|
|
/*******************************************************************************
* ** Author : Angus Johnson ** Version : 6.4.2 ** Date : 27 February 2017 ** Website : http://www.angusj.com *
* Copyright : Angus Johnson 2010-2017 ** ** License: ** Use, modification & distribution is subject to Boost Software License Ver 1. ** http://www.boost.org/LICENSE_1_0.txt *
* ** Attributions: ** The code in this library is an extension of Bala Vatti's clipping algorithm: ** "A generic solution to polygon clipping" ** Communications of the ACM, Vol 35, Issue 7 (July 1992) pp 56-63. ** http://portal.acm.org/citation.cfm?id=129906 *
* ** Computer graphics and geometric modeling: implementation and algorithms ** By Max K. Agoston ** Springer; 1 edition (January 4, 2005) ** http://books.google.com/books?q=vatti+clipping+agoston *
* ** See also: ** "Polygon Offsetting by Computing Winding Numbers" ** Paper no. DETC2005-85513 pp. 565-575 ** ASME 2005 International Design Engineering Technical Conferences ** and Computers and Information in Engineering Conference (IDETC/CIE2005) ** September 24-28, 2005 , Long Beach, California, USA ** http://www.me.berkeley.edu/~mcmains/pubs/DAC05OffsetPolygon.pdf *
* ********************************************************************************/
/*******************************************************************************
* ** This is a translation of the Delphi Clipper library and the naming style ** used has retained a Delphi flavour. ** ********************************************************************************/
#include "clipper.hpp"
#include <cmath>
#include <vector>
#include <algorithm>
#include <stdexcept>
#include <cstring>
#include <cstdlib>
#include <ostream>
#include <functional>
namespace ClipperLib {static double const pi = 3.141592653589793238;static double const two_pi = pi * 2;static double const def_arc_tolerance = 0.25;
enum Direction{ dRightToLeft, dLeftToRight};
static int const Unassigned = -1; // edge not currently 'owning' a solution
static int const Skip = -2; // edge that would otherwise close a path
#define HORIZONTAL (-1.0E+40)
#define TOLERANCE (1.0e-20)
#define NEAR_ZERO( val ) ( ( (val) > -TOLERANCE ) && ( (val) < TOLERANCE ) )
struct TEdge{ IntPoint Bot; IntPoint Curr; // current (updated for every new scanbeam)
IntPoint Top; double Dx; PolyType PolyTyp; EdgeSide Side; // side only refers to current side of solution poly
int WindDelta; // 1 or -1 depending on winding direction
int WindCnt; int WindCnt2; // winding count of the opposite polytype
int OutIdx; TEdge* Next; TEdge* Prev; TEdge* NextInLML; TEdge* NextInAEL; TEdge* PrevInAEL; TEdge* NextInSEL; TEdge* PrevInSEL;};
struct IntersectNode{ TEdge* Edge1; TEdge* Edge2; IntPoint Pt;};
struct LocalMinimum{ cInt Y; TEdge* LeftBound; TEdge* RightBound;};
struct OutPt;
// OutRec: contains a path in the clipping solution. Edges in the AEL will
// carry a pointer to an OutRec when they are part of the clipping solution.
struct OutRec{ int Idx; bool IsHole; bool IsOpen; OutRec* FirstLeft; // see comments in clipper.pas
PolyNode* PolyNd; OutPt* Pts; OutPt* BottomPt;};
struct OutPt{ int Idx; IntPoint Pt; OutPt* Next; OutPt* Prev;};
struct Join{ OutPt* OutPt1; OutPt* OutPt2; IntPoint OffPt;};
struct LocMinSorter{ inline bool operator()( const LocalMinimum& locMin1, const LocalMinimum& locMin2 ) { return locMin2.Y < locMin1.Y; }};
// ------------------------------------------------------------------------------
// ------------------------------------------------------------------------------
inline cInt Round( double val ){ if( (val < 0) ) return static_cast<cInt>(val - 0.5); else return static_cast<cInt>(val + 0.5);}
// ------------------------------------------------------------------------------
inline cInt Abs( cInt val ){ return val < 0 ? -val : val;}
// ------------------------------------------------------------------------------
// PolyTree methods ...
// ------------------------------------------------------------------------------
void PolyTree::Clear(){ for( PolyNodes::size_type i = 0; i < AllNodes.size(); ++i ) delete AllNodes[i];
AllNodes.resize( 0 ); Childs.resize( 0 );}
// ------------------------------------------------------------------------------
PolyNode* PolyTree::GetFirst() const{ if( !Childs.empty() ) return Childs[0]; else return 0;}
// ------------------------------------------------------------------------------
int PolyTree::Total() const{ int result = (int) AllNodes.size();
// with negative offsets, ignore the hidden outer polygon ...
if( result > 0 && Childs[0] != AllNodes[0] ) result--;
return result;}
// ------------------------------------------------------------------------------
// PolyNode methods ...
// ------------------------------------------------------------------------------
PolyNode::PolyNode() : Parent( 0 ), Index( 0 ), m_IsOpen( false ){}
// ------------------------------------------------------------------------------
int PolyNode::ChildCount() const{ return (int) Childs.size();}
// ------------------------------------------------------------------------------
void PolyNode::AddChild( PolyNode& child ){ unsigned cnt = (unsigned) Childs.size();
Childs.push_back( &child ); child.Parent = this; child.Index = cnt;}
// ------------------------------------------------------------------------------
PolyNode* PolyNode::GetNext() const{ if( !Childs.empty() ) return Childs[0]; else return GetNextSiblingUp();}
// ------------------------------------------------------------------------------
PolyNode* PolyNode::GetNextSiblingUp() const{ if( !Parent ) // protects against PolyTree.GetNextSiblingUp()
return 0; else if( Index == Parent->Childs.size() - 1 ) return Parent->GetNextSiblingUp(); else return Parent->Childs[Index + 1];}
// ------------------------------------------------------------------------------
bool PolyNode::IsHole() const{ bool result = true; PolyNode* node = Parent;
while( node ) { result = !result; node = node->Parent; }
return result;}
// ------------------------------------------------------------------------------
bool PolyNode::IsOpen() const{ return m_IsOpen;}
// ------------------------------------------------------------------------------
#ifndef use_int32
// ------------------------------------------------------------------------------
// Int128 class (enables safe math on signed 64bit integers)
// eg Int128 val1((long64)9223372036854775807); //ie 2^63 -1
// Int128 val2((long64)9223372036854775807);
// Int128 val3 = val1 * val2;
// val3.AsString => "85070591730234615847396907784232501249" (8.5e+37)
// ------------------------------------------------------------------------------
class Int128{public: ulong64 lo; long64 hi;
Int128( long64 _lo = 0 ) { lo = (ulong64) _lo;
if( _lo < 0 ) hi = -1; else hi = 0; }
Int128( const Int128& val ) : lo( val.lo ), hi( val.hi ) {}
Int128( const long64& _hi, const ulong64& _lo ) : lo( _lo ), hi( _hi ) {}
Int128& operator =( const long64& val ) { lo = (ulong64) val;
if( val < 0 ) hi = -1; else hi = 0;
return *this; }
bool operator ==( const Int128& val ) const { return hi == val.hi && lo == val.lo; }
bool operator !=( const Int128& val ) const { return !(*this == val); }
bool operator >( const Int128& val ) const { if( hi != val.hi ) return hi > val.hi; else return lo > val.lo; }
bool operator <( const Int128& val ) const { if( hi != val.hi ) return hi < val.hi; else return lo < val.lo; }
bool operator >=( const Int128& val ) const { return !(*this < val); }
bool operator <=( const Int128& val ) const { return !(*this > val); }
Int128& operator +=( const Int128& rhs ) { hi += rhs.hi; lo += rhs.lo;
if( lo < rhs.lo ) hi++;
return *this; }
Int128 operator +( const Int128& rhs ) const { Int128 result( *this );
result += rhs; return result; }
Int128& operator -=( const Int128& rhs ) { *this += -rhs; return *this; }
Int128 operator -( const Int128& rhs ) const { Int128 result( *this );
result -= rhs; return result; }
Int128 operator-() const // unary negation
{ if( lo == 0 ) return Int128( -hi, 0 ); else return Int128( ~hi, ~lo + 1 ); }
operator double() const { const double shift64 = 18446744073709551616.0; // 2^64
if( hi < 0 ) { if( lo == 0 ) return (double) hi * shift64; else return -(double) (~lo + ~hi * shift64); } else return (double) (lo + hi * shift64); }};// ------------------------------------------------------------------------------
Int128 Int128Mul( long64 lhs, long64 rhs ){ bool negate = (lhs < 0) != (rhs < 0);
if( lhs < 0 ) lhs = -lhs;
ulong64 int1Hi = ulong64( lhs ) >> 32; ulong64 int1Lo = ulong64( lhs & 0xFFFFFFFF );
if( rhs < 0 ) rhs = -rhs;
ulong64 int2Hi = ulong64( rhs ) >> 32; ulong64 int2Lo = ulong64( rhs & 0xFFFFFFFF );
// nb: see comments in clipper.pas
ulong64 a = int1Hi * int2Hi; ulong64 b = int1Lo * int2Lo; ulong64 c = int1Hi * int2Lo + int1Lo * int2Hi;
Int128 tmp; tmp.hi = long64( a + (c >> 32) ); tmp.lo = long64( c << 32 ); tmp.lo += long64( b );
if( tmp.lo < b ) tmp.hi++;
if( negate ) tmp = -tmp;
return tmp;}#endif
// ------------------------------------------------------------------------------
// Miscellaneous global functions
// ------------------------------------------------------------------------------
bool Orientation( const Path& poly ){ return Area( poly ) >= 0;}
// ------------------------------------------------------------------------------
double Area( const Path& poly ){ int size = (int) poly.size();
if( size < 3 ) return 0;
double a = 0;
for( int i = 0, j = size - 1; i < size; ++i ) { a += ( (double) poly[j].X + poly[i].X ) * ( (double) poly[j].Y - poly[i].Y ); j = i; }
return -a * 0.5;}
// ------------------------------------------------------------------------------
double Area( const OutPt* op ){ const OutPt* startOp = op;
if( !op ) return 0;
double a = 0;
do { a += (double) (op->Prev->Pt.X + op->Pt.X) * (double) (op->Prev->Pt.Y - op->Pt.Y); op = op->Next; } while( op != startOp );
return a * 0.5;}
// ------------------------------------------------------------------------------
double Area( const OutRec& outRec ){ return Area( outRec.Pts );}
// ------------------------------------------------------------------------------
bool PointIsVertex( const IntPoint& Pt, OutPt* pp ){ OutPt* pp2 = pp;
do { if( pp2->Pt == Pt ) return true;
pp2 = pp2->Next; } while( pp2 != pp );
return false;}
// ------------------------------------------------------------------------------
// See "The Point in Polygon Problem for Arbitrary Polygons" by Hormann & Agathos
// http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.88.5498&rep=rep1&type=pdf
int PointInPolygon( const IntPoint& pt, const Path& path ){ // returns 0 if false, +1 if true, -1 if pt ON polygon boundary
int result = 0; size_t cnt = path.size();
if( cnt < 3 ) return 0;
IntPoint ip = path[0];
for( size_t i = 1; i <= cnt; ++i ) { IntPoint ipNext = (i == cnt ? path[0] : path[i]);
if( ipNext.Y == pt.Y ) { if( (ipNext.X == pt.X) || ( ip.Y == pt.Y && ( (ipNext.X > pt.X) == (ip.X < pt.X) ) ) ) return -1; }
if( (ip.Y < pt.Y) != (ipNext.Y < pt.Y) ) { if( ip.X >= pt.X ) { if( ipNext.X > pt.X ) result = 1 - result; else { double d = (double) (ip.X - pt.X) * (ipNext.Y - pt.Y) - (double) (ipNext.X - pt.X) * (ip.Y - pt.Y);
if( !d ) return -1;
if( (d > 0) == (ipNext.Y > ip.Y) ) result = 1 - result; } } else { if( ipNext.X > pt.X ) { double d = (double) (ip.X - pt.X) * (ipNext.Y - pt.Y) - (double) (ipNext.X - pt.X) * (ip.Y - pt.Y);
if( !d ) return -1;
if( (d > 0) == (ipNext.Y > ip.Y) ) result = 1 - result; } } }
ip = ipNext; }
return result;}
// ------------------------------------------------------------------------------
int PointInPolygon( const IntPoint& pt, OutPt* op ){ // returns 0 if false, +1 if true, -1 if pt ON polygon boundary
int result = 0; OutPt* startOp = op;
for( ; ; ) { if( op->Next->Pt.Y == pt.Y ) { if( (op->Next->Pt.X == pt.X) || ( op->Pt.Y == pt.Y && ( (op->Next->Pt.X > pt.X) == (op->Pt.X < pt.X) ) ) ) return -1; }
if( (op->Pt.Y < pt.Y) != (op->Next->Pt.Y < pt.Y) ) { if( op->Pt.X >= pt.X ) { if( op->Next->Pt.X > pt.X ) result = 1 - result; else { double d = (double) (op->Pt.X - pt.X) * (op->Next->Pt.Y - pt.Y) - (double) (op->Next->Pt.X - pt.X) * (op->Pt.Y - pt.Y);
if( !d ) return -1;
if( (d > 0) == (op->Next->Pt.Y > op->Pt.Y) ) result = 1 - result; } } else { if( op->Next->Pt.X > pt.X ) { double d = (double) (op->Pt.X - pt.X) * (op->Next->Pt.Y - pt.Y) - (double) (op->Next->Pt.X - pt.X) * (op->Pt.Y - pt.Y);
if( !d ) return -1;
if( (d > 0) == (op->Next->Pt.Y > op->Pt.Y) ) result = 1 - result; } } }
op = op->Next;
if( startOp == op ) break; }
return result;}
// ------------------------------------------------------------------------------
bool Poly2ContainsPoly1( OutPt* OutPt1, OutPt* OutPt2 ){ OutPt* op = OutPt1;
do { // nb: PointInPolygon returns 0 if false, +1 if true, -1 if pt on polygon
int res = PointInPolygon( op->Pt, OutPt2 );
if( res >= 0 ) return res > 0;
op = op->Next; } while( op != OutPt1 );
return true;}
// ----------------------------------------------------------------------
bool SlopesEqual( const TEdge& e1, const TEdge& e2, bool UseFullInt64Range ){#ifndef use_int32
if( UseFullInt64Range ) return Int128Mul( e1.Top.Y - e1.Bot.Y, e2.Top.X - e2.Bot.X ) == Int128Mul( e1.Top.X - e1.Bot.X, e2.Top.Y - e2.Bot.Y ); else#endif
return (e1.Top.Y - e1.Bot.Y) * (e2.Top.X - e2.Bot.X) == (e1.Top.X - e1.Bot.X) * (e2.Top.Y - e2.Bot.Y);}
// ------------------------------------------------------------------------------
bool SlopesEqual( const IntPoint pt1, const IntPoint pt2, const IntPoint pt3, bool UseFullInt64Range ){#ifndef use_int32
if( UseFullInt64Range ) return Int128Mul( pt1.Y - pt2.Y, pt2.X - pt3.X ) == Int128Mul( pt1.X - pt2.X, pt2.Y - pt3.Y ); else#endif
return (pt1.Y - pt2.Y) * (pt2.X - pt3.X) == (pt1.X - pt2.X) * (pt2.Y - pt3.Y);}
// ------------------------------------------------------------------------------
bool SlopesEqual( const IntPoint pt1, const IntPoint pt2, const IntPoint pt3, const IntPoint pt4, bool UseFullInt64Range ){#ifndef use_int32
if( UseFullInt64Range ) return Int128Mul( pt1.Y - pt2.Y, pt3.X - pt4.X ) == Int128Mul( pt1.X - pt2.X, pt3.Y - pt4.Y ); else#endif
return (pt1.Y - pt2.Y) * (pt3.X - pt4.X) == (pt1.X - pt2.X) * (pt3.Y - pt4.Y);}
// ------------------------------------------------------------------------------
inline bool IsHorizontal( TEdge& e ){ return e.Dx == HORIZONTAL;}
// ------------------------------------------------------------------------------
inline double GetDx( const IntPoint pt1, const IntPoint pt2 ){ return (pt1.Y == pt2.Y) ? HORIZONTAL : (double) (pt2.X - pt1.X) / (pt2.Y - pt1.Y);}
// ---------------------------------------------------------------------------
inline void SetDx( TEdge& e ){ cInt dy = (e.Top.Y - e.Bot.Y);
if( dy == 0 ) e.Dx = HORIZONTAL; else e.Dx = (double) (e.Top.X - e.Bot.X) / dy;}
// ---------------------------------------------------------------------------
inline void SwapSides( TEdge& Edge1, TEdge& Edge2 ){ EdgeSide Side = Edge1.Side;
Edge1.Side = Edge2.Side; Edge2.Side = Side;}
// ------------------------------------------------------------------------------
inline void SwapPolyIndexes( TEdge& Edge1, TEdge& Edge2 ){ int OutIdx = Edge1.OutIdx;
Edge1.OutIdx = Edge2.OutIdx; Edge2.OutIdx = OutIdx;}
// ------------------------------------------------------------------------------
inline cInt TopX( TEdge& edge, const cInt currentY ){ return ( currentY == edge.Top.Y ) ? edge.Top.X : edge.Bot.X + Round( edge.Dx * (currentY - edge.Bot.Y) );}
// ------------------------------------------------------------------------------
void IntersectPoint( TEdge& Edge1, TEdge& Edge2, IntPoint& ip ){#ifdef use_xyz
ip.Z = 0;#endif
double b1, b2;
if( Edge1.Dx == Edge2.Dx ) { ip.Y = Edge1.Curr.Y; ip.X = TopX( Edge1, ip.Y ); return; } else if( Edge1.Dx == 0 ) { ip.X = Edge1.Bot.X;
if( IsHorizontal( Edge2 ) ) ip.Y = Edge2.Bot.Y; else { b2 = Edge2.Bot.Y - (Edge2.Bot.X / Edge2.Dx); ip.Y = Round( ip.X / Edge2.Dx + b2 ); } } else if( Edge2.Dx == 0 ) { ip.X = Edge2.Bot.X;
if( IsHorizontal( Edge1 ) ) ip.Y = Edge1.Bot.Y; else { b1 = Edge1.Bot.Y - (Edge1.Bot.X / Edge1.Dx); ip.Y = Round( ip.X / Edge1.Dx + b1 ); } } else { b1 = Edge1.Bot.X - Edge1.Bot.Y * Edge1.Dx; b2 = Edge2.Bot.X - Edge2.Bot.Y * Edge2.Dx; double q = (b2 - b1) / (Edge1.Dx - Edge2.Dx); ip.Y = Round( q );
if( std::fabs( Edge1.Dx ) < std::fabs( Edge2.Dx ) ) ip.X = Round( Edge1.Dx * q + b1 ); else ip.X = Round( Edge2.Dx * q + b2 ); }
if( ip.Y < Edge1.Top.Y || ip.Y < Edge2.Top.Y ) { if( Edge1.Top.Y > Edge2.Top.Y ) ip.Y = Edge1.Top.Y; else ip.Y = Edge2.Top.Y;
if( std::fabs( Edge1.Dx ) < std::fabs( Edge2.Dx ) ) ip.X = TopX( Edge1, ip.Y ); else ip.X = TopX( Edge2, ip.Y ); }
// finally, don't allow 'ip' to be BELOW curr.Y (ie bottom of scanbeam) ...
