|
|
/*
* This program source code file is part of KiCad, a free EDA CAD application. * * Copyright 2017 CERN * Copyright (C) 2020-2021 KiCad Developers, see AUTHORS.txt for contributors. * * @author Maciej Suminski <maciej.suminski@cern.ch> * @author Bernhard Stegmaier <stegmaier@sw-systems.de> * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */
#ifndef MULTIVECTOR_H
#define MULTIVECTOR_H
#include <boost/ptr_container/ptr_vector.hpp>
#include <stdexcept>
/**
* Multivector container type. * * Keeps items segregated by their type in multiple ptr_vectors. Provides both * access as a flat list as well as access by type of item. * * T is the stored type, needs to provide Type() method used to segregate items. * FIRST_TYPE_VAL is the lower boundary value of the types stored in the container. * LAST_TYPE_VAL is the upper boundary value of the types stored in the container. */template<typename T, int FIRST_TYPE_VAL, int LAST_TYPE_VAL>class MULTIVECTOR{public: /**
* Type value to indicate no specific type. Mostly used to access the container as a flat list * or to return data for the whole container. */ static constexpr int UNDEFINED_TYPE = 0; static_assert( FIRST_TYPE_VAL > UNDEFINED_TYPE, "FIRST_TYPE_VAL must be greater than UNDEFINED_TYPE" ); static_assert( FIRST_TYPE_VAL < LAST_TYPE_VAL, "FIRST_TYPE_VAL must be greater than LAST_TYPE_VAL" );
/**
* Helper for defining a list of library draw object pointers. * * The Boost pointer containers are responsible for deleting object pointers placed * in them. If you access a object pointer from the list, do not delete it directly. */ typedef boost::ptr_vector<T> ITEM_PTR_VECTOR;
/**
* Generic implementation of a flat const/non-const iterator over contained items. */ template<typename ITEM_TYPE, typename ITEM_CONTAINER, typename ITEM_CONTAINER_IT> class ITERATOR_BASE { public: ITEM_TYPE& operator*() { return *m_it; }
ITEM_TYPE* operator->() { return &( *m_it ); }
ITERATOR_BASE& operator++() { if( m_it != (*m_parent)[ m_curType ].end() ) ++m_it;
validate();
return *this; }
bool operator!=( const ITERATOR_BASE& aOther ) const { if( aOther.m_parent != m_parent ) return true;
if( aOther.m_filter != m_filter ) return true;
if( aOther.m_curType != m_curType ) return true;
return aOther.m_it != m_it; }
protected: /**
* @param aItems is the container to wrap. * @param aIt is the iterator to initialize this iterator (usually some begin() or end() * iterator). * @param aBucket is the type ID of the given iterator. * @param aType enables item type filtering. When aType is UNDEFINED_TYPE, there is no * filtering and all item types are accessible by the iterator. */ ITERATOR_BASE( ITEM_CONTAINER* aItems, ITEM_CONTAINER_IT aIt, int aBucket, int aType = UNDEFINED_TYPE ) : m_parent( aItems ), m_it( aIt ), m_curType( aBucket ) { m_filter = ( aType != UNDEFINED_TYPE ); }
///< Assures the iterator is in a valid state.
