignSettings()->GetEnabledLayers();}
int BOARD::GetVisibleLayers() const{ return GetBoardDesignSettings()->GetVisibleLayers();}
void BOARD::SetEnabledLayers( int aLayerMask ){ GetBoardDesignSettings()->SetEnabledLayers( aLayerMask );}
void BOARD::SetVisibleLayers( int aLayerMask ){ GetBoardDesignSettings()->SetVisibleLayers( aLayerMask );}
// these are not tidy, since there are PCB_VISIBLEs that are not stored in the bitmap.
void BOARD::SetVisibleElements( int aMask ){ /* Call SetElementVisibility for each item,
* to ensure specific calculations that can be needed by some items * just change the visibility flags could be not sufficient */ for( int ii = 0; ii < PCB_VISIBLE(END_PCB_VISIBLE_LIST); ii++ ) { int item_mask = 1 << ii; SetElementVisibility( ii, aMask & item_mask ); }}
// these are not tidy, since there are PCB_VISIBLEs that are not stored in the bitmap.
void BOARD::SetVisibleAlls( ){ SetVisibleLayers( FULL_LAYERS ); /* Call SetElementVisibility for each item,
* to ensure specific calculations that can be needed by some items */ for( int ii = 0; ii < PCB_VISIBLE(END_PCB_VISIBLE_LIST); ii++ ) SetElementVisibility( ii, true );}
int BOARD::GetVisibleElements() const{ return GetBoardDesignSettings()->GetVisibleElements();}
bool BOARD::IsElementVisible( int aPCB_VISIBLE ) const{ return GetBoardDesignSettings()->IsElementVisible( aPCB_VISIBLE );}
void BOARD::SetElementVisibility( int aPCB_VISIBLE, bool isEnabled ){ switch( aPCB_VISIBLE ) { case RATSNEST_VISIBLE: GetBoardDesignSettings()->SetElementVisibility( aPCB_VISIBLE, isEnabled ); // we must clear or set the CH_VISIBLE flags to hide/show ratsnet
// because we have a tool to show hide ratsnest relative to a pad or a module
// so the hide/show option is a per item selection
if( IsElementVisible(RATSNEST_VISIBLE) ) { for( unsigned ii = 0; ii < GetRatsnestsCount(); ii++ ) m_FullRatsnest[ii].m_Status |= CH_VISIBLE; } else { for( unsigned ii = 0; ii < GetRatsnestsCount(); ii++ ) m_FullRatsnest[ii].m_Status &= ~CH_VISIBLE; } break;
default: GetBoardDesignSettings()->SetElementVisibility( aPCB_VISIBLE, isEnabled ); }}
int BOARD::GetVisibleElementColor( int aPCB_VISIBLE ){ int color = -1;
switch( aPCB_VISIBLE ) { case VIA_THROUGH_VISIBLE: case VIA_MICROVIA_VISIBLE: case VIA_BBLIND_VISIBLE: case MOD_TEXT_FR_VISIBLE: case MOD_TEXT_BK_VISIBLE: case MOD_TEXT_INVISIBLE: case ANCHOR_VISIBLE: case PAD_FR_VISIBLE: case PAD_BK_VISIBLE: case RATSNEST_VISIBLE: case GRID_VISIBLE: color = GetColorsSettings()->GetItemColor( aPCB_VISIBLE ); break;
default: wxLogDebug( wxT( "BOARD::GetVisibleElementColor(): bad arg %d" ), aPCB_VISIBLE ); }
return color;}
void BOARD::SetVisibleElementColor( int aPCB_VISIBLE, int aColor ){ switch( aPCB_VISIBLE ) { case VIA_THROUGH_VISIBLE: case VIA_MICROVIA_VISIBLE: case VIA_BBLIND_VISIBLE: case MOD_TEXT_FR_VISIBLE: case MOD_TEXT_BK_VISIBLE: case MOD_TEXT_INVISIBLE: case ANCHOR_VISIBLE: case PAD_FR_VISIBLE: case PAD_BK_VISIBLE: case GRID_VISIBLE: case RATSNEST_VISIBLE: GetColorsSettings()->SetItemColor( aPCB_VISIBLE, aColor ); break;
