|
|
/*
* This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2013-2017 CERN * @author Tomasz Wlostowski <tomasz.wlostowski@cern.ch> * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */
#include <algorithm>
#include <geometry/shape_line_chain.h>
#include <geometry/shape_circle.h>
#include <trigo.h>
#include "clipper.hpp"
ClipperLib::Path SHAPE_LINE_CHAIN::convertToClipper( bool aRequiredOrientation ) const{ ClipperLib::Path c_path;
for( int i = 0; i < PointCount(); i++ ) { const VECTOR2I& vertex = CPoint( i ); c_path.push_back( ClipperLib::IntPoint( vertex.x, vertex.y ) ); }
if( Orientation( c_path ) != aRequiredOrientation ) ReversePath( c_path );
return c_path;}
bool SHAPE_LINE_CHAIN::Collide( const VECTOR2I& aP, int aClearance ) const{ // fixme: ugly!
SEG s( aP, aP ); return this->Collide( s, aClearance );}
void SHAPE_LINE_CHAIN::Rotate( double aAngle, const VECTOR2I& aCenter ){ for( std::vector<VECTOR2I>::iterator i = m_points.begin(); i != m_points.end(); ++i ) { (*i) -= aCenter; (*i) = (*i).Rotate( aAngle ); (*i) += aCenter; }}
bool SHAPE_LINE_CHAIN::Collide( const SEG& aSeg, int aClearance ) const{ BOX2I box_a( aSeg.A, aSeg.B - aSeg.A ); BOX2I::ecoord_type dist_sq = (BOX2I::ecoord_type) aClearance * aClearance;
for( int i = 0; i < SegmentCount(); i++ ) { const SEG& s = CSegment( i ); BOX2I box_b( s.A, s.B - s.A );
BOX2I::ecoord_type d = box_a.SquaredDistance( box_b );
if( d < dist_sq ) { if( s.Collide( aSeg, aClearance ) ) return true; } }
return false;}
const SHAPE_LINE_CHAIN SHAPE_LINE_CHAIN::Reverse() const{ SHAPE_LINE_CHAIN a( *this );
reverse( a.m_points.begin(), a.m_points.end() ); a.m_closed = m_closed;
return a;}
int SHAPE_LINE_CHAIN::Length() const{ int l = 0;
for( int i = 0; i < SegmentCount(); i++ ) l += CSegment( i ).Length();
return l;}
void SHAPE_LINE_CHAIN::Replace( int aStartIndex, int aEndIndex, const VECTOR2I& aP ){ if( aEndIndex < 0 ) aEndIndex += PointCount();
if( aStartIndex < 0 ) aStartIndex += PointCount();
if( aStartIndex == aEndIndex ) m_points[aStartIndex] = aP; else { m_points.erase( m_points.begin() + aStartIndex + 1, m_points.begin() + aEndIndex + 1 ); m_points[aStartIndex] = aP; }}
void SHAPE_LINE_CHAIN::Replace( int aStartIndex, int aEndIndex, const SHAPE_LINE_CHAIN& aLine ){ if( aEndIndex < 0 ) aEndIndex += PointCount();
if( aStartIndex < 0 ) aStartIndex += PointCount();
m_points.erase( m_points.begin() + aStartIndex, m_points.begin() + aEndIndex + 1 ); m_points.insert( m_points.begin() + aStartIndex, aLine.m_points.begin(), aLine.m_points.end() );}
void SHAPE_LINE_CHAIN::Remove( int aStartIndex, int aEndIndex ){ if( aEndIndex < 0 ) aEndIndex += PointCount();
if( aStartIndex < 0 ) aStartIndex += PointCount();
m_points.erase( m_points.begin() + aStartIndex, m_points.begin() + aEndIndex + 1 );}
int SHAPE_LINE_CHAIN::Distance( const VECTOR2I& aP, bool aOutlineOnly ) const{ int d = INT_MAX;
if( IsClosed() && PointInside( aP ) && !aOutlineOnly ) return 0;
for( int s = 0; s < SegmentCount(); s++ ) d = std::min( d, CSegment( s ).Distance( aP ) );
return d;}
int SHAPE_LINE_CHAIN::Split( const VECTOR2I& aP ){ int ii = -1; int min_dist = 2;
int found_index = Find( aP );
for( int s = 0; s < SegmentCount(); s++ ) { const SEG seg = CSegment( s ); int dist = seg.Distance( aP );
// make sure we are not producing a 'slightly concave' primitive. This might happen
// if aP lies very close to one of already existing points.