void validate() { // for all-items iterators (unfiltered): check if this is the end of the
// current type container, if so switch to the next non-empty container
if( !m_filter && m_it == (*m_parent)[ m_curType ].end() ) { // switch to the next type (look for a not empty container)
int nextType = m_curType;
do ++nextType; while( ( nextType <= LAST_TYPE ) && (*m_parent)[ nextType ].empty() );
// there is another not empty container, so make the iterator point to it,
// otherwise it means the iterator points to the last item
if( nextType <= LAST_TYPE ) { m_curType = nextType; m_it = (*m_parent)[ m_curType ].begin(); } } }
///< Wrapped container
ITEM_CONTAINER* m_parent;
///< Iterator for one of the ptr_vector containers stored in the array
ITEM_CONTAINER_IT m_it;
///< Flag indicating whether type filtering is enabled
bool m_filter;
///< Type of the currently iterated items
int m_curType;
friend class MULTIVECTOR; };
///< The non-const iterator
typedef ITERATOR_BASE<T, MULTIVECTOR<T, FIRST_TYPE_VAL, LAST_TYPE_VAL>, typename ITEM_PTR_VECTOR::iterator> ITERATOR; ///< The const iterator
typedef ITERATOR_BASE<const T, const MULTIVECTOR<T, FIRST_TYPE_VAL, LAST_TYPE_VAL>, typename ITEM_PTR_VECTOR::const_iterator> CONST_ITERATOR;
MULTIVECTOR() { }
void push_back( T* aItem ) { operator[]( aItem->Type() ).push_back( aItem ); }
ITERATOR erase( const ITERATOR& aIterator ) { ITERATOR it( aIterator ); it.m_it = (*aIterator.m_parent)[ aIterator.m_curType ].erase( aIterator.m_it ); it.validate();
return it; }
ITERATOR begin( int aType = UNDEFINED_TYPE ) { int bucket = ( aType != UNDEFINED_TYPE ) ? aType : first(); return ITERATOR( this, operator[]( bucket ).begin(), bucket, aType ); }
ITERATOR end( int aType = UNDEFINED_TYPE ) { int bucket = ( aType != UNDEFINED_TYPE ) ? aType : last(); return ITERATOR( this, operator[]( bucket ).end(), bucket, aType ); }
CONST_ITERATOR begin( int aType = UNDEFINED_TYPE ) const { int bucket = ( aType != UNDEFINED_TYPE ) ? aType : first(); return CONST_ITERATOR( this, operator[]( bucket ).begin(), bucket, aType ); }
CONST_ITERATOR end( int aType = UNDEFINED_TYPE ) const { int bucket = ( aType != UNDEFINED_TYPE ) ? aType : last(); return CONST_ITERATOR( this, operator[]( bucket ).end(), bucket, aType ); }
void clear( int aType = UNDEFINED_TYPE ) { if( aType != UNDEFINED_TYPE ) { operator[]( aType ).clear(); } else { for( int i = 0; i < TYPES_COUNT; ++i) m_data[ i ].clear(); } }
size_t size( int aType = UNDEFINED_TYPE ) const { if( aType != UNDEFINED_TYPE ) { return operator[]( aType ).size(); } else { size_t cnt = 0;
for( int i = 0; i < TYPES_COUNT; ++i) cnt += m_data[ i ].size();
return cnt; } }
bool empty( int aType = UNDEFINED_TYPE ) const { return ( size( aType ) == 0 ); }
void sort() { for( int i = 0; i < TYPES_COUNT; ++i ) m_data[ i ].sort(); }
/**
* Remove duplicate elements in list */ void unique() { for( int i = 0; i < TYPES_COUNT; ++i ) { if( m_data[ i ].size() > 1 ) m_data[ i ].unique(); } }
ITEM_PTR_VECTOR& operator[]( int aType ) { if( ( aType < FIRST_TYPE ) || ( aType > LAST_TYPE ) ) { wxFAIL_MSG( "Attempted access to type not within MULTIVECTOR" );
// return type is a reference so we have to return something...
aType = FIRST_TYPE; }
return m_data[ aType - FIRST_TYPE ]; }
const ITEM_PTR_VECTOR& operator[]( int aType ) const { if( ( aType < FIRST_TYPE ) || ( aType > LAST_TYPE ) ) { wxFAIL_MSG( "Attempted access to type not within MULTIVECTOR" );
// return type is a reference so we have to return something...
aType = FIRST_TYPE; }
return m_data[ aType - FIRST_TYPE ]; }
// Range of valid types handled by the iterator
static constexpr int FIRST_TYPE = FIRST_TYPE_VAL; static constexpr int LAST_TYPE = LAST_TYPE_VAL; static constexpr int TYPES_COUNT = LAST_TYPE - FIRST_TYPE + 1;
private: ///< Get first non-empty type or first type if all are empty.
int first() const { int i = 0;
while( ( i < TYPES_COUNT ) && ( m_data[ i ].empty() ) ) ++i;
return ( i == TYPES_COUNT ) ? FIRST_TYPE : FIRST_TYPE + i; }
///< Get last non-empty type or first type if all are empty.
int last() const { int i = TYPES_COUNT - 1;
while( ( i >= 0 ) && ( m_data[ i ].empty() ) ) --i;
return ( i < 0 ) ? FIRST_TYPE : FIRST_TYPE + i; }
///< Contained items by type
ITEM_PTR_VECTOR m_data[TYPES_COUNT];};
#endif /* MULTIVECTOR_H */
|