default: wxLogDebug( wxT( "BOARD::SetVisibleElementColor(): bad arg %d" ), aPCB_VISIBLE ); }}
void BOARD::SetLayerColor( int aLayer, int aColor ){ GetColorsSettings()->SetLayerColor( aLayer, aColor );}
int BOARD::GetLayerColor( int aLayer ){ return GetColorsSettings()->GetLayerColor( aLayer );}
/**
* Function IsModuleLayerVisible * expects either of the two layers on which a module can reside, and returns * whether that layer is visible. * @param layer One of the two allowed layers for modules: LAYER_N_FRONT or LAYER_N_BACK * @return bool - true if the layer is visible, else false. */bool BOARD::IsModuleLayerVisible( int layer ){ if( layer==LAYER_N_FRONT ) return IsElementVisible( PCB_VISIBLE(MOD_FR_VISIBLE) );
else if( layer==LAYER_N_BACK ) return IsElementVisible( PCB_VISIBLE(MOD_BK_VISIBLE) );
else return true;}
wxPoint& BOARD::GetPosition(){ static wxPoint dummy( 0, 0 );
return dummy; // a reference
}
void BOARD::Add( BOARD_ITEM* aBoardItem, int aControl ){ if( aBoardItem == NULL ) { wxFAIL_MSG( wxT( "BOARD::Add() param error: aBoardItem NULL" ) ); return; }
switch( aBoardItem->Type() ) { // this one uses a vector
case TYPE_MARKER_PCB: aBoardItem->SetParent( this ); m_markers.push_back( (MARKER_PCB*) aBoardItem ); break;
// this one uses a vector
case TYPE_ZONE_CONTAINER: aBoardItem->SetParent( this ); m_ZoneDescriptorList.push_back( (ZONE_CONTAINER*) aBoardItem ); break;
case TYPE_TRACK: case TYPE_VIA: { TRACK* insertAid = ( (TRACK*) aBoardItem )->GetBestInsertPoint( this ); m_Track.Insert( (TRACK*) aBoardItem, insertAid ); } break;
case TYPE_ZONE: if( aControl & ADD_APPEND ) m_Zone.PushBack( (SEGZONE*) aBoardItem ); else m_Zone.PushFront( (SEGZONE*) aBoardItem ); aBoardItem->SetParent( this ); break;
case TYPE_MODULE: if( aControl & ADD_APPEND ) m_Modules.PushBack( (MODULE*) aBoardItem ); else m_Modules.PushFront( (MODULE*) aBoardItem ); aBoardItem->SetParent( this );
// Because the list of pads has changed, reset the status
// This indicate the list of pad and nets must be recalculated before
// use
m_Status_Pcb = 0; break;
case TYPE_DIMENSION: case TYPE_DRAWSEGMENT: case TYPE_TEXTE: case TYPE_EDGE_MODULE: case TYPE_MIRE: if( aControl & ADD_APPEND ) m_Drawings.PushBack( aBoardItem ); else m_Drawings.PushFront( aBoardItem ); aBoardItem->SetParent( this ); break;
// other types may use linked list
default: { wxString msg; msg.Printf( wxT( "BOARD::Add() needs work: BOARD_ITEM type (%d) not handled" ), aBoardItem->Type() ); wxFAIL_MSG( msg ); } break; }}
BOARD_ITEM* BOARD::Remove( BOARD_ITEM* aBoardItem ){ // find these calls and fix them! Don't send me no stinkin' NULL.
wxASSERT( aBoardItem );
switch( aBoardItem->Type() ) { case TYPE_MARKER_PCB:
// find the item in the vector, then remove it
for( unsigned i = 0; i<m_markers.size(); ++i ) { if( m_markers[i] == (MARKER_PCB*) aBoardItem ) { m_markers.erase( m_markers.begin() + i ); break; } }
break;
case TYPE_ZONE_CONTAINER: // this one uses a vector
// find the item in the vector, then delete then erase it.
