|
|
/*
* KiRouter - a push-and-(sometimes-)shove PCB router * * Copyright (C) 2013-2016 CERN * Copyright (C) 2016-2024 KiCad Developers, see AUTHORS.txt for contributors. * Author: Tomasz Wlostowski <tomasz.wlostowski@cern.ch> * * This program is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or (at your * option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <board.h>
#include <board_connected_item.h>
#include <board_design_settings.h>
#include <netinfo.h>
#include <footprint.h>
#include <pad.h>
#include <pcb_track.h>
#include <zone.h>
#include <pcb_shape.h>
#include <pcb_generator.h>
#include <pcb_text.h>
#include <board_commit.h>
#include <layer_ids.h>
#include <kidialog.h>
#include <tools/pcb_tool_base.h>
#include <tool/tool_manager.h>
#include <settings/app_settings.h>
#include <gal/graphics_abstraction_layer.h>
#include <pcb_painter.h>
#include <geometry/shape.h>
#include <geometry/shape_line_chain.h>
#include <geometry/shape_arc.h>
#include <geometry/shape_simple.h>
#include <drc/drc_rule.h>
#include <drc/drc_engine.h>
#include <connectivity/connectivity_data.h>
#include <wx/log.h>
#include <memory>
#include <advanced_config.h>
#include <pcbnew_settings.h>
#include <macros.h>
#include "pns_kicad_iface.h"
#include "pns_arc.h"
#include "pns_sizes_settings.h"
#include "pns_item.h"
#include "pns_line.h"
#include "pns_solid.h"
#include "pns_segment.h"
#include "pns_node.h"
#include "pns_router.h"
#include "pns_debug_decorator.h"
#include "router_preview_item.h"
typedef VECTOR2I::extended_type ecoord;
struct CLEARANCE_CACHE_KEY { const PNS::ITEM* A; const PNS::ITEM* B; bool Flag;
bool operator==(const CLEARANCE_CACHE_KEY& other) const { return A == other.A && B == other.B && Flag == other.Flag; } };
namespace std { template <> struct hash<CLEARANCE_CACHE_KEY> { std::size_t operator()( const CLEARANCE_CACHE_KEY& k ) const { size_t retval = 0xBADC0FFEE0DDF00D; hash_combine( retval, hash<const void*>()( k.A ), hash<const void*>()( k.B ), hash<int>()( k.Flag ) ); return retval; } }; }
class PNS_PCBNEW_RULE_RESOLVER : public PNS::RULE_RESOLVER { public: PNS_PCBNEW_RULE_RESOLVER( BOARD* aBoard, PNS::ROUTER_IFACE* aRouterIface ); virtual ~PNS_PCBNEW_RULE_RESOLVER();
int Clearance( const PNS::ITEM* aA, const PNS::ITEM* aB, bool aUseClearanceEpsilon = true ) override;
PNS::NET_HANDLE DpCoupledNet( PNS::NET_HANDLE aNet ) override; int DpNetPolarity( PNS::NET_HANDLE aNet ) override; bool DpNetPair( const PNS::ITEM* aItem, PNS::NET_HANDLE& aNetP, PNS::NET_HANDLE& aNetN ) override;
int NetCode( PNS::NET_HANDLE aNet ) override; wxString NetName( PNS::NET_HANDLE aNet ) override;
bool IsInNetTie( const PNS::ITEM* aA ) override; bool IsNetTieExclusion( const PNS::ITEM* aItem, const VECTOR2I& aCollisionPos, const PNS::ITEM* aCollidingItem ) override;
bool IsDrilledHole( const PNS::ITEM* aItem ) override; bool IsNonPlatedSlot( const PNS::ITEM* aItem ) override;
/**
* @return true if \a aObstacle is a keepout. Set \a aEnforce if said keepout's rules * exclude \a aItem. */ bool IsKeepout( const PNS::ITEM* aObstacle, const PNS::ITEM* aItem, bool* aEnforce ) override;
bool QueryConstraint( PNS::CONSTRAINT_TYPE aType, const PNS::ITEM* aItemA, const PNS::ITEM* aItemB, int aLayer, PNS::CONSTRAINT* aConstraint ) override;
int ClearanceEpsilon() const override { return m_clearanceEpsilon; }
void ClearCacheForItems( std::vector<const PNS::ITEM*>& aItems ) override; void ClearCaches() override; void ClearTemporaryCaches() override;
private: BOARD_ITEM* getBoardItem( const PNS::ITEM* aItem, int aLayer, int aIdx = 0 );
private: PNS::ROUTER_IFACE* m_routerIface; BOARD* m_board; PCB_TRACK m_dummyTracks[2]; PCB_ARC m_dummyArcs[2]; PCB_VIA m_dummyVias[2]; int m_clearanceEpsilon;
std::unordered_map<CLEARANCE_CACHE_KEY, int> m_clearanceCache; std::unordered_map<CLEARANCE_CACHE_KEY, int> m_tempClearanceCache; };
PNS_PCBNEW_RULE_RESOLVER::PNS_PCBNEW_RULE_RESOLVER( BOARD* aBoard, PNS::ROUTER_IFACE* aRouterIface ) : m_routerIface( aRouterIface ), m_board( aBoard ), m_dummyTracks{ { aBoard }, { aBoard } }, m_dummyArcs{ { aBoard }, { aBoard } }, m_dummyVias{ { aBoard }, { aBoard } } { for( PCB_TRACK& track : m_dummyTracks ) track.SetFlags( ROUTER_TRANSIENT );
for( PCB_ARC& arc : m_dummyArcs ) arc.SetFlags( ROUTER_TRANSIENT );
for ( PCB_VIA& via : m_dummyVias ) via.SetFlags( ROUTER_TRANSIENT );
if( aBoard ) m_clearanceEpsilon = aBoard->GetDesignSettings().GetDRCEpsilon(); else m_clearanceEpsilon = 0; }
PNS_PCBNEW_RULE_RESOLVER::~PNS_PCBNEW_RULE_RESOLVER() { }
bool PNS_PCBNEW_RULE_RESOLVER::IsInNetTie( const PNS::ITEM* aA ) { BOARD_ITEM* item = aA->BoardItem();
return item && item->GetParentFootprint() && item->GetParentFootprint()->IsNetTie(); }
bool PNS_PCBNEW_RULE_RESOLVER::IsNetTieExclusion( const PNS::ITEM* aItem, const VECTOR2I& aCollisionPos, const PNS::ITEM* aCollidingItem ) { if( !aItem || !aCollidingItem ) return false;
std::shared_ptr<DRC_ENGINE> drcEngine = m_board->GetDesignSettings().m_DRCEngine; BOARD_ITEM* item = aItem->BoardItem(); BOARD_ITEM* collidingItem = aCollidingItem->BoardItem();
FOOTPRINT* collidingFp = collidingItem->GetParentFootprint(); FOOTPRINT* itemFp = item ? item->GetParentFootprint() : nullptr;
if( collidingFp && itemFp && ( collidingFp == itemFp ) && itemFp->IsNetTie() ) { // Two items colliding from the same net tie footprint are not checked
return true; }
if( drcEngine ) { return drcEngine->IsNetTieExclusion( NetCode( aItem->Net() ), ToLAYER_ID( aItem->Layer() ), aCollisionPos, collidingItem ); }
return false; }
bool PNS_PCBNEW_RULE_RESOLVER::IsKeepout( const PNS::ITEM* aObstacle, const PNS::ITEM* aItem, bool* aEnforce ) { auto checkKeepout = []( const ZONE* aKeepout, const BOARD_ITEM* aOther ) { if( !aOther ) return false;
if( aKeepout->GetDoNotAllowTracks() && aOther->IsType( { PCB_ARC_T, PCB_TRACE_T } ) ) return true;
if( aKeepout->GetDoNotAllowVias() && aOther->Type() == PCB_VIA_T ) return true;
if( aKeepout->GetDoNotAllowPads() && aOther->Type() == PCB_PAD_T ) return true;
// Incomplete test, but better than nothing:
if( aKeepout->GetDoNotAllowFootprints() && aOther->Type() == PCB_PAD_T ) { return !aKeepout->GetParentFootprint() || aKeepout->GetParentFootprint() != aOther->GetParentFootprint(); }
return false; };
if( aObstacle->Parent() && aObstacle->Parent()->Type() == PCB_ZONE_T ) { const ZONE* zone = static_cast<ZONE*>( aObstacle->Parent() );
if( zone->GetIsRuleArea() ) { *aEnforce = checkKeepout( zone, getBoardItem( aItem, aObstacle->Layer() ) ); return true; } }
return false; }
