|
|
/* SHA1 module */
/* This module provides an interface to the SHA1 algorithm */
/* See below for information about the original code this module was
based upon. Additional work performed by:
Andrew Kuchling (amk@amk.ca) Greg Stein (gstein@lyra.org) Trevor Perrin (trevp@trevp.net)
Copyright (C) 2005-2007 Gregory P. Smith (greg@krypto.org) Licensed to PSF under a Contributor Agreement.
*/
/* SHA1 objects */
#include "Python.h"
#include "hashlib.h"
/* Some useful types */
#if SIZEOF_INT == 4
typedef unsigned int SHA1_INT32; /* 32-bit integer */typedef PY_LONG_LONG SHA1_INT64; /* 64-bit integer */#else
/* not defined. compilation will die. */#endif
/* The SHA1 block size and message digest sizes, in bytes */
#define SHA1_BLOCKSIZE 64
#define SHA1_DIGESTSIZE 20
/* The structure for storing SHA1 info */
struct sha1_state { SHA1_INT64 length; SHA1_INT32 state[5], curlen; unsigned char buf[SHA1_BLOCKSIZE];};
typedef struct { PyObject_HEAD
struct sha1_state hash_state;} SHA1object;
/* ------------------------------------------------------------------------
* * This code for the SHA1 algorithm was noted as public domain. The * original headers are pasted below. * * Several changes have been made to make it more compatible with the * Python environment and desired interface. * */
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
* * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
/* rotate the hard way (platform optimizations could be done) */#define ROL(x, y) ( (((unsigned long)(x)<<(unsigned long)((y)&31)) | (((unsigned long)(x)&0xFFFFFFFFUL)>>(unsigned long)(32-((y)&31)))) & 0xFFFFFFFFUL)
#define ROLc(x, y) ( (((unsigned long)(x)<<(unsigned long)((y)&31)) | (((unsigned long)(x)&0xFFFFFFFFUL)>>(unsigned long)(32-((y)&31)))) & 0xFFFFFFFFUL)
/* Endian Neutral macros that work on all platforms */
#define STORE32H(x, y) \
{ (y)[0] = (unsigned char)(((x)>>24)&255); (y)[1] = (unsigned char)(((x)>>16)&255); \ (y)[2] = (unsigned char)(((x)>>8)&255); (y)[3] = (unsigned char)((x)&255); }
#define LOAD32H(x, y) \
{ x = ((unsigned long)((y)[0] & 255)<<24) | \ ((unsigned long)((y)[1] & 255)<<16) | \ ((unsigned long)((y)[2] & 255)<<8) | \ ((unsigned long)((y)[3] & 255)); }
#define STORE64H(x, y) \
{ (y)[0] = (unsigned char)(((x)>>56)&255); (y)[1] = (unsigned char)(((x)>>48)&255); \ (y)[2] = (unsigned char)(((x)>>40)&255); (y)[3] = (unsigned char)(((x)>>32)&255); \ (y)[4] = (unsigned char)(((x)>>24)&255); (y)[5] = (unsigned char)(((x)>>16)&255); \ (y)[6] = (unsigned char)(((x)>>8)&255); (y)[7] = (unsigned char)((x)&255); }
#ifndef MIN
#define MIN(x, y) ( ((x)<(y))?(x):(y) )
#endif
/* SHA1 macros */
#define F0(x,y,z) (z ^ (x & (y ^ z)))
#define F1(x,y,z) (x ^ y ^ z)
#define F2(x,y,z) ((x & y) | (z & (x | y)))
#define F3(x,y,z) (x ^ y ^ z)
static void sha1_compress(struct sha1_state *sha1, unsigned char *buf){ SHA1_INT32 a,b,c,d,e,W[80],i;
/* copy the state into 512-bits into W[0..15] */ for (i = 0; i < 16; i++) { LOAD32H(W[i], buf + (4*i)); }