for( unsigned i = 0; i<m_ZoneDescriptorList.size(); ++i ) { if( m_ZoneDescriptorList[i] == (ZONE_CONTAINER*) aBoardItem ) { m_ZoneDescriptorList.erase( m_ZoneDescriptorList.begin() + i ); break; } }
break;
case TYPE_MODULE: m_Modules.Remove( (MODULE*) aBoardItem ); break;
case TYPE_TRACK: case TYPE_VIA: m_Track.Remove( (TRACK*) aBoardItem ); break;
case TYPE_ZONE: m_Zone.Remove( (SEGZONE*) aBoardItem ); break;
case TYPE_DIMENSION: case TYPE_DRAWSEGMENT: case TYPE_TEXTE: case TYPE_EDGE_MODULE: case TYPE_MIRE: m_Drawings.Remove( aBoardItem ); break;
// other types may use linked list
default: wxFAIL_MSG( wxT( "BOARD::Remove() needs more ::Type() support" ) ); }
return aBoardItem;}
void BOARD::DeleteMARKERs(){ // the vector does not know how to delete the MARKER_PCB, it holds pointers
for( unsigned i = 0; i<m_markers.size(); ++i ) delete m_markers[i];
m_markers.clear();}
void BOARD::DeleteZONEOutlines(){ // the vector does not know how to delete the ZONE Outlines, it holds
// pointers
for( unsigned i = 0; i<m_ZoneDescriptorList.size(); ++i ) delete m_ZoneDescriptorList[i];
m_ZoneDescriptorList.clear();}
/* Calculate the track segment count */int BOARD::GetNumSegmTrack(){ return m_Track.GetCount();}
/* Calculate the zone segment count */int BOARD::GetNumSegmZone(){ return m_Zone.GetCount();}
// return the unconnection count
unsigned BOARD::GetNoconnectCount(){ return m_NbNoconnect;}
// return the active pad count ( pads with a netcode > 0 )
unsigned BOARD::GetNodesCount(){ return m_NbNodes;}
/** Function ComputeBoundaryBox()
* Calculate the bounding box of the board * This box contains pcb edges, pads , vias and tracks * Update m_PcbBox member * * @return 0 for an empty board (no items), else 1 */bool BOARD::ComputeBoundaryBox(){ int rayon, cx, cy, d, xmin, ymin, xmax, ymax; bool hasItems = FALSE; EDA_BaseStruct* PtStruct; DRAWSEGMENT* ptr;
xmin = ymin = 0x7FFFFFFFl; xmax = ymax = -0x7FFFFFFFl;
/* Analyze PCB edges*/ PtStruct = m_Drawings; for( ; PtStruct != NULL; PtStruct = PtStruct->Next() ) { if( PtStruct->Type() != TYPE_DRAWSEGMENT ) continue;
ptr = (DRAWSEGMENT*) PtStruct; d = (ptr->m_Width / 2) + 1;
if( ptr->m_Shape == S_CIRCLE ) { cx = ptr->m_Start.x; cy = ptr->m_Start.y; rayon = (int) hypot( (double) ( ptr->m_End.x - cx ), (double) ( ptr->m_End.y - cy ) ); rayon += d; xmin = MIN( xmin, cx - rayon ); ymin = MIN( ymin, cy - rayon ); xmax = MAX( xmax, cx + rayon ); ymax = MAX( ymax, cy + rayon ); hasItems = TRUE; } else { cx = MIN( ptr->m_Start.x, ptr->m_End.x ); cy = MIN( ptr->m_Start.y, ptr->m_End.y ); xmin = MIN( xmin, cx - d ); ymin = MIN( ymin, cy - d ); cx = MAX( ptr->m_Start.x, ptr->m_End.x ); cy = MAX( ptr->m_Start.y, ptr->m_End.y ); xmax = MAX( xmax, cx + d ); ymax = MAX( ymax, cy + d ); hasItems = TRUE; } }
/* Analyze footprints */
for( MODULE* module = m_Modules; module; module = module->Next() ) { hasItems = TRUE; EDA_Rect box = module->GetBoundingBox(); xmin = MIN( xmin, box.GetX() ); ymin = MIN( ymin, box.GetY() ); xmax = MAX( xmax, box.GetRight() ); ymax = MAX( ymax, box.GetBottom() ); }