static bool isCopper( const PNS::ITEM* aItem ) { if ( !aItem ) return false;
const BOARD_ITEM *parent = aItem->Parent();
return !parent || parent->IsOnCopperLayer(); }
static bool isHole( const PNS::ITEM* aItem ) { if ( !aItem ) return false;
return aItem->OfKind( PNS::ITEM::HOLE_T ); }
static bool isEdge( const PNS::ITEM* aItem ) { if ( !aItem ) return false;
const PCB_SHAPE *parent = dynamic_cast<PCB_SHAPE*>( aItem->BoardItem() );
return parent && ( parent->IsOnLayer( Edge_Cuts ) || parent->IsOnLayer( Margin ) ); }
bool PNS_PCBNEW_RULE_RESOLVER::IsDrilledHole( const PNS::ITEM* aItem ) { if( isHole( aItem ) ) { if( BOARD_ITEM* item = dynamic_cast<BOARD_ITEM*>( aItem->Parent() ) ) return item->HasDrilledHole(); }
return false; }
bool PNS_PCBNEW_RULE_RESOLVER::IsNonPlatedSlot( const PNS::ITEM* aItem ) { if( !isHole( aItem ) ) return false;
BOARD_ITEM* parent = aItem->Parent();
if( !parent && aItem->ParentPadVia() ) parent = aItem->ParentPadVia()->Parent();
if( parent ) { if( parent->Type() == PCB_PAD_T ) { PAD* pad = static_cast<PAD*>( parent );
return pad->GetAttribute() == PAD_ATTRIB::NPTH && pad->GetDrillSizeX() != pad->GetDrillSizeY(); }
// Via holes are (currently) always round, and always plated
}
return false; }
BOARD_ITEM* PNS_PCBNEW_RULE_RESOLVER::getBoardItem( const PNS::ITEM* aItem, int aLayer, int aIdx ) { switch( aItem->Kind() ) { case PNS::ITEM::ARC_T: m_dummyArcs[aIdx].SetLayer( ToLAYER_ID( aLayer ) ); m_dummyArcs[aIdx].SetNet( static_cast<NETINFO_ITEM*>( aItem->Net() ) ); m_dummyArcs[aIdx].SetStart( aItem->Anchor( 0 ) ); m_dummyArcs[aIdx].SetEnd( aItem->Anchor( 1 ) ); return &m_dummyArcs[aIdx];
case PNS::ITEM::VIA_T: case PNS::ITEM::HOLE_T: m_dummyVias[aIdx].SetLayer( ToLAYER_ID( aLayer ) ); m_dummyVias[aIdx].SetNet( static_cast<NETINFO_ITEM*>( aItem->Net() ) ); m_dummyVias[aIdx].SetStart( aItem->Anchor( 0 ) ); return &m_dummyVias[aIdx];
case PNS::ITEM::SEGMENT_T: case PNS::ITEM::LINE_T: m_dummyTracks[aIdx].SetLayer( ToLAYER_ID( aLayer ) ); m_dummyTracks[aIdx].SetNet( static_cast<NETINFO_ITEM*>( aItem->Net() ) ); m_dummyTracks[aIdx].SetStart( aItem->Anchor( 0 ) ); m_dummyTracks[aIdx].SetEnd( aItem->Anchor( 1 ) ); return &m_dummyTracks[aIdx];
default: return nullptr; } }
bool PNS_PCBNEW_RULE_RESOLVER::QueryConstraint( PNS::CONSTRAINT_TYPE aType, const PNS::ITEM* aItemA, const PNS::ITEM* aItemB, int aLayer, PNS::CONSTRAINT* aConstraint ) { std::shared_ptr<DRC_ENGINE> drcEngine = m_board->GetDesignSettings().m_DRCEngine;
if( !drcEngine ) return false;
DRC_CONSTRAINT_T hostType;
switch ( aType ) { case PNS::CONSTRAINT_TYPE::CT_CLEARANCE: hostType = CLEARANCE_CONSTRAINT; break; case PNS::CONSTRAINT_TYPE::CT_WIDTH: hostType = TRACK_WIDTH_CONSTRAINT; break; case PNS::CONSTRAINT_TYPE::CT_DIFF_PAIR_GAP: hostType = DIFF_PAIR_GAP_CONSTRAINT; break; case PNS::CONSTRAINT_TYPE::CT_LENGTH: hostType = LENGTH_CONSTRAINT; break; case PNS::CONSTRAINT_TYPE::CT_DIFF_PAIR_SKEW: hostType = SKEW_CONSTRAINT; break; case PNS::CONSTRAINT_TYPE::CT_MAX_UNCOUPLED: hostType = MAX_UNCOUPLED_CONSTRAINT; break; case PNS::CONSTRAINT_TYPE::CT_VIA_DIAMETER: hostType = VIA_DIAMETER_CONSTRAINT; break; case PNS::CONSTRAINT_TYPE::CT_VIA_HOLE: hostType = HOLE_SIZE_CONSTRAINT; break; case PNS::CONSTRAINT_TYPE::CT_HOLE_CLEARANCE: hostType = HOLE_CLEARANCE_CONSTRAINT; break; case PNS::CONSTRAINT_TYPE::CT_EDGE_CLEARANCE: hostType = EDGE_CLEARANCE_CONSTRAINT; break; case PNS::CONSTRAINT_TYPE::CT_HOLE_TO_HOLE: hostType = HOLE_TO_HOLE_CONSTRAINT; break; case PNS::CONSTRAINT_TYPE::CT_PHYSICAL_CLEARANCE: hostType = PHYSICAL_CLEARANCE_CONSTRAINT; break; default: return false; // should not happen
}
BOARD_ITEM* parentA = aItemA ? aItemA->BoardItem() : nullptr; BOARD_ITEM* parentB = aItemB ? aItemB->BoardItem() : nullptr; DRC_CONSTRAINT hostConstraint;
// A track being routed may not have a BOARD_ITEM associated yet.
if( aItemA && !parentA ) parentA = getBoardItem( aItemA, aLayer, 0 );
if( aItemB && !parentB ) parentB = getBoardItem( aItemB, aLayer, 1 );
if( parentA ) hostConstraint = drcEngine->EvalRules( hostType, parentA, parentB, ToLAYER_ID( aLayer ) );
if( hostConstraint.IsNull() ) return false;
if( hostConstraint.GetSeverity() == RPT_SEVERITY_IGNORE ) { aConstraint->m_Value.SetMin( -1 ); aConstraint->m_RuleName = hostConstraint.GetName(); aConstraint->m_Type = aType; return true; }
switch ( aType ) { case PNS::CONSTRAINT_TYPE::CT_CLEARANCE: case PNS::CONSTRAINT_TYPE::CT_WIDTH: case PNS::CONSTRAINT_TYPE::CT_DIFF_PAIR_GAP: case PNS::CONSTRAINT_TYPE::CT_VIA_DIAMETER: case PNS::CONSTRAINT_TYPE::CT_VIA_HOLE: case PNS::CONSTRAINT_TYPE::CT_HOLE_CLEARANCE: case PNS::CONSTRAINT_TYPE::CT_EDGE_CLEARANCE: case PNS::CONSTRAINT_TYPE::CT_HOLE_TO_HOLE: case PNS::CONSTRAINT_TYPE::CT_LENGTH: case PNS::CONSTRAINT_TYPE::CT_DIFF_PAIR_SKEW: case PNS::CONSTRAINT_TYPE::CT_MAX_UNCOUPLED: case PNS::CONSTRAINT_TYPE::CT_PHYSICAL_CLEARANCE: aConstraint->m_Value = hostConstraint.GetValue(); aConstraint->m_RuleName = hostConstraint.GetName(); aConstraint->m_Type = aType; return true;
default: return false; } }
void PNS_PCBNEW_RULE_RESOLVER::ClearCacheForItems( std::vector<const PNS::ITEM*>& aItems ) { int n_pruned = 0; std::set<const PNS::ITEM*> remainingItems( aItems.begin(), aItems.end() );
/* We need to carefully check both A and B item pointers in the cache against dirty/invalidated
items in the set, as the clearance relation is commutative ( CL[a,b] == CL[b,a] ). The code below is a bit ugly, but works in O(n*log(m)) and is run once or twice during ROUTER::Move() call - so I hope it still gets better performance than no cache at all */ for( auto it = m_clearanceCache.begin(); it != m_clearanceCache.end(); ) { bool dirty = remainingItems.find( it->first.A ) != remainingItems.end(); dirty |= remainingItems.find( it->first.B) != remainingItems.end();
if( dirty ) { it = m_clearanceCache.erase( it ); n_pruned++; } else it++; } #if 0
printf("ClearCache : n_pruned %d\n", n_pruned ); #endif
}
void PNS_PCBNEW_RULE_RESOLVER::ClearCaches() { m_clearanceCache.clear(); m_tempClearanceCache.clear(); }
void PNS_PCBNEW_RULE_RESOLVER::ClearTemporaryCaches() { m_tempClearanceCache.clear(); }
int PNS_PCBNEW_RULE_RESOLVER::Clearance( const PNS::ITEM* aA, const PNS::ITEM* aB, bool aUseClearanceEpsilon ) { CLEARANCE_CACHE_KEY key = { aA, aB, aUseClearanceEpsilon };
// Search cache (used for actual board items)
auto it = m_clearanceCache.find( key );
if( it != m_clearanceCache.end() ) return it->second;
// Search cache (used for temporary items within an algorithm)
it = m_tempClearanceCache.find( key );