/* copy state */ a = sha1->state[0]; b = sha1->state[1]; c = sha1->state[2]; d = sha1->state[3]; e = sha1->state[4];
/* expand it */ for (i = 16; i < 80; i++) { W[i] = ROL(W[i-3] ^ W[i-8] ^ W[i-14] ^ W[i-16], 1); }
/* compress */ /* round one */ #define FF_0(a,b,c,d,e,i) e = (ROLc(a, 5) + F0(b,c,d) + e + W[i] + 0x5a827999UL); b = ROLc(b, 30);
#define FF_1(a,b,c,d,e,i) e = (ROLc(a, 5) + F1(b,c,d) + e + W[i] + 0x6ed9eba1UL); b = ROLc(b, 30);
#define FF_2(a,b,c,d,e,i) e = (ROLc(a, 5) + F2(b,c,d) + e + W[i] + 0x8f1bbcdcUL); b = ROLc(b, 30);
#define FF_3(a,b,c,d,e,i) e = (ROLc(a, 5) + F3(b,c,d) + e + W[i] + 0xca62c1d6UL); b = ROLc(b, 30);
for (i = 0; i < 20; ) { FF_0(a,b,c,d,e,i++); FF_0(e,a,b,c,d,i++); FF_0(d,e,a,b,c,i++); FF_0(c,d,e,a,b,i++); FF_0(b,c,d,e,a,i++); }
/* round two */ for (; i < 40; ) { FF_1(a,b,c,d,e,i++); FF_1(e,a,b,c,d,i++); FF_1(d,e,a,b,c,i++); FF_1(c,d,e,a,b,i++); FF_1(b,c,d,e,a,i++); }
/* round three */ for (; i < 60; ) { FF_2(a,b,c,d,e,i++); FF_2(e,a,b,c,d,i++); FF_2(d,e,a,b,c,i++); FF_2(c,d,e,a,b,i++); FF_2(b,c,d,e,a,i++); }
/* round four */ for (; i < 80; ) { FF_3(a,b,c,d,e,i++); FF_3(e,a,b,c,d,i++); FF_3(d,e,a,b,c,i++); FF_3(c,d,e,a,b,i++); FF_3(b,c,d,e,a,i++); }
#undef FF_0
#undef FF_1
#undef FF_2
#undef FF_3
/* store */ sha1->state[0] = sha1->state[0] + a; sha1->state[1] = sha1->state[1] + b; sha1->state[2] = sha1->state[2] + c; sha1->state[3] = sha1->state[3] + d; sha1->state[4] = sha1->state[4] + e;}
/**
Initialize the hash state @param sha1 The hash state you wish to initialize*/void sha1_init(struct sha1_state *sha1){ assert(sha1 != NULL); sha1->state[0] = 0x67452301UL; sha1->state[1] = 0xefcdab89UL; sha1->state[2] = 0x98badcfeUL; sha1->state[3] = 0x10325476UL; sha1->state[4] = 0xc3d2e1f0UL; sha1->curlen = 0; sha1->length = 0;}
/**
Process a block of memory though the hash @param sha1 The hash state @param in The data to hash @param inlen The length of the data (octets)*/void sha1_process(struct sha1_state *sha1, const unsigned char *in, Py_ssize_t inlen){ Py_ssize_t n;
assert(sha1 != NULL); assert(in != NULL); assert(sha1->curlen <= sizeof(sha1->buf));
while (inlen > 0) { if (sha1->curlen == 0 && inlen >= SHA1_BLOCKSIZE) { sha1_compress(sha1, (unsigned char *)in); sha1->length += SHA1_BLOCKSIZE * 8; in += SHA1_BLOCKSIZE; inlen -= SHA1_BLOCKSIZE; } else { n = MIN(inlen, (Py_ssize_t)(SHA1_BLOCKSIZE - sha1->curlen)); memcpy(sha1->buf + sha1->curlen, in, (size_t)n); sha1->curlen += n; in += n; inlen -= n; if (sha1->curlen == SHA1_BLOCKSIZE) { sha1_compress(sha1, sha1->buf); sha1->length += 8*SHA1_BLOCKSIZE; sha1->curlen = 0; } } }}
/**
Terminate the hash to get the digest @param sha1 The hash state @param out [out] The destination of the hash (20 bytes)*/void sha1_done(struct sha1_state *sha1, unsigned char *out){ int i;
assert(sha1 != NULL); assert(out != NULL); assert(sha1->curlen < sizeof(sha1->buf));
/* increase the length of the message */ sha1->length += sha1->curlen * 8;
/* append the '1' bit */ sha1->buf[sha1->curlen++] = (unsigned char)0x80;
