|
|
/*
* This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2004-2018 Jean-Pierre Charras, jp.charras at wanadoo.fr * Copyright (C) 2011 Wayne Stambaugh <stambaughw@verizon.net> * Copyright The KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */
#include <atomic>
#include <bit>
#include <reporter.h>
#include <board_commit.h>
#include <cleanup_item.h>
#include <connectivity/connectivity_algo.h>
#include <connectivity/connectivity_data.h>
#include <thread_pool.h>
#include <lset.h>
#include <tool/tool_manager.h>
#include <tools/pcb_actions.h>
#include <tools/global_edit_tool.h>
#include <drc/drc_rtree.h>
#include <tracks_cleaner.h>
TRACKS_CLEANER::TRACKS_CLEANER( BOARD* aPcb, BOARD_COMMIT& aCommit ) : m_brd( aPcb ), m_commit( aCommit ), m_dryRun( true ), m_itemsList( nullptr ), m_reporter( nullptr ), m_filter( nullptr ) { }
/* Main cleaning function.
* Delete * - Redundant points on tracks (merge aligned segments) * - vias on pad * - null length segments */ void TRACKS_CLEANER::CleanupBoard( bool aDryRun, std::vector<std::shared_ptr<CLEANUP_ITEM> >* aItemsList, bool aRemoveMisConnected, bool aCleanVias, bool aMergeSegments, bool aDeleteUnconnected, bool aDeleteTracksinPad, bool aDeleteDanglingVias, REPORTER* aReporter ) { m_reporter = aReporter; bool has_deleted = false;
m_dryRun = aDryRun; m_itemsList = aItemsList;
if( m_reporter ) { if( aDryRun ) m_reporter->Report( _( "Checking null tracks and vias..." ) ); else m_reporter->Report( _( "Removing null tracks and vias..." ) );
wxSafeYield(); // Timeslice to update UI
}
bool removeNullSegments = aMergeSegments || aRemoveMisConnected; cleanup( aCleanVias, removeNullSegments, aMergeSegments /* dup segments*/, aMergeSegments );
if( m_reporter ) { if( aDryRun ) m_reporter->Report( _( "Checking redundant tracks..." ) ); else m_reporter->Report( _( "Removing redundant tracks..." ) );
wxSafeYield(); // Timeslice to update UI
}
// If we didn't remove duplicates above, do it now
if( !aMergeSegments ) cleanup( false, false, true, false );
if( aRemoveMisConnected ) { if( m_reporter ) { if( aDryRun ) m_reporter->Report( _( "Checking shorting tracks..." ) ); else m_reporter->Report( _( "Removing shorting tracks..." ) );
wxSafeYield(); // Timeslice to update UI
}
removeShortingTrackSegments(); }
if( aDeleteTracksinPad ) { if( m_reporter ) { if( aDryRun ) m_reporter->Report( _( "Checking tracks in pads..." ) ); else m_reporter->Report( _( "Removing tracks in pads..." ) );
wxSafeYield(); // Timeslice to update UI
}
deleteTracksInPads(); }
if( aDeleteUnconnected || aDeleteDanglingVias ) { if( m_reporter ) { if( aDryRun ) { m_reporter->Report( _( "Checking dangling tracks and vias..." ) ); } else { if( aDeleteUnconnected ) m_reporter->Report( _( "Removing dangling tracks..." ) );
if( aDeleteDanglingVias ) m_reporter->Report( _( "Removing dangling vias..." ) ); }
wxSafeYield(); // Timeslice to update UI
}
has_deleted = deleteDanglingTracks( aDeleteUnconnected, aDeleteDanglingVias ); }
if( has_deleted && aMergeSegments ) { if( m_reporter ) { if( aDryRun ) m_reporter->Report( _( "Checking collinear tracks..." ) ); else m_reporter->Report( _( "Merging collinear tracks..." ) );