if( it != m_tempClearanceCache.end() ) return it->second;
PNS::CONSTRAINT constraint; int rv = 0; LAYER_RANGE layers;
if( !aB ) layers = aA->Layers(); else if( isEdge( aA ) ) layers = aB->Layers(); else if( isEdge( aB ) ) layers = aA->Layers(); else layers = aA->Layers().Intersection( aB->Layers() );
// Normalize layer range (no -1 magic numbers)
layers = layers.Intersection( LAYER_RANGE( PCBNEW_LAYER_ID_START, PCB_LAYER_ID_COUNT - 1 ) );
for( int layer = layers.Start(); layer <= layers.End(); ++layer ) { if( IsDrilledHole( aA ) && IsDrilledHole( aB ) ) { if( QueryConstraint( PNS::CONSTRAINT_TYPE::CT_HOLE_TO_HOLE, aA, aB, layer, &constraint ) ) { if( constraint.m_Value.Min() > rv ) rv = constraint.m_Value.Min(); } } else if( isHole( aA ) || isHole( aB ) ) { if( QueryConstraint( PNS::CONSTRAINT_TYPE::CT_HOLE_CLEARANCE, aA, aB, layer, &constraint ) ) { if( constraint.m_Value.Min() > rv ) rv = constraint.m_Value.Min(); } }
// No 'else'; plated holes get both HOLE_CLEARANCE and CLEARANCE
if( isCopper( aA ) && ( !aB || isCopper( aB ) ) ) { if( QueryConstraint( PNS::CONSTRAINT_TYPE::CT_CLEARANCE, aA, aB, layer, &constraint ) ) { if( constraint.m_Value.Min() > rv ) rv = constraint.m_Value.Min(); } }
// No 'else'; non-plated milled holes get both HOLE_CLEARANCE and EDGE_CLEARANCE
if( isEdge( aA ) || IsNonPlatedSlot( aA ) || isEdge( aB ) || IsNonPlatedSlot( aB ) ) { if( QueryConstraint( PNS::CONSTRAINT_TYPE::CT_EDGE_CLEARANCE, aA, aB, layer, &constraint ) ) { if( constraint.m_Value.Min() > rv ) rv = constraint.m_Value.Min(); } }
if( QueryConstraint( PNS::CONSTRAINT_TYPE::CT_PHYSICAL_CLEARANCE, aA, aB, layer, &constraint ) ) { if( constraint.m_Value.Min() > rv ) rv = constraint.m_Value.Min(); } }
if( aUseClearanceEpsilon && rv > 0 ) rv = std::max( 0, rv - m_clearanceEpsilon );
/*
* It makes no sense to put items that have no owning NODE in the cache - they can be * allocated on stack and we can't really invalidate them in the cache when they are * destroyed. Probably a better idea would be to use a static unique counter in PNS::ITEM * constructor to generate the cache keys. * * However, algorithms DO greatly benefit from using the cache, so ownerless items need to be * cached. In order to easily clear those only, a temporary cache is created. If this doesn't * seem nice, an alternative is clearing the full cache once it reaches a certain size. Also * not pretty, but VERY effective to keep things interactive. */ if( aA && aB ) { if ( aA->Owner() && aB->Owner() ) m_clearanceCache[ key ] = rv; else m_tempClearanceCache[ key ] = rv; }
return rv; }
bool PNS_KICAD_IFACE_BASE::inheritTrackWidth( PNS::ITEM* aItem, int* aInheritedWidth ) { VECTOR2I p;
assert( aItem->Owner() != nullptr );
auto tryGetTrackWidth = []( PNS::ITEM* aPnsItem ) -> int { switch( aPnsItem->Kind() ) { case PNS::ITEM::SEGMENT_T: return static_cast<PNS::SEGMENT*>( aPnsItem )->Width(); case PNS::ITEM::ARC_T: return static_cast<PNS::ARC*>( aPnsItem )->Width(); default: return -1; } };
int itemTrackWidth = tryGetTrackWidth( aItem );
if( itemTrackWidth > 0 ) { *aInheritedWidth = itemTrackWidth; return true; }
switch( aItem->Kind() ) { case PNS::ITEM::VIA_T: p = static_cast<PNS::VIA*>( aItem )->Pos(); break; case PNS::ITEM::SOLID_T: p = static_cast<PNS::SOLID*>( aItem )->Pos(); break; default: return false; }
const PNS::JOINT* jt = static_cast<const PNS::NODE*>( aItem->Owner() )->FindJoint( p, aItem );
assert( jt != nullptr );
int mval = INT_MAX;
PNS::ITEM_SET linkedSegs( jt->CLinks() ); linkedSegs.ExcludeItem( aItem ).FilterKinds( PNS::ITEM::SEGMENT_T | PNS::ITEM::ARC_T );
for( PNS::ITEM* item : linkedSegs.Items() ) { int w = tryGetTrackWidth( item );
if( w > 0 ) mval = std::min( w, mval ); }
if( mval == INT_MAX ) return false;
*aInheritedWidth = mval; return true; }
bool PNS_KICAD_IFACE_BASE::ImportSizes( PNS::SIZES_SETTINGS& aSizes, PNS::ITEM* aStartItem, PNS::NET_HANDLE aNet ) { BOARD_DESIGN_SETTINGS& bds = m_board->GetDesignSettings(); PNS::CONSTRAINT constraint;
if( aStartItem && m_startLayer < 0 ) m_startLayer = aStartItem->Layer();
aSizes.SetClearance( bds.m_MinClearance ); aSizes.SetMinClearance( bds.m_MinClearance ); aSizes.SetClearanceSource( _( "board minimum clearance" ) );
if( m_ruleResolver->QueryConstraint( PNS::CONSTRAINT_TYPE::CT_CLEARANCE, aStartItem, nullptr, m_startLayer, &constraint ) ) { if( constraint.m_Value.Min() > bds.m_MinClearance ) { aSizes.SetClearance( constraint.m_Value.Min() ); aSizes.SetClearanceSource( constraint.m_RuleName ); } }
int trackWidth = bds.m_TrackMinWidth; bool found = false; aSizes.SetWidthSource( _( "board minimum track width" ) );
if( bds.m_UseConnectedTrackWidth && !bds.m_TempOverrideTrackWidth && aStartItem != nullptr ) { found = inheritTrackWidth( aStartItem, &trackWidth );
if( found ) aSizes.SetWidthSource( _( "existing track" ) ); }
if( !found && bds.UseNetClassTrack() && aStartItem ) { if( m_ruleResolver->QueryConstraint( PNS::CONSTRAINT_TYPE::CT_WIDTH, aStartItem, nullptr, m_startLayer, &constraint ) ) { trackWidth = std::max( trackWidth, constraint.m_Value.Opt() ); found = true;
if( trackWidth == constraint.m_Value.Opt() ) aSizes.SetWidthSource( constraint.m_RuleName ); } }
if( !found ) { trackWidth = std::max( trackWidth, bds.GetCurrentTrackWidth() );
if( bds.UseNetClassTrack() ) aSizes.SetWidthSource( _( "netclass 'Default'" ) ); else if( trackWidth == bds.GetCurrentTrackWidth() ) aSizes.SetWidthSource( _( "user choice" ) ); }
aSizes.SetTrackWidth( trackWidth ); aSizes.SetBoardMinTrackWidth( bds.m_TrackMinWidth ); aSizes.SetTrackWidthIsExplicit( !bds.m_UseConnectedTrackWidth || bds.m_TempOverrideTrackWidth );
int viaDiameter = bds.m_ViasMinSize; int viaDrill = bds.m_MinThroughDrill;
PNS::VIA dummyVia, coupledVia;
if( aStartItem ) { dummyVia.SetNet( aStartItem->Net() ); coupledVia.SetNet( m_ruleResolver->DpCoupledNet( aStartItem->Net() ) ); }
if( bds.UseNetClassVia() && aStartItem ) // netclass value
{ if( m_ruleResolver->QueryConstraint( PNS::CONSTRAINT_TYPE::CT_VIA_DIAMETER, &dummyVia, nullptr, m_startLayer, &constraint ) ) { viaDiameter = std::max( viaDiameter, constraint.m_Value.Opt() ); }
if( m_ruleResolver->QueryConstraint( PNS::CONSTRAINT_TYPE::CT_VIA_HOLE, &dummyVia, nullptr, m_startLayer, &constraint ) ) { viaDrill = std::max( viaDrill, constraint.m_Value.Opt() ); } } else { viaDiameter = bds.GetCurrentViaSize(); viaDrill = bds.GetCurrentViaDrill(); }
aSizes.SetViaDiameter( viaDiameter ); aSizes.SetViaDrill( viaDrill );
int diffPairWidth = bds.m_TrackMinWidth; int diffPairGap = bds.m_MinClearance; int diffPairViaGap = bds.m_MinClearance;