if( ip.Y > Edge1.Curr.Y ) { ip.Y = Edge1.Curr.Y;
// use the more vertical edge to derive X ...
if( std::fabs( Edge1.Dx ) > std::fabs( Edge2.Dx ) ) ip.X = TopX( Edge2, ip.Y ); else ip.X = TopX( Edge1, ip.Y ); }}
// ------------------------------------------------------------------------------
void ReversePolyPtLinks( OutPt* pp ){ if( !pp ) return;
OutPt* pp1, * pp2; pp1 = pp;
do { pp2 = pp1->Next; pp1->Next = pp1->Prev; pp1->Prev = pp2; pp1 = pp2; } while( pp1 != pp );}
// ------------------------------------------------------------------------------
void DisposeOutPts( OutPt*& pp ){ if( pp == 0 ) return;
pp->Prev->Next = 0;
while( pp ) { OutPt* tmpPp = pp; pp = pp->Next; delete tmpPp; }}
// ------------------------------------------------------------------------------
inline void InitEdge( TEdge* e, TEdge* eNext, TEdge* ePrev, const IntPoint& Pt ){ // This clears the C++ way
*e = TEdge( { 0 } );
e->Next = eNext; e->Prev = ePrev; e->Curr = Pt; e->OutIdx = Unassigned;}
// ------------------------------------------------------------------------------
void InitEdge2( TEdge& e, PolyType Pt ){ if( e.Curr.Y >= e.Next->Curr.Y ) { e.Bot = e.Curr; e.Top = e.Next->Curr; } else { e.Top = e.Curr; e.Bot = e.Next->Curr; }
SetDx( e ); e.PolyTyp = Pt;}
// ------------------------------------------------------------------------------
TEdge* RemoveEdge( TEdge* e ){ // removes e from double_linked_list (but without removing from memory)
e->Prev->Next = e->Next; e->Next->Prev = e->Prev; TEdge* result = e->Next; e->Prev = 0; // flag as removed (see ClipperBase.Clear)
return result;}
// ------------------------------------------------------------------------------
inline void ReverseHorizontal( TEdge& e ){ // swap horizontal edges' Top and Bottom x's so they follow the natural
// progression of the bounds - ie so their xbots will align with the
// adjoining lower edge. [Helpful in the ProcessHorizontal() method.]
std::swap( e.Top.X, e.Bot.X );
#ifdef use_xyz
std::swap( e.Top.Z, e.Bot.Z );#endif
}
// ------------------------------------------------------------------------------
void SwapPoints( IntPoint& pt1, IntPoint& pt2 ){ IntPoint tmp = pt1;
pt1 = pt2; pt2 = tmp;}
// ------------------------------------------------------------------------------
bool GetOverlapSegment( IntPoint pt1a, IntPoint pt1b, IntPoint pt2a, IntPoint pt2b, IntPoint& pt1, IntPoint& pt2 ){ // precondition: segments are Collinear.
if( Abs( pt1a.X - pt1b.X ) > Abs( pt1a.Y - pt1b.Y ) ) { if( pt1a.X > pt1b.X ) SwapPoints( pt1a, pt1b );
if( pt2a.X > pt2b.X ) SwapPoints( pt2a, pt2b );
if( pt1a.X > pt2a.X ) pt1 = pt1a; else pt1 = pt2a;
if( pt1b.X < pt2b.X ) pt2 = pt1b; else pt2 = pt2b;
return pt1.X < pt2.X; } else { if( pt1a.Y < pt1b.Y ) SwapPoints( pt1a, pt1b );
if( pt2a.Y < pt2b.Y ) SwapPoints( pt2a, pt2b );
if( pt1a.Y < pt2a.Y ) pt1 = pt1a; else pt1 = pt2a;
if( pt1b.Y > pt2b.Y ) pt2 = pt1b; else pt2 = pt2b;
return pt1.Y > pt2.Y; }}
// ------------------------------------------------------------------------------
bool FirstIsBottomPt( const OutPt* btmPt1, const OutPt* btmPt2 ){ OutPt* p = btmPt1->Prev;
while( (p->Pt == btmPt1->Pt) && (p != btmPt1) ) p = p->Prev;
double dx1p = std::fabs( GetDx( btmPt1->Pt, p->Pt ) ); p = btmPt1->Next;
while( (p->Pt == btmPt1->Pt) && (p != btmPt1) ) p = p->Next;
double dx1n = std::fabs( GetDx( btmPt1->Pt, p->Pt ) );
p = btmPt2->Prev;
while( (p->Pt == btmPt2->Pt) && (p != btmPt2) ) p = p->Prev;
double dx2p = std::fabs( GetDx( btmPt2->Pt, p->Pt ) ); p = btmPt2->Next;
while( (p->Pt == btmPt2->Pt) && (p != btmPt2) ) p = p->Next;
double dx2n = std::fabs( GetDx( btmPt2->Pt, p->Pt ) );
if( std::max( dx1p, dx1n ) == std::max( dx2p, dx2n ) && std::min( dx1p, dx1n ) == std::min( dx2p, dx2n ) ) return Area( btmPt1 ) > 0; // if otherwise identical use orientation
else return (dx1p >= dx2p && dx1p >= dx2n) || (dx1n >= dx2p && dx1n >= dx2n);}
// ------------------------------------------------------------------------------
OutPt* GetBottomPt( OutPt* pp ){ OutPt* dups = 0; OutPt* p = pp->Next;
while( p != pp ) { if( p->Pt.Y > pp->Pt.Y ) { pp = p; dups = 0; } else if( p->Pt.Y == pp->Pt.Y && p->Pt.X <= pp->Pt.X ) { if( p->Pt.X < pp->Pt.X ) { dups = 0; pp = p; } else { if( p->Next != pp && p->Prev != pp ) dups = p; } }
p = p->Next; }
if( dups ) { // there appears to be at least 2 vertices at BottomPt so ...
while( dups != p ) { if( !FirstIsBottomPt( p, dups ) ) pp = dups;
dups = dups->Next;
while( dups->Pt != pp->Pt ) dups = dups->Next; } }
return pp;}
// ------------------------------------------------------------------------------
bool Pt2IsBetweenPt1AndPt3( const IntPoint pt1, const IntPoint pt2, const IntPoint pt3 ){ if( (pt1 == pt3) || (pt1 == pt2) || (pt3 == pt2) ) return false; else if( pt1.X != pt3.X ) return (pt2.X > pt1.X) == (pt2.X < pt3.X); else return (pt2.Y > pt1.Y) == (pt2.Y < pt3.Y);}
// ------------------------------------------------------------------------------
bool HorzSegmentsOverlap( cInt seg1a, cInt seg1b, cInt seg2a, cInt seg2b ){ if( seg1a > seg1b ) std::swap( seg1a, seg1b );
if( seg2a > seg2b ) std::swap( seg2a, seg2b );
return (seg1a < seg2b) && (seg2a < seg1b);}
// ------------------------------------------------------------------------------
// ClipperBase class methods ...
// ------------------------------------------------------------------------------
ClipperBase::ClipperBase() // constructor
{ m_CurrentLM = m_MinimaList.begin(); // begin() == end() here
m_UseFullRange = false;}
// ------------------------------------------------------------------------------
ClipperBase::~ClipperBase() // destructor
{ Clear();}
// ------------------------------------------------------------------------------
void RangeTest( const IntPoint& Pt, bool& useFullRange ){ if( useFullRange ) { if( Pt.X > hiRange || Pt.Y > hiRange || -Pt.X > hiRange || -Pt.Y > hiRange ) throw clipperException( "Coordinate outside allowed range" ); } else if( Pt.X > loRange|| Pt.Y > loRange || -Pt.X > loRange || -Pt.Y > loRange ) { useFullRange = true; RangeTest( Pt, useFullRange ); }}
// ------------------------------------------------------------------------------
TEdge* FindNextLocMin( TEdge* E ){ for( ; ; ) { while( E->Bot != E->Prev->Bot || E->Curr == E->Top ) E = E->Next;
if( !IsHorizontal( *E ) && !IsHorizontal( *E->Prev ) ) break;
while( IsHorizontal( *E->Prev ) ) E = E->Prev;
TEdge* E2 = E;
while( IsHorizontal( *E ) ) E = E->Next;
if( E->Top.Y == E->Prev->Bot.Y ) continue; // ie just an intermediate horz.
if( E2->Prev->Bot.X < E->Bot.X ) E = E2;
break; }
return E;}
// ------------------------------------------------------------------------------
TEdge* ClipperBase::ProcessBound( TEdge* E, bool NextIsForward ){ TEdge* Result = E; TEdge* Horz = 0;
if( E->OutIdx == Skip ) { // if edges still remain in the current bound beyond the skip edge then
// create another LocMin and call ProcessBound once more
if( NextIsForward ) { while( E->Top.Y == E->Next->Bot.Y ) E = E->Next;
// don't include top horizontals when parsing a bound a second time,
// they will be contained in the opposite bound ...
while( E != Result && IsHorizontal( *E ) ) E = E->Prev; } else { while( E->Top.Y == E->Prev->Bot.Y ) E = E->Prev;
while( E != Result && IsHorizontal( *E ) ) E = E->Next; }
if( E == Result ) { if( NextIsForward ) Result = E->Next; else Result = E->Prev; } else { // there are more edges in the bound beyond result starting with E
if( NextIsForward ) E = Result->Next; else E = Result->Prev;
MinimaList::value_type locMin; locMin.Y = E->Bot.Y; locMin.LeftBound = 0; locMin.RightBound = E; E->WindDelta = 0; Result = ProcessBound( E, NextIsForward ); m_MinimaList.push_back( locMin ); }
return Result; }
TEdge* EStart;
if( IsHorizontal( *E ) ) { // We need to be careful with open paths because this may not be a
// true local minima (ie E may be following a skip edge).
// Also, consecutive horz. edges may start heading left before going right.
if( NextIsForward ) EStart = E->Prev; else EStart = E->Next;
if( IsHorizontal( *EStart ) ) // ie an adjoining horizontal skip edge
{ if( EStart->Bot.X != E->Bot.X && EStart->Top.X != E->Bot.X ) ReverseHorizontal( *E ); } else if( EStart->Bot.X != E->Bot.X ) ReverseHorizontal( *E ); }
EStart = E;
if( NextIsForward ) { while( Result->Top.Y == Result->Next->Bot.Y && Result->Next->OutIdx != Skip ) Result = Result->Next;
if( IsHorizontal( *Result ) && Result->Next->OutIdx != Skip ) { // nb: at the top of a bound, horizontals are added to the bound
// only when the preceding edge attaches to the horizontal's left vertex
// unless a Skip edge is encountered when that becomes the top divide
Horz = Result;
while( IsHorizontal( *Horz->Prev ) ) Horz = Horz->Prev;
if( Horz->Prev->Top.X > Result->Next->Top.X ) Result = Horz->Prev; }
while( E != Result ) { E->NextInLML = E->Next;
if( IsHorizontal( *E ) && E != EStart && E->Bot.X != E->Prev->Top.X ) ReverseHorizontal( *E );
E = E->Next; }
if( IsHorizontal( *E ) && E != EStart && E->Bot.X != E->Prev->Top.X ) ReverseHorizontal( *E );
Result = Result->Next; // move to the edge just beyond current bound
} else { while( Result->Top.Y == Result->Prev->Bot.Y && Result->Prev->OutIdx != Skip ) Result = Result->Prev;
if( IsHorizontal( *Result ) && Result->Prev->OutIdx != Skip ) { Horz = Result;
while( IsHorizontal( *Horz->Next ) ) Horz = Horz->Next;
if( Horz->Next->Top.X == Result->Prev->Top.X || Horz->Next->Top.X > Result->Prev->Top.X ) Result = Horz->Next; }
while( E != Result ) { E->NextInLML = E->Prev;
if( IsHorizontal( *E ) && E != EStart && E->Bot.X != E->Next->Top.X ) ReverseHorizontal( *E );
E = E->Prev; }
if( IsHorizontal( *E ) && E != EStart && E->Bot.X != E->Next->Top.X ) ReverseHorizontal( *E );
Result = Result->Prev; // move to the edge just beyond current bound
}
return Result;}
// ------------------------------------------------------------------------------
bool ClipperBase::AddPath( const Path& pg, PolyType PolyTyp, bool Closed ){#ifdef use_lines
if( !Closed && PolyTyp == ptClip ) throw clipperException( "AddPath: Open paths must be subject." );
#else
if( !Closed ) throw clipperException( "AddPath: Open paths have been disabled." );
#endif
int highI = (int) pg.size() - 1;
if( Closed ) while( highI > 0 && (pg[highI] == pg[0]) ) --highI;
while( highI > 0 && (pg[highI] == pg[highI - 1]) ) --highI;
if( (Closed && highI < 2) || (!Closed && highI < 1) ) return false;
// create a new edge array ...
TEdge* edges = new TEdge[highI + 1];
bool IsFlat = true; // 1. Basic (first) edge initialization ...
try { edges[1].Curr = pg[1]; RangeTest( pg[0], m_UseFullRange ); RangeTest( pg[highI], m_UseFullRange ); InitEdge( &edges[0], &edges[1], &edges[highI], pg[0] ); InitEdge( &edges[highI], &edges[0], &edges[highI - 1], pg[highI] );
for( int i = highI - 1; i >= 1; --i ) { RangeTest( pg[i], m_UseFullRange ); InitEdge( &edges[i], &edges[i + 1], &edges[i - 1], pg[i] ); } } catch( ... ) { delete [] edges; throw; // range test fails
} TEdge* eStart = &edges[0];
// 2. Remove duplicate vertices, and (when closed) collinear edges ...
TEdge* E = eStart, * eLoopStop = eStart;
for( ; ; ) { // nb: allows matching start and end points when not Closed ...
if( E->Curr == E->Next->Curr && (Closed || E->Next != eStart) ) { if( E == E->Next ) break;
if( E == eStart ) eStart = E->Next;
E = RemoveEdge( E ); eLoopStop = E; continue; }
if( E->Prev == E->Next ) break; // only two vertices
else if( Closed && SlopesEqual( E->Prev->Curr, E->Curr, E->Next->Curr, m_UseFullRange ) && ( !m_PreserveCollinear || !Pt2IsBetweenPt1AndPt3( E->Prev->Curr, E->Curr, E->Next->Curr ) ) ) { // Collinear edges are allowed for open paths but in closed paths
// the default is to merge adjacent collinear edges into a single edge.
// However, if the PreserveCollinear property is enabled, only overlapping
// collinear edges (ie spikes) will be removed from closed paths.
if( E == eStart ) eStart = E->Next;
E = RemoveEdge( E ); E = E->Prev; eLoopStop = E; continue; }
E = E->Next;
if( (E == eLoopStop) || (!Closed && E->Next == eStart) ) break; }
if( ( !Closed && (E == E->Next) ) || ( Closed && (E->Prev == E->Next) ) ) { delete [] edges; return false; }
if( !Closed ) { m_HasOpenPaths = true; eStart->Prev->OutIdx = Skip; }
// 3. Do second stage of edge initialization ...
E = eStart;
do { InitEdge2( *E, PolyTyp ); E = E->Next;
if( IsFlat && E->Curr.Y != eStart->Curr.Y ) IsFlat = false; } while( E != eStart );
// 4. Finally, add edge bounds to LocalMinima list ...
// Totally flat paths must be handled differently when adding them
// to LocalMinima list to avoid endless loops etc ...
if( IsFlat ) { if( Closed ) { delete [] edges; return false; }
E->Prev->OutIdx = Skip; MinimaList::value_type locMin; locMin.Y = E->Bot.Y; locMin.LeftBound = 0; locMin.RightBound = E; locMin.RightBound->Side = esRight; locMin.RightBound->WindDelta = 0;
for( ; ; ) { if( E->Bot.X != E->Prev->Top.X ) ReverseHorizontal( *E );
if( E->Next->OutIdx == Skip ) break;
E->NextInLML = E->Next; E = E->Next; }
m_MinimaList.push_back( locMin ); m_edges.push_back( edges ); return true; }
m_edges.push_back( edges ); bool leftBoundIsForward; TEdge* EMin = 0;
// workaround to avoid an endless loop in the while loop below when
// open paths have matching start and end points ...
if( E->Prev->Bot == E->Prev->Top ) E = E->Next;
for( ; ; ) { E = FindNextLocMin( E );
if( E == EMin ) break; else if( !EMin ) EMin = E;
// E and E.Prev now share a local minima (left aligned if horizontal).
// Compare their slopes to find which starts which bound ...