wxSafeYield(); // Timeslice to update UI
}
cleanup( false, false, false, true ); } }
bool TRACKS_CLEANER::filterItem( BOARD_CONNECTED_ITEM* aItem ) { if( !m_filter ) return false;
return (m_filter)( aItem ); }
void TRACKS_CLEANER::removeShortingTrackSegments() { std::shared_ptr<CONNECTIVITY_DATA> connectivity = m_brd->GetConnectivity();
std::set<BOARD_ITEM *> toRemove;
for( PCB_TRACK* segment : m_brd->Tracks() ) { if( segment->IsLocked() || filterItem( segment ) ) continue;
for( PAD* testedPad : connectivity->GetConnectedPads( segment ) ) { if( segment->GetNetCode() != testedPad->GetNetCode() ) { std::shared_ptr<CLEANUP_ITEM> item;
if( segment->Type() == PCB_VIA_T ) item = std::make_shared<CLEANUP_ITEM>( CLEANUP_SHORTING_VIA ); else item = std::make_shared<CLEANUP_ITEM>( CLEANUP_SHORTING_TRACK );
item->SetItems( segment ); m_itemsList->push_back( std::move( item ) );
toRemove.insert( segment ); } }
for( PCB_TRACK* testedTrack : connectivity->GetConnectedTracks( segment ) ) { if( segment->GetNetCode() != testedTrack->GetNetCode() ) { std::shared_ptr<CLEANUP_ITEM> item;
if( segment->Type() == PCB_VIA_T ) item = std::make_shared<CLEANUP_ITEM>( CLEANUP_SHORTING_VIA ); else item = std::make_shared<CLEANUP_ITEM>( CLEANUP_SHORTING_TRACK );
item->SetItems( segment ); m_itemsList->push_back( std::move( item ) );
toRemove.insert( segment ); } } }
if( !m_dryRun ) removeItems( toRemove ); }
bool TRACKS_CLEANER::testTrackEndpointIsNode( PCB_TRACK* aTrack, bool aTstStart, bool aTstEnd ) { if( !( aTstStart && aTstEnd ) ) return false;
// A node is a point where more than 2 items are connected. However, we elide tracks that are
// collinear with the track being tested.
const std::list<CN_ITEM*>& items = m_brd->GetConnectivity()->GetConnectivityAlgo()->ItemEntry( aTrack ).GetItems();
if( items.empty() ) return false;
int itemcount = 0;
for( CN_ITEM* item : items ) { if( !item->Valid() || item->Parent() == aTrack || item->Parent()->HasFlag( IS_DELETED ) ) continue;
if( item->Parent()->Type() == PCB_TRACE_T && static_cast<PCB_TRACK*>( item->Parent() )->ApproxCollinear( aTrack ) ) { continue; }
for( const std::shared_ptr<CN_ANCHOR>& anchor : item->Anchors() ) { if( ( aTstStart && anchor->Pos() == aTrack->GetStart() ) && ( aTstEnd && anchor->Pos() == aTrack->GetEnd() ) ) { itemcount++; break; } } }
return itemcount > 1; }
bool TRACKS_CLEANER::deleteDanglingTracks( bool aTrack, bool aVia ) { bool item_erased = false; bool modified = false;
if( !aTrack && !aVia ) return false;
do // Iterate when at least one track is deleted
{ item_erased = false; // Ensure the connectivity is up to date, especially after removing a dangling segment
m_brd->BuildConnectivity();
// Keep a duplicate deque to all deleting in the primary
std::deque<PCB_TRACK*> temp_tracks( m_brd->Tracks() );
for( PCB_TRACK* track : temp_tracks ) { if( track->HasFlag( IS_DELETED ) || track->IsLocked() || filterItem( track ) ) continue;
if( !aVia && track->Type() == PCB_VIA_T ) continue;
if( !aTrack && ( track->Type() == PCB_TRACE_T || track->Type() == PCB_ARC_T ) ) continue;
// Test if a track (or a via) endpoint is not connected to another track or zone.