if( dist < min_dist && seg.A != aP && seg.B != aP ) { min_dist = dist; if( found_index < 0 ) ii = s; else if( s < found_index ) ii = s; } }
if( ii < 0 ) ii = found_index;
if( ii >= 0 ) { m_points.insert( m_points.begin() + ii + 1, aP );
return ii + 1; }
return -1;}
int SHAPE_LINE_CHAIN::Find( const VECTOR2I& aP ) const{ for( int s = 0; s < PointCount(); s++ ) if( CPoint( s ) == aP ) return s;
return -1;}
int SHAPE_LINE_CHAIN::FindSegment( const VECTOR2I& aP ) const{ for( int s = 0; s < SegmentCount(); s++ ) if( CSegment( s ).Distance( aP ) <= 1 ) return s;
return -1;}
const SHAPE_LINE_CHAIN SHAPE_LINE_CHAIN::Slice( int aStartIndex, int aEndIndex ) const{ SHAPE_LINE_CHAIN rv;
if( aEndIndex < 0 ) aEndIndex += PointCount();
if( aStartIndex < 0 ) aStartIndex += PointCount();
for( int i = aStartIndex; i <= aEndIndex; i++ ) rv.Append( m_points[i] );
return rv;}
struct compareOriginDistance{ compareOriginDistance( VECTOR2I& aOrigin ) : m_origin( aOrigin ) {};
bool operator()( const SHAPE_LINE_CHAIN::INTERSECTION& aA, const SHAPE_LINE_CHAIN::INTERSECTION& aB ) { return ( m_origin - aA.p ).EuclideanNorm() < ( m_origin - aB.p ).EuclideanNorm(); }
VECTOR2I m_origin;};
int SHAPE_LINE_CHAIN::Intersect( const SEG& aSeg, INTERSECTIONS& aIp ) const{ for( int s = 0; s < SegmentCount(); s++ ) { OPT_VECTOR2I p = CSegment( s ).Intersect( aSeg );
if( p ) { INTERSECTION is; is.our = CSegment( s ); is.their = aSeg; is.p = *p; aIp.push_back( is ); } }
compareOriginDistance comp( aSeg.A ); sort( aIp.begin(), aIp.end(), comp );
return aIp.size();}
int SHAPE_LINE_CHAIN::Intersect( const SHAPE_LINE_CHAIN& aChain, INTERSECTIONS& aIp ) const{ BOX2I bb_other = aChain.BBox();
for( int s1 = 0; s1 < SegmentCount(); s1++ ) { const SEG& a = CSegment( s1 ); const BOX2I bb_cur( a.A, a.B - a.A );
if( !bb_other.Intersects( bb_cur ) ) continue;
for( int s2 = 0; s2 < aChain.SegmentCount(); s2++ ) { const SEG& b = aChain.CSegment( s2 ); INTERSECTION is;
if( a.Collinear( b ) ) { is.our = a; is.their = b;
if( a.Contains( b.A ) ) { is.p = b.A; aIp.push_back( is ); } if( a.Contains( b.B ) ) { is.p = b.B; aIp.push_back( is ); } if( b.Contains( a.A ) ) { is.p = a.A; aIp.push_back( is ); } if( b.Contains( a.B ) ) { is.p = a.B; aIp.push_back( is ); } } else { OPT_VECTOR2I p = a.Intersect( b );
if( p ) { is.p = *p; is.our = a; is.their = b; aIp.push_back( is ); } } } }
return aIp.size();}
int SHAPE_LINE_CHAIN::PathLength( const VECTOR2I& aP ) const{ int sum = 0;
for( int i = 0; i < SegmentCount(); i++ ) { const SEG seg = CSegment( i ); int d = seg.Distance( aP );
if( d <= 1 ) { sum += ( aP - seg.A ).EuclideanNorm(); return sum; } else sum += seg.Length(); }
return -1;}
bool SHAPE_LINE_CHAIN::PointInside( const VECTOR2I& aPt, int aAccuracy, bool aUseBBoxCache ) const{ /*
* Don't check the bounding box unless it's cached. Building it is about the same speed as * the rigorous test below and so just slows things down by doing potentially two tests. */ if( aUseBBoxCache && !m_bbox.Contains( aPt ) ) return false;
if( !m_closed || PointCount() < 3 ) return false;
bool inside = false;
/**