MinimaList::value_type locMin; locMin.Y = E->Bot.Y;
if( E->Dx < E->Prev->Dx ) { locMin.LeftBound = E->Prev; locMin.RightBound = E; leftBoundIsForward = false; // Q.nextInLML = Q.prev
} else { locMin.LeftBound = E; locMin.RightBound = E->Prev; leftBoundIsForward = true; // Q.nextInLML = Q.next
}
if( !Closed ) locMin.LeftBound->WindDelta = 0; else if( locMin.LeftBound->Next == locMin.RightBound ) locMin.LeftBound->WindDelta = -1; else locMin.LeftBound->WindDelta = 1;
locMin.RightBound->WindDelta = -locMin.LeftBound->WindDelta;
E = ProcessBound( locMin.LeftBound, leftBoundIsForward );
if( E->OutIdx == Skip ) E = ProcessBound( E, leftBoundIsForward );
TEdge* E2 = ProcessBound( locMin.RightBound, !leftBoundIsForward );
if( E2->OutIdx == Skip ) E2 = ProcessBound( E2, !leftBoundIsForward );
if( locMin.LeftBound->OutIdx == Skip ) locMin.LeftBound = 0; else if( locMin.RightBound->OutIdx == Skip ) locMin.RightBound = 0;
m_MinimaList.push_back( locMin );
if( !leftBoundIsForward ) E = E2; }
return true;}
// ------------------------------------------------------------------------------
bool ClipperBase::AddPaths( const Paths& ppg, PolyType PolyTyp, bool Closed ){ bool result = false;
for( Paths::size_type i = 0; i < ppg.size(); ++i ) if( AddPath( ppg[i], PolyTyp, Closed ) ) result = true;
return result;}
// ------------------------------------------------------------------------------
void ClipperBase::Clear(){ DisposeLocalMinimaList();
for( EdgeList::size_type i = 0; i < m_edges.size(); ++i ) { TEdge* edges = m_edges[i]; delete [] edges; }
m_edges.clear(); m_UseFullRange = false; m_HasOpenPaths = false;}
// ------------------------------------------------------------------------------
void ClipperBase::Reset(){ m_CurrentLM = m_MinimaList.begin();
if( m_CurrentLM == m_MinimaList.end() ) return; // ie nothing to process
std::sort( m_MinimaList.begin(), m_MinimaList.end(), LocMinSorter() );
m_Scanbeam = ScanbeamList(); // clears/resets priority_queue
// reset all edges ...
for( MinimaList::iterator lm = m_MinimaList.begin(); lm != m_MinimaList.end(); ++lm ) { InsertScanbeam( lm->Y ); TEdge* e = lm->LeftBound;
if( e ) { e->Curr = e->Bot; e->Side = esLeft; e->OutIdx = Unassigned; }
e = lm->RightBound;
if( e ) { e->Curr = e->Bot; e->Side = esRight; e->OutIdx = Unassigned; } }
m_ActiveEdges = 0; m_CurrentLM = m_MinimaList.begin();}
// ------------------------------------------------------------------------------
void ClipperBase::DisposeLocalMinimaList(){ m_MinimaList.clear(); m_CurrentLM = m_MinimaList.begin();}
// ------------------------------------------------------------------------------
bool ClipperBase::PopLocalMinima( cInt Y, const LocalMinimum*& locMin ){ if( m_CurrentLM == m_MinimaList.end() || (*m_CurrentLM).Y != Y ) return false;
locMin = &(*m_CurrentLM); ++m_CurrentLM; return true;}
// ------------------------------------------------------------------------------
IntRect ClipperBase::GetBounds(){ IntRect result; MinimaList::iterator lm = m_MinimaList.begin();
if( lm == m_MinimaList.end() ) { result.left = result.top = result.right = result.bottom = 0; return result; }
result.left = lm->LeftBound->Bot.X; result.top = lm->LeftBound->Bot.Y; result.right = lm->LeftBound->Bot.X; result.bottom = lm->LeftBound->Bot.Y;
while( lm != m_MinimaList.end() ) { // todo - needs fixing for open paths
result.bottom = std::max( result.bottom, lm->LeftBound->Bot.Y ); TEdge* e = lm->LeftBound;
for( ; ; ) { TEdge* bottomE = e;
while( e->NextInLML ) { if( e->Bot.X < result.left ) result.left = e->Bot.X;
if( e->Bot.X > result.right ) result.right = e->Bot.X;
e = e->NextInLML; }
result.left = std::min( result.left, e->Bot.X ); result.right = std::max( result.right, e->Bot.X ); result.left = std::min( result.left, e->Top.X ); result.right = std::max( result.right, e->Top.X ); result.top = std::min( result.top, e->Top.Y );
if( bottomE == lm->LeftBound ) e = lm->RightBound; else break; }
++lm; }
return result;}
// ------------------------------------------------------------------------------
void ClipperBase::InsertScanbeam( const cInt Y ){ m_Scanbeam.push( Y );}
// ------------------------------------------------------------------------------
bool ClipperBase::PopScanbeam( cInt& Y ){ if( m_Scanbeam.empty() ) return false;
Y = m_Scanbeam.top(); m_Scanbeam.pop();
while( !m_Scanbeam.empty() && Y == m_Scanbeam.top() ) { m_Scanbeam.pop(); } // Pop duplicates.
return true;}
// ------------------------------------------------------------------------------
void ClipperBase::DisposeAllOutRecs(){ for( PolyOutList::size_type i = 0; i < m_PolyOuts.size(); ++i ) DisposeOutRec( i );
m_PolyOuts.clear();}
// ------------------------------------------------------------------------------
void ClipperBase::DisposeOutRec( PolyOutList::size_type index ){ OutRec* outRec = m_PolyOuts[index];
if( outRec->Pts ) DisposeOutPts( outRec->Pts );
delete outRec; m_PolyOuts[index] = 0;}
// ------------------------------------------------------------------------------
void ClipperBase::DeleteFromAEL( TEdge* e ){ TEdge* AelPrev = e->PrevInAEL; TEdge* AelNext = e->NextInAEL;
if( !AelPrev && !AelNext && (e != m_ActiveEdges) ) return; // already deleted
if( AelPrev ) AelPrev->NextInAEL = AelNext; else m_ActiveEdges = AelNext;
if( AelNext ) AelNext->PrevInAEL = AelPrev;
e->NextInAEL = 0; e->PrevInAEL = 0;}
// ------------------------------------------------------------------------------
OutRec* ClipperBase::CreateOutRec(){ OutRec* result = new OutRec;
result->IsHole = false; result->IsOpen = false; result->FirstLeft = 0; result->Pts = 0; result->BottomPt = 0; result->PolyNd = 0; m_PolyOuts.push_back( result ); result->Idx = (int) m_PolyOuts.size() - 1; return result;}
// ------------------------------------------------------------------------------
void ClipperBase::SwapPositionsInAEL( TEdge* Edge1, TEdge* Edge2 ){ // check that one or other edge hasn't already been removed from AEL ...
if( Edge1->NextInAEL == Edge1->PrevInAEL || Edge2->NextInAEL == Edge2->PrevInAEL ) return;
if( Edge1->NextInAEL == Edge2 ) { TEdge* Next = Edge2->NextInAEL;
if( Next ) Next->PrevInAEL = Edge1;
TEdge* Prev = Edge1->PrevInAEL;
if( Prev ) Prev->NextInAEL = Edge2;
Edge2->PrevInAEL = Prev; Edge2->NextInAEL = Edge1; Edge1->PrevInAEL = Edge2; Edge1->NextInAEL = Next; } else if( Edge2->NextInAEL == Edge1 ) { TEdge* Next = Edge1->NextInAEL;
if( Next ) Next->PrevInAEL = Edge2;
TEdge* Prev = Edge2->PrevInAEL;
if( Prev ) Prev->NextInAEL = Edge1;
Edge1->PrevInAEL = Prev; Edge1->NextInAEL = Edge2; Edge2->PrevInAEL = Edge1; Edge2->NextInAEL = Next; } else { TEdge* Next = Edge1->NextInAEL; TEdge* Prev = Edge1->PrevInAEL; Edge1->NextInAEL = Edge2->NextInAEL;
if( Edge1->NextInAEL ) Edge1->NextInAEL->PrevInAEL = Edge1;
Edge1->PrevInAEL = Edge2->PrevInAEL;
if( Edge1->PrevInAEL ) Edge1->PrevInAEL->NextInAEL = Edge1;
Edge2->NextInAEL = Next;
if( Edge2->NextInAEL ) Edge2->NextInAEL->PrevInAEL = Edge2;
Edge2->PrevInAEL = Prev;
if( Edge2->PrevInAEL ) Edge2->PrevInAEL->NextInAEL = Edge2; }
if( !Edge1->PrevInAEL ) m_ActiveEdges = Edge1; else if( !Edge2->PrevInAEL ) m_ActiveEdges = Edge2;}
// ------------------------------------------------------------------------------
void ClipperBase::UpdateEdgeIntoAEL( TEdge*& e ){ if( !e->NextInLML ) throw clipperException( "UpdateEdgeIntoAEL: invalid call" );
e->NextInLML->OutIdx = e->OutIdx; TEdge* AelPrev = e->PrevInAEL; TEdge* AelNext = e->NextInAEL;
if( AelPrev ) AelPrev->NextInAEL = e->NextInLML; else m_ActiveEdges = e->NextInLML;
if( AelNext ) AelNext->PrevInAEL = e->NextInLML;
e->NextInLML->Side = e->Side; e->NextInLML->WindDelta = e->WindDelta; e->NextInLML->WindCnt = e->WindCnt; e->NextInLML->WindCnt2 = e->WindCnt2; e = e->NextInLML; e->Curr = e->Bot; e->PrevInAEL = AelPrev; e->NextInAEL = AelNext;
if( !IsHorizontal( *e ) ) InsertScanbeam( e->Top.Y );}
// ------------------------------------------------------------------------------
bool ClipperBase::LocalMinimaPending(){ return m_CurrentLM != m_MinimaList.end();}
// ------------------------------------------------------------------------------
// TClipper methods ...
// ------------------------------------------------------------------------------
Clipper::Clipper( int initOptions ) : ClipperBase() // constructor
{ m_ExecuteLocked = false; m_UseFullRange = false; m_ReverseOutput = ( (initOptions & ioReverseSolution) != 0 ); m_StrictSimple = ( (initOptions & ioStrictlySimple) != 0 ); m_PreserveCollinear = ( (initOptions & ioPreserveCollinear) != 0 ); m_HasOpenPaths = false;#ifdef use_xyz
m_ZFill = 0;#endif
}
// ------------------------------------------------------------------------------
#ifdef use_xyz
void Clipper::ZFillFunction( ZFillCallback zFillFunc ){ m_ZFill = zFillFunc;}
// ------------------------------------------------------------------------------
#endif
bool Clipper::Execute( ClipType clipType, Paths& solution, PolyFillType fillType ){ return Execute( clipType, solution, fillType, fillType );}
// ------------------------------------------------------------------------------
bool Clipper::Execute( ClipType clipType, PolyTree& polytree, PolyFillType fillType ){ return Execute( clipType, polytree, fillType, fillType );}
// ------------------------------------------------------------------------------
bool Clipper::Execute( ClipType clipType, Paths& solution, PolyFillType subjFillType, PolyFillType clipFillType ){ if( m_ExecuteLocked ) return false;
if( m_HasOpenPaths ) throw clipperException( "Error: PolyTree struct is needed for open path clipping." );
m_ExecuteLocked = true; solution.resize( 0 ); m_SubjFillType = subjFillType; m_ClipFillType = clipFillType; m_ClipType = clipType; m_UsingPolyTree = false; bool succeeded = ExecuteInternal();
if( succeeded ) BuildResult( solution );
DisposeAllOutRecs(); m_ExecuteLocked = false; return succeeded;}
// ------------------------------------------------------------------------------
bool Clipper::Execute( ClipType clipType, PolyTree& polytree, PolyFillType subjFillType, PolyFillType clipFillType ){ if( m_ExecuteLocked ) return false;
m_ExecuteLocked = true; m_SubjFillType = subjFillType; m_ClipFillType = clipFillType; m_ClipType = clipType; m_UsingPolyTree = true; bool succeeded = ExecuteInternal();
if( succeeded ) BuildResult2( polytree );
DisposeAllOutRecs(); m_ExecuteLocked = false; return succeeded;}
// ------------------------------------------------------------------------------
void Clipper::FixHoleLinkage( OutRec& outrec ){ // skip OutRecs that (a) contain outermost polygons or
// (b) already have the correct owner/child linkage ...
if( !outrec.FirstLeft || (outrec.IsHole != outrec.FirstLeft->IsHole && outrec.FirstLeft->Pts) ) return;
OutRec* orfl = outrec.FirstLeft;
while( orfl && ( (orfl->IsHole == outrec.IsHole) || !orfl->Pts ) ) orfl = orfl->FirstLeft;
outrec.FirstLeft = orfl;}
// ------------------------------------------------------------------------------
bool Clipper::ExecuteInternal(){ bool succeeded = true;
try { Reset(); m_Maxima = MaximaList(); m_SortedEdges = 0;
succeeded = true; cInt botY, topY;
if( !PopScanbeam( botY ) ) return false;
InsertLocalMinimaIntoAEL( botY );
while( PopScanbeam( topY ) || LocalMinimaPending() ) { ProcessHorizontals(); ClearGhostJoins();
if( !ProcessIntersections( topY ) ) { succeeded = false; break; }
ProcessEdgesAtTopOfScanbeam( topY ); botY = topY; InsertLocalMinimaIntoAEL( botY ); } } catch( ... ) { succeeded = false; }
if( succeeded ) { // fix orientations ...
for( PolyOutList::size_type i = 0; i < m_PolyOuts.size(); ++i ) { OutRec* outRec = m_PolyOuts[i];
if( !outRec->Pts || outRec->IsOpen ) continue;
if( (outRec->IsHole ^ m_ReverseOutput) == (Area( *outRec ) > 0) ) ReversePolyPtLinks( outRec->Pts ); }
if( !m_Joins.empty() ) JoinCommonEdges();
// unfortunately FixupOutPolygon() must be done after JoinCommonEdges()
for( PolyOutList::size_type i = 0; i < m_PolyOuts.size(); ++i ) { OutRec* outRec = m_PolyOuts[i];
if( !outRec->Pts ) continue;
if( outRec->IsOpen ) FixupOutPolyline( *outRec ); else FixupOutPolygon( *outRec ); }
if( m_StrictSimple ) DoSimplePolygons(); }
ClearJoins(); ClearGhostJoins(); return succeeded;}
// ------------------------------------------------------------------------------
void Clipper::SetWindingCount( TEdge& edge ){ TEdge* e = edge.PrevInAEL;
// find the edge of the same polytype that immediately preceeds 'edge' in AEL
while( e && ( (e->PolyTyp != edge.PolyTyp) || (e->WindDelta == 0) ) ) e = e->PrevInAEL;
if( !e ) { if( edge.WindDelta == 0 ) { PolyFillType pft = (edge.PolyTyp == ptSubject ? m_SubjFillType : m_ClipFillType); edge.WindCnt = (pft == pftNegative ? -1 : 1); } else edge.WindCnt = edge.WindDelta;
edge.WindCnt2 = 0; e = m_ActiveEdges; // ie get ready to calc WindCnt2
} else if( edge.WindDelta == 0 && m_ClipType != ctUnion ) { edge.WindCnt = 1; edge.WindCnt2 = e->WindCnt2; e = e->NextInAEL; // ie get ready to calc WindCnt2
} else if( IsEvenOddFillType( edge ) ) { // EvenOdd filling ...
if( edge.WindDelta == 0 ) { // are we inside a subj polygon ...
bool Inside = true; TEdge* e2 = e->PrevInAEL;
while( e2 ) { if( e2->PolyTyp == e->PolyTyp && e2->WindDelta != 0 ) Inside = !Inside;
e2 = e2->PrevInAEL; }
edge.WindCnt = (Inside ? 0 : 1); } else { edge.WindCnt = edge.WindDelta; }
edge.WindCnt2 = e->WindCnt2; e = e->NextInAEL; // ie get ready to calc WindCnt2
} else { // nonZero, Positive or Negative filling ...
if( e->WindCnt * e->WindDelta < 0 ) { // prev edge is 'decreasing' WindCount (WC) toward zero
// so we're outside the previous polygon ...
if( Abs( e->WindCnt ) > 1 ) { // outside prev poly but still inside another.
// when reversing direction of prev poly use the same WC
if( e->WindDelta * edge.WindDelta < 0 ) edge.WindCnt = e->WindCnt; // otherwise continue to 'decrease' WC ...
else edge.WindCnt = e->WindCnt + edge.WindDelta; } else // now outside all polys of same polytype so set own WC ...
edge.WindCnt = (edge.WindDelta == 0 ? 1 : edge.WindDelta); } else { // prev edge is 'increasing' WindCount (WC) away from zero
// so we're inside the previous polygon ...
if( edge.WindDelta == 0 ) edge.WindCnt = (e->WindCnt < 0 ? e->WindCnt - 1 : e->WindCnt + 1); // if wind direction is reversing prev then use same WC
else if( e->WindDelta * edge.WindDelta < 0 ) edge.WindCnt = e->WindCnt; // otherwise add to WC ...
else edge.WindCnt = e->WindCnt + edge.WindDelta; }
edge.WindCnt2 = e->WindCnt2; e = e->NextInAEL; // ie get ready to calc WindCnt2
}
// update WindCnt2 ...
if( IsEvenOddAltFillType( edge ) ) { // EvenOdd filling ...
while( e != &edge ) { if( e->WindDelta != 0 ) edge.WindCnt2 = (edge.WindCnt2 == 0 ? 1 : 0);
e = e->NextInAEL; } } else { // nonZero, Positive or Negative filling ...
while( e != &edge ) { edge.WindCnt2 += e->WindDelta; e = e->NextInAEL; } }}
// ------------------------------------------------------------------------------
bool Clipper::IsEvenOddFillType( const TEdge& edge ) const{ if( edge.PolyTyp == ptSubject ) return m_SubjFillType == pftEvenOdd; else return m_ClipFillType == pftEvenOdd;}
// ------------------------------------------------------------------------------
bool Clipper::IsEvenOddAltFillType( const TEdge& edge ) const{ if( edge.PolyTyp == ptSubject ) return m_ClipFillType == pftEvenOdd; else return m_SubjFillType == pftEvenOdd;}
// ------------------------------------------------------------------------------
bool Clipper::IsContributing( const TEdge& edge ) const{ PolyFillType pft, pft2;
if( edge.PolyTyp == ptSubject ) { pft = m_SubjFillType; pft2 = m_ClipFillType; } else { pft = m_ClipFillType; pft2 = m_SubjFillType; }
switch( pft ) { case pftEvenOdd:
// return false if a subj line has been flagged as inside a subj polygon
if( edge.WindDelta == 0 && edge.WindCnt != 1 ) return false;
break;
case pftNonZero:
if( Abs( edge.WindCnt ) != 1 ) return false;
break;
case pftPositive:
if( edge.WindCnt != 1 ) return false;
break;
default: // pftNegative
if( edge.WindCnt != -1 ) return false; }
switch( m_ClipType ) { case ctIntersection:
switch( pft2 ) { case pftEvenOdd: case pftNonZero: return edge.WindCnt2 != 0;
case pftPositive: return edge.WindCnt2 > 0;
default: return edge.WindCnt2 < 0; }
break;
case ctUnion:
switch( pft2 ) { case pftEvenOdd: case pftNonZero: return edge.WindCnt2 == 0;
case pftPositive: return edge.WindCnt2 <= 0;
default: return edge.WindCnt2 >= 0; }
break;
case ctDifference:
if( edge.PolyTyp == ptSubject ) switch( pft2 ) { case pftEvenOdd: case pftNonZero: return edge.WindCnt2 == 0;
case pftPositive: return edge.WindCnt2 <= 0;
default: return edge.WindCnt2 >= 0; }
else switch( pft2 ) { case pftEvenOdd: case pftNonZero: return edge.WindCnt2 != 0;
case pftPositive: return edge.WindCnt2 > 0;
default: return edge.WindCnt2 < 0; }
break;
case ctXor:
if( edge.WindDelta == 0 ) // XOr always contributing unless open
switch( pft2 ) { case pftEvenOdd: case pftNonZero: return edge.WindCnt2 == 0;
case pftPositive: return edge.WindCnt2 <= 0;
default: return edge.WindCnt2 >= 0; }
else return true;
break;
default: return true; }}
// ------------------------------------------------------------------------------
OutPt* Clipper::AddLocalMinPoly( TEdge* e1, TEdge* e2, const IntPoint& Pt ){ OutPt* result; TEdge* e, * prevE;
if( IsHorizontal( *e2 ) || ( e1->Dx > e2->Dx ) ) { result = AddOutPt( e1, Pt ); e2->OutIdx = e1->OutIdx; e1->Side = esLeft; e2->Side = esRight; e = e1;
if( e->PrevInAEL == e2 ) prevE = e2->PrevInAEL; else prevE = e->PrevInAEL; } else { result = AddOutPt( e2, Pt ); e1->OutIdx = e2->OutIdx; e1->Side = esRight; e2->Side = esLeft; e = e2;
if( e->PrevInAEL == e1 ) prevE = e1->PrevInAEL; else prevE = e->PrevInAEL; }
if( prevE && prevE->OutIdx >= 0 && prevE->Top.Y < Pt.Y && e->Top.Y < Pt.Y ) { cInt xPrev = TopX( *prevE, Pt.Y ); cInt xE = TopX( *e, Pt.Y );
if( xPrev == xE && (e->WindDelta != 0) && (prevE->WindDelta != 0) && SlopesEqual( IntPoint( xPrev, Pt.Y ), prevE->Top, IntPoint( xE, Pt.Y ), e->Top, m_UseFullRange ) ) { OutPt* outPt = AddOutPt( prevE, Pt ); AddJoin( result, outPt, e->Top ); } }
return result;}
// ------------------------------------------------------------------------------
void Clipper::AddLocalMaxPoly( TEdge* e1, TEdge* e2, const IntPoint& Pt ){ AddOutPt( e1, Pt );
if( e2->WindDelta == 0 ) AddOutPt( e2, Pt );
if( e1->OutIdx == e2->OutIdx ) { e1->OutIdx = Unassigned; e2->OutIdx = Unassigned; } else if( e1->OutIdx < e2->OutIdx ) AppendPolygon( e1, e2 ); else AppendPolygon( e2, e1 );}
// ------------------------------------------------------------------------------
void Clipper::AddEdgeToSEL( TEdge* edge ){ // SEL pointers in PEdge are reused to build a list of horizontal edges.