if( m_brd->GetConnectivity()->TestTrackEndpointDangling( track, false ) ) { std::shared_ptr<CLEANUP_ITEM> item;
if( track->Type() == PCB_VIA_T ) item = std::make_shared<CLEANUP_ITEM>( CLEANUP_DANGLING_VIA ); else item = std::make_shared<CLEANUP_ITEM>( CLEANUP_DANGLING_TRACK );
item->SetItems( track ); m_itemsList->push_back( std::move( item ) ); track->SetFlags( IS_DELETED );
// keep iterating, because a track connected to the deleted track
// now perhaps is not connected and should be deleted
item_erased = true;
if( !m_dryRun ) { m_brd->Remove( track ); m_commit.Removed( track ); modified = true; } } } } while( item_erased ); // A segment was erased: test for some new dangling segments
return modified; }
void TRACKS_CLEANER::deleteTracksInPads() { std::set<BOARD_ITEM*> toRemove;
// Delete tracks that start and end on the same pad
std::shared_ptr<CONNECTIVITY_DATA> connectivity = m_brd->GetConnectivity();
for( PCB_TRACK* track : m_brd->Tracks() ) { if( track->IsLocked() || filterItem( track ) ) continue;
if( track->Type() == PCB_VIA_T ) continue;
// Mark track if connected to pads
for( PAD* pad : connectivity->GetConnectedPads( track ) ) { if( pad->HitTest( track->GetStart() ) && pad->HitTest( track->GetEnd() ) ) { SHAPE_POLY_SET poly; track->TransformShapeToPolygon( poly, track->GetLayer(), 0, track->GetMaxError(), ERROR_INSIDE );
poly.BooleanSubtract( *pad->GetEffectivePolygon( track->GetLayer(), ERROR_INSIDE ) );
if( poly.IsEmpty() ) { auto item = std::make_shared<CLEANUP_ITEM>( CLEANUP_TRACK_IN_PAD ); item->SetItems( track ); m_itemsList->push_back( std::move( item ) );
toRemove.insert( track ); track->SetFlags( IS_DELETED ); } } } }
if( !m_dryRun ) removeItems( toRemove ); }
/**
* Geometry-based cleanup: duplicate items, null items, colinear items. */ void TRACKS_CLEANER::cleanup( bool aDeleteDuplicateVias, bool aDeleteNullSegments, bool aDeleteDuplicateSegments, bool aMergeSegments ) { DRC_RTREE rtree;
for( PCB_TRACK* track : m_brd->Tracks() ) { track->ClearFlags( IS_DELETED | SKIP_STRUCT ); rtree.Insert( track, track->GetLayer() ); }
std::set<BOARD_ITEM*> toRemove;
for( PCB_TRACK* track : m_brd->Tracks() ) { if( track->HasFlag( IS_DELETED ) || track->IsLocked() || filterItem( track ) ) continue;
if( aDeleteDuplicateVias && track->Type() == PCB_VIA_T ) { PCB_VIA* via = static_cast<PCB_VIA*>( track );
if( via->GetStart() != via->GetEnd() ) via->SetEnd( via->GetStart() );
rtree.QueryColliding( via, via->GetLayer(), via->GetLayer(), // Filter:
[&]( BOARD_ITEM* aItem ) -> bool { return aItem->Type() == PCB_VIA_T && !aItem->HasFlag( SKIP_STRUCT ) && !aItem->HasFlag( IS_DELETED ); }, // Visitor:
[&]( BOARD_ITEM* aItem ) -> bool { PCB_VIA* other = static_cast<PCB_VIA*>( aItem );
if( via->GetPosition() == other->GetPosition() && via->GetViaType() == other->GetViaType() && via->GetLayerSet() == other->GetLayerSet() ) { auto item = std::make_shared<CLEANUP_ITEM>( CLEANUP_REDUNDANT_VIA ); item->SetItems( via ); m_itemsList->push_back( std::move( item ) );
via->SetFlags( IS_DELETED ); toRemove.insert( via ); }
return true; } );
// To delete through Via on THT pads at same location
// Examine the list of connected pads: if a through pad is found, the via is redundant
for( PAD* pad : m_brd->GetConnectivity()->GetConnectedPads( via ) ) { const LSET all_cu = LSET::AllCuMask( m_brd->GetCopperLayerCount() );