/* Analize track and zones */ for( TRACK* track = m_Track; track; track = track->Next() ) { d = ( track->m_Width / 2 ) + 1; cx = MIN( track->m_Start.x, track->m_End.x ); cy = MIN( track->m_Start.y, track->m_End.y ); xmin = MIN( xmin, cx - d ); ymin = MIN( ymin, cy - d ); cx = MAX( track->m_Start.x, track->m_End.x ); cy = MAX( track->m_Start.y, track->m_End.y ); xmax = MAX( xmax, cx + d ); ymax = MAX( ymax, cy + d ); hasItems = TRUE; }
for( TRACK* track = m_Zone; track; track = track->Next() ) { d = ( track->m_Width / 2 ) + 1; cx = MIN( track->m_Start.x, track->m_End.x ); cy = MIN( track->m_Start.y, track->m_End.y ); xmin = MIN( xmin, cx - d ); ymin = MIN( ymin, cy - d ); cx = MAX( track->m_Start.x, track->m_End.x ); cy = MAX( track->m_Start.y, track->m_End.y ); xmax = MAX( xmax, cx + d ); ymax = MAX( ymax, cy + d ); hasItems = TRUE; }
if( !hasItems && m_PcbFrame ) { if( m_PcbFrame->m_Draw_Sheet_Ref ) { xmin = ymin = 0; xmax = m_PcbFrame->GetScreen()->ReturnPageSize().x; ymax = m_PcbFrame->GetScreen()->ReturnPageSize().y; } else { xmin = -m_PcbFrame->GetScreen()->ReturnPageSize().x / 2; ymin = -m_PcbFrame->GetScreen()->ReturnPageSize().y / 2; xmax = m_PcbFrame->GetScreen()->ReturnPageSize().x / 2; ymax = m_PcbFrame->GetScreen()->ReturnPageSize().y / 2; } }
m_BoundaryBox.SetX( xmin ); m_BoundaryBox.SetY( ymin ); m_BoundaryBox.SetWidth( xmax - xmin ); m_BoundaryBox.SetHeight( ymax - ymin );
return hasItems;}
// virtual, see pcbstruct.h
/* Display board statistics: pads, nets, connections.. count
*/void BOARD::DisplayInfo( WinEDA_DrawFrame* frame ){ wxString txt;
frame->ClearMsgPanel();
int viasCount = 0; for( BOARD_ITEM* item = m_Track; item; item = item->Next() ) { if( item->Type() == TYPE_VIA ) viasCount++; }
txt.Printf( wxT( "%d" ), GetPadsCount() ); frame->AppendMsgPanel( _( "Pads" ), txt, DARKGREEN );
txt.Printf( wxT( "%d" ), viasCount ); frame->AppendMsgPanel( _( "Vias" ), txt, DARKGREEN );
txt.Printf( wxT( "%d" ), GetNodesCount() ); frame->AppendMsgPanel( _( "Nodes" ), txt, DARKCYAN );
txt.Printf( wxT( "%d" ), m_NetInfo->GetCount() ); frame->AppendMsgPanel( _( "Nets" ), txt, RED );
/* These parameters are known only if the full ratsnest is available,
* so, display them only if this is the case */ if( (m_Status_Pcb & NET_CODES_OK) ) { txt.Printf( wxT( "%d" ), GetRatsnestsCount() ); frame->AppendMsgPanel( _( "Links" ), txt, DARKGREEN );
txt.Printf( wxT( "%d" ), GetRatsnestsCount() - GetNoconnectCount() ); frame->AppendMsgPanel( _( "Connect" ), txt, DARKGREEN );
txt.Printf( wxT( "%d" ), GetNoconnectCount() ); frame->AppendMsgPanel( _( "Unconnected" ), txt, BLUE ); }}
// virtual, see pcbstruct.h
SEARCH_RESULT BOARD::Visit( INSPECTOR* inspector, const void* testData, const KICAD_T scanTypes[] ){ KICAD_T stype; SEARCH_RESULT result = SEARCH_CONTINUE; const KICAD_T* p = scanTypes; bool done = false;
#if 0 && defined(DEBUG)
std::cout << GetClass().mb_str() << ' ';#endif
while( !done ) { stype = *p; switch( stype ) { case TYPE_PCB: result = inspector->Inspect( this, testData ); // inspect me
// skip over any types handled in the above call.