/* if the length is currently above 56 bytes we append zeros
* then compress. Then we can fall back to padding zeros and length * encoding like normal. */ if (sha1->curlen > 56) { while (sha1->curlen < 64) { sha1->buf[sha1->curlen++] = (unsigned char)0; } sha1_compress(sha1, sha1->buf); sha1->curlen = 0; }
/* pad upto 56 bytes of zeroes */ while (sha1->curlen < 56) { sha1->buf[sha1->curlen++] = (unsigned char)0; }
/* store length */ STORE64H(sha1->length, sha1->buf+56); sha1_compress(sha1, sha1->buf);
/* copy output */ for (i = 0; i < 5; i++) { STORE32H(sha1->state[i], out+(4*i)); }}
/* .Source: /cvs/libtom/libtomcrypt/src/hashes/sha1.c,v $ *//* .Revision: 1.10 $ *//* .Date: 2007/05/12 14:25:28 $ */
/*
* End of copied SHA1 code. * * ------------------------------------------------------------------------ */
static PyTypeObject SHA1type;
static SHA1object *newSHA1object(void){ return (SHA1object *)PyObject_New(SHA1object, &SHA1type);}
/* Internal methods for a hash object */
static voidSHA1_dealloc(PyObject *ptr){ PyObject_Del(ptr);}
/* External methods for a hash object */
PyDoc_STRVAR(SHA1_copy__doc__, "Return a copy of the hash object.");
static PyObject *SHA1_copy(SHA1object *self, PyObject *unused){ SHA1object *newobj;
if (Py_TYPE(self) == &SHA1type) { if ( (newobj = newSHA1object())==NULL) return NULL; } else { if ( (newobj = newSHA1object())==NULL) return NULL; }
newobj->hash_state = self->hash_state; return (PyObject *)newobj;}
PyDoc_STRVAR(SHA1_digest__doc__,"Return the digest value as a string of binary data.");
static PyObject *SHA1_digest(SHA1object *self, PyObject *unused){ unsigned char digest[SHA1_DIGESTSIZE]; struct sha1_state temp;
temp = self->hash_state; sha1_done(&temp, digest); return PyBytes_FromStringAndSize((const char *)digest, SHA1_DIGESTSIZE);}
PyDoc_STRVAR(SHA1_hexdigest__doc__,"Return the digest value as a string of hexadecimal digits.");
static PyObject *SHA1_hexdigest(SHA1object *self, PyObject *unused){ unsigned char digest[SHA1_DIGESTSIZE]; struct sha1_state temp; PyObject *retval; Py_UCS1 *hex_digest; int i, j;
/* Get the raw (binary) digest value */ temp = self->hash_state; sha1_done(&temp, digest);
/* Create a new string */ retval = PyUnicode_New(SHA1_DIGESTSIZE * 2, 127); if (!retval) return NULL; hex_digest = PyUnicode_1BYTE_DATA(retval);
/* Make hex version of the digest */ for(i=j=0; i<SHA1_DIGESTSIZE; i++) { unsigned char c; c = (digest[i] >> 4) & 0xf; hex_digest[j++] = Py_hexdigits[c]; c = (digest[i] & 0xf); hex_digest[j++] = Py_hexdigits[c]; } assert(_PyUnicode_CheckConsistency(retval, 1)); return retval;}
PyDoc_STRVAR(SHA1_update__doc__,"Update this hash object's state with the provided string.");
static PyObject *SHA1_update(SHA1object *self, PyObject *args){ PyObject *obj; Py_buffer buf;
if (!PyArg_ParseTuple(args, "O:update", &obj)) return NULL;
GET_BUFFER_VIEW_OR_ERROUT(obj, &buf);
sha1_process(&self->hash_state, buf.buf, buf.len);
PyBuffer_Release(&buf); Py_INCREF(Py_None); return Py_None;}