if( ( pad->GetLayerSet() & all_cu ) == all_cu ) { auto item = std::make_shared<CLEANUP_ITEM>( CLEANUP_REDUNDANT_VIA ); item->SetItems( via, pad ); m_itemsList->push_back( std::move( item ) );
via->SetFlags( IS_DELETED ); toRemove.insert( via ); break; } }
via->SetFlags( SKIP_STRUCT ); }
if( aDeleteNullSegments && track->Type() != PCB_VIA_T ) { if( track->IsNull() ) { auto item = std::make_shared<CLEANUP_ITEM>( CLEANUP_ZERO_LENGTH_TRACK ); item->SetItems( track ); m_itemsList->push_back( std::move( item ) );
track->SetFlags( IS_DELETED ); toRemove.insert( track ); } }
if( aDeleteDuplicateSegments && track->Type() == PCB_TRACE_T && !track->IsNull() ) { rtree.QueryColliding( track, track->GetLayer(), track->GetLayer(), // Filter:
[&]( BOARD_ITEM* aItem ) -> bool { return aItem->Type() == PCB_TRACE_T && !aItem->HasFlag( SKIP_STRUCT ) && !aItem->HasFlag( IS_DELETED ) && !static_cast<PCB_TRACK*>( aItem )->IsNull(); }, // Visitor:
[&]( BOARD_ITEM* aItem ) -> bool { PCB_TRACK* other = static_cast<PCB_TRACK*>( aItem );
if( track->IsPointOnEnds( other->GetStart() ) && track->IsPointOnEnds( other->GetEnd() ) && track->GetWidth() == other->GetWidth() && track->GetLayer() == other->GetLayer() ) { auto item = std::make_shared<CLEANUP_ITEM>( CLEANUP_DUPLICATE_TRACK ); item->SetItems( track ); m_itemsList->push_back( std::move( item ) );
track->SetFlags( IS_DELETED ); toRemove.insert( track ); }
return true; } );
track->SetFlags( SKIP_STRUCT ); } }
if( !m_dryRun ) removeItems( toRemove );
auto mergeSegments = [&]( std::shared_ptr<CN_CONNECTIVITY_ALGO> connectivity ) -> bool { auto track_loop = [&]( int aStart, int aEnd ) -> std::vector<std::pair<PCB_TRACK*, PCB_TRACK*>> { std::vector<std::pair<PCB_TRACK*, PCB_TRACK*>> tracks;
for( int ii = aStart; ii < aEnd; ++ii ) { PCB_TRACK* segment = m_brd->Tracks()[ii];
// one can merge only collinear segments, not vias or arcs.
if( segment->Type() != PCB_TRACE_T ) continue;
if( segment->HasFlag( IS_DELETED ) ) // already taken into account
continue;
if( filterItem( segment ) ) continue;
// for each end of the segment:
for( CN_ITEM* citem : connectivity->ItemEntry( segment ).GetItems() ) { // Do not merge an end which has different width tracks attached -- it's a
// common use-case for necking-down a track between pads.
std::vector<PCB_TRACK*> sameWidthCandidates; std::vector<PCB_TRACK*> differentWidthCandidates;
for( CN_ITEM* connected : citem->ConnectedItems() ) { if( !connected->Valid() ) continue;
BOARD_CONNECTED_ITEM* candidate = connected->Parent();
if( candidate->Type() == PCB_TRACE_T && !candidate->HasFlag( IS_DELETED ) && !filterItem( candidate ) ) { PCB_TRACK* candidateSegment = static_cast<PCB_TRACK*>( candidate );
if( candidateSegment->GetWidth() == segment->GetWidth() ) { sameWidthCandidates.push_back( candidateSegment ); } else { differentWidthCandidates.push_back( candidateSegment ); break; } } }
if( !differentWidthCandidates.empty() ) continue;
for( PCB_TRACK* candidate : sameWidthCandidates ) { if( candidate < segment ) // avoid duplicate merges
continue;
if( segment->ApproxCollinear( *candidate ) && testMergeCollinearSegments( segment, candidate ) ) { tracks.emplace_back( segment, candidate ); break; } } } }
return tracks; };
// The idea here is to parallelize the loop that does not modify the connectivity
// and extract all of the pairs of segments that might be merged. Then, perform
// the actual merge in the main loop.