// However, we don't need to worry about order with horizontal edge processing.
if( !m_SortedEdges ) { m_SortedEdges = edge; edge->PrevInSEL = 0; edge->NextInSEL = 0; } else { edge->NextInSEL = m_SortedEdges; edge->PrevInSEL = 0; m_SortedEdges->PrevInSEL = edge; m_SortedEdges = edge; }}
// ------------------------------------------------------------------------------
bool Clipper::PopEdgeFromSEL( TEdge*& edge ){ if( !m_SortedEdges ) return false;
edge = m_SortedEdges; DeleteFromSEL( m_SortedEdges ); return true;}
// ------------------------------------------------------------------------------
void Clipper::CopyAELToSEL(){ TEdge* e = m_ActiveEdges;
m_SortedEdges = e;
while( e ) { e->PrevInSEL = e->PrevInAEL; e->NextInSEL = e->NextInAEL; e = e->NextInAEL; }}
// ------------------------------------------------------------------------------
void Clipper::AddJoin( OutPt* op1, OutPt* op2, const IntPoint OffPt ){ Join* j = new Join;
j->OutPt1 = op1; j->OutPt2 = op2; j->OffPt = OffPt; m_Joins.push_back( j );}
// ------------------------------------------------------------------------------
void Clipper::ClearJoins(){ for( JoinList::size_type i = 0; i < m_Joins.size(); i++ ) delete m_Joins[i];
m_Joins.resize( 0 );}
// ------------------------------------------------------------------------------
void Clipper::ClearGhostJoins(){ for( JoinList::size_type i = 0; i < m_GhostJoins.size(); i++ ) delete m_GhostJoins[i];
m_GhostJoins.resize( 0 );}
// ------------------------------------------------------------------------------
void Clipper::AddGhostJoin( OutPt* op, const IntPoint OffPt ){ Join* j = new Join;
j->OutPt1 = op; j->OutPt2 = 0; j->OffPt = OffPt; m_GhostJoins.push_back( j );}
// ------------------------------------------------------------------------------
void Clipper::InsertLocalMinimaIntoAEL( const cInt botY ){ const LocalMinimum* lm;
while( PopLocalMinima( botY, lm ) ) { TEdge* lb = lm->LeftBound; TEdge* rb = lm->RightBound;
OutPt* Op1 = 0;
if( !lb ) { // nb: don't insert LB into either AEL or SEL
InsertEdgeIntoAEL( rb, 0 ); SetWindingCount( *rb );
if( IsContributing( *rb ) ) Op1 = AddOutPt( rb, rb->Bot ); } else if( !rb ) { InsertEdgeIntoAEL( lb, 0 ); SetWindingCount( *lb );
if( IsContributing( *lb ) ) Op1 = AddOutPt( lb, lb->Bot );
InsertScanbeam( lb->Top.Y ); } else { InsertEdgeIntoAEL( lb, 0 ); InsertEdgeIntoAEL( rb, lb ); SetWindingCount( *lb ); rb->WindCnt = lb->WindCnt; rb->WindCnt2 = lb->WindCnt2;
if( IsContributing( *lb ) ) Op1 = AddLocalMinPoly( lb, rb, lb->Bot );
InsertScanbeam( lb->Top.Y ); }
if( rb ) { if( IsHorizontal( *rb ) ) { AddEdgeToSEL( rb );
if( rb->NextInLML ) InsertScanbeam( rb->NextInLML->Top.Y ); } else InsertScanbeam( rb->Top.Y ); }
if( !lb || !rb ) continue;
// if any output polygons share an edge, they'll need joining later ...
if( Op1 && IsHorizontal( *rb ) && m_GhostJoins.size() > 0 && (rb->WindDelta != 0) ) { for( JoinList::size_type i = 0; i < m_GhostJoins.size(); ++i ) { Join* jr = m_GhostJoins[i];
// if the horizontal Rb and a 'ghost' horizontal overlap, then convert
// the 'ghost' join to a real join ready for later ...
if( HorzSegmentsOverlap( jr->OutPt1->Pt.X, jr->OffPt.X, rb->Bot.X, rb->Top.X ) ) AddJoin( jr->OutPt1, Op1, jr->OffPt ); } }
if( lb->OutIdx >= 0 && lb->PrevInAEL && lb->PrevInAEL->Curr.X == lb->Bot.X && lb->PrevInAEL->OutIdx >= 0 && SlopesEqual( lb->PrevInAEL->Bot, lb->PrevInAEL->Top, lb->Curr, lb->Top, m_UseFullRange ) && (lb->WindDelta != 0) && (lb->PrevInAEL->WindDelta != 0) ) { OutPt* Op2 = AddOutPt( lb->PrevInAEL, lb->Bot ); AddJoin( Op1, Op2, lb->Top ); }
if( lb->NextInAEL != rb ) { if( rb->OutIdx >= 0 && rb->PrevInAEL->OutIdx >= 0 && SlopesEqual( rb->PrevInAEL->Curr, rb->PrevInAEL->Top, rb->Curr, rb->Top, m_UseFullRange ) && (rb->WindDelta != 0) && (rb->PrevInAEL->WindDelta != 0) ) { OutPt* Op2 = AddOutPt( rb->PrevInAEL, rb->Bot ); AddJoin( Op1, Op2, rb->Top ); }
TEdge* e = lb->NextInAEL;
if( e ) { while( e != rb ) { // nb: For calculating winding counts etc, IntersectEdges() assumes
// that param1 will be to the Right of param2 ABOVE the intersection ...
IntersectEdges( rb, e, lb->Curr ); // order important here
e = e->NextInAEL; } } } }}
// ------------------------------------------------------------------------------
void Clipper::DeleteFromSEL( TEdge* e ){ TEdge* SelPrev = e->PrevInSEL; TEdge* SelNext = e->NextInSEL;
if( !SelPrev && !SelNext && (e != m_SortedEdges) ) return; // already deleted
if( SelPrev ) SelPrev->NextInSEL = SelNext; else m_SortedEdges = SelNext;
if( SelNext ) SelNext->PrevInSEL = SelPrev;
e->NextInSEL = 0; e->PrevInSEL = 0;}
// ------------------------------------------------------------------------------
#ifdef use_xyz
void Clipper::SetZ( IntPoint& pt, TEdge& e1, TEdge& e2 ){ if( pt.Z != 0 || !m_ZFill ) return; else if( pt == e1.Bot ) pt.Z = e1.Bot.Z; else if( pt == e1.Top ) pt.Z = e1.Top.Z; else if( pt == e2.Bot ) pt.Z = e2.Bot.Z; else if( pt == e2.Top ) pt.Z = e2.Top.Z; else (*m_ZFill)( e1.Bot, e1.Top, e2.Bot, e2.Top, pt );}
// ------------------------------------------------------------------------------
#endif
void Clipper::IntersectEdges( TEdge* e1, TEdge* e2, IntPoint& Pt ){ bool e1Contributing = ( e1->OutIdx >= 0 ); bool e2Contributing = ( e2->OutIdx >= 0 );
#ifdef use_xyz
SetZ( Pt, *e1, *e2 );#endif
#ifdef use_lines
// if either edge is on an OPEN path ...
if( e1->WindDelta == 0 || e2->WindDelta == 0 ) { // ignore subject-subject open path intersections UNLESS they
// are both open paths, AND they are both 'contributing maximas' ...
if( e1->WindDelta == 0 && e2->WindDelta == 0 ) return;
// if intersecting a subj line with a subj poly ...
else if( e1->PolyTyp == e2->PolyTyp && e1->WindDelta != e2->WindDelta && m_ClipType == ctUnion ) { if( e1->WindDelta == 0 ) { if( e2Contributing ) { AddOutPt( e1, Pt );
if( e1Contributing ) e1->OutIdx = Unassigned; } } else { if( e1Contributing ) { AddOutPt( e2, Pt );
if( e2Contributing ) e2->OutIdx = Unassigned; } } } else if( e1->PolyTyp != e2->PolyTyp ) { // toggle subj open path OutIdx on/off when Abs(clip.WndCnt) == 1 ...
if( (e1->WindDelta == 0) && abs( e2->WindCnt ) == 1 && (m_ClipType != ctUnion || e2->WindCnt2 == 0) ) { AddOutPt( e1, Pt );
if( e1Contributing ) e1->OutIdx = Unassigned; } else if( (e2->WindDelta == 0) && (abs( e1->WindCnt ) == 1) && (m_ClipType != ctUnion || e1->WindCnt2 == 0) ) { AddOutPt( e2, Pt );
if( e2Contributing ) e2->OutIdx = Unassigned; } }
return; }
#endif
// update winding counts...
// assumes that e1 will be to the Right of e2 ABOVE the intersection
if( e1->PolyTyp == e2->PolyTyp ) { if( IsEvenOddFillType( *e1 ) ) { int oldE1WindCnt = e1->WindCnt; e1->WindCnt = e2->WindCnt; e2->WindCnt = oldE1WindCnt; } else { if( e1->WindCnt + e2->WindDelta == 0 ) e1->WindCnt = -e1->WindCnt; else e1->WindCnt += e2->WindDelta;
if( e2->WindCnt - e1->WindDelta == 0 ) e2->WindCnt = -e2->WindCnt; else e2->WindCnt -= e1->WindDelta; } } else { if( !IsEvenOddFillType( *e2 ) ) e1->WindCnt2 += e2->WindDelta; else e1->WindCnt2 = ( e1->WindCnt2 == 0 ) ? 1 : 0;
if( !IsEvenOddFillType( *e1 ) ) e2->WindCnt2 -= e1->WindDelta; else e2->WindCnt2 = ( e2->WindCnt2 == 0 ) ? 1 : 0; }
PolyFillType e1FillType, e2FillType, e1FillType2, e2FillType2;
if( e1->PolyTyp == ptSubject ) { e1FillType = m_SubjFillType; e1FillType2 = m_ClipFillType; } else { e1FillType = m_ClipFillType; e1FillType2 = m_SubjFillType; }
if( e2->PolyTyp == ptSubject ) { e2FillType = m_SubjFillType; e2FillType2 = m_ClipFillType; } else { e2FillType = m_ClipFillType; e2FillType2 = m_SubjFillType; }
cInt e1Wc, e2Wc;
switch( e1FillType ) { case pftPositive: e1Wc = e1->WindCnt; break;
case pftNegative: e1Wc = -e1->WindCnt; break;
default: e1Wc = Abs( e1->WindCnt ); }
switch( e2FillType ) { case pftPositive: e2Wc = e2->WindCnt; break;
case pftNegative: e2Wc = -e2->WindCnt; break;
default: e2Wc = Abs( e2->WindCnt ); }
if( e1Contributing && e2Contributing ) { if( (e1Wc != 0 && e1Wc != 1) || (e2Wc != 0 && e2Wc != 1) || (e1->PolyTyp != e2->PolyTyp && m_ClipType != ctXor) ) { AddLocalMaxPoly( e1, e2, Pt ); } else { AddOutPt( e1, Pt ); AddOutPt( e2, Pt ); SwapSides( *e1, *e2 ); SwapPolyIndexes( *e1, *e2 ); } } else if( e1Contributing ) { if( e2Wc == 0 || e2Wc == 1 ) { AddOutPt( e1, Pt ); SwapSides( *e1, *e2 ); SwapPolyIndexes( *e1, *e2 ); } } else if( e2Contributing ) { if( e1Wc == 0 || e1Wc == 1 ) { AddOutPt( e2, Pt ); SwapSides( *e1, *e2 ); SwapPolyIndexes( *e1, *e2 ); } } else if( (e1Wc == 0 || e1Wc == 1) && (e2Wc == 0 || e2Wc == 1) ) { // neither edge is currently contributing ...
cInt e1Wc2, e2Wc2;
switch( e1FillType2 ) { case pftPositive: e1Wc2 = e1->WindCnt2; break;
case pftNegative: e1Wc2 = -e1->WindCnt2; break;
default: e1Wc2 = Abs( e1->WindCnt2 ); }
switch( e2FillType2 ) { case pftPositive: e2Wc2 = e2->WindCnt2; break;
case pftNegative: e2Wc2 = -e2->WindCnt2; break;
default: e2Wc2 = Abs( e2->WindCnt2 ); }
if( e1->PolyTyp != e2->PolyTyp ) { AddLocalMinPoly( e1, e2, Pt ); } else if( e1Wc == 1 && e2Wc == 1 ) switch( m_ClipType ) { case ctIntersection:
if( e1Wc2 > 0 && e2Wc2 > 0 ) AddLocalMinPoly( e1, e2, Pt );
break;
case ctUnion:
if( e1Wc2 <= 0 && e2Wc2 <= 0 ) AddLocalMinPoly( e1, e2, Pt );
break;
case ctDifference:
if( ( (e1->PolyTyp == ptClip) && (e1Wc2 > 0) && (e2Wc2 > 0) ) || ( (e1->PolyTyp == ptSubject) && (e1Wc2 <= 0) && (e2Wc2 <= 0) ) ) AddLocalMinPoly( e1, e2, Pt );
break;
case ctXor: AddLocalMinPoly( e1, e2, Pt ); }
else SwapSides( *e1, *e2 ); }}
// ------------------------------------------------------------------------------
void Clipper::SetHoleState( TEdge* e, OutRec* outrec ){ TEdge* e2 = e->PrevInAEL; TEdge* eTmp = 0;
while( e2 ) { if( e2->OutIdx >= 0 && e2->WindDelta != 0 ) { if( !eTmp ) eTmp = e2; else if( eTmp->OutIdx == e2->OutIdx ) eTmp = 0; }
e2 = e2->PrevInAEL; }
if( !eTmp ) { outrec->FirstLeft = 0; outrec->IsHole = false; } else { outrec->FirstLeft = m_PolyOuts[eTmp->OutIdx]; outrec->IsHole = !outrec->FirstLeft->IsHole; }}
// ------------------------------------------------------------------------------
OutRec* GetLowermostRec( OutRec* outRec1, OutRec* outRec2 ){ // work out which polygon fragment has the correct hole state ...
if( !outRec1->BottomPt ) outRec1->BottomPt = GetBottomPt( outRec1->Pts );
if( !outRec2->BottomPt ) outRec2->BottomPt = GetBottomPt( outRec2->Pts );
OutPt* OutPt1 = outRec1->BottomPt; OutPt* OutPt2 = outRec2->BottomPt;
if( OutPt1->Pt.Y > OutPt2->Pt.Y ) return outRec1; else if( OutPt1->Pt.Y < OutPt2->Pt.Y ) return outRec2; else if( OutPt1->Pt.X < OutPt2->Pt.X ) return outRec1; else if( OutPt1->Pt.X > OutPt2->Pt.X ) return outRec2; else if( OutPt1->Next == OutPt1 ) return outRec2; else if( OutPt2->Next == OutPt2 ) return outRec1; else if( FirstIsBottomPt( OutPt1, OutPt2 ) ) return outRec1; else return outRec2;}
// ------------------------------------------------------------------------------
bool OutRec1RightOfOutRec2( OutRec* outRec1, OutRec* outRec2 ){ do { outRec1 = outRec1->FirstLeft;
if( outRec1 == outRec2 ) return true; } while( outRec1 );
return false;}
// ------------------------------------------------------------------------------
OutRec* Clipper::GetOutRec( int Idx ){ OutRec* outrec = m_PolyOuts[Idx];
while( outrec != m_PolyOuts[outrec->Idx] ) outrec = m_PolyOuts[outrec->Idx];
return outrec;}
// ------------------------------------------------------------------------------
void Clipper::AppendPolygon( TEdge* e1, TEdge* e2 ){ // get the start and ends of both output polygons ...
OutRec* outRec1 = m_PolyOuts[e1->OutIdx]; OutRec* outRec2 = m_PolyOuts[e2->OutIdx];
OutRec* holeStateRec;
if( OutRec1RightOfOutRec2( outRec1, outRec2 ) ) holeStateRec = outRec2; else if( OutRec1RightOfOutRec2( outRec2, outRec1 ) ) holeStateRec = outRec1; else holeStateRec = GetLowermostRec( outRec1, outRec2 );
// get the start and ends of both output polygons and
// join e2 poly onto e1 poly and delete pointers to e2 ...