aSizes.SetDiffPairWidthSource( _( "board minimum track width" ) ); aSizes.SetDiffPairGapSource( _( "board minimum clearance" ) );
found = false;
// First try to pick up diff pair width from starting track, if enabled
if( bds.m_UseConnectedTrackWidth && aStartItem ) found = inheritTrackWidth( aStartItem, &diffPairWidth );
// Next, pick up gap from netclass, and width also if we didn't get a starting width above
if( bds.UseNetClassDiffPair() && aStartItem ) { if( !found && m_ruleResolver->QueryConstraint( PNS::CONSTRAINT_TYPE::CT_WIDTH, aStartItem, nullptr, m_startLayer, &constraint ) ) { diffPairWidth = std::max( diffPairWidth, constraint.m_Value.Opt() );
if( diffPairWidth == constraint.m_Value.Opt() ) aSizes.SetDiffPairWidthSource( constraint.m_RuleName ); }
if( m_ruleResolver->QueryConstraint( PNS::CONSTRAINT_TYPE::CT_DIFF_PAIR_GAP, aStartItem, nullptr, m_startLayer, &constraint ) ) { diffPairGap = std::max( diffPairGap, constraint.m_Value.Opt() ); diffPairViaGap = std::max( diffPairViaGap, constraint.m_Value.Opt() );
if( diffPairGap == constraint.m_Value.Opt() ) aSizes.SetDiffPairGapSource( constraint.m_RuleName ); } } else { diffPairWidth = bds.GetCurrentDiffPairWidth(); diffPairGap = bds.GetCurrentDiffPairGap(); diffPairViaGap = bds.GetCurrentDiffPairViaGap();
aSizes.SetDiffPairWidthSource( _( "user choice" ) ); aSizes.SetDiffPairGapSource( _( "user choice" ) ); }
aSizes.SetDiffPairWidth( diffPairWidth ); aSizes.SetDiffPairGap( diffPairGap ); aSizes.SetDiffPairViaGap( diffPairViaGap ); aSizes.SetDiffPairViaGapSameAsTraceGap( false );
int holeToHoleMin = bds.m_HoleToHoleMin;
if( m_ruleResolver->QueryConstraint( PNS::CONSTRAINT_TYPE::CT_HOLE_TO_HOLE, &dummyVia, &dummyVia, UNDEFINED_LAYER, &constraint ) ) { holeToHoleMin = constraint.m_Value.Min(); }
aSizes.SetHoleToHole( holeToHoleMin );
if( m_ruleResolver->QueryConstraint( PNS::CONSTRAINT_TYPE::CT_HOLE_TO_HOLE, &dummyVia, &coupledVia, UNDEFINED_LAYER, &constraint ) ) { holeToHoleMin = constraint.m_Value.Min(); }
aSizes.SetDiffPairHoleToHole( holeToHoleMin );
return true; }
int PNS_KICAD_IFACE_BASE::StackupHeight( int aFirstLayer, int aSecondLayer ) const { if( !m_board || !m_board->GetDesignSettings().m_UseHeightForLengthCalcs ) return 0;
BOARD_STACKUP& stackup = m_board->GetDesignSettings().GetStackupDescriptor();
return stackup.GetLayerDistance( ToLAYER_ID( aFirstLayer ), ToLAYER_ID( aSecondLayer ) ); }
PNS::NET_HANDLE PNS_PCBNEW_RULE_RESOLVER::DpCoupledNet( PNS::NET_HANDLE aNet ) { return m_board->DpCoupledNet( static_cast<NETINFO_ITEM*>( aNet ) ); }
int PNS_PCBNEW_RULE_RESOLVER::NetCode( PNS::NET_HANDLE aNet ) { return m_routerIface->GetNetCode( aNet ); }
wxString PNS_PCBNEW_RULE_RESOLVER::NetName( PNS::NET_HANDLE aNet ) { return m_routerIface->GetNetName( aNet ); }
int PNS_PCBNEW_RULE_RESOLVER::DpNetPolarity( PNS::NET_HANDLE aNet ) { wxString refName;
if( NETINFO_ITEM* net = static_cast<NETINFO_ITEM*>( aNet ) ) refName = net->GetNetname();
wxString dummy1;
return m_board->MatchDpSuffix( refName, dummy1 ); }
bool PNS_PCBNEW_RULE_RESOLVER::DpNetPair( const PNS::ITEM* aItem, PNS::NET_HANDLE& aNetP, PNS::NET_HANDLE& aNetN ) { if( !aItem || !aItem->Net() ) return false;
wxString netNameP = static_cast<NETINFO_ITEM*>( aItem->Net() )->GetNetname(); wxString netNameN, netNameCoupled;
int r = m_board->MatchDpSuffix( netNameP, netNameCoupled );
if( r == 0 ) { return false; } else if( r == 1 ) { netNameN = netNameCoupled; } else { netNameN = netNameP; netNameP = netNameCoupled; }
PNS::NET_HANDLE netInfoP = m_board->FindNet( netNameP ); PNS::NET_HANDLE netInfoN = m_board->FindNet( netNameN );
if( !netInfoP || !netInfoN ) return false;
aNetP = netInfoP; aNetN = netInfoN;
return true; }
class PNS_PCBNEW_DEBUG_DECORATOR: public PNS::DEBUG_DECORATOR { public: PNS_PCBNEW_DEBUG_DECORATOR( KIGFX::VIEW* aView = nullptr ) : PNS::DEBUG_DECORATOR(), m_view( nullptr ), m_items( nullptr ), m_depth( 0 ) { SetView( aView ); }
~PNS_PCBNEW_DEBUG_DECORATOR() { PNS_PCBNEW_DEBUG_DECORATOR::Clear(); delete m_items; }
void SetView( KIGFX::VIEW* aView ) { Clear(); delete m_items; m_items = nullptr; m_view = aView;
if( m_view == nullptr ) return;
if( m_view->GetGAL() ) m_depth = m_view->GetGAL()->GetMinDepth();
m_items = new KIGFX::VIEW_GROUP( m_view ); m_items->SetLayer( LAYER_SELECT_OVERLAY ) ; m_view->Add( m_items ); }
void AddPoint( const VECTOR2I& aP, const KIGFX::COLOR4D& aColor, int aSize, const wxString& aName = wxT( "" ), const SRC_LOCATION_INFO& aSrcLoc = SRC_LOCATION_INFO() ) override
{ SHAPE_LINE_CHAIN sh;
sh.SetWidth( 10000 );
sh.Append( aP.x - aSize, aP.y - aSize ); sh.Append( aP.x + aSize, aP.y + aSize ); sh.Append( aP.x, aP.y ); sh.Append( aP.x - aSize, aP.y + aSize ); sh.Append( aP.x + aSize, aP.y - aSize );
AddShape( &sh, aColor, sh.Width(), aName, aSrcLoc ); }
void AddItem( const PNS::ITEM* aItem, const KIGFX::COLOR4D& aColor, int aOverrideWidth = 0, const wxString& aName = wxT( "" ), const SRC_LOCATION_INFO& aSrcLoc = SRC_LOCATION_INFO() ) override { if( !m_view || !aItem ) return;
ROUTER_PREVIEW_ITEM* pitem = new ROUTER_PREVIEW_ITEM( aItem, m_view );
pitem->SetColor( aColor.WithAlpha( 0.5 ) ); pitem->SetWidth( aOverrideWidth ); pitem->SetDepth( nextDepth() );
m_items->Add( pitem ); m_view->Update( m_items ); }
void AddShape( const BOX2I& aBox, const KIGFX::COLOR4D& aColor, int aOverrideWidth = 0, const wxString& aName = wxT( "" ), const SRC_LOCATION_INFO& aSrcLoc = SRC_LOCATION_INFO() ) override { SHAPE_LINE_CHAIN l; l.SetWidth( aOverrideWidth );
VECTOR2I o = aBox.GetOrigin(); VECTOR2I s = aBox.GetSize();
l.Append( o ); l.Append( o.x + s.x, o.y ); l.Append( o.x + s.x, o.y + s.y ); l.Append( o.x, o.y + s.y ); l.Append( o );
AddShape( &l, aColor, aOverrideWidth, aName, aSrcLoc ); }
void AddShape( const SHAPE* aShape, const KIGFX::COLOR4D& aColor, int aOverrideWidth = 0, const wxString& aName = wxT( "" ), const SRC_LOCATION_INFO& aSrcLoc = SRC_LOCATION_INFO() ) override { if( !m_view || !aShape ) return;
ROUTER_PREVIEW_ITEM* pitem = new ROUTER_PREVIEW_ITEM( *aShape, m_view );
pitem->SetColor( aColor.WithAlpha( 0.5 ) ); pitem->SetWidth( aOverrideWidth ); pitem->SetDepth( nextDepth() );
m_items->Add( pitem ); m_view->Update( m_items ); }
void Clear() override { if( m_view && m_items ) { m_items->FreeItems(); m_view->Update( m_items );
if( m_view->GetGAL() ) m_depth = m_view->GetGAL()->GetMinDepth(); } }
private: double nextDepth() { // Use different depths so that the transculent shapes won't overwrite each other.