* To check for interior points, we draw a line in the positive x direction from * the point. If it intersects an even number of segments, the point is outside the * line chain (it had to first enter and then exit). Otherwise, it is inside the chain. * * Note: slope might be denormal here in the case of a horizontal line but we require our * y to move from above to below the point (or vice versa) * * Note: we open-code CPoint() here so that we don't end up calculating the size of the * vector number-of-points times. This has a non-trivial impact on zone fill times. */ const std::vector<VECTOR2I>& points = CPoints(); int pointCount = points.size();
for( int i = 0; i < pointCount; ) { const auto p1 = points[ i++ ]; const auto p2 = points[ i == pointCount ? 0 : i ]; const auto diff = p2 - p1;
if( diff.y != 0 ) { const int d = rescale( diff.x, ( aPt.y - p1.y ), diff.y );
if( ( ( p1.y > aPt.y ) != ( p2.y > aPt.y ) ) && ( aPt.x - p1.x < d ) ) inside = !inside; } }
// If aAccuracy is > 0 then by definition we don't care whether or not the point is
// *exactly* on the edge -- which saves us considerable processing time
return inside && ( aAccuracy > 0 || !PointOnEdge( aPt ) );}
bool SHAPE_LINE_CHAIN::PointOnEdge( const VECTOR2I& aPt, int aAccuracy ) const{ return EdgeContainingPoint( aPt, aAccuracy ) >= 0;}
int SHAPE_LINE_CHAIN::EdgeContainingPoint( const VECTOR2I& aPt, int aAccuracy ) const{ if( !PointCount() ) return -1;
else if( PointCount() == 1 ) { VECTOR2I dist = m_points[0] - aPt; return ( hypot( dist.x, dist.y ) <= aAccuracy + 1 ) ? 0 : -1; }
for( int i = 0; i < SegmentCount(); i++ ) { const SEG s = CSegment( i );
if( s.A == aPt || s.B == aPt ) return i;
if( s.Distance( aPt ) <= aAccuracy + 1 ) return i; }
return -1;}
bool SHAPE_LINE_CHAIN::CheckClearance( const VECTOR2I& aP, const int aDist) const{ if( !PointCount() ) return false;
else if( PointCount() == 1 ) return m_points[0] == aP;
for( int i = 0; i < SegmentCount(); i++ ) { const SEG s = CSegment( i );
if( s.A == aP || s.B == aP ) return true;
if( s.Distance( aP ) <= aDist ) return true; }
return false;}
const OPT<SHAPE_LINE_CHAIN::INTERSECTION> SHAPE_LINE_CHAIN::SelfIntersecting() const{ for( int s1 = 0; s1 < SegmentCount(); s1++ ) { for( int s2 = s1 + 1; s2 < SegmentCount(); s2++ ) { const VECTOR2I s2a = CSegment( s2 ).A, s2b = CSegment( s2 ).B;
if( s1 + 1 != s2 && CSegment( s1 ).Contains( s2a ) ) { INTERSECTION is; is.our = CSegment( s1 ); is.their = CSegment( s2 ); is.p = s2a; return is; } else if( CSegment( s1 ).Contains( s2b ) && // for closed polylines, the ending point of the
// last segment == starting point of the first segment
// this is a normal case, not self intersecting case
!( IsClosed() && s1 == 0 && s2 == SegmentCount()-1 ) ) { INTERSECTION is; is.our = CSegment( s1 ); is.their = CSegment( s2 ); is.p = s2b; return is; } else { OPT_VECTOR2I p = CSegment( s1 ).Intersect( CSegment( s2 ), true );
if( p ) { INTERSECTION is; is.our = CSegment( s1 ); is.their = CSegment( s2 ); is.p = *p; return is; } } } }
return OPT<SHAPE_LINE_CHAIN::INTERSECTION>();}
SHAPE_LINE_CHAIN& SHAPE_LINE_CHAIN::Simplify(){ std::vector<VECTOR2I> pts_unique;
if( PointCount() < 2 ) { return *this; } else if( PointCount() == 2 ) { if( m_points[0] == m_points[1] ) m_points.pop_back();
return *this; }