++p; break;
/* Instances of the requested KICAD_T live in a list, either one
* that I manage, or that my modules manage. If it's a type managed * by class MODULE, then simply pass it on to each module's * MODULE::Visit() function by way of the * IterateForward( m_Modules, ... ) call. */
case TYPE_MODULE: case TYPE_PAD: case TYPE_TEXTE_MODULE: case TYPE_EDGE_MODULE:
// this calls MODULE::Visit() on each module.
result = IterateForward( m_Modules, inspector, testData, p );
// skip over any types handled in the above call.
for( ; ; ) { switch( stype = *++p ) { case TYPE_MODULE: case TYPE_PAD: case TYPE_TEXTE_MODULE: case TYPE_EDGE_MODULE: continue;
default: ; }
break; }
break;
case TYPE_DRAWSEGMENT: case TYPE_TEXTE: case TYPE_DIMENSION: case TYPE_MIRE: result = IterateForward( m_Drawings, inspector, testData, p );
// skip over any types handled in the above call.
for( ; ; ) { switch( stype = *++p ) { case TYPE_DRAWSEGMENT: case TYPE_TEXTE: case TYPE_DIMENSION: case TYPE_MIRE: continue;
default: ; }
break; }
; break;
#if 0 // both these are on same list, so we must scan it twice in order
// to get VIA priority, using new #else code below.
// But we are not using separate lists for TRACKs and SEGVIAs, because
// items are ordered (sorted) in the linked
// list by netcode AND by physical distance:
// when created, if a track or via is connected to an existing track or
// via, it is put in linked list after this existing track or via
// So usually, connected tracks or vias are grouped in this list
// So the algorithm (used in rastnest computations) which computes the
// track connectivity is faster (more than 100 time regarding to
// a non ordered list) because when it searches for a connexion, first
// it tests the near (near in term of linked list) 50 items
// from the current item (track or via) in test.
// Usually, because of this sort, a connected item (if exists) is
// found.
// If not found (and only in this case) an exhaustive (and time
// consuming) search is made, but this case is statistically rare.
case TYPE_VIA: case TYPE_TRACK: result = IterateForward( m_Track, inspector, testData, p );
// skip over any types handled in the above call.
for( ; ; ) { switch( stype = *++p ) { case TYPE_VIA: case TYPE_TRACK: continue;
default: ; }
break; }
break;
#else
case TYPE_VIA: result = IterateForward( m_Track, inspector, testData, p ); ++p; break;
case TYPE_TRACK: result = IterateForward( m_Track, inspector, testData, p ); ++p; break;#endif
case TYPE_MARKER_PCB:
// MARKER_PCBS are in the m_markers std::vector
for( unsigned i = 0; i<m_markers.size(); ++i ) { result = m_markers[i]->Visit( inspector, testData, p ); if( result == SEARCH_QUIT ) break; }
++p; break;
case TYPE_ZONE_CONTAINER:
// TYPE_ZONE_CONTAINER are in the m_ZoneDescriptorList std::vector
for( unsigned i = 0; i< m_ZoneDescriptorList.size(); ++i ) { result = m_ZoneDescriptorList[i]->Visit( inspector, testData, p ); if( result == SEARCH_QUIT ) break; }
++p; break;
case TYPE_ZONE: result = IterateForward( m_Zone, inspector, testData, p ); ++p; break;
default: // catch EOT or ANY OTHER type here and return.
done = true; break; }
if( result == SEARCH_QUIT ) break; }
return result;}
/* now using PcbGeneralLocateAndDisplay(), but this remains a useful example
* of how the INSPECTOR can be used in a lightweight way. * // see pcbstruct.h
* BOARD_ITEM* BOARD::FindPadOrModule( const wxPoint& refPos, int layer ) * { * class PadOrModule : public INSPECTOR * { * public: * BOARD_ITEM* found; * int layer; * int layer_mask; * * PadOrModule( int alayer ) : * found(0), layer(alayer), layer_mask( g_TabOneLayerMask[alayer] ) * {} * * SEARCH_RESULT Inspect( EDA_BaseStruct* testItem, const void* testData * ) * { * BOARD_ITEM* item = (BOARD_ITEM*) testItem; * const wxPoint& refPos = *(const wxPoint*) testData; * * if( item->Type() == TYPE_PAD ) * { * D_PAD* pad = (D_PAD*) item; * if( pad->HitTest( refPos ) ) * { * if( layer_mask & pad->m_Masque_Layer ) * { * found = item; * return SEARCH_QUIT; * } * else if( !found ) * { * MODULE* parent = (MODULE*) pad->m_Parent; * if( IsModuleLayerVisible( parent->GetLayer() ) ) * found = item; * } * } * } * * else if( item->Type() == TYPE_MODULE ) * { * MODULE* module = (MODULE*) item; * * // consider only visible modules
* if( IsModuleLayerVisible( module->GetLayer() ) ) * { * if( module->HitTest( refPos ) ) * { * if( layer == module->GetLayer() ) * { * found = item; * return SEARCH_QUIT; * } * * // layer mismatch, save in case we don't find a
* // future layer match hit.