OutPt* p1_lft = outRec1->Pts; OutPt* p1_rt = p1_lft->Prev; OutPt* p2_lft = outRec2->Pts; OutPt* p2_rt = p2_lft->Prev;
// join e2 poly onto e1 poly and delete pointers to e2 ...
if( e1->Side == esLeft ) { if( e2->Side == esLeft ) { // z y x a b c
ReversePolyPtLinks( p2_lft ); p2_lft->Next = p1_lft; p1_lft->Prev = p2_lft; p1_rt->Next = p2_rt; p2_rt->Prev = p1_rt; outRec1->Pts = p2_rt; } else { // x y z a b c
p2_rt->Next = p1_lft; p1_lft->Prev = p2_rt; p2_lft->Prev = p1_rt; p1_rt->Next = p2_lft; outRec1->Pts = p2_lft; } } else { if( e2->Side == esRight ) { // a b c z y x
ReversePolyPtLinks( p2_lft ); p1_rt->Next = p2_rt; p2_rt->Prev = p1_rt; p2_lft->Next = p1_lft; p1_lft->Prev = p2_lft; } else { // a b c x y z
p1_rt->Next = p2_lft; p2_lft->Prev = p1_rt; p1_lft->Prev = p2_rt; p2_rt->Next = p1_lft; } }
outRec1->BottomPt = 0;
if( holeStateRec == outRec2 ) { if( outRec2->FirstLeft != outRec1 ) outRec1->FirstLeft = outRec2->FirstLeft;
outRec1->IsHole = outRec2->IsHole; }
outRec2->Pts = 0; outRec2->BottomPt = 0; outRec2->FirstLeft = outRec1;
int OKIdx = e1->OutIdx; int ObsoleteIdx = e2->OutIdx;
e1->OutIdx = Unassigned; // nb: safe because we only get here via AddLocalMaxPoly
e2->OutIdx = Unassigned;
TEdge* e = m_ActiveEdges;
while( e ) { if( e->OutIdx == ObsoleteIdx ) { e->OutIdx = OKIdx; e->Side = e1->Side; break; }
e = e->NextInAEL; }
outRec2->Idx = outRec1->Idx;}
// ------------------------------------------------------------------------------
OutPt* Clipper::AddOutPt( TEdge* e, const IntPoint& pt ){ if( e->OutIdx < 0 ) { OutRec* outRec = CreateOutRec(); outRec->IsOpen = (e->WindDelta == 0); OutPt* newOp = new OutPt; outRec->Pts = newOp; newOp->Idx = outRec->Idx; newOp->Pt = pt; newOp->Next = newOp; newOp->Prev = newOp;
if( !outRec->IsOpen ) SetHoleState( e, outRec );
e->OutIdx = outRec->Idx; return newOp; } else { OutRec* outRec = m_PolyOuts[e->OutIdx]; // OutRec.Pts is the 'Left-most' point & OutRec.Pts.Prev is the 'Right-most'
OutPt* op = outRec->Pts;
bool ToFront = (e->Side == esLeft);
if( ToFront && (pt == op->Pt) ) return op; else if( !ToFront && (pt == op->Prev->Pt) ) return op->Prev;
OutPt* newOp = new OutPt; newOp->Idx = outRec->Idx; newOp->Pt = pt; newOp->Next = op; newOp->Prev = op->Prev; newOp->Prev->Next = newOp; op->Prev = newOp;
if( ToFront ) outRec->Pts = newOp;
return newOp; }}
// ------------------------------------------------------------------------------
OutPt* Clipper::GetLastOutPt( TEdge* e ){ OutRec* outRec = m_PolyOuts[e->OutIdx];
if( e->Side == esLeft ) return outRec->Pts; else return outRec->Pts->Prev;}
// ------------------------------------------------------------------------------
void Clipper::ProcessHorizontals(){ TEdge* horzEdge;
while( PopEdgeFromSEL( horzEdge ) ) ProcessHorizontal( horzEdge );}
// ------------------------------------------------------------------------------
inline bool IsMinima( TEdge* e ){ return e && (e->Prev->NextInLML != e) && (e->Next->NextInLML != e);}
// ------------------------------------------------------------------------------
inline bool IsMaxima( TEdge* e, const cInt Y ){ return e && e->Top.Y == Y && !e->NextInLML;}
// ------------------------------------------------------------------------------
inline bool IsIntermediate( TEdge* e, const cInt Y ){ return e->Top.Y == Y && e->NextInLML;}
// ------------------------------------------------------------------------------
TEdge* GetMaximaPair( TEdge* e ){ if( (e->Next->Top == e->Top) && !e->Next->NextInLML ) return e->Next; else if( (e->Prev->Top == e->Top) && !e->Prev->NextInLML ) return e->Prev; else return 0;}
// ------------------------------------------------------------------------------
TEdge* GetMaximaPairEx( TEdge* e ){ // as GetMaximaPair() but returns 0 if MaxPair isn't in AEL (unless it's horizontal)
TEdge* result = GetMaximaPair( e );
if( result && ( result->OutIdx == Skip || ( result->NextInAEL == result->PrevInAEL && !IsHorizontal( *result ) ) ) ) return 0;
return result;}
// ------------------------------------------------------------------------------
void Clipper::SwapPositionsInSEL( TEdge* Edge1, TEdge* Edge2 ){ if( !( Edge1->NextInSEL ) && !( Edge1->PrevInSEL ) ) return;
if( !( Edge2->NextInSEL ) && !( Edge2->PrevInSEL ) ) return;
if( Edge1->NextInSEL == Edge2 ) { TEdge* Next = Edge2->NextInSEL;
if( Next ) Next->PrevInSEL = Edge1;
TEdge* Prev = Edge1->PrevInSEL;
if( Prev ) Prev->NextInSEL = Edge2;
Edge2->PrevInSEL = Prev; Edge2->NextInSEL = Edge1; Edge1->PrevInSEL = Edge2; Edge1->NextInSEL = Next; } else if( Edge2->NextInSEL == Edge1 ) { TEdge* Next = Edge1->NextInSEL;
if( Next ) Next->PrevInSEL = Edge2;
TEdge* Prev = Edge2->PrevInSEL;
if( Prev ) Prev->NextInSEL = Edge1;
Edge1->PrevInSEL = Prev; Edge1->NextInSEL = Edge2; Edge2->PrevInSEL = Edge1; Edge2->NextInSEL = Next; } else { TEdge* Next = Edge1->NextInSEL; TEdge* Prev = Edge1->PrevInSEL; Edge1->NextInSEL = Edge2->NextInSEL;
if( Edge1->NextInSEL ) Edge1->NextInSEL->PrevInSEL = Edge1;
Edge1->PrevInSEL = Edge2->PrevInSEL;
if( Edge1->PrevInSEL ) Edge1->PrevInSEL->NextInSEL = Edge1;
Edge2->NextInSEL = Next;
if( Edge2->NextInSEL ) Edge2->NextInSEL->PrevInSEL = Edge2;
Edge2->PrevInSEL = Prev;
if( Edge2->PrevInSEL ) Edge2->PrevInSEL->NextInSEL = Edge2; }
if( !Edge1->PrevInSEL ) m_SortedEdges = Edge1; else if( !Edge2->PrevInSEL ) m_SortedEdges = Edge2;}
// ------------------------------------------------------------------------------
TEdge* GetNextInAEL( TEdge* e, Direction dir ){ return dir == dLeftToRight ? e->NextInAEL : e->PrevInAEL;}
// ------------------------------------------------------------------------------
void GetHorzDirection( TEdge& HorzEdge, Direction& Dir, cInt& Left, cInt& Right ){ if( HorzEdge.Bot.X < HorzEdge.Top.X ) { Left = HorzEdge.Bot.X; Right = HorzEdge.Top.X; Dir = dLeftToRight; } else { Left = HorzEdge.Top.X; Right = HorzEdge.Bot.X; Dir = dRightToLeft; }}
// ------------------------------------------------------------------------
/*******************************************************************************
* Notes: Horizontal edges (HEs) at scanline intersections (ie at the Top or ** Bottom of a scanbeam) are processed as if layered. The order in which HEs ** are processed doesn't matter. HEs intersect with other HE Bot.Xs only [#] ** (or they could intersect with Top.Xs only, ie EITHER Bot.Xs OR Top.Xs), ** and with other non-horizontal edges [*]. Once these intersections are ** processed, intermediate HEs then 'promote' the Edge above (NextInLML) into ** the AEL. These 'promoted' edges may in turn intersect [%] with other HEs. ********************************************************************************/
void Clipper::ProcessHorizontal( TEdge* horzEdge ){ Direction dir; cInt horzLeft, horzRight; bool IsOpen = (horzEdge->WindDelta == 0);
GetHorzDirection( *horzEdge, dir, horzLeft, horzRight );
TEdge* eLastHorz = horzEdge, * eMaxPair = 0;
while( eLastHorz->NextInLML && IsHorizontal( *eLastHorz->NextInLML ) ) eLastHorz = eLastHorz->NextInLML;
if( !eLastHorz->NextInLML ) eMaxPair = GetMaximaPair( eLastHorz );
MaximaList::const_iterator maxIt; MaximaList::const_reverse_iterator maxRit;
if( m_Maxima.size() > 0 ) { // get the first maxima in range (X) ...
if( dir == dLeftToRight ) { maxIt = m_Maxima.begin();
while( maxIt != m_Maxima.end() && *maxIt <= horzEdge->Bot.X ) maxIt++;
if( maxIt != m_Maxima.end() && *maxIt >= eLastHorz->Top.X ) maxIt = m_Maxima.end(); } else { maxRit = m_Maxima.rbegin();
while( maxRit != m_Maxima.rend() && *maxRit > horzEdge->Bot.X ) maxRit++;
if( maxRit != m_Maxima.rend() && *maxRit <= eLastHorz->Top.X ) maxRit = m_Maxima.rend(); } }
OutPt* op1 = 0;
for( ; ; ) // loop through consec. horizontal edges
{ bool IsLastHorz = (horzEdge == eLastHorz); TEdge* e = GetNextInAEL( horzEdge, dir );
while( e ) { // this code block inserts extra coords into horizontal edges (in output
// polygons) whereever maxima touch these horizontal edges. This helps
// 'simplifying' polygons (ie if the Simplify property is set).
if( m_Maxima.size() > 0 ) { if( dir == dLeftToRight ) { while( maxIt != m_Maxima.end() && *maxIt < e->Curr.X ) { if( horzEdge->OutIdx >= 0 && !IsOpen ) AddOutPt( horzEdge, IntPoint( *maxIt, horzEdge->Bot.Y ) );
maxIt++; } } else { while( maxRit != m_Maxima.rend() && *maxRit > e->Curr.X ) { if( horzEdge->OutIdx >= 0 && !IsOpen ) AddOutPt( horzEdge, IntPoint( *maxRit, horzEdge->Bot.Y ) );
maxRit++; } } }
;
if( (dir == dLeftToRight && e->Curr.X > horzRight) || (dir == dRightToLeft && e->Curr.X < horzLeft) ) break;
// Also break if we've got to the end of an intermediate horizontal edge ...
// nb: Smaller Dx's are to the right of larger Dx's ABOVE the horizontal.
if( e->Curr.X == horzEdge->Top.X && horzEdge->NextInLML && e->Dx < horzEdge->NextInLML->Dx ) break;
if( horzEdge->OutIdx >= 0 && !IsOpen ) // note: may be done multiple times
{#ifdef use_xyz
if( dir == dLeftToRight ) SetZ( e->Curr, *horzEdge, *e ); else SetZ( e->Curr, *e, *horzEdge );
#endif
op1 = AddOutPt( horzEdge, e->Curr ); TEdge* eNextHorz = m_SortedEdges;
while( eNextHorz ) { if( eNextHorz->OutIdx >= 0 && HorzSegmentsOverlap( horzEdge->Bot.X, horzEdge->Top.X, eNextHorz->Bot.X, eNextHorz->Top.X ) ) { OutPt* op2 = GetLastOutPt( eNextHorz ); AddJoin( op2, op1, eNextHorz->Top ); }
eNextHorz = eNextHorz->NextInSEL; }
AddGhostJoin( op1, horzEdge->Bot ); }
// OK, so far we're still in range of the horizontal Edge but make sure
// we're at the last of consec. horizontals when matching with eMaxPair
if( e == eMaxPair && IsLastHorz ) { if( horzEdge->OutIdx >= 0 ) AddLocalMaxPoly( horzEdge, eMaxPair, horzEdge->Top );
DeleteFromAEL( horzEdge ); DeleteFromAEL( eMaxPair ); return; }
if( dir == dLeftToRight ) { IntPoint Pt = IntPoint( e->Curr.X, horzEdge->Curr.Y ); IntersectEdges( horzEdge, e, Pt ); } else { IntPoint Pt = IntPoint( e->Curr.X, horzEdge->Curr.Y ); IntersectEdges( e, horzEdge, Pt ); }
TEdge* eNext = GetNextInAEL( e, dir ); SwapPositionsInAEL( horzEdge, e ); e = eNext; } // end while(e)
// Break out of loop if HorzEdge.NextInLML is not also horizontal ...
if( !horzEdge->NextInLML || !IsHorizontal( *horzEdge->NextInLML ) ) break;
UpdateEdgeIntoAEL( horzEdge );
if( horzEdge->OutIdx >= 0 ) AddOutPt( horzEdge, horzEdge->Bot );
GetHorzDirection( *horzEdge, dir, horzLeft, horzRight ); } // end for (;;)
if( horzEdge->OutIdx >= 0 && !op1 ) { op1 = GetLastOutPt( horzEdge ); TEdge* eNextHorz = m_SortedEdges;
while( eNextHorz ) { if( eNextHorz->OutIdx >= 0 && HorzSegmentsOverlap( horzEdge->Bot.X, horzEdge->Top.X, eNextHorz->Bot.X, eNextHorz->Top.X ) ) { OutPt* op2 = GetLastOutPt( eNextHorz ); AddJoin( op2, op1, eNextHorz->Top ); }
eNextHorz = eNextHorz->NextInSEL; }
AddGhostJoin( op1, horzEdge->Top ); }
if( horzEdge->NextInLML ) { if( horzEdge->OutIdx >= 0 ) { op1 = AddOutPt( horzEdge, horzEdge->Top ); UpdateEdgeIntoAEL( horzEdge );
if( horzEdge->WindDelta == 0 ) return;
// nb: HorzEdge is no longer horizontal here
TEdge* ePrev = horzEdge->PrevInAEL; TEdge* eNext = horzEdge->NextInAEL;
if( ePrev && ePrev->Curr.X == horzEdge->Bot.X && ePrev->Curr.Y == horzEdge->Bot.Y && ePrev->WindDelta != 0 && ( ePrev->OutIdx >= 0 && ePrev->Curr.Y > ePrev->Top.Y && SlopesEqual( *horzEdge, *ePrev, m_UseFullRange ) ) ) { OutPt* op2 = AddOutPt( ePrev, horzEdge->Bot ); AddJoin( op1, op2, horzEdge->Top ); } else if( eNext && eNext->Curr.X == horzEdge->Bot.X && eNext->Curr.Y == horzEdge->Bot.Y && eNext->WindDelta != 0 && eNext->OutIdx >= 0 && eNext->Curr.Y > eNext->Top.Y && SlopesEqual( *horzEdge, *eNext, m_UseFullRange ) ) { OutPt* op2 = AddOutPt( eNext, horzEdge->Bot ); AddJoin( op1, op2, horzEdge->Top ); } } else UpdateEdgeIntoAEL( horzEdge ); } else { if( horzEdge->OutIdx >= 0 ) AddOutPt( horzEdge, horzEdge->Top );
DeleteFromAEL( horzEdge ); }}
// ------------------------------------------------------------------------------
bool Clipper::ProcessIntersections( const cInt topY ){ if( !m_ActiveEdges ) return true;
try { BuildIntersectList( topY ); size_t IlSize = m_IntersectList.size();
if( IlSize == 0 ) return true;
if( IlSize == 1 || FixupIntersectionOrder() ) ProcessIntersectList(); else return false; } catch( ... ) { m_SortedEdges = 0; DisposeIntersectNodes(); throw clipperException( "ProcessIntersections error" ); } m_SortedEdges = 0; return true;}
// ------------------------------------------------------------------------------
void Clipper::DisposeIntersectNodes(){ for( size_t i = 0; i < m_IntersectList.size(); ++i ) delete m_IntersectList[i];
m_IntersectList.clear();}
// ------------------------------------------------------------------------------
void Clipper::BuildIntersectList( const cInt topY ){ if( !m_ActiveEdges ) return;
// prepare for sorting ...
TEdge* e = m_ActiveEdges; m_SortedEdges = e;
while( e ) { e->PrevInSEL = e->PrevInAEL; e->NextInSEL = e->NextInAEL; e->Curr.X = TopX( *e, topY ); e = e->NextInAEL; }
// bubblesort ...
bool isModified;
do { isModified = false; e = m_SortedEdges;
while( e->NextInSEL ) { TEdge* eNext = e->NextInSEL; IntPoint Pt;
if( e->Curr.X > eNext->Curr.X ) { IntersectPoint( *e, *eNext, Pt );
if( Pt.Y < topY ) Pt = IntPoint( TopX( *e, topY ), topY );
IntersectNode* newNode = new IntersectNode; newNode->Edge1 = e; newNode->Edge2 = eNext; newNode->Pt = Pt; m_IntersectList.push_back( newNode );
SwapPositionsInSEL( e, eNext ); isModified = true; } else e = eNext; }
if( e->PrevInSEL ) e->PrevInSEL->NextInSEL = 0; else break; } while( isModified );
m_SortedEdges = 0; // important
}
// ------------------------------------------------------------------------------
void Clipper::ProcessIntersectList(){ for( size_t i = 0; i < m_IntersectList.size(); ++i ) { IntersectNode* iNode = m_IntersectList[i]; { IntersectEdges( iNode->Edge1, iNode->Edge2, iNode->Pt ); SwapPositionsInAEL( iNode->Edge1, iNode->Edge2 ); } delete iNode; }
m_IntersectList.clear();}
// ------------------------------------------------------------------------------
bool IntersectListSort( IntersectNode* node1, IntersectNode* node2 ){ return node2->Pt.Y < node1->Pt.Y;}
// ------------------------------------------------------------------------------
inline bool EdgesAdjacent( const IntersectNode& inode ){ return (inode.Edge1->NextInSEL == inode.Edge2) || (inode.Edge1->PrevInSEL == inode.Edge2);}
// ------------------------------------------------------------------------------
bool Clipper::FixupIntersectionOrder(){ // pre-condition: intersections are sorted Bottom-most first.
// Now it's crucial that intersections are made only between adjacent edges,
// so to ensure this the order of intersections may need adjusting ...