m_depth++;
if( m_depth >= 0 && m_view->GetGAL() ) m_depth = m_view->GetGAL()->GetMinDepth();
return m_depth; }
KIGFX::VIEW* m_view; KIGFX::VIEW_GROUP* m_items;
double m_depth; };
PNS::DEBUG_DECORATOR* PNS_KICAD_IFACE_BASE::GetDebugDecorator() { return m_debugDecorator; }
PNS_KICAD_IFACE_BASE::PNS_KICAD_IFACE_BASE() { m_ruleResolver = nullptr; m_board = nullptr; m_world = nullptr; m_debugDecorator = nullptr; m_startLayer = -1; }
PNS_KICAD_IFACE::PNS_KICAD_IFACE() { m_tool = nullptr; m_view = nullptr; m_previewItems = nullptr; m_commitFlags = 0; }
PNS_KICAD_IFACE_BASE::~PNS_KICAD_IFACE_BASE() { delete m_ruleResolver; delete m_debugDecorator; }
PNS_KICAD_IFACE::~PNS_KICAD_IFACE() { if( m_previewItems ) { m_previewItems->FreeItems(); delete m_previewItems; } }
std::unique_ptr<PNS::SOLID> PNS_KICAD_IFACE_BASE::syncPad( PAD* aPad ) { LAYER_RANGE layers( 0, MAX_CU_LAYERS - 1 );
// ignore non-copper pads except for those with holes
if( ( aPad->GetLayerSet() & LSET::AllCuMask() ).none() && aPad->GetDrillSize().x == 0 ) return nullptr;
switch( aPad->GetAttribute() ) { case PAD_ATTRIB::PTH: case PAD_ATTRIB::NPTH: break;
case PAD_ATTRIB::CONN: case PAD_ATTRIB::SMD: { LSET lmsk = aPad->GetLayerSet(); bool is_copper = false;
for( int i = 0; i < MAX_CU_LAYERS; i++ ) { if( lmsk[i] ) { is_copper = true;
if( aPad->GetAttribute() != PAD_ATTRIB::NPTH ) layers = LAYER_RANGE( i );
break; } }
if( !is_copper ) return nullptr;
break; }
default: wxLogTrace( wxT( "PNS" ), wxT( "unsupported pad type 0x%x" ), aPad->GetAttribute() ); return nullptr; }
std::unique_ptr<PNS::SOLID> solid = std::make_unique<PNS::SOLID>();
if( aPad->GetAttribute() == PAD_ATTRIB::NPTH ) solid->SetRoutable( false );
solid->SetLayers( layers ); solid->SetNet( aPad->GetNet() ); solid->SetParent( aPad ); solid->SetPadToDie( aPad->GetPadToDieLength() ); solid->SetOrientation( aPad->GetOrientation() );
if( aPad->IsFreePad() ) solid->SetIsFreePad();
VECTOR2I wx_c = aPad->ShapePos(); VECTOR2I offset = aPad->GetOffset();
VECTOR2I c( wx_c.x, wx_c.y );
RotatePoint( offset, aPad->GetOrientation() );
solid->SetPos( VECTOR2I( c.x - offset.x, c.y - offset.y ) ); solid->SetOffset( VECTOR2I( offset.x, offset.y ) );
if( aPad->GetDrillSize().x > 0 ) solid->SetHole( new PNS::HOLE( aPad->GetEffectiveHoleShape()->Clone() ) );
// We generate a single SOLID for a pad, so we have to treat it as ALWAYS_FLASHED and then
// perform layer-specific flashing tests internally.
const std::shared_ptr<SHAPE>& shape = aPad->GetEffectiveShape( UNDEFINED_LAYER, FLASHING::ALWAYS_FLASHED );
if( shape->HasIndexableSubshapes() && shape->GetIndexableSubshapeCount() == 1 ) { std::vector<const SHAPE*> subshapes; shape->GetIndexableSubshapes( subshapes );
solid->SetShape( subshapes[0]->Clone() ); } // For anything that's not a single shape we use a polygon. Multiple shapes have a tendency
// to confuse the hull generator. https://gitlab.com/kicad/code/kicad/-/issues/15553
else { const std::shared_ptr<SHAPE_POLY_SET>& poly = aPad->GetEffectivePolygon( ERROR_OUTSIDE );
if( poly->OutlineCount() ) solid->SetShape( new SHAPE_SIMPLE( poly->Outline( 0 ) ) ); }
return solid; }
std::unique_ptr<PNS::SEGMENT> PNS_KICAD_IFACE_BASE::syncTrack( PCB_TRACK* aTrack ) { auto segment = std::make_unique<PNS::SEGMENT>( SEG( aTrack->GetStart(), aTrack->GetEnd() ), aTrack->GetNet() );
segment->SetWidth( aTrack->GetWidth() ); segment->SetLayers( LAYER_RANGE( aTrack->GetLayer() ) ); segment->SetParent( aTrack );
if( aTrack->IsLocked() ) segment->Mark( PNS::MK_LOCKED );
if( PCB_GENERATOR* generator = dynamic_cast<PCB_GENERATOR*>( aTrack->GetParentGroup() ) ) { if( !generator->HasFlag( IN_EDIT ) ) segment->Mark( PNS::MK_LOCKED ); }
return segment; }
std::unique_ptr<PNS::ARC> PNS_KICAD_IFACE_BASE::syncArc( PCB_ARC* aArc ) { auto arc = std::make_unique<PNS::ARC>( SHAPE_ARC( aArc->GetStart(), aArc->GetMid(), aArc->GetEnd(), aArc->GetWidth() ), aArc->GetNet() );
arc->SetLayers( LAYER_RANGE( aArc->GetLayer() ) ); arc->SetParent( aArc );
if( aArc->IsLocked() ) arc->Mark( PNS::MK_LOCKED );
if( PCB_GENERATOR* generator = dynamic_cast<PCB_GENERATOR*>( aArc->GetParentGroup() ) ) { if( !generator->HasFlag( IN_EDIT ) ) arc->Mark( PNS::MK_LOCKED ); }
return arc; }
std::unique_ptr<PNS::VIA> PNS_KICAD_IFACE_BASE::syncVia( PCB_VIA* aVia ) { PCB_LAYER_ID top, bottom; aVia->LayerPair( &top, &bottom );
auto via = std::make_unique<PNS::VIA>( aVia->GetPosition(), LAYER_RANGE( aVia->TopLayer(), aVia->BottomLayer() ), aVia->GetWidth(), aVia->GetDrillValue(), aVia->GetNet(), aVia->GetViaType() );
via->SetParent( aVia );
if( aVia->IsLocked() ) via->Mark( PNS::MK_LOCKED );
if( PCB_GENERATOR* generator = dynamic_cast<PCB_GENERATOR*>( aVia->GetParentGroup() ) ) { if( !generator->HasFlag( IN_EDIT ) ) via->Mark( PNS::MK_LOCKED ); }
via->SetIsFree( aVia->GetIsFree() ); via->SetHole( PNS::HOLE::MakeCircularHole( aVia->GetPosition(), aVia->GetDrillValue() / 2 ) );
return via; }
bool PNS_KICAD_IFACE_BASE::syncZone( PNS::NODE* aWorld, ZONE* aZone, SHAPE_POLY_SET* aBoardOutline ) { static wxString msg; SHAPE_POLY_SET* poly;
if( !aZone->GetIsRuleArea() ) return false;
LSET layers = aZone->GetLayerSet();
poly = aZone->Outline(); poly->CacheTriangulation( false );
if( !poly->IsTriangulationUpToDate() ) { UNITS_PROVIDER unitsProvider( pcbIUScale, GetUnits() ); msg.Printf( _( "%s is malformed." ), aZone->GetItemDescription( &unitsProvider, true ) );
KIDIALOG dlg( nullptr, msg, KIDIALOG::KD_WARNING ); dlg.ShowDetailedText( _( "This zone cannot be handled by the router.\n" "Please verify it is not a self-intersecting polygon." ) ); dlg.DoNotShowCheckbox( __FILE__, __LINE__ ); dlg.ShowModal();
return false; }
for( int layer = F_Cu; layer <= B_Cu; layer++ ) { if( !layers[ layer ] ) continue;
for( int polyId = 0; polyId < poly->TriangulatedPolyCount(); polyId++ ) { const SHAPE_POLY_SET::TRIANGULATED_POLYGON* tri = poly->TriangulatedPolygon( polyId );
for( size_t i = 0; i < tri->GetTriangleCount(); i++) { VECTOR2I a, b, c; tri->GetTriangle( i, a, b, c ); SHAPE_SIMPLE* triShape = new SHAPE_SIMPLE;
triShape->Append( a ); triShape->Append( b ); triShape->Append( c );
std::unique_ptr<PNS::SOLID> solid = std::make_unique<PNS::SOLID>();
solid->SetLayer( layer ); solid->SetNet( nullptr ); solid->SetParent( aZone ); solid->SetShape( triShape ); solid->SetIsCompoundShapePrimitive(); solid->SetRoutable( false );
aWorld->Add( std::move( solid ) ); } } }
return true; }
bool PNS_KICAD_IFACE_BASE::syncTextItem( PNS::NODE* aWorld, PCB_TEXT* aText, PCB_LAYER_ID aLayer ) { if( !IsCopperLayer( aLayer ) ) return false;
std::unique_ptr<PNS::SOLID> solid = std::make_unique<PNS::SOLID>(); SHAPE_SIMPLE* shape = new SHAPE_SIMPLE;