* if( !found ) * found = item; * } * } * } * return SEARCH_CONTINUE; * } * }; * * PadOrModule inspector( layer ); * * // search only for PADs first, then MODULES, and preferably a layer match
* static const KICAD_T scanTypes[] = { TYPE_PAD, TYPE_MODULE, EOT }; * * // visit this BOARD with the above inspector
* Visit( &inspector, &refPos, scanTypes ); * * return inspector.found; * } */
/**
* Function FindNet * searches for a net with the given netcode. * @param anetcode The netcode to search for. * @return NETINFO_ITEM* - the net or NULL if not found. */NETINFO_ITEM* BOARD::FindNet( int anetcode ) const{ // the first valid netcode is 1 and the last is m_NetInfo->GetCount()-1.
// zero is reserved for "no connection" and is not used.
// NULL is returned for non valid netcodes
NETINFO_ITEM* net = m_NetInfo->GetNetItem( anetcode );
#if defined(DEBUG)
if( net ) // item can be NULL if anetcode is not valid
{ if( anetcode != net->GetNet() ) { printf( "FindNet() anetcode %d != GetNet() %d (net: %s)\n", anetcode, net->GetNet(), CONV_TO_UTF8( net->GetNetname() ) ); } }#endif
return net;}
/**
* Function FindNet overlaid * searches for a net with the given name. * @param aNetname A Netname to search for. * @return NETINFO_ITEM* - the net or NULL if not found. */NETINFO_ITEM* BOARD::FindNet( const wxString& aNetname ) const{ // the first valid netcode is 1.
// zero is reserved for "no connection" and is not used.
if( aNetname.IsEmpty() ) return NULL;
int ncount = m_NetInfo->GetCount();
// Search for a netname = aNetname
#if 0
// Use a sequential search: easy to understand, but slow
for( int ii = 1; ii < ncount; ii++ ) { NETINFO_ITEM* item = m_NetInfo->GetNetItem( ii ); if( item && item->GetNetname() == aNetname ) { return item; } }
#else
// Use a fast binary search,
// this is possible because Nets are alphabetically ordered in list
// see NETINFO_LIST::BuildListOfNets() and
// NETINFO_LIST::Build_Pads_Full_List()
int imax = ncount - 1; int index = imax; while( ncount > 0 ) { int ii = ncount; ncount >>= 1;
if( (ii & 1) && ( ii > 1 ) ) ncount++;
NETINFO_ITEM* item = m_NetInfo->GetNetItem( index ); if( item == NULL ) return NULL; int icmp = item->GetNetname().Cmp( aNetname );
if( icmp == 0 ) // found !
{ return item; } if( icmp < 0 ) // must search after item
{ index += ncount; if( index > imax ) index = imax; continue; } if( icmp > 0 ) // must search before item
{ index -= ncount; if( index < 1 ) index = 1; continue; } }
#endif
return NULL;}
MODULE* BOARD::FindModuleByReference( const wxString& aReference ) const{ struct FindModule : public INSPECTOR { MODULE* found; FindModule() : found( 0 ) {}
// implement interface INSPECTOR
SEARCH_RESULT Inspect( EDA_BaseStruct* item, const void* data ) { MODULE* module = (MODULE*) item; const wxString& ref = *(const wxString*) data;
if( ref == module->GetReference() ) { found = module; return SEARCH_QUIT; } return SEARCH_CONTINUE; } } inspector;
// search only for MODULES
static const KICAD_T scanTypes[] = { TYPE_MODULE, EOT };
// visit this BOARD with the above inspector
BOARD* nonconstMe = (BOARD*) this; nonconstMe->Visit( &inspector, &aReference, scanTypes );
return inspector.found;}
// Sort nets by decreasing pad count
static bool s_SortByNodes( const NETINFO_ITEM* a, const NETINFO_ITEM* b ){ return b->GetNodesCount() < a->GetNodesCount();}
/**
* Function ReturnSortedNetnamesList * @param aNames An array string to fill with net names. * @param aSortbyPadsCount : true = sort by active pads count, false = no sort * (i.e. leave the sort by net names) * @return int - net names count. */int BOARD::ReturnSortedNetnamesList( wxArrayString& aNames, bool aSortbyPadsCount ){ if( m_NetInfo->GetCount() == 0 ) return 0;
// Build the list
std::vector <NETINFO_ITEM*> netBuffer;