int i = 0; int np = PointCount();
// stage 1: eliminate duplicate vertices
while( i < np ) { int j = i + 1;
while( j < np && CPoint( i ) == CPoint( j ) ) j++;
pts_unique.push_back( CPoint( i ) ); i = j; }
m_points.clear(); np = pts_unique.size();
i = 0;
// stage 1: eliminate collinear segments
while( i < np - 2 ) { const VECTOR2I p0 = pts_unique[i]; const VECTOR2I p1 = pts_unique[i + 1]; int n = i;
while( n < np - 2 && SEG( p0, p1 ).LineDistance( pts_unique[n + 2] ) <= 1 ) n++;
m_points.push_back( p0 );
if( n > i ) i = n;
if( n == np ) { m_points.push_back( pts_unique[n - 1] ); return *this; }
i++; }
if( np > 1 ) m_points.push_back( pts_unique[np - 2] );
m_points.push_back( pts_unique[np - 1] );
return *this;}
const VECTOR2I SHAPE_LINE_CHAIN::NearestPoint( const VECTOR2I& aP ) const{ int min_d = INT_MAX; int nearest = 0;
for( int i = 0; i < SegmentCount(); i++ ) { int d = CSegment( i ).Distance( aP );
if( d < min_d ) { min_d = d; nearest = i; } }
return CSegment( nearest ).NearestPoint( aP );}
const VECTOR2I SHAPE_LINE_CHAIN::NearestPoint( const SEG& aSeg, int& dist ) const{ int nearest = 0;
dist = INT_MAX; for( int i = 0; i < PointCount(); i++ ) { int d = aSeg.LineDistance( CPoint( i ) );
if( d < dist ) { dist = d; nearest = i; } }
return CPoint( nearest );}
const std::string SHAPE_LINE_CHAIN::Format() const{ std::stringstream ss;
ss << m_points.size() << " " << ( m_closed ? 1 : 0 ) << " ";
for( int i = 0; i < PointCount(); i++ ) ss << m_points[i].x << " " << m_points[i].y << " "; // Format() << " ";
return ss.str();}
bool SHAPE_LINE_CHAIN::CompareGeometry ( const SHAPE_LINE_CHAIN & aOther ) const{ SHAPE_LINE_CHAIN a(*this), b( aOther ); a.Simplify(); b.Simplify();
if( a.m_points.size() != b.m_points.size() ) return false;
for( int i = 0; i < a.PointCount(); i++) if( a.CPoint( i ) != b.CPoint( i ) ) return false; return true;}
bool SHAPE_LINE_CHAIN::Intersects( const SHAPE_LINE_CHAIN& aChain ) const{ INTERSECTIONS dummy; return Intersect( aChain, dummy ) != 0;}
SHAPE* SHAPE_LINE_CHAIN::Clone() const{ return new SHAPE_LINE_CHAIN( *this );}
bool SHAPE_LINE_CHAIN::Parse( std::stringstream& aStream ){ int n_pts;
m_points.clear(); aStream >> n_pts;
// Rough sanity check, just make sure the loop bounds aren't absolutely outlandish
if( n_pts < 0 || n_pts > int( aStream.str().size() ) ) return false;
aStream >> m_closed;
for( int i = 0; i < n_pts; i++ ) { int x, y; aStream >> x; aStream >> y; m_points.push_back( VECTOR2I( x, y ) ); }
return true;}
const VECTOR2I SHAPE_LINE_CHAIN::PointAlong( int aPathLength ) const{ int total = 0;
if( aPathLength == 0 ) return CPoint( 0 );
for( int i = 0; i < SegmentCount(); i++ ) { const SEG& s = CSegment( i ); int l = s.Length();
if( total + l >= aPathLength ) { VECTOR2I d( s.B - s.A ); return s.A + d.Resize( aPathLength - total ); }
total += l; }
return CPoint( -1 );}
double SHAPE_LINE_CHAIN::Area() const{ // see https://www.mathopenref.com/coordpolygonarea2.html
if( !m_closed ) return 0.0;
double area = 0.0; int size = m_points.size();
for( int i = 0, j = size - 1; i < size; ++i ) { area += ( (double) m_points[j].x + m_points[i].x ) * ( (double) m_points[j].y - m_points[i].y ); j = i; }
return -area * 0.5;}
|