static PyMethodDef SHA1_methods[] = { {"copy", (PyCFunction)SHA1_copy, METH_NOARGS, SHA1_copy__doc__}, {"digest", (PyCFunction)SHA1_digest, METH_NOARGS, SHA1_digest__doc__}, {"hexdigest", (PyCFunction)SHA1_hexdigest, METH_NOARGS, SHA1_hexdigest__doc__}, {"update", (PyCFunction)SHA1_update, METH_VARARGS, SHA1_update__doc__}, {NULL, NULL} /* sentinel */};
static PyObject *SHA1_get_block_size(PyObject *self, void *closure){ return PyLong_FromLong(SHA1_BLOCKSIZE);}
static PyObject *SHA1_get_name(PyObject *self, void *closure){ return PyUnicode_FromStringAndSize("SHA1", 3);}
static PyObject *sha1_get_digest_size(PyObject *self, void *closure){ return PyLong_FromLong(SHA1_DIGESTSIZE);}
static PyGetSetDef SHA1_getseters[] = { {"block_size", (getter)SHA1_get_block_size, NULL, NULL, NULL}, {"name", (getter)SHA1_get_name, NULL, NULL, NULL}, {"digest_size", (getter)sha1_get_digest_size, NULL, NULL, NULL}, {NULL} /* Sentinel */};
static PyTypeObject SHA1type = { PyVarObject_HEAD_INIT(NULL, 0) "_sha1.sha1", /*tp_name*/ sizeof(SHA1object), /*tp_size*/ 0, /*tp_itemsize*/ /* methods */ SHA1_dealloc, /*tp_dealloc*/ 0, /*tp_print*/ 0, /*tp_getattr*/ 0, /*tp_setattr*/ 0, /*tp_reserved*/ 0, /*tp_repr*/ 0, /*tp_as_number*/ 0, /*tp_as_sequence*/ 0, /*tp_as_mapping*/ 0, /*tp_hash*/ 0, /*tp_call*/ 0, /*tp_str*/ 0, /*tp_getattro*/ 0, /*tp_setattro*/ 0, /*tp_as_buffer*/ Py_TPFLAGS_DEFAULT, /*tp_flags*/ 0, /*tp_doc*/ 0, /*tp_traverse*/ 0, /*tp_clear*/ 0, /*tp_richcompare*/ 0, /*tp_weaklistoffset*/ 0, /*tp_iter*/ 0, /*tp_iternext*/ SHA1_methods, /* tp_methods */ NULL, /* tp_members */ SHA1_getseters, /* tp_getset */};
/* The single module-level function: new() */
PyDoc_STRVAR(SHA1_new__doc__,"Return a new SHA1 hash object; optionally initialized with a string.");
static PyObject *SHA1_new(PyObject *self, PyObject *args, PyObject *kwdict){ static char *kwlist[] = {"string", NULL}; SHA1object *new; PyObject *data_obj = NULL; Py_buffer buf;
if (!PyArg_ParseTupleAndKeywords(args, kwdict, "|O:new", kwlist, &data_obj)) { return NULL; }
if (data_obj) GET_BUFFER_VIEW_OR_ERROUT(data_obj, &buf);
if ((new = newSHA1object()) == NULL) { if (data_obj) PyBuffer_Release(&buf); return NULL; }
sha1_init(&new->hash_state);
if (PyErr_Occurred()) { Py_DECREF(new); if (data_obj) PyBuffer_Release(&buf); return NULL; } if (data_obj) { sha1_process(&new->hash_state, buf.buf, buf.len); PyBuffer_Release(&buf); }
return (PyObject *)new;}
/* List of functions exported by this module */
static struct PyMethodDef SHA1_functions[] = { {"sha1",(PyCFunction)SHA1_new, METH_VARARGS|METH_KEYWORDS,SHA1_new__doc__}, {NULL, NULL} /* Sentinel */};
/* Initialize this module. */
#define insint(n,v) { PyModule_AddIntConstant(m,n,v); }
static struct PyModuleDef _sha1module = { PyModuleDef_HEAD_INIT, "_sha1", NULL, -1, SHA1_functions, NULL, NULL, NULL, NULL};
PyMODINIT_FUNCPyInit__sha1(void){ Py_TYPE(&SHA1type) = &PyType_Type; if (PyType_Ready(&SHA1type) < 0) return NULL; return PyModule_Create(&_sha1module);}
|