netBuffer.reserve( m_NetInfo->GetCount() );
for( unsigned ii = 1; ii < m_NetInfo->GetCount(); ii++ ) { if( m_NetInfo->GetNetItem( ii )->GetNet() > 0 ) netBuffer.push_back( m_NetInfo->GetNetItem( ii ) ); }
// sort the list
if( aSortbyPadsCount ) sort( netBuffer.begin(), netBuffer.end(), s_SortByNodes );
for( unsigned ii = 0; ii < netBuffer.size(); ii++ ) aNames.Add( netBuffer[ii]->GetNetname() );
return netBuffer.size();}
bool BOARD::Save( FILE* aFile ) const{ bool rc = false; BOARD_ITEM* item;
// save the nets
for( unsigned ii = 0; ii < m_NetInfo->GetCount(); ii++ ) if( !m_NetInfo->GetNetItem( ii )->Save( aFile ) ) goto out;
// Saved nets do not include netclass names, so save netclasses after nets.
m_NetClasses.Save( aFile );
// save the modules
for( item = m_Modules; item; item = item->Next() ) if( !item->Save( aFile ) ) goto out;
for( item = m_Drawings; item; item = item->Next() ) { switch( item->Type() ) { case TYPE_TEXTE: case TYPE_DRAWSEGMENT: case TYPE_MIRE: case TYPE_DIMENSION: if( !item->Save( aFile ) ) goto out; break;
default:
// future: throw exception here
#if defined(DEBUG)
printf( "BOARD::Save() ignoring m_Drawings type %d\n", item->Type() );#endif
break; } }
// do not save MARKER_PCBs, they can be regenerated easily
// save the tracks & vias
fprintf( aFile, "$TRACK\n" ); for( item = m_Track; item; item = item->Next() ) if( !item->Save( aFile ) ) goto out;
fprintf( aFile, "$EndTRACK\n" );
// save the zones
fprintf( aFile, "$ZONE\n" ); for( item = m_Zone; item; item = item->Next() ) if( !item->Save( aFile ) ) goto out;
fprintf( aFile, "$EndZONE\n" );
// save the zone edges
for( unsigned ii = 0; ii < m_ZoneDescriptorList.size(); ii++ ) { ZONE_CONTAINER* edge_zone = m_ZoneDescriptorList[ii]; edge_zone->Save( aFile ); }
if( fprintf( aFile, "$EndBOARD\n" ) != sizeof("$EndBOARD\n") - 1 ) goto out;
rc = true; // wrote all OK
out: return rc;}
/**
* Function RedrawAreasOutlines * Redraw all areas outlines on layer aLayer ( redraw all if aLayer < 0 ) */void BOARD::RedrawAreasOutlines( WinEDA_DrawPanel* panel, wxDC* aDC, int aDrawMode, int aLayer ){ if( !aDC ) return;
for( int ii = 0; ii < GetAreaCount(); ii++ ) { ZONE_CONTAINER* edge_zone = GetArea( ii ); if( (aLayer < 0) || ( aLayer == edge_zone->GetLayer() ) ) edge_zone->Draw( panel, aDC, aDrawMode ); }}
/**
* Function RedrawFilledAreas * Redraw all areas outlines on layer aLayer ( redraw all if aLayer < 0 ) */void BOARD::RedrawFilledAreas( WinEDA_DrawPanel* panel, wxDC* aDC, int aDrawMode, int aLayer ){ if( !aDC ) return;
for( int ii = 0; ii < GetAreaCount(); ii++ ) { ZONE_CONTAINER* edge_zone = GetArea( ii ); if( (aLayer < 0) || ( aLayer == edge_zone->GetLayer() ) ) edge_zone->DrawFilledArea( panel, aDC, aDrawMode ); }}
/**
* Function HitTestForAnyFilledArea * tests if the given wxPoint is within the bounds of a filled area of this * zone. * the test is made on zones on layer from aStartLayer to aEndLayer * Note: if a zone has its flag BUSY (in .m_State) is set, it is ignored. * @param refPos A wxPoint to test * @param aStartLayer the first layer to test * @param aEndLayer the last layer (-1 to ignore it) to test * @return ZONE_CONTAINER* return a pointer to the ZONE_CONTAINER found, else * NULL */ZONE_CONTAINER* BOARD::HitTestForAnyFilledArea( const wxPoint& aRefPos, int aStartLayer, int aEndLayer ){ if( aEndLayer < 0 ) aEndLayer = aStartLayer; if( aEndLayer < aStartLayer ) EXCHG( aEndLayer, aStartLayer );
for( unsigned ia = 0; ia < m_ZoneDescriptorList.size(); ia++ ) { ZONE_CONTAINER* area = m_ZoneDescriptorList[ia]; int layer = area->GetLayer(); if( (layer < aStartLayer) || (layer > aEndLayer) ) continue; if( area->GetState( BUSY ) ) // In locate functions we must skip
// tagged items with BUSY flag set.