CopyAELToSEL(); std::sort( m_IntersectList.begin(), m_IntersectList.end(), IntersectListSort ); size_t cnt = m_IntersectList.size();
for( size_t i = 0; i < cnt; ++i ) { if( !EdgesAdjacent( *m_IntersectList[i] ) ) { size_t j = i + 1;
while( j < cnt && !EdgesAdjacent( *m_IntersectList[j] ) ) j++;
if( j == cnt ) return false;
std::swap( m_IntersectList[i], m_IntersectList[j] ); }
SwapPositionsInSEL( m_IntersectList[i]->Edge1, m_IntersectList[i]->Edge2 ); }
return true;}
// ------------------------------------------------------------------------------
void Clipper::DoMaxima( TEdge* e ){ TEdge* eMaxPair = GetMaximaPairEx( e );
if( !eMaxPair ) { if( e->OutIdx >= 0 ) AddOutPt( e, e->Top );
DeleteFromAEL( e ); return; }
TEdge* eNext = e->NextInAEL;
while( eNext && eNext != eMaxPair ) { IntersectEdges( e, eNext, e->Top ); SwapPositionsInAEL( e, eNext ); eNext = e->NextInAEL; }
if( e->OutIdx == Unassigned && eMaxPair->OutIdx == Unassigned ) { DeleteFromAEL( e ); DeleteFromAEL( eMaxPair ); } else if( e->OutIdx >= 0 && eMaxPair->OutIdx >= 0 ) { if( e->OutIdx >= 0 ) AddLocalMaxPoly( e, eMaxPair, e->Top );
DeleteFromAEL( e ); DeleteFromAEL( eMaxPair ); }
#ifdef use_lines
else if( e->WindDelta == 0 ) { if( e->OutIdx >= 0 ) { AddOutPt( e, e->Top ); e->OutIdx = Unassigned; }
DeleteFromAEL( e );
if( eMaxPair->OutIdx >= 0 ) { AddOutPt( eMaxPair, e->Top ); eMaxPair->OutIdx = Unassigned; }
DeleteFromAEL( eMaxPair ); }#endif
else throw clipperException( "DoMaxima error" );}
// ------------------------------------------------------------------------------
void Clipper::ProcessEdgesAtTopOfScanbeam( const cInt topY ){ TEdge* e = m_ActiveEdges;
while( e ) { // 1. process maxima, treating them as if they're 'bent' horizontal edges,
// but exclude maxima with horizontal edges. nb: e can't be a horizontal.
bool IsMaximaEdge = IsMaxima( e, topY );
if( IsMaximaEdge ) { TEdge* eMaxPair = GetMaximaPairEx( e ); IsMaximaEdge = ( !eMaxPair || !IsHorizontal( *eMaxPair ) ); }
if( IsMaximaEdge ) { if( m_StrictSimple ) m_Maxima.push_back( e->Top.X );
TEdge* ePrev = e->PrevInAEL; DoMaxima( e );
if( !ePrev ) e = m_ActiveEdges; else e = ePrev->NextInAEL; } else { // 2. promote horizontal edges, otherwise update Curr.X and Curr.Y ...
if( IsIntermediate( e, topY ) && IsHorizontal( *e->NextInLML ) ) { UpdateEdgeIntoAEL( e );
if( e->OutIdx >= 0 ) AddOutPt( e, e->Bot );
AddEdgeToSEL( e ); } else { e->Curr.X = TopX( *e, topY ); e->Curr.Y = topY;#ifdef use_xyz
e->Curr.Z = topY == e->Top.Y ? e->Top.Z : (topY == e->Bot.Y ? e->Bot.Z : 0);#endif
}
// When StrictlySimple and 'e' is being touched by another edge, then
// make sure both edges have a vertex here ...
if( m_StrictSimple ) { TEdge* ePrev = e->PrevInAEL;
if( (e->OutIdx >= 0) && (e->WindDelta != 0) && ePrev && (ePrev->OutIdx >= 0) && (ePrev->Curr.X == e->Curr.X) && (ePrev->WindDelta != 0) ) { IntPoint pt = e->Curr;#ifdef use_xyz
SetZ( pt, *ePrev, *e );#endif
OutPt* op = AddOutPt( ePrev, pt ); OutPt* op2 = AddOutPt( e, pt ); AddJoin( op, op2, pt ); // StrictlySimple (type-3) join
} }
e = e->NextInAEL; } }
// 3. Process horizontals at the Top of the scanbeam ...
m_Maxima.sort(); ProcessHorizontals(); m_Maxima.clear();
// 4. Promote intermediate vertices ...
e = m_ActiveEdges;
while( e ) { if( IsIntermediate( e, topY ) ) { OutPt* op = 0;
if( e->OutIdx >= 0 ) op = AddOutPt( e, e->Top );
UpdateEdgeIntoAEL( e );
// if output polygons share an edge, they'll need joining later ...
TEdge* ePrev = e->PrevInAEL; TEdge* eNext = e->NextInAEL;
if( ePrev && ePrev->Curr.X == e->Bot.X && ePrev->Curr.Y == e->Bot.Y && op && ePrev->OutIdx >= 0 && ePrev->Curr.Y > ePrev->Top.Y && SlopesEqual( e->Curr, e->Top, ePrev->Curr, ePrev->Top, m_UseFullRange ) && (e->WindDelta != 0) && (ePrev->WindDelta != 0) ) { OutPt* op2 = AddOutPt( ePrev, e->Bot ); AddJoin( op, op2, e->Top ); } else if( eNext && eNext->Curr.X == e->Bot.X && eNext->Curr.Y == e->Bot.Y && op && eNext->OutIdx >= 0 && eNext->Curr.Y > eNext->Top.Y && SlopesEqual( e->Curr, e->Top, eNext->Curr, eNext->Top, m_UseFullRange ) && (e->WindDelta != 0) && (eNext->WindDelta != 0) ) { OutPt* op2 = AddOutPt( eNext, e->Bot ); AddJoin( op, op2, e->Top ); } }
e = e->NextInAEL; }}
// ------------------------------------------------------------------------------
void Clipper::FixupOutPolyline( OutRec& outrec ){ OutPt* pp = outrec.Pts; OutPt* lastPP = pp->Prev;
while( pp != lastPP ) { pp = pp->Next;
if( pp->Pt == pp->Prev->Pt ) { if( pp == lastPP ) lastPP = pp->Prev;
OutPt* tmpPP = pp->Prev; tmpPP->Next = pp->Next; pp->Next->Prev = tmpPP; delete pp; pp = tmpPP; } }
if( pp == pp->Prev ) { DisposeOutPts( pp ); outrec.Pts = 0; return; }}
// ------------------------------------------------------------------------------
void Clipper::FixupOutPolygon( OutRec& outrec ){ // FixupOutPolygon() - removes duplicate points and simplifies consecutive
// parallel edges by removing the middle vertex.
OutPt* lastOK = 0;
outrec.BottomPt = 0; OutPt* pp = outrec.Pts; bool preserveCol = m_PreserveCollinear || m_StrictSimple;
for( ; ; ) { if( pp->Prev == pp || pp->Prev == pp->Next ) { DisposeOutPts( pp ); outrec.Pts = 0; return; }
// test for duplicate points and collinear edges ...
if( (pp->Pt == pp->Next->Pt) || (pp->Pt == pp->Prev->Pt) || ( SlopesEqual( pp->Prev->Pt, pp->Pt, pp->Next->Pt, m_UseFullRange ) && ( !preserveCol || !Pt2IsBetweenPt1AndPt3( pp->Prev->Pt, pp->Pt, pp->Next->Pt ) ) ) ) { lastOK = 0; OutPt* tmp = pp; pp->Prev->Next = pp->Next; pp->Next->Prev = pp->Prev; pp = pp->Prev; delete tmp; } else if( pp == lastOK ) break; else { if( !lastOK ) lastOK = pp;
pp = pp->Next; } }
outrec.Pts = pp;}
// ------------------------------------------------------------------------------
int PointCount( OutPt* Pts ){ if( !Pts ) return 0;
int result = 0; OutPt* p = Pts;
do { result++; p = p->Next; } while( p != Pts );
return result;}
// ------------------------------------------------------------------------------
void Clipper::BuildResult( Paths& polys ){ polys.reserve( m_PolyOuts.size() );
for( PolyOutList::size_type ii = 0; ii < m_PolyOuts.size(); ++ii ) { if( !m_PolyOuts[ii]->Pts ) continue;
Path pg; OutPt* p = m_PolyOuts[ii]->Pts->Prev; int cnt = PointCount( p );
if( cnt < 2 ) continue;
pg.reserve( cnt );
for( int jj = 0; jj < cnt; ++jj ) { pg.push_back( p->Pt ); p = p->Prev; }
polys.push_back( pg ); }}
// ------------------------------------------------------------------------------
void Clipper::BuildResult2( PolyTree& polytree ){ polytree.Clear(); polytree.AllNodes.reserve( m_PolyOuts.size() );
// add each output polygon/contour to polytree ...
for( PolyOutList::size_type i = 0; i < m_PolyOuts.size(); i++ ) { OutRec* outRec = m_PolyOuts[i]; int cnt = PointCount( outRec->Pts );
if( (outRec->IsOpen && cnt < 2) || (!outRec->IsOpen && cnt < 3) ) continue;
FixHoleLinkage( *outRec ); PolyNode* pn = new PolyNode(); // nb: polytree takes ownership of all the PolyNodes
polytree.AllNodes.push_back( pn ); outRec->PolyNd = pn; pn->Parent = 0; pn->Index = 0; pn->Contour.reserve( cnt ); OutPt* op = outRec->Pts->Prev;
for( int j = 0; j < cnt; j++ ) { pn->Contour.push_back( op->Pt ); op = op->Prev; } }
// fixup PolyNode links etc ...
polytree.Childs.reserve( m_PolyOuts.size() );
for( PolyOutList::size_type i = 0; i < m_PolyOuts.size(); i++ ) { OutRec* outRec = m_PolyOuts[i];
if( !outRec->PolyNd ) continue;
if( outRec->IsOpen ) { outRec->PolyNd->m_IsOpen = true; polytree.AddChild( *outRec->PolyNd ); } else if( outRec->FirstLeft && outRec->FirstLeft->PolyNd ) outRec->FirstLeft->PolyNd->AddChild( *outRec->PolyNd ); else polytree.AddChild( *outRec->PolyNd ); }}
// ------------------------------------------------------------------------------
void SwapIntersectNodes( IntersectNode& int1, IntersectNode& int2 ){ // just swap the contents (because fIntersectNodes is a single-linked-list)
IntersectNode inode = int1; // gets a copy of Int1
int1.Edge1 = int2.Edge1; int1.Edge2 = int2.Edge2; int1.Pt = int2.Pt; int2.Edge1 = inode.Edge1; int2.Edge2 = inode.Edge2; int2.Pt = inode.Pt;}
// ------------------------------------------------------------------------------
inline bool E2InsertsBeforeE1( TEdge& e1, TEdge& e2 ){ if( e2.Curr.X == e1.Curr.X ) { if( e2.Top.Y > e1.Top.Y ) return e2.Top.X < TopX( e1, e2.Top.Y ); else return e1.Top.X > TopX( e2, e1.Top.Y ); } else return e2.Curr.X < e1.Curr.X;}
// ------------------------------------------------------------------------------
bool GetOverlap( const cInt a1, const cInt a2, const cInt b1, const cInt b2, cInt& Left, cInt& Right ){ if( a1 < a2 ) { if( b1 < b2 ) { Left = std::max( a1, b1 ); Right = std::min( a2, b2 ); } else { Left = std::max( a1, b2 ); Right = std::min( a2, b1 ); } } else { if( b1 < b2 ) { Left = std::max( a2, b1 ); Right = std::min( a1, b2 ); } else { Left = std::max( a2, b2 ); Right = std::min( a1, b1 ); } }
return Left < Right;}
// ------------------------------------------------------------------------------
inline void UpdateOutPtIdxs( OutRec& outrec ){ OutPt* op = outrec.Pts;
do { op->Idx = outrec.Idx; op = op->Prev; } while( op != outrec.Pts );}
// ------------------------------------------------------------------------------
void Clipper::InsertEdgeIntoAEL( TEdge* edge, TEdge* startEdge ){ if( !m_ActiveEdges ) { edge->PrevInAEL = 0; edge->NextInAEL = 0; m_ActiveEdges = edge; } else if( !startEdge && E2InsertsBeforeE1( *m_ActiveEdges, *edge ) ) { edge->PrevInAEL = 0; edge->NextInAEL = m_ActiveEdges; m_ActiveEdges->PrevInAEL = edge; m_ActiveEdges = edge; } else { if( !startEdge ) startEdge = m_ActiveEdges;
while( startEdge->NextInAEL && !E2InsertsBeforeE1( *startEdge->NextInAEL, *edge ) ) startEdge = startEdge->NextInAEL;
edge->NextInAEL = startEdge->NextInAEL;
if( startEdge->NextInAEL ) startEdge->NextInAEL->PrevInAEL = edge;
edge->PrevInAEL = startEdge; startEdge->NextInAEL = edge; }}
// ----------------------------------------------------------------------
OutPt* DupOutPt( OutPt* outPt, bool InsertAfter ){ OutPt* result = new OutPt;
result->Pt = outPt->Pt; result->Idx = outPt->Idx;
if( InsertAfter ) { result->Next = outPt->Next; result->Prev = outPt; outPt->Next->Prev = result; outPt->Next = result; } else { result->Prev = outPt->Prev; result->Next = outPt; outPt->Prev->Next = result; outPt->Prev = result; }
return result;}
// ------------------------------------------------------------------------------
bool JoinHorz( OutPt* op1, OutPt* op1b, OutPt* op2, OutPt* op2b, const IntPoint Pt, bool DiscardLeft ){ Direction Dir1 = (op1->Pt.X > op1b->Pt.X ? dRightToLeft : dLeftToRight); Direction Dir2 = (op2->Pt.X > op2b->Pt.X ? dRightToLeft : dLeftToRight);
if( Dir1 == Dir2 ) return false;
// When DiscardLeft, we want Op1b to be on the Left of Op1, otherwise we
// want Op1b to be on the Right. (And likewise with Op2 and Op2b.)
// So, to facilitate this while inserting Op1b and Op2b ...
// when DiscardLeft, make sure we're AT or RIGHT of Pt before adding Op1b,
// otherwise make sure we're AT or LEFT of Pt. (Likewise with Op2b.)
if( Dir1 == dLeftToRight ) { while( op1->Next->Pt.X <= Pt.X && op1->Next->Pt.X >= op1->Pt.X && op1->Next->Pt.Y == Pt.Y ) op1 = op1->Next;
if( DiscardLeft && (op1->Pt.X != Pt.X) ) op1 = op1->Next;
op1b = DupOutPt( op1, !DiscardLeft );
if( op1b->Pt != Pt ) { op1 = op1b; op1->Pt = Pt; op1b = DupOutPt( op1, !DiscardLeft ); } } else { while( op1->Next->Pt.X >= Pt.X && op1->Next->Pt.X <= op1->Pt.X && op1->Next->Pt.Y == Pt.Y ) op1 = op1->Next;
if( !DiscardLeft && (op1->Pt.X != Pt.X) ) op1 = op1->Next;
op1b = DupOutPt( op1, DiscardLeft );
if( op1b->Pt != Pt ) { op1 = op1b; op1->Pt = Pt; op1b = DupOutPt( op1, DiscardLeft ); } }
if( Dir2 == dLeftToRight ) { while( op2->Next->Pt.X <= Pt.X && op2->Next->Pt.X >= op2->Pt.X && op2->Next->Pt.Y == Pt.Y ) op2 = op2->Next;
if( DiscardLeft && (op2->Pt.X != Pt.X) ) op2 = op2->Next;
op2b = DupOutPt( op2, !DiscardLeft );
if( op2b->Pt != Pt ) { op2 = op2b; op2->Pt = Pt; op2b = DupOutPt( op2, !DiscardLeft ); }
; } else { while( op2->Next->Pt.X >= Pt.X && op2->Next->Pt.X <= op2->Pt.X && op2->Next->Pt.Y == Pt.Y ) op2 = op2->Next;
if( !DiscardLeft && (op2->Pt.X != Pt.X) ) op2 = op2->Next;
op2b = DupOutPt( op2, DiscardLeft );
if( op2b->Pt != Pt ) { op2 = op2b; op2->Pt = Pt; op2b = DupOutPt( op2, DiscardLeft ); }
; }
;
if( (Dir1 == dLeftToRight) == DiscardLeft ) { op1->Prev = op2; op2->Next = op1; op1b->Next = op2b; op2b->Prev = op1b; } else { op1->Next = op2; op2->Prev = op1; op1b->Prev = op2b; op2b->Next = op1b; }
return true;}
// ------------------------------------------------------------------------------
bool Clipper::JoinPoints( Join* j, OutRec* outRec1, OutRec* outRec2 ){ OutPt* op1 = j->OutPt1, * op1b; OutPt* op2 = j->OutPt2, * op2b;
// There are 3 kinds of joins for output polygons ...
// 1. Horizontal joins where Join.OutPt1 & Join.OutPt2 are vertices anywhere
// along (horizontal) collinear edges (& Join.OffPt is on the same horizontal).
// 2. Non-horizontal joins where Join.OutPt1 & Join.OutPt2 are at the same
// location at the Bottom of the overlapping segment (& Join.OffPt is above).
// 3. StrictSimple joins where edges touch but are not collinear and where
// Join.OutPt1, Join.OutPt2 & Join.OffPt all share the same point.
bool isHorizontal = (j->OutPt1->Pt.Y == j->OffPt.Y);
if( isHorizontal && (j->OffPt == j->OutPt1->Pt) && (j->OffPt == j->OutPt2->Pt) ) { // Strictly Simple join ...
if( outRec1 != outRec2 ) return false;
op1b = j->OutPt1->Next;
while( op1b != op1 && (op1b->Pt == j->OffPt) ) op1b = op1b->Next;
bool reverse1 = (op1b->Pt.Y > j->OffPt.Y); op2b = j->OutPt2->Next;
while( op2b != op2 && (op2b->Pt == j->OffPt) ) op2b = op2b->Next;
bool reverse2 = (op2b->Pt.Y > j->OffPt.Y);
if( reverse1 == reverse2 ) return false;
if( reverse1 ) { op1b = DupOutPt( op1, false ); op2b = DupOutPt( op2, true ); op1->Prev = op2; op2->Next = op1; op1b->Next = op2b; op2b->Prev = op1b; j->OutPt1 = op1; j->OutPt2 = op1b; return true; } else { op1b = DupOutPt( op1, true ); op2b = DupOutPt( op2, false ); op1->Next = op2; op2->Prev = op1; op1b->Prev = op2b; op2b->Next = op1b; j->OutPt1 = op1; j->OutPt2 = op1b; return true; } } else if( isHorizontal ) { // treat horizontal joins differently to non-horizontal joins since with
// them we're not yet sure where the overlapping is. OutPt1.Pt & OutPt2.Pt
// may be anywhere along the horizontal edge.
op1b = op1;
while( op1->Prev->Pt.Y == op1->Pt.Y && op1->Prev != op1b && op1->Prev != op2 ) op1 = op1->Prev;
while( op1b->Next->Pt.Y == op1b->Pt.Y && op1b->Next != op1 && op1b->Next != op2 ) op1b = op1b->Next;
if( op1b->Next == op1 || op1b->Next == op2 ) return false; // a flat 'polygon'
op2b = op2;
while( op2->Prev->Pt.Y == op2->Pt.Y && op2->Prev != op2b && op2->Prev != op1b ) op2 = op2->Prev;
while( op2b->Next->Pt.Y == op2b->Pt.Y && op2b->Next != op2 && op2b->Next != op1 ) op2b = op2b->Next;
if( op2b->Next == op2 || op2b->Next == op1 ) return false; // a flat 'polygon'
cInt Left, Right;
// Op1 --> Op1b & Op2 --> Op2b are the extremites of the horizontal edges
if( !GetOverlap( op1->Pt.X, op1b->Pt.X, op2->Pt.X, op2b->Pt.X, Left, Right ) ) return false;
// DiscardLeftSide: when overlapping edges are joined, a spike will created
// which needs to be cleaned up. However, we don't want Op1 or Op2 caught up
// on the discard Side as either may still be needed for other joins ...
IntPoint Pt; bool DiscardLeftSide;
if( op1->Pt.X >= Left && op1->Pt.X <= Right ) { Pt = op1->Pt; DiscardLeftSide = (op1->Pt.X > op1b->Pt.X); } else if( op2->Pt.X >= Left&& op2->Pt.X <= Right ) { Pt = op2->Pt; DiscardLeftSide = (op2->Pt.X > op2b->Pt.X); } else if( op1b->Pt.X >= Left && op1b->Pt.X <= Right ) { Pt = op1b->Pt; DiscardLeftSide = op1b->Pt.X > op1->Pt.X; } else { Pt = op2b->Pt; DiscardLeftSide = (op2b->Pt.X > op2->Pt.X); }
j->OutPt1 = op1; j->OutPt2 = op2; return JoinHorz( op1, op1b, op2, op2b, Pt, DiscardLeftSide ); } else { // nb: For non-horizontal joins ...