solid->SetLayer( aLayer ); solid->SetNet( nullptr ); solid->SetParent( aText ); solid->SetShape( shape ); // takes ownership
solid->SetRoutable( false );
SHAPE_POLY_SET cornerBuffer;
aText->TransformShapeToPolygon( cornerBuffer, aText->GetLayer(), 0, m_board->GetDesignSettings().m_MaxError, ERROR_OUTSIDE );
if( !cornerBuffer.OutlineCount() ) return false;
for( const VECTOR2I& pt : cornerBuffer.Outline( 0 ).CPoints() ) shape->Append( pt );
aWorld->Add( std::move( solid ) );
return true; }
bool PNS_KICAD_IFACE_BASE::syncGraphicalItem( PNS::NODE* aWorld, PCB_SHAPE* aItem ) { if( aItem->GetLayer() == Edge_Cuts || aItem->GetLayer() == Margin || IsCopperLayer( aItem->GetLayer() ) ) { std::vector<SHAPE*> shapes = aItem->MakeEffectiveShapes();
for( SHAPE* shape : shapes ) { std::unique_ptr<PNS::SOLID> solid = std::make_unique<PNS::SOLID>();
if( aItem->GetLayer() == Edge_Cuts || aItem->GetLayer() == Margin ) { solid->SetLayers( LAYER_RANGE( F_Cu, B_Cu ) ); solid->SetRoutable( false ); } else { solid->SetLayer( aItem->GetLayer() ); }
if( aItem->GetLayer() == Edge_Cuts ) { switch( shape->Type() ) { case SH_SEGMENT: static_cast<SHAPE_SEGMENT*>( shape )->SetWidth( 0 ); break; case SH_ARC: static_cast<SHAPE_ARC*>( shape )->SetWidth( 0 ); break; case SH_LINE_CHAIN: static_cast<SHAPE_LINE_CHAIN*>( shape )->SetWidth( 0 ); break; default: /* remaining shapes don't have width */ break; } }
solid->SetAnchorPoints( aItem->GetConnectionPoints() ); solid->SetNet( aItem->GetNet() ); solid->SetParent( aItem ); solid->SetShape( shape ); // takes ownership
if( shapes.size() > 1 ) solid->SetIsCompoundShapePrimitive();
aWorld->Add( std::move( solid ) ); }
return true; }
return false; }
void PNS_KICAD_IFACE_BASE::SetBoard( BOARD* aBoard ) { m_board = aBoard; wxLogTrace( wxT( "PNS" ), wxT( "m_board = %p" ), m_board ); }
bool PNS_KICAD_IFACE::IsAnyLayerVisible( const LAYER_RANGE& aLayer ) const { if( !m_view ) return false;
for( int i = aLayer.Start(); i <= aLayer.End(); i++ ) { if( m_view->IsLayerVisible( i ) ) return true; }
return false; }
bool PNS_KICAD_IFACE_BASE::IsFlashedOnLayer( const PNS::ITEM* aItem, int aLayer ) const { /// Default is all layers
if( aLayer < 0 ) return true;
if( aItem->Parent() ) { switch( aItem->Parent()->Type() ) { case PCB_VIA_T: { const PCB_VIA* via = static_cast<const PCB_VIA*>( aItem->Parent() );
return via->FlashLayer( ToLAYER_ID( aLayer ) ); }
case PCB_PAD_T: { const PAD* pad = static_cast<const PAD*>( aItem->Parent() );
return pad->FlashLayer( ToLAYER_ID( aLayer ) ); }
default: break; } }
return aItem->Layers().Overlaps( aLayer ); }
bool PNS_KICAD_IFACE_BASE::IsFlashedOnLayer( const PNS::ITEM* aItem, const LAYER_RANGE& aLayer ) const { LAYER_RANGE test = aItem->Layers().Intersection( aLayer );
if( aItem->Parent() ) { switch( aItem->Parent()->Type() ) { case PCB_VIA_T: { const PCB_VIA* via = static_cast<const PCB_VIA*>( aItem->Parent() );
for( int layer = test.Start(); layer <= test.End(); ++layer ) { if( via->FlashLayer( ToLAYER_ID( layer ) ) ) return true; }
return false; }
case PCB_PAD_T: { const PAD* pad = static_cast<const PAD*>( aItem->Parent() );
for( int layer = test.Start(); layer <= test.End(); ++layer ) { if( pad->FlashLayer( ToLAYER_ID( layer ) ) ) return true; }
return false; }
default: break; } }
return test.Start() <= test.End(); }
bool PNS_KICAD_IFACE::IsItemVisible( const PNS::ITEM* aItem ) const { // by default, all items are visible (new ones created by the router have parent == NULL
// as they have not been committed yet to the BOARD)
if( !m_view || !aItem->Parent() ) return true;
BOARD_ITEM* item = aItem->Parent(); bool isOnVisibleLayer = true; RENDER_SETTINGS* settings = m_view->GetPainter()->GetSettings();
if( settings->GetHighContrast() ) isOnVisibleLayer = item->IsOnLayer( settings->GetPrimaryHighContrastLayer() );
if( m_view->IsVisible( item ) && isOnVisibleLayer ) { for( PCB_LAYER_ID layer : item->GetLayerSet().Seq() ) { if( item->ViewGetLOD( layer, m_view ) < m_view->GetScale() ) return true; } }
// Items hidden in the router are not hidden on the board
if( m_hiddenItems.find( item ) != m_hiddenItems.end() ) return true;
return false; }
void PNS_KICAD_IFACE_BASE::SyncWorld( PNS::NODE *aWorld ) { if( !m_board ) { wxLogTrace( wxT( "PNS" ), wxT( "No board attached, aborting sync." ) ); return; }
int worstClearance = m_board->GetMaxClearanceValue();
m_world = aWorld;
for( BOARD_ITEM* gitem : m_board->Drawings() ) { if ( gitem->Type() == PCB_SHAPE_T || gitem->Type() == PCB_TEXTBOX_T ) { syncGraphicalItem( aWorld, static_cast<PCB_SHAPE*>( gitem ) ); } else if( gitem->Type() == PCB_TEXT_T ) { syncTextItem( aWorld, static_cast<PCB_TEXT*>( gitem ), gitem->GetLayer() ); } }
SHAPE_POLY_SET buffer; SHAPE_POLY_SET* boardOutline = nullptr;
if( m_board->GetBoardPolygonOutlines( buffer ) ) boardOutline = &buffer;
for( ZONE* zone : m_board->Zones() ) { syncZone( aWorld, zone, boardOutline ); }
for( FOOTPRINT* footprint : m_board->Footprints() ) { for( PAD* pad : footprint->Pads() ) { if( std::unique_ptr<PNS::SOLID> solid = syncPad( pad ) ) aWorld->Add( std::move( solid ) );
std::optional<int> clearanceOverride = pad->GetClearanceOverrides( nullptr );
if( clearanceOverride.has_value() ) worstClearance = std::max( worstClearance, clearanceOverride.value() );
if( pad->GetProperty() == PAD_PROP::CASTELLATED ) { std::unique_ptr<SHAPE> hole; hole.reset( pad->GetEffectiveHoleShape()->Clone() ); aWorld->AddEdgeExclusion( std::move( hole ) ); } }
syncTextItem( aWorld, &footprint->Reference(), footprint->Reference().GetLayer() ); syncTextItem( aWorld, &footprint->Value(), footprint->Value().GetLayer() );
for( ZONE* zone : footprint->Zones() ) syncZone( aWorld, zone, boardOutline );
for( PCB_FIELD* field : footprint->Fields() ) syncTextItem( aWorld, static_cast<PCB_TEXT*>( field ), field->GetLayer() );
for( BOARD_ITEM* item : footprint->GraphicalItems() ) { if( item->Type() == PCB_SHAPE_T || item->Type() == PCB_TEXTBOX_T ) { syncGraphicalItem( aWorld, static_cast<PCB_SHAPE*>( item ) ); } else if( item->Type() == PCB_TEXT_T ) { syncTextItem( aWorld, static_cast<PCB_TEXT*>( item ), item->GetLayer() ); } } }
for( PCB_TRACK* t : m_board->Tracks() ) { KICAD_T type = t->Type();
if( type == PCB_TRACE_T ) { if( std::unique_ptr<PNS::SEGMENT> segment = syncTrack( t ) ) aWorld->Add( std::move( segment ) ); } else if( type == PCB_ARC_T ) { if( std::unique_ptr<PNS::ARC> arc = syncArc( static_cast<PCB_ARC*>( t ) ) ) aWorld->Add( std::move( arc ) ); } else if( type == PCB_VIA_T ) { if( std::unique_ptr<PNS::VIA> via = syncVia( static_cast<PCB_VIA*>( t ) ) ) aWorld->Add( std::move( via ) ); } }
// NB: if this were ever to become a long-lived object we would need to dirty its
// clearance cache here....