continue; if( area->HitTestFilledArea( aRefPos ) ) return area; }
return NULL;}
/**
* Function SetAreasNetCodesFromNetNames * Set the .m_NetCode member of all copper areas, according to the area Net * Name * The SetNetCodesFromNetNames is an equivalent to net name, for fast * comparisons. * However the Netcode is an arbitrary equivalence, it must be set after each * netlist read * or net change * Must be called after pad netcodes are calculated * @return : error count * For non copper areas, netcode is set to 0 */int BOARD::SetAreasNetCodesFromNetNames( void ){ int error_count = 0;
for( int ii = 0; ii < GetAreaCount(); ii++ ) { if( !GetArea( ii )->IsOnCopperLayer() ) { GetArea( ii )->SetNet( 0 ); continue; }
if( GetArea( ii )->GetNet() != 0 ) // i.e. if this zone is
// connected to a net
{ const NETINFO_ITEM* net = FindNet( GetArea( ii )->m_Netname ); if( net ) { GetArea( ii )->SetNet( net->GetNet() ); } else { error_count++; GetArea( ii )->SetNet( -1 ); // keep Net Name and set
// m_NetCode to -1 : error flag
} } }
return error_count;}
#if defined(DEBUG)
/**
* Function Show * is used to output the object tree, currently for debugging only. * @param nestLevel An aid to prettier tree indenting, and is the level * of nesting of this object within the overall tree. * @param os The ostream& to output to. */void BOARD::Show( int nestLevel, std::ostream& os ){ BOARD_ITEM* p;
// for now, make it look like XML:
NestedSpace( nestLevel, os ) << '<' << GetClass().Lower().mb_str() << ">\n";
// specialization of the output:
NestedSpace( nestLevel + 1, os ) << "<modules>\n"; p = m_Modules; for( ; p; p = p->Next() ) p->Show( nestLevel + 2, os );
NestedSpace( nestLevel + 1, os ) << "</modules>\n";
NestedSpace( nestLevel + 1, os ) << "<pdrawings>\n"; p = m_Drawings; for( ; p; p = p->Next() ) p->Show( nestLevel + 2, os );
NestedSpace( nestLevel + 1, os ) << "</pdrawings>\n";
NestedSpace( nestLevel + 1, os ) << "<tracks>\n"; p = m_Track; for( ; p; p = p->Next() ) p->Show( nestLevel + 2, os );
NestedSpace( nestLevel + 1, os ) << "</tracks>\n";
NestedSpace( nestLevel + 1, os ) << "<zones>\n"; p = m_Zone; for( ; p; p = p->Next() ) p->Show( nestLevel + 2, os );
NestedSpace( nestLevel + 1, os ) << "</zones>\n";
/*
* NestedSpace( nestLevel+1, os ) << "<zone_container>\n"; * for( ZONE_CONTAINERS::iterator i=m_ZoneDescriptorList.begin(); * i!=m_ZoneDescriptorList.end(); ++i ) * (*i)->Show( nestLevel+2, os ); * NestedSpace( nestLevel+1, os ) << "</zone_container>\n"; */
p = (BOARD_ITEM*) m_Son; for( ; p; p = p->Next() ) { p->Show( nestLevel + 1, os ); }
NestedSpace( nestLevel, os ) << "</" << GetClass().Lower().mb_str() << ">\n";}
#endif
|