thread_pool& tp = GetKiCadThreadPool(); auto merge_returns = tp.parallelize_loop( 0, m_brd->Tracks().size(), track_loop ); bool retval = false;
for( size_t ii = 0; ii < merge_returns.size(); ++ii ) { std::future<std::vector<std::pair<PCB_TRACK*, PCB_TRACK*>>>& ret = merge_returns[ii];
if( ret.valid() ) { for( auto& [seg1, seg2] : ret.get() ) { retval = true;
if( seg1->HasFlag( IS_DELETED ) || seg2->HasFlag( IS_DELETED ) ) continue;
mergeCollinearSegments( seg1, seg2 ); } } }
return retval; };
if( aMergeSegments ) { do { while( !m_brd->BuildConnectivity() ) wxSafeYield();
std::lock_guard lock( m_mutex ); m_connectedItemsCache.clear(); } while( mergeSegments( m_brd->GetConnectivity()->GetConnectivityAlgo() ) ); }
for( PCB_TRACK* track : m_brd->Tracks() ) track->ClearFlags( IS_DELETED | SKIP_STRUCT ); }
const std::vector<BOARD_CONNECTED_ITEM*>& TRACKS_CLEANER::getConnectedItems( PCB_TRACK* aTrack ) { const std::shared_ptr<CONNECTIVITY_DATA>& connectivity = m_brd->GetConnectivity(); std::lock_guard lock( m_mutex );
if( !m_connectedItemsCache.contains( aTrack ) ) m_connectedItemsCache[aTrack] = connectivity->GetConnectedItems( aTrack );
return m_connectedItemsCache.at( aTrack ); }
bool TRACKS_CLEANER::testMergeCollinearSegments( PCB_TRACK* aSeg1, PCB_TRACK* aSeg2, PCB_TRACK* aDummySeg ) { if( aSeg1->IsLocked() || aSeg2->IsLocked() ) return false;
// Collect the unique points where the two tracks are connected to other items
const unsigned p1s = 1 << 0; const unsigned p1e = 1 << 1; const unsigned p2s = 1 << 2; const unsigned p2e = 1 << 3; std::vector<VECTOR2I> pts = { aSeg1->GetStart(), aSeg1->GetEnd(), aSeg2->GetStart(), aSeg2->GetEnd() }; std::atomic<unsigned> flags = 0;
auto collectPtsSeg1 = [&]( BOARD_CONNECTED_ITEM* citem ) { if( std::popcount( flags.load() ) > 2 ) return;
if( citem->Type() == PCB_TRACE_T || citem->Type() == PCB_ARC_T || citem->Type() == PCB_VIA_T ) { PCB_TRACK* track = static_cast<PCB_TRACK*>( citem );
if( track->IsPointOnEnds( aSeg1->GetStart() ) ) flags |= p1s;
if( track->IsPointOnEnds( aSeg1->GetEnd() ) ) flags |= p1e; } else { if( !( flags & p1s ) && citem->HitTest( aSeg1->GetStart(), ( aSeg1->GetWidth() + 1 ) / 2 ) ) flags |= p1s;
if( !( flags & p1e ) && citem->HitTest( aSeg1->GetEnd(), ( aSeg1->GetWidth() + 1 ) / 2 ) ) flags |= p1e; } };
auto collectPtsSeg2 = [&]( BOARD_CONNECTED_ITEM* citem ) { if( std::popcount( flags.load() ) > 2 ) return;
if( citem->Type() == PCB_TRACE_T || citem->Type() == PCB_ARC_T || citem->Type() == PCB_VIA_T ) { PCB_TRACK* track = static_cast<PCB_TRACK*>( citem );
if( track->IsPointOnEnds( aSeg2->GetStart() ) ) flags |= p2s;
if( track->IsPointOnEnds( aSeg2->GetEnd() ) ) flags |= p2e; } else { if( !( flags & p2s ) && citem->HitTest( aSeg2->GetStart(), ( aSeg2->GetWidth() + 1 ) / 2 ) ) flags |= p2s;
if( !( flags & p2e ) && citem->HitTest( aSeg2->GetEnd(), ( aSeg2->GetWidth() + 1 ) / 2 ) ) flags |= p2e; } };
for( BOARD_CONNECTED_ITEM* item : getConnectedItems( aSeg1 ) ) { if( item->HasFlag( IS_DELETED ) ) continue;
if( item != aSeg1 && item != aSeg2 ) collectPtsSeg1( item ); }
for( BOARD_CONNECTED_ITEM* item : getConnectedItems( aSeg2 ) ) { if( item->HasFlag( IS_DELETED ) ) continue;
if( item != aSeg1 && item != aSeg2 ) collectPtsSeg2( item ); }
// This means there is a node in the center
if( std::popcount( flags.load() ) > 2 ) return false;
// Verify the removed point after merging is not a node.