// 1. Jr.OutPt1.Pt.Y == Jr.OutPt2.Pt.Y
// 2. Jr.OutPt1.Pt > Jr.OffPt.Y
// make sure the polygons are correctly oriented ...
op1b = op1->Next;
while( (op1b->Pt == op1->Pt) && (op1b != op1) ) op1b = op1b->Next;
bool Reverse1 = ( (op1b->Pt.Y > op1->Pt.Y) || !SlopesEqual( op1->Pt, op1b->Pt, j->OffPt, m_UseFullRange ) );
if( Reverse1 ) { op1b = op1->Prev;
while( (op1b->Pt == op1->Pt) && (op1b != op1) ) op1b = op1b->Prev;
if( (op1b->Pt.Y > op1->Pt.Y) || !SlopesEqual( op1->Pt, op1b->Pt, j->OffPt, m_UseFullRange ) ) return false; }
; op2b = op2->Next;
while( (op2b->Pt == op2->Pt) && (op2b != op2) ) op2b = op2b->Next;
bool Reverse2 = ( (op2b->Pt.Y > op2->Pt.Y) || !SlopesEqual( op2->Pt, op2b->Pt, j->OffPt, m_UseFullRange ) );
if( Reverse2 ) { op2b = op2->Prev;
while( (op2b->Pt == op2->Pt) && (op2b != op2) ) op2b = op2b->Prev;
if( (op2b->Pt.Y > op2->Pt.Y) || !SlopesEqual( op2->Pt, op2b->Pt, j->OffPt, m_UseFullRange ) ) return false; }
if( (op1b == op1) || (op2b == op2) || (op1b == op2b) || ( (outRec1 == outRec2) && (Reverse1 == Reverse2) ) ) return false;
if( Reverse1 ) { op1b = DupOutPt( op1, false ); op2b = DupOutPt( op2, true ); op1->Prev = op2; op2->Next = op1; op1b->Next = op2b; op2b->Prev = op1b; j->OutPt1 = op1; j->OutPt2 = op1b; return true; } else { op1b = DupOutPt( op1, true ); op2b = DupOutPt( op2, false ); op1->Next = op2; op2->Prev = op1; op1b->Prev = op2b; op2b->Next = op1b; j->OutPt1 = op1; j->OutPt2 = op1b; return true; } }}
// ----------------------------------------------------------------------
static OutRec* ParseFirstLeft( OutRec* FirstLeft ){ while( FirstLeft && !FirstLeft->Pts ) FirstLeft = FirstLeft->FirstLeft;
return FirstLeft;}
// ------------------------------------------------------------------------------
void Clipper::FixupFirstLefts1( OutRec* OldOutRec, OutRec* NewOutRec ){ // tests if NewOutRec contains the polygon before reassigning FirstLeft
for( PolyOutList::size_type i = 0; i < m_PolyOuts.size(); ++i ) { OutRec* outRec = m_PolyOuts[i]; OutRec* firstLeft = ParseFirstLeft( outRec->FirstLeft );
if( outRec->Pts && firstLeft == OldOutRec ) { if( Poly2ContainsPoly1( outRec->Pts, NewOutRec->Pts ) ) outRec->FirstLeft = NewOutRec; } }}
// ----------------------------------------------------------------------
void Clipper::FixupFirstLefts2( OutRec* InnerOutRec, OutRec* OuterOutRec ){ // A polygon has split into two such that one is now the inner of the other.
// It's possible that these polygons now wrap around other polygons, so check
// every polygon that's also contained by OuterOutRec's FirstLeft container
// (including 0) to see if they've become inner to the new inner polygon ...
OutRec* orfl = OuterOutRec->FirstLeft;
for( PolyOutList::size_type i = 0; i < m_PolyOuts.size(); ++i ) { OutRec* outRec = m_PolyOuts[i];
if( !outRec->Pts || outRec == OuterOutRec || outRec == InnerOutRec ) continue;
OutRec* firstLeft = ParseFirstLeft( outRec->FirstLeft );
if( firstLeft != orfl && firstLeft != InnerOutRec && firstLeft != OuterOutRec ) continue;
if( Poly2ContainsPoly1( outRec->Pts, InnerOutRec->Pts ) ) outRec->FirstLeft = InnerOutRec; else if( Poly2ContainsPoly1( outRec->Pts, OuterOutRec->Pts ) ) outRec->FirstLeft = OuterOutRec; else if( outRec->FirstLeft == InnerOutRec || outRec->FirstLeft == OuterOutRec ) outRec->FirstLeft = orfl; }}
// ----------------------------------------------------------------------
void Clipper::FixupFirstLefts3( OutRec* OldOutRec, OutRec* NewOutRec ){ // reassigns FirstLeft WITHOUT testing if NewOutRec contains the polygon
for( PolyOutList::size_type i = 0; i < m_PolyOuts.size(); ++i ) { OutRec* outRec = m_PolyOuts[i]; OutRec* firstLeft = ParseFirstLeft( outRec->FirstLeft );
if( outRec->Pts && firstLeft == OldOutRec ) outRec->FirstLeft = NewOutRec; }}
// ----------------------------------------------------------------------
void Clipper::JoinCommonEdges(){ for( JoinList::size_type i = 0; i < m_Joins.size(); i++ ) { Join* join = m_Joins[i];
OutRec* outRec1 = GetOutRec( join->OutPt1->Idx ); OutRec* outRec2 = GetOutRec( join->OutPt2->Idx );
if( !outRec1->Pts || !outRec2->Pts ) continue;
if( outRec1->IsOpen || outRec2->IsOpen ) continue;
// get the polygon fragment with the correct hole state (FirstLeft)
// before calling JoinPoints() ...
OutRec* holeStateRec;
if( outRec1 == outRec2 ) holeStateRec = outRec1; else if( OutRec1RightOfOutRec2( outRec1, outRec2 ) ) holeStateRec = outRec2; else if( OutRec1RightOfOutRec2( outRec2, outRec1 ) ) holeStateRec = outRec1; else holeStateRec = GetLowermostRec( outRec1, outRec2 );
if( !JoinPoints( join, outRec1, outRec2 ) ) continue;
if( outRec1 == outRec2 ) { // instead of joining two polygons, we've just created a new one by
// splitting one polygon into two.
outRec1->Pts = join->OutPt1; outRec1->BottomPt = 0; outRec2 = CreateOutRec(); outRec2->Pts = join->OutPt2;
// update all OutRec2.Pts Idx's ...
UpdateOutPtIdxs( *outRec2 );
if( Poly2ContainsPoly1( outRec2->Pts, outRec1->Pts ) ) { // outRec1 contains outRec2 ...
outRec2->IsHole = !outRec1->IsHole; outRec2->FirstLeft = outRec1;
if( m_UsingPolyTree ) FixupFirstLefts2( outRec2, outRec1 );
if( (outRec2->IsHole ^ m_ReverseOutput) == (Area( *outRec2 ) > 0) ) ReversePolyPtLinks( outRec2->Pts ); } else if( Poly2ContainsPoly1( outRec1->Pts, outRec2->Pts ) ) { // outRec2 contains outRec1 ...
outRec2->IsHole = outRec1->IsHole; outRec1->IsHole = !outRec2->IsHole; outRec2->FirstLeft = outRec1->FirstLeft; outRec1->FirstLeft = outRec2;
if( m_UsingPolyTree ) FixupFirstLefts2( outRec1, outRec2 );
if( (outRec1->IsHole ^ m_ReverseOutput) == (Area( *outRec1 ) > 0) ) ReversePolyPtLinks( outRec1->Pts ); } else { // the 2 polygons are completely separate ...
outRec2->IsHole = outRec1->IsHole; outRec2->FirstLeft = outRec1->FirstLeft;
// fixup FirstLeft pointers that may need reassigning to OutRec2
if( m_UsingPolyTree ) FixupFirstLefts1( outRec1, outRec2 ); } } else { // joined 2 polygons together ...
outRec2->Pts = 0; outRec2->BottomPt = 0; outRec2->Idx = outRec1->Idx;
outRec1->IsHole = holeStateRec->IsHole;
if( holeStateRec == outRec2 ) outRec1->FirstLeft = outRec2->FirstLeft;
outRec2->FirstLeft = outRec1;
if( m_UsingPolyTree ) FixupFirstLefts3( outRec2, outRec1 ); } }}
// ------------------------------------------------------------------------------
// ClipperOffset support functions ...
// ------------------------------------------------------------------------------
DoublePoint GetUnitNormal( const IntPoint& pt1, const IntPoint& pt2 ){ if( pt2.X == pt1.X && pt2.Y == pt1.Y ) return DoublePoint( 0, 0 );
double Dx = (double) (pt2.X - pt1.X); double dy = (double) (pt2.Y - pt1.Y); double f = 1 * 1.0 / std::sqrt( Dx * Dx + dy * dy ); Dx *= f; dy *= f; return DoublePoint( dy, -Dx );}
// ------------------------------------------------------------------------------
// ClipperOffset class
// ------------------------------------------------------------------------------
ClipperOffset::ClipperOffset( double miterLimit, double arcTolerance ){ this->MiterLimit = miterLimit; this->ArcTolerance = arcTolerance; m_lowest.X = -1;}
// ------------------------------------------------------------------------------
ClipperOffset::~ClipperOffset(){ Clear();}
// ------------------------------------------------------------------------------
void ClipperOffset::Clear(){ for( int i = 0; i < m_polyNodes.ChildCount(); ++i ) delete m_polyNodes.Childs[i];
m_polyNodes.Childs.clear(); m_lowest.X = -1;}
// ------------------------------------------------------------------------------
void ClipperOffset::AddPath( const Path& path, JoinType joinType, EndType endType ){ int highI = (int) path.size() - 1;
if( highI < 0 ) return;
PolyNode* newNode = new PolyNode(); newNode->m_jointype = joinType; newNode->m_endtype = endType;
// strip duplicate points from path and also get index to the lowest point ...
if( endType == etClosedLine || endType == etClosedPolygon ) while( highI > 0 && path[0] == path[highI] ) highI--;
newNode->Contour.reserve( highI + 1 ); newNode->Contour.push_back( path[0] ); int j = 0, k = 0;
for( int i = 1; i <= highI; i++ ) if( newNode->Contour[j] != path[i] ) { j++; newNode->Contour.push_back( path[i] );
if( path[i].Y > newNode->Contour[k].Y || (path[i].Y == newNode->Contour[k].Y && path[i].X < newNode->Contour[k].X) ) k = j; }
if( endType == etClosedPolygon && j < 2 ) { delete newNode; return; }
m_polyNodes.AddChild( *newNode );
// if this path's lowest pt is lower than all the others then update m_lowest
if( endType != etClosedPolygon ) return;
if( m_lowest.X < 0 ) m_lowest = IntPoint( m_polyNodes.ChildCount() - 1, k ); else { IntPoint ip = m_polyNodes.Childs[(int) m_lowest.X]->Contour[(int) m_lowest.Y];
if( newNode->Contour[k].Y > ip.Y || (newNode->Contour[k].Y == ip.Y && newNode->Contour[k].X < ip.X) ) m_lowest = IntPoint( m_polyNodes.ChildCount() - 1, k ); }}
// ------------------------------------------------------------------------------
void ClipperOffset::AddPaths( const Paths& paths, JoinType joinType, EndType endType ){ for( Paths::size_type i = 0; i < paths.size(); ++i ) AddPath( paths[i], joinType, endType );}
// ------------------------------------------------------------------------------
void ClipperOffset::FixOrientations(){ // fixup orientations of all closed paths if the orientation of the
// closed path with the lowermost vertex is wrong ...
if( m_lowest.X >= 0 && !Orientation( m_polyNodes.Childs[(int) m_lowest.X]->Contour ) ) { for( int i = 0; i < m_polyNodes.ChildCount(); ++i ) { PolyNode& node = *m_polyNodes.Childs[i];
if( node.m_endtype == etClosedPolygon || ( node.m_endtype == etClosedLine && Orientation( node.Contour ) ) ) ReversePath( node.Contour ); } } else { for( int i = 0; i < m_polyNodes.ChildCount(); ++i ) { PolyNode& node = *m_polyNodes.Childs[i];
if( node.m_endtype == etClosedLine && !Orientation( node.Contour ) ) ReversePath( node.Contour ); } }}
// ------------------------------------------------------------------------------
void ClipperOffset::Execute( Paths& solution, double delta ){ solution.clear(); FixOrientations(); DoOffset( delta );
// now clean up 'corners' ...
Clipper clpr; clpr.AddPaths( m_destPolys, ptSubject, true );
if( delta > 0 ) { clpr.Execute( ctUnion, solution, pftPositive, pftPositive ); } else { IntRect r = clpr.GetBounds(); Path outer( 4 ); outer[0] = IntPoint( r.left - 10, r.bottom + 10 ); outer[1] = IntPoint( r.right + 10, r.bottom + 10 ); outer[2] = IntPoint( r.right + 10, r.top - 10 ); outer[3] = IntPoint( r.left - 10, r.top - 10 );
clpr.AddPath( outer, ptSubject, true ); clpr.ReverseSolution( true ); clpr.Execute( ctUnion, solution, pftNegative, pftNegative );
if( solution.size() > 0 ) solution.erase( solution.begin() ); }}
// ------------------------------------------------------------------------------
void ClipperOffset::Execute( PolyTree& solution, double delta ){ solution.Clear(); FixOrientations(); DoOffset( delta );
// now clean up 'corners' ...
Clipper clpr; clpr.AddPaths( m_destPolys, ptSubject, true );
if( delta > 0 ) { clpr.Execute( ctUnion, solution, pftPositive, pftPositive ); } else { IntRect r = clpr.GetBounds(); Path outer( 4 ); outer[0] = IntPoint( r.left - 10, r.bottom + 10 ); outer[1] = IntPoint( r.right + 10, r.bottom + 10 ); outer[2] = IntPoint( r.right + 10, r.top - 10 ); outer[3] = IntPoint( r.left - 10, r.top - 10 );
clpr.AddPath( outer, ptSubject, true ); clpr.ReverseSolution( true ); clpr.Execute( ctUnion, solution, pftNegative, pftNegative );
// remove the outer PolyNode rectangle ...
if( solution.ChildCount() == 1 && solution.Childs[0]->ChildCount() > 0 ) { PolyNode* outerNode = solution.Childs[0]; solution.Childs.reserve( outerNode->ChildCount() ); solution.Childs[0] = outerNode->Childs[0]; solution.Childs[0]->Parent = outerNode->Parent;
for( int i = 1; i < outerNode->ChildCount(); ++i ) solution.AddChild( *outerNode->Childs[i] ); } else solution.Clear(); }}
// ------------------------------------------------------------------------------
void ClipperOffset::DoOffset( double delta ){ m_destPolys.clear(); m_delta = delta;
// if Zero offset, just copy any CLOSED polygons to m_p and return ...
if( NEAR_ZERO( delta ) ) { m_destPolys.reserve( m_polyNodes.ChildCount() );
for( int i = 0; i < m_polyNodes.ChildCount(); i++ ) { PolyNode& node = *m_polyNodes.Childs[i];
if( node.m_endtype == etClosedPolygon ) m_destPolys.push_back( node.Contour ); }
return; }
// see offset_triginometry3.svg in the documentation folder ...
if( MiterLimit > 2 ) m_miterLim = 2 / (MiterLimit * MiterLimit); else m_miterLim = 0.5;
double y;
if( ArcTolerance <= 0.0 ) y = def_arc_tolerance; else if( ArcTolerance > std::fabs( delta ) * def_arc_tolerance ) y = std::fabs( delta ) * def_arc_tolerance; else y = ArcTolerance;
// see offset_triginometry2.svg in the documentation folder ...
double steps = pi / std::acos( 1 - y / std::fabs( delta ) );
if( steps > std::fabs( delta ) * pi ) steps = std::fabs( delta ) * pi; // ie excessive precision check
m_sin = std::sin( two_pi / steps ); m_cos = std::cos( two_pi / steps ); m_StepsPerRad = steps / two_pi;
if( delta < 0.0 ) m_sin = -m_sin;
m_destPolys.reserve( m_polyNodes.ChildCount() * 2 );
for( int i = 0; i < m_polyNodes.ChildCount(); i++ ) { PolyNode& node = *m_polyNodes.Childs[i]; m_srcPoly = node.Contour;
int len = (int) m_srcPoly.size();
if( len == 0 || ( delta <= 0 && (len < 3 || node.m_endtype != etClosedPolygon) ) ) continue;
m_destPoly.clear();
if( len == 1 ) { if( node.m_jointype == jtRound ) { double X = 1.0, Y = 0.0;
for( cInt j = 1; j <= steps; j++ ) { m_destPoly.push_back( IntPoint( Round( m_srcPoly[0].X + X * delta ), Round( m_srcPoly[0].Y + Y * delta ) ) ); double X2 = X; X = X * m_cos - m_sin * Y; Y = X2 * m_sin + Y * m_cos; } } else { double X = -1.0, Y = -1.0;
for( int j = 0; j < 4; ++j ) { m_destPoly.push_back( IntPoint( Round( m_srcPoly[0].X + X * delta ), Round( m_srcPoly[0].Y + Y * delta ) ) );
if( X < 0 ) X = 1; else if( Y < 0 ) Y = 1; else X = -1; } }
m_destPolys.push_back( m_destPoly ); continue; }
// build m_normals ...
m_normals.clear(); m_normals.reserve( len );
for( int j = 0; j < len - 1; ++j ) m_normals.push_back( GetUnitNormal( m_srcPoly[j], m_srcPoly[j + 1] ) );
if( node.m_endtype == etClosedLine || node.m_endtype == etClosedPolygon ) m_normals.push_back( GetUnitNormal( m_srcPoly[len - 1], m_srcPoly[0] ) ); else m_normals.push_back( DoublePoint( m_normals[len - 2] ) );
if( node.m_endtype == etClosedPolygon ) { int k = len - 1;
for( int j = 0; j < len; ++j ) OffsetPoint( j, k, node.m_jointype );
m_destPolys.push_back( m_destPoly ); } else if( node.m_endtype == etClosedLine ) { int k = len - 1;
for( int j = 0; j < len; ++j ) OffsetPoint( j, k, node.m_jointype );
m_destPolys.push_back( m_destPoly ); m_destPoly.clear(); // re-build m_normals ...