delete m_ruleResolver; m_ruleResolver = new PNS_PCBNEW_RULE_RESOLVER( m_board, this );
aWorld->SetRuleResolver( m_ruleResolver ); aWorld->SetMaxClearance( worstClearance + m_ruleResolver->ClearanceEpsilon() ); }
void PNS_KICAD_IFACE::EraseView() { for( BOARD_ITEM* item : m_hiddenItems ) m_view->SetVisible( item, true );
m_hiddenItems.clear();
if( m_previewItems ) { m_previewItems->FreeItems(); m_view->Update( m_previewItems ); }
if( m_debugDecorator ) m_debugDecorator->Clear(); }
void PNS_KICAD_IFACE_BASE::SetDebugDecorator( PNS::DEBUG_DECORATOR *aDec ) { m_debugDecorator = aDec; }
void PNS_KICAD_IFACE::DisplayItem( const PNS::ITEM* aItem, int aClearance, bool aEdit, int aFlags ) { if( aItem->IsVirtual() ) return;
if( ZONE* zone = dynamic_cast<ZONE*>( aItem->Parent() ) ) { if( zone->GetIsRuleArea() ) aFlags |= PNS_SEMI_SOLID; }
ROUTER_PREVIEW_ITEM* pitem = new ROUTER_PREVIEW_ITEM( aItem, m_view, aFlags );
// Note: SEGMENT_T is used for placed tracks; LINE_T is used for the routing head
static int tracks = PNS::ITEM::SEGMENT_T | PNS::ITEM::ARC_T | PNS::ITEM::LINE_T; static int tracksOrVias = tracks | PNS::ITEM::VIA_T;
if( aClearance >= 0 ) { pitem->SetClearance( aClearance );
auto* settings = static_cast<PCBNEW_SETTINGS*>( m_tool->GetManager()->GetSettings() );
switch( settings->m_Display.m_TrackClearance ) { case SHOW_WITH_VIA_ALWAYS: case SHOW_WITH_VIA_WHILE_ROUTING_OR_DRAGGING: pitem->ShowClearance( aItem->OfKind( tracksOrVias ) ); break;
case SHOW_WITH_VIA_WHILE_ROUTING: pitem->ShowClearance( aItem->OfKind( tracksOrVias ) && !aEdit ); break;
case SHOW_WHILE_ROUTING: pitem->ShowClearance( aItem->OfKind( tracks ) && !aEdit ); break;
default: pitem->ShowClearance( false ); break; } }
m_previewItems->Add( pitem ); m_view->Update( m_previewItems ); }
void PNS_KICAD_IFACE::DisplayPathLine( const SHAPE_LINE_CHAIN& aLine, int aImportance ) { ROUTER_PREVIEW_ITEM* pitem = new ROUTER_PREVIEW_ITEM( aLine, m_view ); pitem->SetDepth( pitem->GetOriginDepth() - ROUTER_PREVIEW_ITEM::PathOverlayDepth );
COLOR4D color;
if( aImportance >= 1 ) color = COLOR4D( 1.0, 1.0, 0.0, 0.6 ); else if( aImportance == 0 ) color = COLOR4D( 0.7, 0.7, 0.7, 0.6 );
pitem->SetColor( color );
m_previewItems->Add( pitem ); m_view->Update( m_previewItems ); }
void PNS_KICAD_IFACE::DisplayRatline( const SHAPE_LINE_CHAIN& aRatline, PNS::NET_HANDLE aNet ) { ROUTER_PREVIEW_ITEM* pitem = new ROUTER_PREVIEW_ITEM( aRatline, m_view );
KIGFX::RENDER_SETTINGS* renderSettings = m_view->GetPainter()->GetSettings(); KIGFX::PCB_RENDER_SETTINGS* rs = static_cast<KIGFX::PCB_RENDER_SETTINGS*>( renderSettings ); bool colorByNet = rs->GetNetColorMode() != NET_COLOR_MODE::OFF; COLOR4D defaultColor = rs->GetColor( nullptr, LAYER_RATSNEST ); COLOR4D color = defaultColor;
std::shared_ptr<CONNECTIVITY_DATA> connectivity = m_board->GetConnectivity(); std::set<int> highlightedNets = rs->GetHighlightNetCodes(); std::map<int, KIGFX::COLOR4D>& netColors = rs->GetNetColorMap(); int netCode = -1;
if( NETINFO_ITEM* net = static_cast<NETINFO_ITEM*>( aNet ) ) netCode = net->GetNetCode();
const NETCLASS* nc = nullptr; const NET_SETTINGS* netSettings = connectivity->GetNetSettings();
if( connectivity->HasNetNameForNetCode( netCode ) ) { const wxString& netName = connectivity->GetNetNameForNetCode( netCode );
if( netSettings && netSettings->HasEffectiveNetClass( netName ) ) nc = netSettings->GetCachedEffectiveNetClass( netName ).get(); }
if( colorByNet && netColors.count( netCode ) ) color = netColors.at( netCode ); else if( colorByNet && nc && nc->HasPcbColor() ) color = nc->GetPcbColor(); else color = defaultColor;
if( color == COLOR4D::UNSPECIFIED ) color = defaultColor;
pitem->SetColor( color.Brightened( 0.5 ).WithAlpha( std::min( 1.0, color.a + 0.4 ) ) );
m_previewItems->Add( pitem ); m_view->Update( m_previewItems ); }
void PNS_KICAD_IFACE::HideItem( PNS::ITEM* aItem ) { BOARD_ITEM* parent = aItem->Parent();
if( parent ) { if( m_view->IsVisible( parent ) ) m_hiddenItems.insert( parent );
m_view->SetVisible( parent, false ); m_view->Update( parent, KIGFX::APPEARANCE );
for( ZONE* td : m_board->Zones() ) { if( td->IsTeardropArea() && td->GetBoundingBox().Intersects( aItem->Parent()->GetBoundingBox() ) && td->Outline()->Collide( aItem->Shape() ) ) { m_view->SetVisible( td, false ); m_view->Update( td, KIGFX::APPEARANCE ); } } } }
void PNS_KICAD_IFACE_BASE::RemoveItem( PNS::ITEM* aItem ) { }
void PNS_KICAD_IFACE::RemoveItem( PNS::ITEM* aItem ) { BOARD_ITEM* parent = aItem->Parent();
if( aItem->OfKind( PNS::ITEM::SOLID_T ) ) { PAD* pad = static_cast<PAD*>( parent ); VECTOR2I pos = static_cast<PNS::SOLID*>( aItem )->Pos();
m_fpOffsets[ pad ].p_old = pos; return; }
if( parent ) { m_commit->Remove( parent ); } }
void PNS_KICAD_IFACE_BASE::UpdateItem( PNS::ITEM* aItem ) { }
void PNS_KICAD_IFACE::modifyBoardItem( PNS::ITEM* aItem ) { BOARD_ITEM* board_item = aItem->Parent();
switch( aItem->Kind() ) { case PNS::ITEM::ARC_T: { PNS::ARC* arc = static_cast<PNS::ARC*>( aItem ); PCB_ARC* arc_board = static_cast<PCB_ARC*>( board_item ); const SHAPE_ARC* arc_shape = static_cast<const SHAPE_ARC*>( arc->Shape() );
m_commit->Modify( arc_board );
arc_board->SetStart( VECTOR2I( arc_shape->GetP0() ) ); arc_board->SetEnd( VECTOR2I( arc_shape->GetP1() ) ); arc_board->SetMid( VECTOR2I( arc_shape->GetArcMid() ) ); arc_board->SetWidth( arc->Width() ); break; }
case PNS::ITEM::SEGMENT_T: { PNS::SEGMENT* seg = static_cast<PNS::SEGMENT*>( aItem ); PCB_TRACK* track = static_cast<PCB_TRACK*>( board_item ); const SEG& s = seg->Seg();