// If it is a node (i.e. if more than one other item is connected, the segments cannot be merged
PCB_TRACK dummy_seg( *aSeg1 );
if( !aDummySeg ) aDummySeg = &dummy_seg;
// Calculate the new ends of the segment to merge, and store them to dummy_seg:
int min_x = std::min( aSeg1->GetStart().x, std::min( aSeg1->GetEnd().x, std::min( aSeg2->GetStart().x, aSeg2->GetEnd().x ) ) ); int min_y = std::min( aSeg1->GetStart().y, std::min( aSeg1->GetEnd().y, std::min( aSeg2->GetStart().y, aSeg2->GetEnd().y ) ) ); int max_x = std::max( aSeg1->GetStart().x, std::max( aSeg1->GetEnd().x, std::max( aSeg2->GetStart().x, aSeg2->GetEnd().x ) ) ); int max_y = std::max( aSeg1->GetStart().y, std::max( aSeg1->GetEnd().y, std::max( aSeg2->GetStart().y, aSeg2->GetEnd().y ) ) );
if( ( aSeg1->GetStart().x > aSeg1->GetEnd().x ) == ( aSeg1->GetStart().y > aSeg1->GetEnd().y ) ) { aDummySeg->SetStart( VECTOR2I( min_x, min_y ) ); aDummySeg->SetEnd( VECTOR2I( max_x, max_y ) ); } else { aDummySeg->SetStart( VECTOR2I( min_x, max_y ) ); aDummySeg->SetEnd( VECTOR2I( max_x, min_y ) ); }
// The new ends of the segment must be connected to all of the same points as the original
// segments. If not, the segments cannot be merged.
for( unsigned i = 0; i < 4; ++i ) { if( ( flags & ( 1 << i ) ) && !aDummySeg->IsPointOnEnds( pts[i] ) ) return false; }
// Now find the removed end(s) and stop merging if it is a node:
return !testTrackEndpointIsNode( aSeg1, aDummySeg->IsPointOnEnds( aSeg1->GetStart() ), aDummySeg->IsPointOnEnds( aSeg1->GetEnd() ) ); }
bool TRACKS_CLEANER::mergeCollinearSegments( PCB_TRACK* aSeg1, PCB_TRACK* aSeg2 ) { PCB_TRACK dummy_seg( *aSeg1 );
if( !testMergeCollinearSegments( aSeg1, aSeg2, &dummy_seg ) ) return false;
std::shared_ptr<CLEANUP_ITEM> item = std::make_shared<CLEANUP_ITEM>( CLEANUP_MERGE_TRACKS ); item->SetItems( aSeg1, aSeg2 ); m_itemsList->push_back( std::move( item ) );
aSeg2->SetFlags( IS_DELETED );
if( !m_dryRun ) { m_commit.Modify( aSeg1 );
*aSeg1 = dummy_seg;
m_brd->GetConnectivity()->Update( aSeg1 );
// Merge successful, seg2 has to go away
m_brd->Remove( aSeg2 ); m_commit.Removed( aSeg2 ); }
return true; }
void TRACKS_CLEANER::removeItems( std::set<BOARD_ITEM*>& aItems ) { for( BOARD_ITEM* item : aItems ) { m_brd->Remove( item ); m_commit.Removed( item ); } }
|