DoublePoint n = m_normals[len - 1];
for( int j = len - 1; j > 0; j-- ) m_normals[j] = DoublePoint( -m_normals[j - 1].X, -m_normals[j - 1].Y );
m_normals[0] = DoublePoint( -n.X, -n.Y ); k = 0;
for( int j = len - 1; j >= 0; j-- ) OffsetPoint( j, k, node.m_jointype );
m_destPolys.push_back( m_destPoly ); } else { int k = 0;
for( int j = 1; j < len - 1; ++j ) OffsetPoint( j, k, node.m_jointype );
IntPoint pt1;
if( node.m_endtype == etOpenButt ) { int j = len - 1; pt1 = IntPoint( (cInt) Round( m_srcPoly[j].X + m_normals[j].X * delta ), (cInt) Round( m_srcPoly[j].Y + m_normals[j].Y * delta ) ); m_destPoly.push_back( pt1 ); pt1 = IntPoint( (cInt) Round( m_srcPoly[j].X - m_normals[j].X * delta ), (cInt) Round( m_srcPoly[j].Y - m_normals[j].Y * delta ) ); m_destPoly.push_back( pt1 ); } else { int j = len - 1; k = len - 2; m_sinA = 0; m_normals[j] = DoublePoint( -m_normals[j].X, -m_normals[j].Y );
if( node.m_endtype == etOpenSquare ) DoSquare( j, k ); else DoRound( j, k ); }
// re-build m_normals ...
for( int j = len - 1; j > 0; j-- ) m_normals[j] = DoublePoint( -m_normals[j - 1].X, -m_normals[j - 1].Y );
m_normals[0] = DoublePoint( -m_normals[1].X, -m_normals[1].Y );
k = len - 1;
for( int j = k - 1; j > 0; --j ) OffsetPoint( j, k, node.m_jointype );
if( node.m_endtype == etOpenButt ) { pt1 = IntPoint( (cInt) Round( m_srcPoly[0].X - m_normals[0].X * delta ), (cInt) Round( m_srcPoly[0].Y - m_normals[0].Y * delta ) ); m_destPoly.push_back( pt1 ); pt1 = IntPoint( (cInt) Round( m_srcPoly[0].X + m_normals[0].X * delta ), (cInt) Round( m_srcPoly[0].Y + m_normals[0].Y * delta ) ); m_destPoly.push_back( pt1 ); } else { k = 1; m_sinA = 0;
if( node.m_endtype == etOpenSquare ) DoSquare( 0, 1 ); else DoRound( 0, 1 ); }
m_destPolys.push_back( m_destPoly ); } }}
// ------------------------------------------------------------------------------
void ClipperOffset::OffsetPoint( int j, int& k, JoinType jointype ){ // cross product ...
m_sinA = (m_normals[k].X * m_normals[j].Y - m_normals[j].X * m_normals[k].Y);
if( std::fabs( m_sinA * m_delta ) < 1.0 ) { // dot product ...
double cosA = (m_normals[k].X * m_normals[j].X + m_normals[j].Y * m_normals[k].Y );
if( cosA > 0 ) // angle => 0 degrees
{ m_destPoly.push_back( IntPoint( Round( m_srcPoly[j].X + m_normals[k].X * m_delta ), Round( m_srcPoly[j].Y + m_normals[k].Y * m_delta ) ) ); return; }
// else angle => 180 degrees
} else if( m_sinA > 1.0 ) m_sinA = 1.0; else if( m_sinA < -1.0 ) m_sinA = -1.0;
if( m_sinA * m_delta < 0 ) { m_destPoly.push_back( IntPoint( Round( m_srcPoly[j].X + m_normals[k].X * m_delta ), Round( m_srcPoly[j].Y + m_normals[k].Y * m_delta ) ) ); m_destPoly.push_back( m_srcPoly[j] ); m_destPoly.push_back( IntPoint( Round( m_srcPoly[j].X + m_normals[j].X * m_delta ), Round( m_srcPoly[j].Y + m_normals[j].Y * m_delta ) ) ); } else switch( jointype ) { case jtMiter: { double r = 1 + (m_normals[j].X * m_normals[k].X + m_normals[j].Y * m_normals[k].Y);
if( r >= m_miterLim ) DoMiter( j, k, r ); else DoSquare( j, k );
break; }
case jtSquare: DoSquare( j, k ); break;
case jtRound: DoRound( j, k ); break; }
k = j;}
// ------------------------------------------------------------------------------
void ClipperOffset::DoSquare( int j, int k ){ double dx = std::tan( std::atan2( m_sinA, m_normals[k].X * m_normals[j].X + m_normals[k].Y * m_normals[j].Y ) / 4 );
m_destPoly.push_back( IntPoint( Round( m_srcPoly[j].X + m_delta * (m_normals[k].X - m_normals[k].Y * dx) ), Round( m_srcPoly[j].Y + m_delta * (m_normals[k].Y + m_normals[k].X * dx) ) ) ); m_destPoly.push_back( IntPoint( Round( m_srcPoly[j].X + m_delta * (m_normals[j].X + m_normals[j].Y * dx) ), Round( m_srcPoly[j].Y + m_delta * (m_normals[j].Y - m_normals[j].X * dx) ) ) );}
// ------------------------------------------------------------------------------
void ClipperOffset::DoMiter( int j, int k, double r ){ double q = m_delta / r;
m_destPoly.push_back( IntPoint( Round( m_srcPoly[j].X + (m_normals[k].X + m_normals[j].X) * q ), Round( m_srcPoly[j].Y + (m_normals[k].Y + m_normals[j].Y) * q ) ) );}
// ------------------------------------------------------------------------------
void ClipperOffset::DoRound( int j, int k ){ double a = std::atan2( m_sinA, m_normals[k].X * m_normals[j].X + m_normals[k].Y * m_normals[j].Y ); int steps = std::max( (int) Round( m_StepsPerRad * std::fabs( a ) ), 1 );
double X = m_normals[k].X, Y = m_normals[k].Y, X2;
for( int i = 0; i < steps; ++i ) { m_destPoly.push_back( IntPoint( Round( m_srcPoly[j].X + X * m_delta ), Round( m_srcPoly[j].Y + Y * m_delta ) ) ); X2 = X; X = X * m_cos - m_sin * Y; Y = X2 * m_sin + Y * m_cos; }
m_destPoly.push_back( IntPoint( Round( m_srcPoly[j].X + m_normals[j].X * m_delta ), Round( m_srcPoly[j].Y + m_normals[j].Y * m_delta ) ) );}
// ------------------------------------------------------------------------------
// Miscellaneous public functions
// ------------------------------------------------------------------------------
void Clipper::DoSimplePolygons(){ PolyOutList::size_type i = 0;
while( i < m_PolyOuts.size() ) { OutRec* outrec = m_PolyOuts[i++]; OutPt* op = outrec->Pts;
if( !op || outrec->IsOpen ) continue;
do // for each Pt in Polygon until duplicate found do ...
{ OutPt* op2 = op->Next;
while( op2 != outrec->Pts ) { if( (op->Pt == op2->Pt) && op2->Next != op && op2->Prev != op ) { // split the polygon into two ...
OutPt* op3 = op->Prev; OutPt* op4 = op2->Prev; op->Prev = op4; op4->Next = op; op2->Prev = op3; op3->Next = op2;
outrec->Pts = op; OutRec* outrec2 = CreateOutRec(); outrec2->Pts = op2; UpdateOutPtIdxs( *outrec2 );
if( Poly2ContainsPoly1( outrec2->Pts, outrec->Pts ) ) { // OutRec2 is contained by OutRec1 ...
outrec2->IsHole = !outrec->IsHole; outrec2->FirstLeft = outrec;
if( m_UsingPolyTree ) FixupFirstLefts2( outrec2, outrec ); } else if( Poly2ContainsPoly1( outrec->Pts, outrec2->Pts ) ) { // OutRec1 is contained by OutRec2 ...
outrec2->IsHole = outrec->IsHole; outrec->IsHole = !outrec2->IsHole; outrec2->FirstLeft = outrec->FirstLeft; outrec->FirstLeft = outrec2;
if( m_UsingPolyTree ) FixupFirstLefts2( outrec, outrec2 ); } else { // the 2 polygons are separate ...
outrec2->IsHole = outrec->IsHole; outrec2->FirstLeft = outrec->FirstLeft;
if( m_UsingPolyTree ) FixupFirstLefts1( outrec, outrec2 ); }
op2 = op; // ie get ready for the Next iteration
}
op2 = op2->Next; }
op = op->Next; } while( op != outrec->Pts ); }}
// ------------------------------------------------------------------------------
void ReversePath( Path& p ){ std::reverse( p.begin(), p.end() );}
// ------------------------------------------------------------------------------
void ReversePaths( Paths& p ){ for( Paths::size_type i = 0; i < p.size(); ++i ) ReversePath( p[i] );}
// ------------------------------------------------------------------------------
void SimplifyPolygon( const Path& in_poly, Paths& out_polys, PolyFillType fillType ){ Clipper c;
c.StrictlySimple( true ); c.AddPath( in_poly, ptSubject, true ); c.Execute( ctUnion, out_polys, fillType, fillType );}
// ------------------------------------------------------------------------------
void SimplifyPolygons( const Paths& in_polys, Paths& out_polys, PolyFillType fillType ){ Clipper c;
c.StrictlySimple( true ); c.AddPaths( in_polys, ptSubject, true ); c.Execute( ctUnion, out_polys, fillType, fillType );}
// ------------------------------------------------------------------------------
void SimplifyPolygons( Paths& polys, PolyFillType fillType ){ SimplifyPolygons( polys, polys, fillType );}
// ------------------------------------------------------------------------------
inline double DistanceSqrd( const IntPoint& pt1, const IntPoint& pt2 ){ double Dx = ( (double) pt1.X - pt2.X ); double dy = ( (double) pt1.Y - pt2.Y );
return Dx * Dx + dy * dy;}
// ------------------------------------------------------------------------------
double DistanceFromLineSqrd( const IntPoint& pt, const IntPoint& ln1, const IntPoint& ln2 ){ // The equation of a line in general form (Ax + By + C = 0)
// given 2 points (x¹,y¹) & (x²,y²) is ...
// (y¹ - y²)x + (x² - x¹)y + (y² - y¹)x¹ - (x² - x¹)y¹ = 0
// A = (y¹ - y²); B = (x² - x¹); C = (y² - y¹)x¹ - (x² - x¹)y¹
// perpendicular distance of point (x³,y³) = (Ax³ + By³ + C)/Sqrt(A² + B²)
// see http://en.wikipedia.org/wiki/Perpendicular_distance
double A = double(ln1.Y - ln2.Y); double B = double(ln2.X - ln1.X); double C = A * ln1.X + B * ln1.Y;
C = A * pt.X + B * pt.Y - C; return (C * C) / (A * A + B * B);}
// ---------------------------------------------------------------------------
bool SlopesNearCollinear( const IntPoint& pt1, const IntPoint& pt2, const IntPoint& pt3, double distSqrd ){ // this function is more accurate when the point that's geometrically
// between the other 2 points is the one that's tested for distance.
// ie makes it more likely to pick up 'spikes' ...
if( Abs( pt1.X - pt2.X ) > Abs( pt1.Y - pt2.Y ) ) { if( (pt1.X > pt2.X) == (pt1.X < pt3.X) ) return DistanceFromLineSqrd( pt1, pt2, pt3 ) < distSqrd; else if( (pt2.X > pt1.X) == (pt2.X < pt3.X) ) return DistanceFromLineSqrd( pt2, pt1, pt3 ) < distSqrd; else return DistanceFromLineSqrd( pt3, pt1, pt2 ) < distSqrd; } else { if( (pt1.Y > pt2.Y) == (pt1.Y < pt3.Y) ) return DistanceFromLineSqrd( pt1, pt2, pt3 ) < distSqrd; else if( (pt2.Y > pt1.Y) == (pt2.Y < pt3.Y) ) return DistanceFromLineSqrd( pt2, pt1, pt3 ) < distSqrd; else return DistanceFromLineSqrd( pt3, pt1, pt2 ) < distSqrd; }}
// ------------------------------------------------------------------------------
bool PointsAreClose( IntPoint pt1, IntPoint pt2, double distSqrd ){ double Dx = (double) pt1.X - pt2.X; double dy = (double) pt1.Y - pt2.Y;
return (Dx * Dx) + (dy * dy) <= distSqrd;}
// ------------------------------------------------------------------------------
OutPt* ExcludeOp( OutPt* op ){ OutPt* result = op->Prev;
result->Next = op->Next; op->Next->Prev = result; result->Idx = 0; return result;}
// ------------------------------------------------------------------------------
void CleanPolygon( const Path& in_poly, Path& out_poly, double distance ){ // distance = proximity in units/pixels below which vertices
// will be stripped. Default ~= sqrt(2).
size_t size = in_poly.size();
if( size == 0 ) { out_poly.clear(); return; }
OutPt* outPts = new OutPt[size];
for( size_t i = 0; i < size; ++i ) { outPts[i].Pt = in_poly[i]; outPts[i].Next = &outPts[(i + 1) % size]; outPts[i].Next->Prev = &outPts[i]; outPts[i].Idx = 0; }
double distSqrd = distance * distance; OutPt* op = &outPts[0];
while( op->Idx == 0 && op->Next != op->Prev ) { if( PointsAreClose( op->Pt, op->Prev->Pt, distSqrd ) ) { op = ExcludeOp( op ); size--; } else if( PointsAreClose( op->Prev->Pt, op->Next->Pt, distSqrd ) ) { ExcludeOp( op->Next ); op = ExcludeOp( op ); size -= 2; } else if( SlopesNearCollinear( op->Prev->Pt, op->Pt, op->Next->Pt, distSqrd ) ) { op = ExcludeOp( op ); size--; } else { op->Idx = 1; op = op->Next; } }
if( size < 3 ) size = 0;
out_poly.resize( size );
for( size_t i = 0; i < size; ++i ) { out_poly[i] = op->Pt; op = op->Next; }
delete [] outPts;}
// ------------------------------------------------------------------------------
void CleanPolygon( Path& poly, double distance ){ CleanPolygon( poly, poly, distance );}
// ------------------------------------------------------------------------------
void CleanPolygons( const Paths& in_polys, Paths& out_polys, double distance ){ out_polys.resize( in_polys.size() );
for( Paths::size_type i = 0; i < in_polys.size(); ++i ) CleanPolygon( in_polys[i], out_polys[i], distance );}
// ------------------------------------------------------------------------------
void CleanPolygons( Paths& polys, double distance ){ CleanPolygons( polys, polys, distance );}
// ------------------------------------------------------------------------------
void Minkowski( const Path& poly, const Path& path, Paths& solution, bool isSum, bool isClosed ){ int delta = (isClosed ? 1 : 0); size_t polyCnt = poly.size(); size_t pathCnt = path.size(); Paths pp;
pp.reserve( pathCnt );
if( isSum ) for( size_t i = 0; i < pathCnt; ++i ) { Path p; p.reserve( polyCnt );
for( size_t j = 0; j < poly.size(); ++j ) p.push_back( IntPoint( path[i].X + poly[j].X, path[i].Y + poly[j].Y ) );
pp.push_back( p ); }
else for( size_t i = 0; i < pathCnt; ++i ) { Path p; p.reserve( polyCnt );
for( size_t j = 0; j < poly.size(); ++j ) p.push_back( IntPoint( path[i].X - poly[j].X, path[i].Y - poly[j].Y ) );
pp.push_back( p ); }
solution.clear(); solution.reserve( (pathCnt + delta) * (polyCnt + 1) );
for( size_t i = 0; i < pathCnt - 1 + delta; ++i ) for( size_t j = 0; j < polyCnt; ++j ) { Path quad; quad.reserve( 4 ); quad.push_back( pp[i % pathCnt][j % polyCnt] ); quad.push_back( pp[(i + 1) % pathCnt][j % polyCnt] ); quad.push_back( pp[(i + 1) % pathCnt][(j + 1) % polyCnt] ); quad.push_back( pp[i % pathCnt][(j + 1) % polyCnt] );
if( !Orientation( quad ) ) ReversePath( quad );
solution.push_back( quad ); }
}
// ------------------------------------------------------------------------------
void MinkowskiSum( const Path& pattern, const Path& path, Paths& solution, bool pathIsClosed ){ Minkowski( pattern, path, solution, true, pathIsClosed ); Clipper c; c.AddPaths( solution, ptSubject, true ); c.Execute( ctUnion, solution, pftNonZero, pftNonZero );}
// ------------------------------------------------------------------------------
void TranslatePath( const Path& input, Path& output, const IntPoint delta ){ // precondition: input != output
output.resize( input.size() );
for( size_t i = 0; i < input.size(); ++i ) output[i] = IntPoint( input[i].X + delta.X, input[i].Y + delta.Y );}
// ------------------------------------------------------------------------------
void MinkowskiSum( const Path& pattern, const Paths& paths, Paths& solution, bool pathIsClosed ){ Clipper c;
for( size_t i = 0; i < paths.size(); ++i ) { Paths tmp; Minkowski( pattern, paths[i], tmp, true, pathIsClosed ); c.AddPaths( tmp, ptSubject, true );
if( pathIsClosed ) { Path tmp2; TranslatePath( paths[i], tmp2, pattern[0] ); c.AddPath( tmp2, ptClip, true ); } }
c.Execute( ctUnion, solution, pftNonZero, pftNonZero );}
// ------------------------------------------------------------------------------
void MinkowskiDiff( const Path& poly1, const Path& poly2, Paths& solution ){ Minkowski( poly1, poly2, solution, false, true ); Clipper c; c.AddPaths( solution, ptSubject, true ); c.Execute( ctUnion, solution, pftNonZero, pftNonZero );}
// ------------------------------------------------------------------------------
enum NodeType{ ntAny, ntOpen, ntClosed};
void AddPolyNodeToPaths( const PolyNode& polynode, NodeType nodetype, Paths& paths ){ bool match = true;
if( nodetype == ntClosed ) match = !polynode.IsOpen(); else if( nodetype == ntOpen ) return;
if( !polynode.Contour.empty() && match ) paths.push_back( polynode.Contour );
for( int i = 0; i < polynode.ChildCount(); ++i ) AddPolyNodeToPaths( *polynode.Childs[i], nodetype, paths );}
// ------------------------------------------------------------------------------
void PolyTreeToPaths( const PolyTree& polytree, Paths& paths ){ paths.resize( 0 ); paths.reserve( polytree.Total() ); AddPolyNodeToPaths( polytree, ntAny, paths );}
// ------------------------------------------------------------------------------
void ClosedPathsFromPolyTree( const PolyTree& polytree, Paths& paths ){ paths.resize( 0 ); paths.reserve( polytree.Total() ); AddPolyNodeToPaths( polytree, ntClosed, paths );}
// ------------------------------------------------------------------------------
void OpenPathsFromPolyTree( PolyTree& polytree, Paths& paths ){ paths.resize( 0 ); paths.reserve( polytree.Total() );
// Open paths are top level only, so ...
for( int i = 0; i < polytree.ChildCount(); ++i ) if( polytree.Childs[i]->IsOpen() ) paths.push_back( polytree.Childs[i]->Contour );
}
// ------------------------------------------------------------------------------
std::ostream& operator <<( std::ostream& s, const IntPoint& p ){ s << "(" << p.X << "," << p.Y << ")"; return s;}
// ------------------------------------------------------------------------------
std::ostream& operator <<( std::ostream& s, const Path& p ){ if( p.empty() ) return s;
Path::size_type last = p.size() - 1;
for( Path::size_type i = 0; i < last; i++ ) s << "(" << p[i].X << "," << p[i].Y << "), ";
s << "(" << p[last].X << "," << p[last].Y << ")\n"; return s;}
// ------------------------------------------------------------------------------
std::ostream& operator <<( std::ostream& s, const Paths& p ){ for( Paths::size_type i = 0; i < p.size(); i++ ) s << p[i];
s << "\n"; return s;}
// ------------------------------------------------------------------------------
} // ClipperLib namespace
|