m_commit->Modify( track );
track->SetStart( VECTOR2I( s.A.x, s.A.y ) ); track->SetEnd( VECTOR2I( s.B.x, s.B.y ) ); track->SetWidth( seg->Width() ); break; }
case PNS::ITEM::VIA_T: { PCB_VIA* via_board = static_cast<PCB_VIA*>( board_item ); PNS::VIA* via = static_cast<PNS::VIA*>( aItem );
m_commit->Modify( via_board );
via_board->SetPosition( VECTOR2I( via->Pos().x, via->Pos().y ) ); via_board->SetWidth( via->Diameter() ); via_board->SetDrill( via->Drill() ); via_board->SetNet( static_cast<NETINFO_ITEM*>( via->Net() ) ); via_board->SetViaType( via->ViaType() ); // MUST be before SetLayerPair()
via_board->SetIsFree( via->IsFree() ); via_board->SetLayerPair( ToLAYER_ID( via->Layers().Start() ), ToLAYER_ID( via->Layers().End() ) ); break; }
case PNS::ITEM::SOLID_T: { PAD* pad = static_cast<PAD*>( aItem->Parent() ); VECTOR2I pos = static_cast<PNS::SOLID*>( aItem )->Pos();
// Don't add to commit; we'll add the parent footprints when processing the m_fpOffsets
m_fpOffsets[pad].p_old = pad->GetPosition(); m_fpOffsets[pad].p_new = pos; break; }
default: m_commit->Modify( aItem->Parent() ); break; } }
void PNS_KICAD_IFACE::UpdateItem( PNS::ITEM* aItem ) { modifyBoardItem( aItem ); }
void PNS_KICAD_IFACE_BASE::AddItem( PNS::ITEM* aItem ) { }
BOARD_CONNECTED_ITEM* PNS_KICAD_IFACE::createBoardItem( PNS::ITEM* aItem ) { BOARD_CONNECTED_ITEM* newBoardItem = nullptr; NETINFO_ITEM* net = static_cast<NETINFO_ITEM*>( aItem->Net() );
if( !net ) net = NETINFO_LIST::OrphanedItem();
switch( aItem->Kind() ) { case PNS::ITEM::ARC_T: { PNS::ARC* arc = static_cast<PNS::ARC*>( aItem ); PCB_ARC* new_arc = new PCB_ARC( m_board, static_cast<const SHAPE_ARC*>( arc->Shape() ) ); new_arc->SetWidth( arc->Width() ); new_arc->SetLayer( ToLAYER_ID( arc->Layers().Start() ) ); new_arc->SetNet( net ); newBoardItem = new_arc; break; }
case PNS::ITEM::SEGMENT_T: { PNS::SEGMENT* seg = static_cast<PNS::SEGMENT*>( aItem ); PCB_TRACK* track = new PCB_TRACK( m_board ); const SEG& s = seg->Seg(); track->SetStart( VECTOR2I( s.A.x, s.A.y ) ); track->SetEnd( VECTOR2I( s.B.x, s.B.y ) ); track->SetWidth( seg->Width() ); track->SetLayer( ToLAYER_ID( seg->Layers().Start() ) ); track->SetNet( net ); newBoardItem = track; break; }
case PNS::ITEM::VIA_T: { PCB_VIA* via_board = new PCB_VIA( m_board ); PNS::VIA* via = static_cast<PNS::VIA*>( aItem ); via_board->SetPosition( VECTOR2I( via->Pos().x, via->Pos().y ) ); via_board->SetWidth( via->Diameter() ); via_board->SetDrill( via->Drill() ); via_board->SetNet( net ); via_board->SetViaType( via->ViaType() ); // MUST be before SetLayerPair()
via_board->SetIsFree( via->IsFree() ); via_board->SetLayerPair( ToLAYER_ID( via->Layers().Start() ), ToLAYER_ID( via->Layers().End() ) ); newBoardItem = via_board; break; }
case PNS::ITEM::SOLID_T: { PAD* pad = static_cast<PAD*>( aItem->Parent() ); VECTOR2I pos = static_cast<PNS::SOLID*>( aItem )->Pos();
m_fpOffsets[pad].p_new = pos; return nullptr; }
default: return nullptr; }
if( net->GetNetCode() <= 0 ) { NETINFO_ITEM* newNetInfo = newBoardItem->GetNet();
newNetInfo->SetParent( m_board ); newNetInfo->SetNetClass( m_board->GetDesignSettings().m_NetSettings->GetDefaultNetclass() ); }
return newBoardItem; }
void PNS_KICAD_IFACE::AddItem( PNS::ITEM* aItem ) { BOARD_CONNECTED_ITEM* boardItem = createBoardItem( aItem );
if( boardItem ) { aItem->SetParent( boardItem ); boardItem->ClearFlags();
m_commit->Add( boardItem ); } }
void PNS_KICAD_IFACE::Commit() { std::set<FOOTPRINT*> processedFootprints;
EraseView();
for( const auto& [ pad, fpOffset ] : m_fpOffsets ) { VECTOR2I offset = fpOffset.p_new - fpOffset.p_old; FOOTPRINT* footprint = pad->GetParentFootprint(); VECTOR2I p_orig = footprint->GetPosition(); VECTOR2I p_new = p_orig + offset;
if( processedFootprints.find( footprint ) != processedFootprints.end() ) continue;
processedFootprints.insert( footprint ); m_commit->Modify( footprint ); footprint->SetPosition( p_new ); }
m_fpOffsets.clear();
m_commit->Push( _( "Routing" ), m_commitFlags ); m_commit = std::make_unique<BOARD_COMMIT>( m_tool ); }
EDA_UNITS PNS_KICAD_IFACE::GetUnits() const { return static_cast<EDA_UNITS>( m_tool->GetManager()->GetSettings()->m_System.units ); }
void PNS_KICAD_IFACE::SetView( KIGFX::VIEW* aView ) { wxLogTrace( wxT( "PNS" ), wxT( "SetView %p" ), aView );
if( m_previewItems ) { m_previewItems->FreeItems(); delete m_previewItems; }
m_view = aView; m_previewItems = new KIGFX::VIEW_GROUP( m_view ); m_previewItems->SetLayer( LAYER_SELECT_OVERLAY ) ;
if(m_view) m_view->Add( m_previewItems );
delete m_debugDecorator;
auto dec = new PNS_PCBNEW_DEBUG_DECORATOR(); m_debugDecorator = dec;
dec->SetDebugEnabled( ADVANCED_CFG::GetCfg().m_ShowRouterDebugGraphics );
if( ADVANCED_CFG::GetCfg().m_ShowRouterDebugGraphics ) dec->SetView( m_view ); }
int PNS_KICAD_IFACE::GetNetCode( PNS::NET_HANDLE aNet ) const { if( aNet ) return static_cast<NETINFO_ITEM*>( aNet )->GetNetCode(); else return -1; }
wxString PNS_KICAD_IFACE::GetNetName( PNS::NET_HANDLE aNet ) const { if( aNet ) return static_cast<NETINFO_ITEM*>( aNet )->GetNetname(); else return wxEmptyString; }
void PNS_KICAD_IFACE::UpdateNet( PNS::NET_HANDLE aNet ) { wxLogTrace( wxT( "PNS" ), wxT( "Update-net %s" ), GetNetName( aNet ) ); }
PNS::NET_HANDLE PNS_KICAD_IFACE_BASE::GetOrphanedNetHandle() { return NETINFO_LIST::OrphanedItem(); }
PNS::RULE_RESOLVER* PNS_KICAD_IFACE_BASE::GetRuleResolver() { return m_ruleResolver; }
void PNS_KICAD_IFACE::SetHostTool( PCB_TOOL_BASE* aTool ) { m_tool = aTool; m_commit = std::make_unique<BOARD_COMMIT>( m_tool ); }
|